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Abstract—Many happened-before based detectors for debugging multithreaded programs implement vector clocks to 

incrementally track the casual relations among synchronization events produced by concurrent threads and generate trace logs. 

They update the vector clocks via vector-based comparison and content assignment in every case. We observe that many such 

tracking comparison and assignment operations are removable in part or in whole, which if identified and used properly, have 

the potential to reduce the log traces thus produced. This paper presents our analysis to identify such removable tracking 

operations and shows how they could be used to reduce log traces. We implement our analysis result as a technique entitled 

LOFT. We evaluate LOFT on the well-studied PARSEC benchmarking suite and five large-scale real-world applications. The 

main experimental result shows that on average, LOFT identifies 63.9% of all synchronization operations incurred by the 

existing approach as removable and does not compromise the efficiency of the latter. 

Index Terms—redundant operation optimization, threads, synchronization 
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1. INTRODUCTION

With the advent of multicore processor technology, 
developing multithreaded programs is increasingly 
popular [25]. A program execution of a multithreaded 
program typically consists of multiple threads [16], 
each of which executes a sequence of instructions. A 
program may use locks or user-defined synchroniza-
tion idioms [21] to coordinate (or interleave) its threads 
to share resources (e.g., memory locations [16]).  

Multithreaded program is difficult to reason due to 
the huge amount of interleaving sequences (even for 
the same input). Any improper interleaving may lead 
to the occurrences of concurrency bugs such as data 
races [10],[16],[32], atomicity or order violations [23], 
[25], and deadlocks [4],[13],[22]. Debugging such a 
program against a concurrency bug can be intricate 
because a concurrency bug often manifests itself into a 
failure only in some but not all thread interleaving 
schedules, even for the same input [25].  

Typically, in debugging, developers and bug detec-
tors require analyzing the available execution trace 
logs. Using a short (or shorter) trace that indicates the 
program locations of the detected failures (due to such 
concurrency bugs) and how the thread interleaving in 
the monitored execution leads to these failures can 
ease developers to diagnose the reported problems. 

Many dynamic concurrency bug detectors (e.g., 
[16],[27],[30],[21],[32],[35]) use the same vector clock 
approach [29] to track the happened-before relations [27] 
among synchronization events acting on lock objects 
and events for thread management, which we refer to 

it as the FF algorithm [16]. FF conservatively logs all 
such events to ensure the causal relations between a 
pair of such events that can be inferred.  

Can this conservative requirement be relaxed? Our 
analysis results show that such a relaxation not only is 
feasible in theory (Section 4) but also results in a re-
duced lock trace, which is significantly shorter than 
the original lock trace (Section 5). To the best of our 
knowledge, this paper is the first work on the relaxa-
tion of lock traces for multithreaded programs (which 
refer it to as a lock trace reduction technique). 

The relaxation of such trace log requirements plays 
an important role in software testing and bug diagno-
sis. For example, in regression testing, as presented in 
a recent comprehensive survey [36], numerous test 
suite reduction, minimization, and prioritization tech-
niques have been proposed. To the best of our 
knowledge, a vast majority of them use the coverage 
data on the executed program entities in individual 
trace logs of the corresponding test cases as their in-
puts. They (1) select a subset of such logs such that the 
subset still maximally includes all logged program 
entities at least once, (2) make such a subset to be min-
imal in terms of the number of logs retained, or (3) pri-
oritize the corresponding trace logs. A common attrib-
ute of them is that they identify duplicated subse-
quences among trace logs, and only retain one subse-
quence for every set of duplicated subsequences. 

Another example is bug reproduction. To reproduce 
an observed failure, many state-based deterministic 
replay techniques (e.g., [8],[19]) capture every input, 
schedule decision, and read or write value of each var-
iable instance. They are valuable but slow, which 
should be improved [7]. ODR [7] efficiently finds an 
alternate execution trace log that produces the same 
failure as the original via an execution trace that may 
not be the same as the original trace to gain efficiency. 

Our work is developed on top of an interesting ob-
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servation: In the course of an execution of a multi-
threaded program, a thread may consecutively acquire 
the same lock; and during which, no other thread uses 
this particular lock. If this is the case, as long as at the 
end of every such period, the vector clocks associated 
with this particular lock and the thread in question can 
be maintained properly, all the intermediate updates on 
these vector clocks may be skipped. The key technical 
challenge is to characterize a condition that a log trace 
reduction technique can safely replace the involved 
tracking operations on these vector clocks by some 
maintenance of thread-local data structure. Moreover, 
it is desirable for this condition to be effective and ap-
plicable to a wide range of applications. To ease our 
presentation, this paper refers to such a vector-based 
operation (e.g., comparison and copy between two 
vectors) that can be skipped as a removable operation.  

In [12], we identified synchronization events in the 
online data race detection that one may remove from 
trace logging. This paper generalizes the preliminary 
work [12] by analyzing how nested locks and synchro-
nization barriers can be handled and presenting a gen-
eralized framework. The evaluation of this paper has 
also significantly extended by including five additional 
large-scale real-world benchmarks and validating the 
technique comprehensively.  

Specifically, we analyze all the scenarios involving a 
pair of consecutive synchronization events of the same 
thread, and show that our formulated condition can 
infer the presences of removable operations precisely. 
With this result, we define a new scheme to generate 
happened-before lock traces, and refer to the proposed 
technique as LOFT. We have evaluated LOFT on a 
well-studied PARSEC benchmark suite [9],[1],[15],[21]  
and five large-scale open-source C/C++ real-world 
applications (Apache Httpd [1], Chromium [2], Firefox 

[3], MySQL [4], and Thunderbird [5]). The experimental 
result shows that, compared to FF, LOFT identifies 
63.9% of the tracked operations being removable; and 
on average, and the size of the generated lock traces is 
reduced by 48.9% and 27.4% before and after compres-
sion, respectively. Moreover, the mean tracking time of 
LOFT is 12−24% shorter than FF, which shows that the 
reduction can be achieved without compromising its 
performance. Additional experimentations on selected 
Java benchmarks can be found in the online supple-
mentary document.  

The main contribution of this paper is threefold. (1) 
This paper proposes the first online approach to pre-
cisely skipping removable operations from logging. (2) 
We present a theoretical model that shows the correct-
ness of our algorithm. (3) We report an experiment 
that confirms that LOFT is both effective and efficient.  

In the rest of the paper, Section 2 presents a moti-
vating example. Section 3 revisits the preliminaries. 
Section 4 presents our analysis and algorithm (LOFT). 
Section 5 reports an experiment to validate LOFT. Sec-
tion 6 reviews related work. Section 7 concludes the 
paper.  

2. MOTIVATING EXAMPLE  

Figure 1(a) shows a motivating example adapted from 
the classical Producer and Consumer Problem. It shows a 
shared location pool protected by a lock m and two 
threads Producer and Consumer. The Producer repeti-
tively produces a datum, and puts it into pool, from 
which the Consumer repetitively fetches a datum. The 
lock m aims to protect pool from concurrent accesses 
by the two threads at lines s1, s2, s3 and s4. 

Figure 1(b), from top to bottom, shows a program 
execution of the program. The two threads are indicat-
ed by the rightmost (Producer) and the leftmost (Con-
sumer) columns of Figure 1(b). The Producer thread 
firstly acquires the lock m and then releases it twice (at 
lines e1−e4). Then, the Consumer thread acquires and 
then releases this lock twice (at lines e5−e8). Finally, the 
Producer thread acquires and then releases the same 
lock once more (at lines e9−e10). In total, the execution 
has 5 lock acquisition and 5 lock release events. 

FF [16],[35]: The algorithm FF (see Section 3.3 for 
more discussion) firstly sets up three vector clocks for 
Consumer, m, and Producer, denoted by Cc, Lm, and Cp, 
respectively, shown as the three columns in the middle 
part of Figure 1(b). To track each lock acquisition or re-
lease operation, FF needs to perform two vector-based 
operations (one for comparing two vector clocks; and 
another one for updating a vector clock for Lm, Cp, or 
Cc). As such, the algorithm needs in total 10 such vec-
tor clock operations. Figure 1(b) also shows the values 
of the three vector clocks along the execution. 

Our observation: The lock acquisition (release, re-
spectively) operations marked with a star “*” (“-”, 
respectively) symbol in Figure 1(b) either changes no 
content of any vector clock (see those fully shaded vec-
tor clocks) or merely assigns a value to one entry (see 
those partially shaded vector clocks) of exactly one 
vector clock. The reason is that the same lock is ac-
quired and then released by the same thread consecu-
tively without any interruption from other threads. As 
such, there is no need to update the vector clock for the 

Shared variables:    int: pool[1000];      Lock: m;      bool: Empty, Full; 
Consumer Producer 

 

 

s1 

 

s2 

while(true) 
{ 

while(Empty)sleep(100); 
Acquire(m); 

//fetch a datum from pool 
Release(m); 

} 

 
 
 

s3 
 

s4 

while(true) 
{ 

while(Full) sleep(100); 
Acquire(m); 

//add a datum to pool 
Release(m); 

} 

(a) The code 

A sample interleaving scenario. 
(for brevity, we only show acquire and release operations) 
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(b) Analysis on vector clock instances on a possible execution 

 
 

Figure 1. An Example: Consumer and Producer 

 



 

thread to collect the timestamp of some other threads.  
For this reason, the involved vector-based opera-

tions for these “*” and “-” rows can be either removed 
or replaced by simpler and native assignment opera-
tions on primitive data type. The “*” rows are particu-
larly interesting as they shorten the lock trace as well. 

In summary, by a proper strategy, only the opera-
tion marked with a plus symbol “+” needs to take a 
vector-based operation. Seven other vector-based op-
erations are removable, which can be substituted by 
scalar assignments (such as updating the value in the 
initialized vector clock of the lock m from “1” to “2” on 
the second release of the Producer thread, which is the 
current timestamp of the Producer thread) or such 
assignments can be skipped completely. By doing so, a 
technique can reduce the length of a trace log on these 
critical synchronization events. For example, after re-
duction, the trace log for the execution in Figure 1(b) 
only includes six events: e1, e4, e5, e8, e9, e10.  

3. PRELIMINARIES 

3.1 Synchronization Events for Monitoring 

The algorithm FF [16],[23],[30] for a happened-before 
based detector typically monitors a set of critical oper-
ations such as the events for lock acquisition (acq for 
short) and release (rel for short) for each lock m, the 
events for thread management (fork or join) of each 
thread t as well as other events like wait, notify and 
notifyAll, and barrier. In this paper, we present how our 
model handles this set of above eight critical opera-
tions; as the extension to cover other events is similar 
and quite straightforward [16]. This paper also uses 
the terms “event” and “operation” interchangeably. 

We assume that a lock can only be acquired by at 
most one thread at a time, which is enforced by the 
underlying programming model such as JVM or the 
C/C++ Pthreads library; a thread can only release a 
lock that it is holding; and the execution being moni-
tored is sequentially consistent.  

A lock trace σ is the projection of an execution of a 
program p on the above set of critical operations. In 
particular, if t is a thread in an execution of a program 
p, we use 𝜎  to denote the projection of σ on t. For ex-
ample, for the execution of the Consumer thread in 
Figure 1(b), 𝜎         = e5, e6, e7, e8. 

One popular lock usages in an execution is the pres-
ence of nested locks. For example, suppose that 𝜎  = … 
acq(m), acq(l), rel(l), rel(m) … is a trace projection on 
the thread t, where m and l are two locks, and the pair 
of acq and rel of the lock l is nested within the pair of 
acq and rel of the lock m. If an inner lock (e.g., l in 
trace 𝜎 ) is the same as its outer lock (e.g., m in trace 𝜎 ), 
this situation is called lock reentrance, which is normally 
handled by the underlying framework [17], and is 
transparent to FF.  

3.2 The Happened-before Relation  
A happened-before relation, denoted by 

  
→ , is a partial or-

der of pairs of events in a parallel system [27]. It is de-
fined by the following three conditions.  

(a) Program order: If 𝛼 and 𝛽 are any two critical events per-
formed by the same thread and 𝛼 precedes 𝛽, then we 
write  

  
→  .  

 (b) Release and acquire: If 𝛼 is a release operation of a lock m, 
and 𝛽 is an acquire operation of the same lock m per-
formed by a thread different from the one performing 𝛼, 
and 𝛼 precedes 𝛽, then we write  

  
→  .  

 (c) Transitivity: if  
  
→   and  

  
→  , then  

  
→  . 

3.3 The Algorithm FF 
In this section, we revisit the algorithm FF [16],[23],[30] 
as shown in Figure 2.  

A timestamp is a number. A vector clock is a finite 
sequence of timestamps, the size of which is at least 
the same as the number of threads in the trace. The 
algorithm FF assigns one vector clock 𝐶  to each thread 
t. This vector clock 𝐶  logs the current timestamp of the 
thread t as well as the timestamps of other threads vis-
ible to t. It also assigns one vector clock 𝐿  to each lock 
m. 

Each thread t has its own timestamp variable that is 
incremented by 1 on each release operation on any lock 
performed by t. At the same time, supposed that m is 
the lock released by the thread t, then the vector clock 
𝐿  records a snapshot of 𝐶  when t releases m. On ac-
quiring the lock m by t, the vector clock 𝐶  records the 
current timestamp of the thread t and those of other 
threads gotten from the vector clock 𝐿  of the lock m.  

We firstly present some standard auxiliary nota-
tions to ease our subsequent presentation. We then 
describe each case with the aid of Figure 2: 
 Suppose that 𝑉  and 𝑉  are two vector clocks, and 

the number of elements in either one is n. If 𝑉 [i]  
𝑉 [𝑖]  for 1  i  n, we denote this condition by 
𝑽 ⊑ 𝑽 . Similarly, if 𝑉 [i] = 𝑉 [𝑖] for 1  i  n, we 
denote this condition by 𝑽 = 𝑽 . (Note that both 
relations “⊑” and “=” are transitive.) 

 We also define 𝑽 ⊔ 𝑽  to be a vector clock 𝑉  such 
that 𝑉 [i] = max(𝑉 [i], 𝑉 [𝑖]) for 1  i  n, and the 
number of elements in the vector clock is also n.  

 The checking of every such operation (i.e., 𝑉 ⊑ 𝑉 , 
𝑉 = 𝑉 , and 𝑉 ⊔ 𝑉 ) is O(n) in time complexity. 

To maintain the data structure, FF uses the follow-
ing strategies. For every acquisition on the lock m by the 
thread t, FF updates 𝐶  so that each of its entries is the 
maximum of the corresponding entries in 𝐿  and 𝐶  
(i.e., 𝐶 = 𝐶 ⊔ 𝐿 ) as shown at line 3 in Figure 2. On eve-
ry release of a lock m, FF copies the contents of 𝐶  to 𝐿  
(i.e., 𝐿 =𝐶 ), and then increments the timestamp kept at 
𝐶 [ ] by 1 as shown at lines 4 and 5 in Figure 2.  

Figure 2. The FF algorithm that tracks happened-before relations for syn-
chronization events. 

Algorithm: FF 
On initialization: 

1. For each thread t, 𝐶 [i] =1, where i is from 1 to n. 
2. For each lock m, 𝐿𝑚 [i] = 0, where i is from 1 to n. 

On acquiring a lock m for thread t: 
3. 𝐶 [i] = max {𝐶 [i], 𝐿𝑚 [i]}, where i is from 1 to n. 

On releasing a lock m for thread t: 
4. 𝐿𝑚 [i] = 𝐶 [i], where i is from 1 to n. 
5. 𝐶 [t] = 𝐶 [t] +1. 

  



 

4. OUR ANALYSIS AND THE LOFT ALGORITHM 

Figure 3 depicts an overview on the role of LOFT. 
LOFT replaces the FF algorithm in the central box for 
the purpose of generating shorter lock traces.  

In Figure 3, a program has been instrumented by a 
dynamic instrumentation framework [17][26] to gener-
ate critical events (i.e., synchronization and memory 
access events). The event collection framework for-
wards every such generated synchronization event to 
LOFT, or forwards it to the other units of the detectors 
(e.g., bug detector) if it is a non-synchronization event.  

As stated in Section 3.1, pair of lock acquisition and 
release events may be nested in another pair(s) of lock 
acquire and release events. We firstly analyze the non-
nested scenarios in Section 4.1, and then extend our 
analysis to handle nested locks in Section 4.2. In Sec-
tion 4.3, we present the LOFT algorithm. 

4.1 Non-nested Lock Acquisition and Release 
We characterize the situation of lock acquisition and 
release operations by enumerating all possible scenari-
os in between a pair of critical operations consecutive-
ly performed by the same thread. We organize them as 
six cases as depicted in Figure 4.  

We use 𝑒  (for j=1, 2 …) to denote a critical opera-
tion. We also define two auxiliary functions: last-
Lock(t) denotes the most recent lock that the thread t 
has released, and lastThread(m) denotes the most 
recent thread that has released the lock m. For instance, 
in the motivating example, when the Consumer thread 
reaches the line e5 to acquire the lock m, it has not yet 
acquired any lock. So, with respect to acquire(m) at e5, 
the function lastLock(Consumer) returns null. At this 
moment, the lock m has been most recently released by 
the Producer thread at e4. So, the function 
lastThread(m) at e5 returns Producer.  

On acquiring or releasing a lock m by a thread t, there 
are four cases for each operation according to whether 
the thread returned by lastThread(m) is t and wheth-
er the lock returned by lastLock (t) is m:  

 lastThread(m) = t and lastLock (t) = m. 
 lastThread(m) ≠ t and lastLock (t) = m. 
 lastThread(m) = t and lastLock (t) ≠ m. 
 lastThread(m) ≠ t and lastLock (t) ≠ m. 
On lock acquisition, as indicated at line 3 in Figure 2, 

the FF algorithm wants to ensure that 𝐿 ⊑ 𝐶  holds. 
However, if 𝐿 ⊑ 𝐶  is already holding right before this 
acquire(m) event occurs, the corresponding vector clock 
comparisons and updates will not change the content 
of 𝐶 . Therefore, if lastLock(t) = m holds (irrespective 
to whether the condition lastThread(m) = t holds or 
not) on acquiring m by t, it suffices to infer that 

𝐿 ⊑ 𝐶  must hold (see the Case 1 and the Case 2 in 
following analysis). However, on handling lock releas-
es, 𝐶 = 𝐶  is required to be held, which may not hold 
if the timestamps of the thread t has been updated. So, 
we still need to analyze whether 𝐶 = 𝐶  holds in each 
of the four cases. In short, there are two cases for lock 
acquisitions and four cases for lock releases to consider. 

We are going to analyze these six cases in details. In 
each case, the condition refers to the one when the 
event 𝑒  in the case occurs, which is also the highlight-
ed (bold acq or rel) event for the corresponding case 
example depicted in Figure 4. In this figure, both   and 
𝑠 are threads; both 𝑚 and 𝑙 are locks; and rel(m) and 
acq(m) represent the release(m) and acquire(m) events, 
respectively. We use the notation “→” to stand for the 
direction of vector clock assignment between a pair of 
thread and lock: (1) (green) arrows ended with a dot 
correspond to the removable acq(m) or rel(m) opera-
tions. (2) Dotted arrows show these acq(m) or rel(m) 
operations, which are not removable. (3) gray arrows 
are just for references and are not important to our 
analysis. Besides, in the following description, the sub-
case where the event 𝑒  does not exist is straightfor-
ward for analysis, and for brevity, we omit its discus-
sion. For each of the 6 cases, we outline the proof of 
correctness. The detailed proof is shown in Appendix A. 

We firstly analyze scenarios in which 𝑒  is an ac-
quire(t, m). There are two cases: Case 1 and Case 2. 

Case 1. [if lastThread(m) = t ].  
Let 𝑒  be an event in a trace where t releases m such 

that lastThread(m) = t, and 𝑒  be an event in the same 
trace that t acquires m after the occurrence of 𝑒 . 

Consider the trace …𝑒 …𝑒 …, as illustrated by Case 
1 of Figure 4. When 𝑒  occurs, according to FF (at lines 
3 and 4 in Figure 2), we have 𝐿 ⊑ 𝐶 . 

When the event 𝑒  occurs, because the condition 
lastThread(m) = t holds, 𝐿  must have not been 
changed by any other thread. However, the values in 
𝐶  may be incremented because t may have acquired 
some other lock(s) in between 𝑒  and 𝑒  (as illustrated 
by “***” in Case 1 of Figure 4); otherwise, 𝐶  must re-
main unchanged. No matter 𝐶  is incremented or not, 
we have 𝐿 ⊑ 𝐶 . Therefore, there is no need to perform 
any comparison between 𝐿  and 𝐶 , and the compari-
son can be removed (shown as an arrow ended with a 
dot in Case 1 of Figure 4) when 𝑒  occurs.  

Case 2. [if lastThread(m) ≠ t ]. 
Let 𝑒  be an event that t acquires m.  
Consider the trace …𝑒 …. When 𝑒  occurs, because 

we have lastThread(m) ≠ t, there are two sub-cases to 
consider: m must either have been released by another 
thread t’ (i.e., t’ ≠ t) or have not been updated since it 
was initialized. In the former case, 𝐿  must once con-
tain a value the same as that of 𝐶  ⊔ 𝐿  (as illustrated 
by the first arrow in Case 2 of Figure 4). In the latter 
case, the value of 𝐿  must be different from that of 𝐶  
because all locks are initialized as all 0s, whereas all 
threads are initialized as all 1s (see lines 1 and 2 of Fig-

ure 2). Therefore, without further checking, we cannot 
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determine a definite happened-before relationship be-
tween 𝐿  and 𝐶 . As such, when 𝑒  occurs, the corre-
sponding comparison and its associated potential as-
signment from 𝐶 ⊔ 𝐿  to 𝐶  are necessary. In other 
words, no operation is removable (shown as the sec-
ond (dotted) arrow in Case 2 of Figure 4).  

We now analyze scenarios in which 𝑒  is a release(t, 
m). There are four cases: Cases 3−6. 

Case 3. [if lastThread(m) = t and lastLock(t) = m].  
Let  𝑒  be an event where t releases m such that 

lastThread(m) = t and lastLock(t) = m. Also let 𝑒  be 
the event that t releases m, and 𝑒  be the corresponding 
lock acquisition event performed by t with respect to 𝑒 .  

Consider the trace …𝑒 …𝑒 …𝑒 …, which is also de-
picted as Case 3 in Figure 4. When 𝑒  occurs, because 
lastThread(m) = t holds, the situation is the same as 
that in Case 1. As such, both 𝐿  and 𝐶  share the same 
contents except for the entries 𝐿 [ ] and 𝐶 [ ]. 

When 𝑒  occurs, only 𝐶 [ ] but not 𝐿 [ ] is changed. 
So, to make 𝐿 = 𝐶  true, we only need to update 𝐿 [ ] 
to be 𝐶 [ ]; and the removable vector clock assignment 
from 𝐶  to 𝐿  can be eliminated (which is depicted by 
the third arrow ended with a dot in Case 3 of Figure 4).  

Case 4. [if lastThread(m) = t and lastLock(t) ≠ m]. 
Let 𝑒  be an event that t releases m such that last-

Thread(m) = t, 𝑒  be an event that t releases m, and 𝑒  
be the corresponding lock acquire operation of 𝑒 . These 
three events are depicted as the first (rel(m)) and the 
last two events (acq(m) and rel(m)) in Case 4 of Figure 4.  

Consider the trace …𝑒 …𝑒 …𝑒 …. When 𝑒  occurs, 
because lastThread(m) = t holds, the situation is the 
same as that in Case 1. As such, both 𝐿  and 𝐶  share 
the same contents except for the entries 𝐿 [ ] and 𝐶 [ ]. 

When 𝑒  occurs, because of the condition last-
Lock(t) ≠ m, 𝐶  may have been adjusted due to acquir-
ing and releasing some other lock in between 𝑒   and 𝑒  
(as depicted by the acq(l) and rel(l) operations in Figure 

4). So, we only have 𝐿 ⊑ 𝐶  (instead of 𝐿  = 𝐶 ). 
When 𝑒  occurs, the condition lastThread(m) = t 

implies that m has not been acquired and released by 
any other thread in between 𝑒  and 𝑒 . Hence, 𝐿  re-
mains unchanged since 𝑒 occurs. Besides, 𝐶  is also not 
updated because no release operation has been done in 
between 𝑒  and 𝑒 . To ensure the condition 𝐿 = 𝐶  
true, we cannot remove the assignment from 𝐶  to 𝐿  .  

Case 5. [if lastThread(m) ≠ t and lastLock(t) = m]. 
Let 𝑒  be an event that t releases m such that last-

Lock(t) = m, 𝑒  be an event that t releases m, and 𝑒  be 
the corresponding lock acquire operation of 𝑒 . These 
three events are depicted as the first (rel(m)) and the 
last two events (acq(m) and rel(m)) in Case 5 of Figure 4.  

Consider the trace …𝑒 …𝑒 …𝑒 … . When 𝑒  occurs, 
according to FF at line 4 in Figure 2, both 𝐿  and 𝐶  

share the same contents except for the entries 𝐿 [ ] and 
𝐶 [ ] . When 𝑒  occurs, because lastThread(m) ≠ t 
holds, like Case 2, the vector clock 𝐶  will be updated 
to 𝐶 ⊔ 𝐿 . The net result is that the two vector clocks 
𝐿  and 𝐶  only differ at the positions 𝐿 [ ] and 𝐶 [ ]. 

When 𝑒  occurs, we only need to update 𝐿 [ ] to be 
𝐶 [ ]. As such, the vector clock assignment from 𝐶  to 
𝐿  can be eliminated.  

Case 6. [if lastThread(m) ≠ t and lastLock(t) ≠ m]. 
In this case, we know nothing about the relation be-

tween 𝐿  and 𝐶 . Therefore, no vector-based compari-
son or assignment can be removed. An example sce-
nario is depicted as Case 6 in Figure 4: when the thread 
t releases the lock m, t has acquired another lock (i.e., 
the lock l) and m has been acquired and released by 
another thread (i.e., the thread s).  

Analysis Summary: For Case 1, we may skip the 
corresponding tracking on the event 𝑒 . For Case 3 and 
Case 5, we can merely update 𝐿 [ ] to be 𝐶 [ ] without 
applying the tracking as used in the FF algorithm, and 
can still achieve the same happened-before tracking 
result. For the other cases, we need to apply FF.  

4.2 Nested Lock Acquire and Release 
In order to handle nested locks, we are going to further 
analyze each of the six cases presented in Section 4.1, 
and enhance each case if necessary.  

In Cases 2, 4, and 6, no vector comparison or as-
signment is removed. Hence, even in the nested locks 
scenarios, the analyses require no revision. Therefore, 
we only need to analyze the nested versions for Cases 
1, 3, and 5. We call their nested lock versions as Cases 
1’, 3’, and 5’, respectively. Figure 5 illustrates a sce-
nario for each case.  

In Case 1’, if a thread t is holding other locks (l in 
Case 1’) when it reacquires a lock m, 𝐶  may have 
been incremented. However, this operation does not 
affect the condition 𝐿 ⊑ 𝐶 . Hence, the comparisons 
between 𝐿  and 𝐶  can still be safely eliminated.  

In Cases 3’ and 5’, if a thread t is holding other 
locks (e.g., l in Case 3’ and Case 5’ in Figure 5) when 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
 𝑚  𝑚 𝑠  𝑚 𝑙 t 𝑚  𝑚 𝑠 𝑙  𝑚 𝑠

rel(m) rel(m) rel(m) rel(m) rel(m) rel(m)

*** acq(m) acq(m) acq(l) acq(m) acq(l)

acq(m) rel(m) rel(l) rel(m) rel(l)

acq(m) acq(m) acq(m)

rel(m) rel(m) rel(m)  
Figure 4. Example scenarios of the six cases on acquiring or releasing a lock (The stars (“***”) mean that there may be additional pairs of acq(x) 

and rel(x) where x can be any lock (except m).) 

 

Case 1’ Case 3’ Case 5’
𝑙  𝑚 l t m 𝑙  𝑚 𝑠

rel(m) rel(m) rel(m)

*** acq(l)  acq(m)

acq(l)  acq(m) acq(l)  rel(m)

acq(m) rel(m) acq(m)

rel(m)  
Figure 5. Nested lock example (Underlined operations are nested outer lock 
acquires.   indicates that where there may exist more acq(x) operations that 
acquire a lock x. Other symbols are the same as that in Figure 4) 

 



 

it reacquires the lock m, 𝐶  may have been incremented 
due to acquiring some other locks. In between the ac-
quisition and release events of m, the thread t might 
have already acquired other locks, some of which have 
not been released yet. Therefore, on the release of m, the 
condition 𝐶 [𝑖] = 𝐿 [𝑖] (1  i n, i ≠ t) may not hold. So, 
the assignment from the whole vector clock 𝐶  to 𝐿  is 
necessary. To distinguish Case 3 from Case 3’ and 
Case 5 from Case 5’, we define the third auxiliary 
function acqCounter(t). It returns the number of locks 
that the thread t has acquired but not yet released 
since its most recently released lock returned by last-
Lock(t).1  

Analysis Summary: considering both non-nested 
lock usage and nested lock usage, the vector clock 
comparison can be removed if either of the following 
two conditions is satisfied. 

 On acquire(m) by t: [lastThread(m) = t ], or 
 On release(m) by t: [lastLock(t) = m and ac-

qCounter(t)= 1].  

4.3 The LOFT Algorithm 
Figure 6 shows the LOFT algorithm. Apart from the 
introduction of the conditions stated at the end of Sec-
tion 4.2, LOFT extends FF by adding two variables 
(Lock and n) to each thread and one variable (Tid) to 
each lock as shown in the State section in Figure 6.  

To ease our presentation, we use the same notations 
as those used in [16]. LOFT maintains an analysis state 
(C, L) composing of two parts: (1) C maps each thread t 
(identified by a unique identity Tid) to a vector clock 𝐶 , 
a lock m (denoted as  . 𝐿𝑜𝑐𝑘) to keep lastLock(t), and a 
counter n to keep acqCounter(t). (2) L maps each lock 
m to a vector clock 𝐿  and a thread t (denoted as 𝑚. 𝑇𝑖𝑑) 
to keep lastThread(m).  

Initially, each thread is mapped to a triple: a newly 
initialized vector clock with all contents as 0s, an emp-
ty lock, and the variable n to 0. Moreover, each lock is 
mapped to an empty thread and a newly initialized 
vector clock with 1 in every entity of it. 

Operations on Lock Acquisition: As shown in Fig-
ure 6, on acquiring a lock m by a thread t, LOFT firstly 
checks whether lastThread(m) = t holds (i.e.,  =
𝑚. 𝑇𝑖𝑑). If this condition is satisfied, LOFT does noth-
ing on 𝐶′ . Otherwise, it performs 𝐶′ = 𝐶[ ≔ 𝐶 ⨆𝐿 ] , 
                                                                                 
1 Note that acqCounter(t) is not the total number of locks that t has ac-
quired but not released. acqCounter(t) is set to be 0 initially. On acquire(x) 
(where x is a lock) by thread t, acqCounter(t) is incremented by 1; and 
on release(y) (where y is also a lock), acqCounter(t) is reset to be 0. 

where the notation 𝐶′ = 𝐶[ ≔ 𝑥] means that 𝐶′ is con-
structed from 𝐶  by substituting the entry 𝐶[ ]  by x. 
Finally, LOFT increments t.n by 1 (that is  . 𝑛′ ∶=  . 𝑛 + 1).  

Operations on Lock Release: On releasing a lock m 
by a thread t, LOFT firstly checks whether last-
Lock(t)= m (i.e., 𝑚 =  . 𝐿𝑜𝑐𝑘) and  . 𝑛 = 1 hold. If these 
two conditions are satisfied, 𝐿′ = 𝐿[𝑚 ∶= 𝐿 [ ∶= 𝐶 ( )]] is 
performed; otherwise, an O(n) operation 𝐿′ = 𝐿[𝑚 ≔ 𝐶 ] 
is performed. Lastly, LOFT increases the timestamp of 
the thread t (𝐶′ = 𝐶[ ∶= 𝑖𝑛𝑐 (𝐶 )], where 𝑖𝑛𝑐 (𝑋) means 
 𝑋 = [ ∶= 𝑋[ ] + 1]), and resets  . 𝑛 to 0. It also updates 
the mapping (lastThread and lastLock) between m 
and t by performing both 𝑚.  ∶= 𝑇𝑖𝑑 and  . 𝐿𝑜𝑐𝑘 ∶= 𝑚.  

Other operations: There are some other operations 
that must be considered to track the happened-before 
realtions among the critcial events. These operations 
include fork(), join(), wait(), notify(), notifyAll(), and 
barrier(), as shown in Figure 6. LOFT takes fork() and 
join() in the same way as presented in [16]. Other 
operations (wait(), notify(), notifyAll(), and barrier()) are 
monitored as follows: 

On wait(), LOFT firstly performs a lock release oper-
ation (pre-wait()). After either a notify() or a notifyAll() is 
performed, the wait() operation will return to its caller. 
Just before the return from the wait(), LOFT performs a 
lock acquisition acquire() (post-wait()). In this way, the 
happened-before relation on the pair of wait() and noti-
fy() or wait() and notifyAll () can be monitored.  

Every barrier() operation involves a barrier instance 
b. Every such an instance is mapped to a vector clock 
(𝐿 ) in L. (Because any barrier instances can be distin-
guished from any lock instance by their distinct ad-
dresses, we can safely use the same L to map all locks 
and all barriers to their vector locks without causing 
any mistake.) However, to handle a barrier() operation, 
the required action is different from that to handle a 
lock acquisition or release. For each barrier instance b, 
𝐿  is initialized to contain 0 in each entity. On pre-
barrier(t, b), LOFT performs 𝐿 = 𝐿 ⊔ 𝐶 . After all 
threads reach at the barrier b, 𝐿  collects the newest 
vector clocks of each thread that has called barrier(b). 
When a thread t returns from a barrier() call, a post-
barrier(b) operation is performed so as to update 𝐶  to 
reflect the latest timestamps of all other threads in-
volved in the barrier(b) by performing 𝐶 = 𝐿 ⊔ 𝐶 , as 
shown in Figure 6.  

Figure 6. The LOFT Algorithm 

 

Algorithm: LOFT  State:  C: Tid → (VC, Lock, n) L: Lock → (VC, Tid ) 
On Acquire (t, m) On Fork(t, u): 

𝐶′ = 𝐶[𝑢 ≔ 𝐶𝑢⨆𝐶 ,  : = 𝑖𝑛𝑐 (𝐶 )]

(𝐶, 𝐿) ⟹𝑓𝑜𝑟𝑘 ( ,𝑢) (𝐶′, 𝐿)
 

On Join(t, u) 

𝐶′ = 𝐶[𝑢 ≔ 𝐶𝑢⨆𝐶 ,𝑢: = 𝑖𝑛𝑐𝑢(𝐶𝑢)]

(𝐶, 𝐿) ⟹𝑗𝑜𝑖𝑛 ( ,𝑢) (𝐶′,𝐿)
 

On Wait(t, m) 
[pre-wait(t, m)] 

call Release(t, m) 

[post-wait(t, m)] 

call Acquire(t, m) 

On Barrier(t, b) 
[pre-barrier(t, b)] 

𝐿′ = 𝐿[𝑏 ∶= 𝐶 ⨆𝐿𝑏 ]

(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 ( ,𝑚) (𝐶, 𝐿′)
 

[post-barrier(t, b)] 

𝐶′ = 𝐶[ ∶= 𝐶 ⨆𝐿𝑏 ]

(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 ( ,𝑚) (𝐶′,𝐿)
 

[lastThread (m) = t] 

 .𝑛′ ∶=  .𝑛 + 1

(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 ( ,𝑚) (𝐶, 𝐿)
 

[Otherwise] 
𝐶′ = 𝐶[ ≔ 𝐶 ⊔ 𝐿𝑚 ]

 .𝑛′ ∶=  .𝑛 + 1
(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 ( ,𝑚) (𝐶′,𝐿)

 

On Release (t, m) 
[lastLock(t) = m and  .𝑛 = 1] 

𝐿′ = 𝐿[𝑚 ∶= 𝐿𝑚 [ ∶= 𝐶 ( )]]

𝐶′ = 𝐶[ : = 𝑖𝑛𝑐 (𝐶 )]
 .𝑛 ∶= 0
𝑚.𝑇𝑖𝑑 ∶=  

(𝐶, 𝐿) ⟹𝑟𝑒𝑙𝑒𝑎𝑠𝑒 ( ,𝑚) (𝐶′, 𝐿′)
 

[Otherwise] 
𝐿′ = 𝐿[𝑚 ≔ 𝐶 ]

𝐶′ = 𝐶[ ∶= 𝑖𝑛𝑐 (𝐶 )]
 .𝑛 ∶= 0
𝑚.𝑇𝑖𝑑 ∶=  
 .𝐿𝑜𝑐𝑘 ∶=𝑚

(𝐶, 𝐿) ⟹𝑟𝑒𝑙𝑒𝑎𝑠𝑒 ( ,𝑚) (𝐶′,𝐿′)
 

  



 

5. EXPERIMENT 

5.1 Implementation and Benchmark 
To support our evaluation, we implemented both FF 
and LOFT for C++ programs with Pthreads on top of 
Pin 2.9 [26], which is a program dynamic instrumenta-
tion tool. For LOFT, on top of the implementation of 
FF, we further added a 32-bit integer to every lock to 
record the last thread (lastThread) that releases the 
lock concerned and a 32-bit integer to every thread, 
with its first 16 bits to record the most recent lock 
(lastLock) released by the thread concerned and with 
its last 16 bits to record the number of the locks (ac-
qCounter) that this thread has acquired but did not 
released after the most recently released lock which is 
the same as its lastLock. For a program with n 
threads and k locks, the worst case space complexity to 
keep the state for these threads and locks is O(n2 + kn), 
which is the same as that of the FF. The introduction of 
the additional integers in our technique does not affect 
this worst case space complexity order.  

We also implemented LOFT and FF for data race 
detection as LOFTrace and FFrace, respectively. See Ap-
pendix B for the implementation details. FFrace is essen-
tially the state-of-the-art FastTrack algorithm [16].  

5.2 Benchmark 
We selected the PARSEC benchmark suite 2.1 [9] and 
five widely-used large-scale real-world open-source 
applications to evaluate LOFT. These large-scale ap-
plications (Apache Httpd [1], Chromium [2], Firefox 

[3], MySQL [4], and Thunderbird [5]) have been used to 
evaluate techniques in [13]. The PARSEC benchmark 
suite includes a set of multithreaded programs for 
emerging and system applications [9]. The application 
domains include financial analysis, engineering, com-
puter vision, enterprise storage, animation, rendering, 
data mining, and media processing (see TABLE I for 
details). These benchmarks have been well studied to 
validate the concurrency related experiments includ-
ing concurrent bug detection techniques 
([11],[15],[21],[33]). The PARSEC benchmark suite in-
cludes 13 benchmarks: black-scholes, bodytrack, 
canneal, dedup, facesim, ferret, fluidanimate, 

freqmine, raytrace, stream-cluster, swaptions, 
vips, and x264. Among these benchmarks, freqmine 

does not use the Pthreads library, we discard it be-
cause our implementations were built on top of the 
Pthreads library; ferret and fluidanimate crashed 
even we ran them under the Pin environment (without 
the use of our tool) due to segmentation faults. All 
other 10 benchmarks can be successfully invoked and 
completed under the Pin environment. For each PAR-
SEC benchmark, we use the simsmall input test. For 
each remaining benchmark, our test harness starts and 
then stops it as what we did in [13].  

5.3 Experimental Setup 
We performed the experiment on a machine running 
the Ubuntu 10.04 Linux with 3.16GHz Duo2 processor 
and 3.25G physical memory. Each benchmark was run 
100 times. TABLE I shows the average number of vec-
tor operations performed and time needed to complete 
all such tracking on each benchmark (Vector opera-
tions and Time, respectively). For the PARSEC 
benchmark suite, we set each benchmark to have 8 
worker threads except vips which were preset to have 
4 fixed worker threads in the downloaded suite. For 
other five applications, we used their owned 
configurations, which cannot be changed by us.  

We also experimented to see how the actual size (in 
terms of bytes) of the log files can be affected by our 
scheme. The log files were generated using the follow-
ing scheme: on acquire(t, m) or release(t, m): FFrace 
adds a corresponding event line “Thread t [ac-
quires] a lock m.” or “Thread t [releases] a lock 
m.” to the log file for each benchmark. For LOFTrace, if 
both conditions [lastThread(m) = t] and [lastLock(t) 
= m and acqCounter(t) = 1] are satisfied on acquire(t, 
m) or release(t, m), it does nothing; otherwise, it also 
adds a corresponding event line. When a data race is 
detected, either tool adds a line to the log file: Data 
race at: source file:line number. We compare 
the file sizes with and without compression by using 
the Linux Gzip compressor.  

We also compared FF with LOFT by using different 
numbers of threads on the benchmarks. We systemati-
cally varied the number of threads: 2, 4, 8, 16, 32, and 

TABLE I. Comparisons on effectiveness and its efficiency of LOFT and FF on C/C++ benchmarks. 

Benchmarks 
Application 
Domain 

Size 
(lines of code) 

# of worker 
threads 

# of Vector operations Time (µs) 
FF (A) LOFT (B) (B)  (A) FF (C) LOFT (D) (D)  (C) 

facesim Animation 29,428 8 49,021.1 25,318.4 0.52 18,146.3 16,057.8 0.88 
raytrace Rendering 13,323 8 291.1 112.8 0.39 113.6 97.0 0.85 

bodytrack Computer Vision 11,891 8 6,520.4 3,205.0 0.49 2,819.4 2,283.4 0.81 

swaptions Financial Analysis 1,629 8 46.0 2.0 0.04 18.8 15.8 0.84 
blackscholes Financial Analysis 1,665 8 3.0 1.0 0.33 1.7 1.3 0.76 

canneal Engineering 4,526 8 61.0 11.0 0.18 25.3 21.3 0.84 

streamcluster Data Mining 2,429 8 314,333.8 131,021.4 0.42 109,798.1 95,347.9 0.87 
MySQL Database 1,015,047 12 396,569.7 135,000.5 0.34 130,615.4 112,275.8 0.86 

vips Media Processing 131,103 4 11,724.3 8,221.7 0.70 4,004.9 3,454.4 0.86 

dedup Enterprise Storage 3,704 8 17,545.9 14,276.1 0.81 9,661.3 8,337.9 0.86 

x264 Media Processing 37,526 8 1,601.6 1,251.8 0.78 671.2 517.4 0.77 

Httpd Web server 47,145 30 1,896.0 56.0 0.03 699.5 590.4 0.84 
Chromium Web browser 3,907,957 22 631,223.4 117,382.7 0.19 184,816.2 150,369.5 0.80 

Firefox Web browser 3,807,299 17 3,819,783.2 293,813.3 0.08 1,335,533.0 1,096,242.5 0.81 
Thunderbird E-mail client 4,252,805 21 1,979,290.8 215,625.3 0.11 692,602,4 567,992.2 0.82 

Total - 13,267,477 - 7,229,911.30 945,299.00 0.131 2,489,527.05 2,053,631.66 0.825 

Mean - - - - - 0.361 - - 0.831 

 



 

64, and re-ran the test harnesses of the benchmarks in 
each case by 100 times each. The subjects vips, dedup, 
Httpd, Chromium, Firefox, and MySQL, and Thunder-
bird either used a pre-configured number of worker 
threads or we were unable to modify this setting. 
Hence, we did not report the result of these seven sub-
jects in the scalability experiment. On dedup, when the 
number of thread is 32 or more, it crashed under Pin 
even without applying our tools. Hence, we did not 
report the result on this subject as well. 

As we have stated in the implementation para-
graph, compared to FF, LOFT needs to maintain one 
more variable for each thread and one more variable 
for each lock. However, the number of threads and 
locks in a typical program execution are often limited. 
Take Httpd for example. The number of locks encoun-
tered in the subjects is only 21. The number of threads 
in a program execution (as we will study in the next 
section) is also a small integer. Because the addition of 
each of the two variables only means an extra space of 
one integer, we anticipate that the extra space needed 
for LOFT is insignificant. As such, we skipped the ex-
periment that measured the memory footprints con-
sumed by LOFT and FF.  

5.4 Data Analysis 
TABLE I summarizes the results of the experiment. The 
second and the third columns (Application Domain 
and Size) report the application domain ([1],[9],[4]) 
and the lines of code for each benchmark, respectively. 
The column “# of worker threads” shows the num-
ber of threads used in the experiment. The column 
“Vector operations” shows the number of vector 
clock operations performed by FF and LOFT, as well 
as the ratio of LOFT to FF in the column “(B)  (A)”. 
The column “Time” shows the corresponding time 
needed to complete all such tracking in microsecond 
(µs) for FF and LOFT, as well as the ratio of LOFT to 
FF in the column “(D)  (C)”. We note that the re-
ported time for LOFT has included the time overhead 
to maintain the lastThread and lastLock conditions.  

Dimension 1 (The Amount of Removable Operations): 
From TABLE I, we observe that LOFT, on average, 

identifies 0.639 of all the vector clock operations that 
are needed by FF for lock acquisition or release as re-
movable. Specifically, compared to FF, on swaptions, 

Httpd, and Firefox, LOFT identifies 0.96, 0.97, and 
0.92 of all vector clock operations, respectively, as re-
movable. If we consider the total amount of operations 
that can be removed from the entire suite of bench-
marks, LOFT identifies 0.869 of all such operations as 
removable. This experimental result is consistent with 
our conjecture that a lock is often acquired and released 
consecutively by the same thread in an execution. In other 
words, in theory, one can find that the conjecture may 
not hold; but in practice, our findings show that this 
phenomenon popularly occurs in executions in pro-
grams that can be represented by this experiment.  

TABLE II shows the sizes of the lock trace (log) files 
generated by FFrace and LOFTrace, without (“Log size”) 
and with (“Compressed by gzip”) applying compres-
sion on the generated lock trace files.  

From TABLE II, we observe that, on average, 
LOFTrace reduces up to 0.489 of the log files generated 
by FFrace. On swaptions and Firefox, we find that 
most of the lock acquisitions and releases were only 
performed by the main thread; therefore, the size of 
the log files generated by LOFTrace was much smaller 
than that generated by FFrace. After compression, the 
mean size of the log files genreated by LOFTrace is 0.274 
smaller than that generated by FFrace.  

 We also classified all benchmarks into four set 
according to their appliction types as shown in the 
third column (“Application clssfication”) in TA-
BLE II. The four sets are: Computer Graphics, Compute-
bound programs, Data-centric programs, and Web 

Applications. We find from column “(F)÷(E)” that 
the lock trace reduction ratio for the benchmarks in the 
Web Application category is 0.65−0.95. For the com-
pute-bound benchmarks, the corresponding ratio is 
0.50−0.92. Such saving is significant. For the other two 
categories, the reduction ratios vary from 0.02 to 0.75.  

Noticeably, for the four programs with millions line 
of code (MySQL, Chromium, Firefox, and Thunder-
bird), the reduction ratios are 0.32−0.95 without com-
pression and 0.27−0.94 with compression.  

TABLE II. Size of Log Files on C/C++ benchmarks.   

Benchmarks  
Application 

Domain 

Application 

Classification 

Log size (bytes) Compressed by gzip (bytes) 

FFrace (E) LOFTrace (F) (F)  (E) FFrace (G) LOFTrace (H) (H)  (G) 

facesim Animation 
Computer 

Graphics 

2,030,782.8 1,228,941.5 0.61 35,976.6 20,395.9 0.57 

raytrace Rendering 12,525.9 9,731.6 0.78 523.4 512.6 0.98 

bodytrack Computer Vision 273,703.7 239,662.1 0.88 4,526.4 4,236.6 0.94 

swaptions Financial Analysis Compute- 

bound 

2,040.0 170.0 0.08 126.0 111.0 0.88 

blackscholes Financial Analysis 170.0 85.0 0.50 101.0 97.0 0.96 

canneal Engineering 

Data-centric 

2,712.0 672.0 0.25 169.4 155.0 0.92 

streamcluster Data Mining 31,203,402.4 11,080,455.5 0.36 138,847.4 113,956.7 0.82 

MySQL Database 16,686,778.0 11,302,350.1 0.68 84,853.8 61,977.7 0.73 

vips Media Processing 487,771.9 386,395.0 0.79 5,594.4 4,638.6 0.83 

dedup Enterprise Storage 782,809.8 756,066.8 0.97 63,791.2 63,613.0 1.00 

x264 Media Processing 75,403.9 73,789.6 0.98 1,407.1 1,325.1 0.94 

Httpd Web server 

Web 

Application 

244,246.3 49,159.1 0.20 3,554.8 1,828.0 0.51 

Chromium Web browser 24,244,261.5 8,512,124.2 0.35 287,403.4 125,909.1 0.44 

Firefox Web browser 339,161,513.7 16,423,195.9 0.05 2,461,324.2 152,920.7 0.06 

Thunderbird E-mail client 83,558,698.4 14,745,031.1 0.18 645,895.1 197,800.7 0.31 

Total -  498,766,820.30 64,807,829.50 0.130 3,734,094.20 749,477.70 0.201 

Mean -  - - 0.511 - - 0.726 

 



 

Appendix D shows supplementary results.  

Dimension 2 (Scalability of LOFT): Figure 7 shows 
the ratio (x-axis) on the number of vector operations 
retained in a log trace generated by LOFT to that of FF 
at different numbers of threads (y-axis) on each 
benchmark that we are able to configure the number of 
threads used for the benchmark. From Figure 7, we 
observe that the ratio is fairly stable across different 
numbers of threads on the same benchmark, except on 
bodytrack and raytrace. On average, in the experi-
ment, LOFT can remove 0.55 of all such operations in 
the lock traces. From Figure 7, on bodytrack and ray-
trace, the curves move up with an increasing number 
of threads. On the two Computer-Graphics benchmarks, 
we found that the interleaving among the threads be-
comes more complex and lock contentions among 
worker threads are increasingly noticeable.  

Dimension 3 (Online Tracking Time): From the Time 
column in TABLE I, we find that, on average, LOFT 
ran 16.9% faster than FF on tracking all the critical 
events. The results were consistent across all the 
benchmarks. On the three large-scale real-life pro-
grams, LOFT runs 18−20% faster than FF. The result 
indicated that the overheads of LOFT can be well-
compensated by the amount of reduced removable 
operations. Appendix E shows the corresponding 
hypothesis testing result that confirm the difference is 
statistically meaningful.  

Dimension 4 (Precision on Concurrency Bug Detec-
tions): Although we have analyzed in Section 4 that 
LOFT does not compromise the tracking of critical 
events (and hence, it does not affect the precision of 
the associated concurrency bug detections), we still 
report the results here as a second-line validation of 
LOFT. We find that FFrace and LOFTrace reported the 
same number of data races on all subjects we used. The 
numbers of races detected by either technique for the 
subjects listed in TABLE I, from top to bottom, are 0, 13, 

5, 0, 5, 0, 29, 12, 0, 0, 26, 12, 134, 2, and 3, respectively.  
Appendix C shows a further evaluation on a suite of 

Java benchmarks. The results on Java benchmarks are 
consistent with the results reported above. 

6. RELATED WORK  

Tracking of Happened-before Relations: Online 
dynamic concurrency bug detectors (e.g., [10],[16],[21], 

[27],[30]) often use vector clocks to track the happened-
before relations among the monitored events. The em-
pirical results of FastTrack [16] show that most of such 
events are data access events, and FastTrack optimizes 
the bug detection algorithm for such data access events. 
If the amount of data access events can be reduced 
such as by sampling some but not all data access 
events, the incurred overhead can be reduced, but then 
the amount of synchronization events emerges to be-
come the bottleneck [10].  

Our approach can be regarded as a strategy toward 
addressing this bottleneck by identifying two kinds of 
synchronization events (as quantified as Case 1, Case 3, 
and Case 5 in Section 4) not to be tracked in full. We 
have compared to FastTrack extensively in this experi-
ment. LiteRace [28] is another sampling strategy, that it 
consists of an online monitoring phase and an offline 
tracking phase to detect concurrency bugs. RaceZ [33] 
is also a sampling strategy on data race detection; 
however, it is based on lockset and collects memory 
accesses through hardware rather than through soft-
ware instrumentation. Carisma [38] can effectively de-
tect race conditions when the sampling rate is very low. 
They all fully track the synchronizations among lock 
and thread events. Our technique is applicable during 
their synchronization collection phases, and comple-
ments their techniques as well as in other fields (i.e., 
atomicity violation detection [23] and execution replay 
[7]) that also employ the happened-before relation to 
track synchronization events.  

FastTrack [16] introduces the concept of epoch for 
the tracking of memory accesses. Their idea cannot be 
applied to track the happened-before relations among 
synchronization events because the successful applica-
tion of epoch relies on the insight that the write opera-
tions of the same memory location among threads in 
an execution forms a total order; and yet for lock ac-
quisition and release events among threads, no such 
total order can be assumed.  

Event Filtering: To iron out the thread-local 
memory locations from the pool of all memory loca-
tions, using a state machine event filter is popular in 
many detectors (e.g., [30],[31],[37]). Such a strategy 
reduces the slowdown overhead without compromis-
ing the precision of such detectors. Another type of 
filter is to remove irrelevant lock dependency generat-
ed from a log trace, which in [13], we showed that such 
a strategy can significantly improve the performance 
of a detector in an empirical study. LOFT can also be 
regarded as an event filter. It complements existing 
work by filtering removable synchronization events.  

Log Reduction: There is also a large body of log re-
duction techniques. Checkpointing [14] records part of 
the execution logs such that these logs are adequate to 
replay the given program with aim to reproduce bugs. 
Lee et al. [24] use the rich runtime information to re-
duce the log size. It firstly instruments the given pro-
gram to record the selective events (e.g., read and write) 
in forms of units (e.g., for-loops) during runtime. Then, 
it analyzes the recorded logs offline and eliminates the 
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Figure 7. Scalability of LOFT relative to FF. 

 



 

event that has no dependency relation to the next 
event. However, these reduction techniques are only 
applicable for sequential programs [24]. LOFT is ap-
plicable to reduce traces of multithreaded programs. 
Tallam et al. [34] proposed a demand-driven approach 
to log reduction. For a given bug signature, their tech-
nique identifies the threads and execution regions that 
are irrelevant to the bug and removes them. LOFT is 
generic and does not rely on any bug signature. 
SimTrace [20] is an offline and static technique to sim-
plify an execution trace by merging two events if they 
are performed by the same thread and no any other 
event occurs in between them through trace equiva-
lence. LOFT is a dynamic and on-the-fly technique.  

7. CONCLUSION  

In this paper, we have proposed an approach entitled 
LOFT to substitute removable operations in the online 
tracking of the happened-before relations of synchro-
nization events by thread-local timestamp updating. 
We have analyzed the scenarios of consecutive thread-
centric lock operations and have identified a sound 
condition that a technique can rely on it to safely re-
move the involved vector clock comparisons and con-
tent copy of vector clock in the tracking of such rela-
tionships among such events. We have conducted an 
experiment to validate LOFT. In the experiment, using 
FF as the baseline, LOFT has identified, on average 
63.9% of all the vector comparisons and updates as 
removable, reduced 87.0% in terms of the lock trace 
size, and run 16.9% faster in completing such tracking.  

Our work only answers an aspect of log reduction. 
As discussed in Section I, the potential of duplicated 
subsequences in log traces have been explored by a 
large body of regression testing techniques. It is inter-
esting to integrate the log traces generated by our ap-
proach with such techniques.  
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APPENDICES  

A. Correctness Proof 

In this section, we extend Section 4.1 with the correct-
ness proof for the cases where the vector clock updates 
can be eliminated. To distinguish the different vector 
clock content at different events, we use the symbol 𝑉  

to denote the vector clock content when the event e 
occurs. For example, on event ea = acquire(t, m), we use 
𝐶 

   to denote the vector clock of the thread t and 𝐿 
   to 

denote the vector clock of the lock m. 
We firstly analyze the scenarios in which 𝑒  is an 

acquire(t, m). There are two cases: Case 1 and Case 2. 

Case 1. [if lastThread(m) = t ].  
Let 𝑒  be an event in a trace denoting that t releases 

m such that lastThread(m) = t, and 𝑒  be an event in 
the same trace that t acquires m after the occurrence of 
𝑒 . 

Consider the trace …𝑒 … 𝑒 …, when 𝑒  occurs, ac-
cording to FF (at lines 3 and 4 in Figure 2), we must 
have: 
 𝐿 

  [𝑖] = 𝐶 
  [𝑖] (1  i n, i ≠ t), and 

𝐿 
  [𝑖] < 𝐶 

  [𝑖] (i = t) 
(1)  

When 𝑒  occurs, because lastThread(m) = t holds, 𝐿  

is not changed by any other thread. So, we have: 
 𝐿 

  = 𝐿 
   (2)  

However, the values in 𝐶  may be incremented because 
t may acquire some other lock(s) in between 𝑒  and 𝑒  
(as illustrated by the “***” symbols in Case 1 of Figure 

4); otherwise, 𝐶  must remain unchanged. No matter 𝐶  
is incremented or not, we have 
 𝐶 

  ⊑ 𝐶 
   (3)  

From Eq. (1), (2), and (3), when 𝑒  occurs, we have 
𝐿 
  ⊑ 𝐶 

  . Therefore, there is no need to perform any 
comparison between 𝐿  and 𝐶 , and the corresponding 
comparison can be removed when 𝑒  occurs. Moreover, 
we need not to update the timestamp at 𝐶 

  [𝑡] on this 
acquire event according to FF (at line 5 in Figure 2).  

Case 2. [if lastThread(m) ≠ t ]. 
Let 𝑒  be an event that t acquires m.  
Consider the trace … 𝑒 …, when 𝑒  occurs, because 

we have lastThread(m) ≠ t, there are two sub-cases to 
consider: m must either have been released by a thread 
t’ (where t’ ≠ t) or have not been updated since it was 
initialized. In the former case, 𝐿  must once contain a 
value the same as that of 𝐶  ⊔ 𝐿 . In the latter case, the 
value of 𝐿  must be different from that of 𝐶  because 
all locks are initialized as all 0s, whereas all threads are 
initialized as all 1s (see lines 1 and 2 of Figure 2). There-
fore, without further checking, we cannot determine a 

definite happened-before relation between 𝐿  and 𝐶 . 
In this situation, when 𝑒  occurs, such a comparison 
and its associated potential assignment from 𝐶 ⊔ 𝐿  to 
𝐶  are necessary. Hence such operations are not re-
movable (which is depicted by the second (dotted) ar-
row in Case 2 of Figure 4).  

We now analyze scenarios in which 𝑒  is a release(t, 
m). There are four cases: Cases 3−6. 

Case 3. [if lastThread(m) = t and lastLock(t) = m].  
Let 𝑒  be an event in a trace that t releases m such 

that lastThread(m) = t and lastLock(t) = m, 𝑒  be an 
event that t releases m, and 𝑒  be the corresponding 
lock acquisition operation performed by t with respect 
to 𝑒 .  

Consider the trace …  𝑒 … 𝑒 … 𝑒 …, when 𝑒  occurs, 
because lastThread(m) = t held, the situation is the 
same as that in Case 1. According to Case 1, we have: 
 𝐿 

  [𝑖] = 𝐶 
  [𝑖] (1 i n, i ≠ t), and 

𝐿 
  [𝑖] < 𝐶 

  [𝑖] (i = t) 
(4)  

and 
 𝐿 

  = 𝐿 
   (5)  

In between the occurrences of 𝑒  and 𝑒 , because of the 
condition lastLock(t) = m, we have: 
 𝐶 

  = 𝐶 
   (6)  

(Note that Eq. (6) is different from Eq. (3) for Case 1 
because, here, we know that t neither acquires nor re-
lease any other lock in between 𝑒  and 𝑒  due to the 
condition lastLock(t) = m.) Therefore, we have: 
 𝐶 

  = 𝐶 
   (7)  

Besides, in between the occurrences of 𝑒  and 𝑒 , m is 
held by t and has not been released by the latter. So, 𝐿  
must be kept unchanged. Therefore, we have: 
 𝐿 

  = 𝐿 
   (8)  

From Eq. (4), (5), (6), (7), and (8), we obtain the follow-
ing: 

𝐿 
  [𝑖] = 𝐶 

  [𝑖] (1  i n, i ≠ t) and 
𝐿 
  [𝑖] < 𝐶 

  [𝑖] (i = t). 

Therefore, to make 𝐿 = 𝐶  true when 𝑒  occurs, we 
only need to update 𝐿 [𝑡] to be 𝐶 [𝑡]; and the remova-
ble vector clock comparison between 𝐶  and 𝐿  can be 
eliminated.  

Case 4. [if lastThread(m) = t and lastLock(t) ≠ m]. 
Let 𝑒  be an event that t releases m such that 

lastThread(m) = t, 𝑒  be an event that t releases m, and 
𝑒  be the corresponding acquire operation of 𝑒 .  

Consider the trace …𝑒 …𝑒 …𝑒 …, when 𝑒  occurs, 
because lastThread(m) = t holds, the situation is the 
same as that in Case 1, we have: 
 𝐿 

  [𝑖] = 𝐶 
  [𝑖] (1  i  n, i ≠ t) (9)  



 

𝐿 
  [𝑖] < 𝐶 

  [𝑖] (i = t) 
When 𝑒  occurs, because of the condition lastLock(t) 
≠ m, 𝐶  may have been adjusted due to acquiring and 
releasing some other lock. So, we only get: 
 𝐶 

  ⊑ 𝐶 
   (10)  

When 𝑒  occurs, the condition lastThread(m) = t im-
plies that m has not been acquired and released by any 
other thread in between 𝑒  and 𝑒 . Hence, we have: 
 𝐿 

  = 𝐿 
  = 𝐿 

   (11)  

In between the occurrences of 𝑒  and 𝑒 , t has not ac-
quired and released any other lock, we have: 
 𝐶 

  = 𝐶 
   (12)  

From Eq. (9), (10), (11), and (12), we can only infer that 
𝐿 
  ⊑ 𝐶 

  = 𝐶 
   holds. Therefore, to ensure the condition 

𝐿 = 𝐶  to be true, the vector clock assignment from 𝐶  
to 𝐿  is not removable.  

Case 5. [if lastThread(m) ≠ t and lastLock(t) = m]. 
Let 𝑒  be an event that t releases m such that last-

Lock(t) = m, 𝑒  be an event that t releases m, and 𝑒  be 
the corresponding lock acquire operation of 𝑒 .  

Consider the trace …𝑒 …𝑒 …𝑒 …, on 𝑒 , according 
to FF at line 4 in Figure 2, we have:  
 𝐿 

  [𝑖] = 𝐶 
  [𝑖] (1 i n, i ≠ t) 

𝐿 
  [𝑖] < 𝐶 

  [𝑖] (i = t) 
(13)  

From lastThread(m) ≠ t, we know that, between 𝑒  
and 𝑒 , there must exist at least one pair of lock acqui-
sition and release events on m performed by some oth-
er thread s such that s ≠ t. To ease our proof, we denote 
the last pair of such lock acquisition and release events 
by s as 𝑒   and 𝑒  , respectively. 

From 𝑒  to 𝑒 , because held lastLock(t) = m, 𝐶  must 
keep unchanged and 𝐿  must have been incremented. 
Therefore, we have: 
 𝐶 

   = 𝐶 
   = 𝐶 

  , and 

𝐿 
  ⊑ 𝐿 

   ⊑ 𝐿 
    

(14)  

When 𝑒  occurs, because lastThread(m) ≠ t holds, 
which is the same as Case 2. We have  
 𝐶 

  [𝑖] = max {𝐶 
   [𝑖], 𝐿 

   [𝑖]}, (1  i  n) (15)  

In between the occurrences of 𝑒  and 𝑒 , 𝐿  cannot be 
changed because no release event of m occurs. Hence, 

we have: 
 𝐿 

  = 𝐿 
    (16)  

Then, from Eq. (13), (14), (15), and (16), we infer that 
 𝐶 

  [𝑖] = 𝐿 
  [𝑖] (1  i  n, i ≠ t) (17)  

In between the occurrences of 𝑒  and 𝑒 , both vector 
clocks of m and t cannot be changed, which implies:  
 𝐶 

  = 𝐶 
   and 

𝐿 
  = 𝐿 

   
(18)  

So, when 𝑒  occurs, from Eq. (17) and (18), we have: 
𝐶 

  [𝑖] = 𝐿 
  [𝑖] (1  i  n, I ≠ t) and 

𝐶 
  [𝑖] < 𝐿 

  [𝑖] (i = t). 
Hence, to make sure 𝐿 = 𝐶  true when 𝑒  occurs, we 

only need to update 𝐿 [𝑡] to be 𝐶 [𝑡] and the removable 
vector clock comparison between 𝐶  and 𝐿  can be 
eliminated.  

Case 6. [if lastThread(m) ≠ t and lastLock(t) ≠ m]. 
In this case, we know nothing about the relation be-

tween 𝐿  and 𝐶 . Therefore, no vector-based compari-
son or assignment is removed.  

B. Implementation  
We have shown by a theoretical analysis in Section 4 
that our algorithm can identify removable operations, 
and update the set of vector clocks for threads and 
locks to achieve an equivalent result of FF in tracking 
critical events. We have further implemented the data 
race tracking algorithm (FastTrack) presented in [16] to 
LOFT. The detail is as follows. We note that both FF 
and LOFT have no need to track memory accesses.   

Memory Shadow: To track memory accesses, we 
adopted a two level shadow implementation M0 as 
described in [41]. We also used a Copy-on-Write strate-
gy to start to shadow a memory location on the first 
access to it which is either a read or a write so that the 
allocated but non-accessed memory was not shadowed, 
which could save the memory consumption and the 
time needed to shadow those non-accessed memory. 
For each thread, because Pin supplies a thread-local 
storage (TLS) per thread [26], we used this TLS to store 
a data set (e.g., thread vector clock) for each thread. 

TABLE III. Comparisons on effectiveness and its efficiency of LOFT and FF on Java benchmarks. 

Benchmarks 
Application 

Domain 
Size 

(lines of code) 
# of worker 

threads 

# of Vector operations Time (µs) 

FF (K) LOFT (L) (L)  (K) FF (M) LOFT (N) (N)  (M) 

crypt IDEA Encryption 1,191 7 12.0 2.0 0.17 80.1 35.2 0.44 

lufact LU Factorisation 1,580 4 12.0 4.0 0.33 89.3 37.6 0.42 

moldyn Molecular Dynamics Simulation 1,351 4 22.0 2.0 0.09 113.8 58.5 0.51 

montecarlo Monte Carlo Simulation 3,630 4 22.0 2.0 0.09 108.6 51.3 0.47 

series Fourier Coefficient Analysis 919 4 12.0 2.0 0.17 79.5 34.1 0.43 

sor Successive Over-relaxation 828 4 12.0 2.0 0.17 82.6 35.0 0.42 

sparse Sparse Matrix Multiplication 820 4 12.0 2.0 0.17 108.0 38.1 0.35 

tsp Traveling Saleman Problem 718 5 45.0 36.5 0.81 213.3 166.3 0.78 

raja Ray Tracer 10,516 9 17.1 5.0 0.29 107.1 48.1 0.45 

raytracer 3D Ray Tracer 1,938 4 48.5 11.0 0.23 227.9 139.7 0.61 

elevator Discrete Events Simulator 550 4 5,174.4 1,962.3 0.38 14,151.2 11,188.2 0.79 

philo Dinning Philosophers Simulator 116 6 24.0 4.1 0.17 153.2 59.4 0.39 

Total - 24,157 - 5,413.0 2,034.9 0.376 15,514.6 11,891.4 0.766 

Mean - - - - - 0.255 - - 0.506 

 



 

For each lock and each barrier, we used an unordered 
map supplied by the GCC compiler to map the lock or 
the barrier to a set of data (e.g., a vector clock).  

C. Further Evaluation on Java Bench-
marks 

In Section 5, we have evaluated LOFT on a suite of 
C/C++ multithreaded programs. In this section, we 
further evaluated LOFT on a set of multithreaded Java 
benchmarks.  

We firstly downloaded the RoadRunner framework 
[17] that included the latest implementation of 
FastTrack [16] written by the authors of FastTrack. We 
then implemented LOFT2 on top of this FastTrack im-
plementation on the downloaded RoadRunner. We ran 
the benchmarks for both LOFT and FF as well as FFrace 
and LOFTrace in the same machine as reported in Sec-
tion 5. 

We selected 12 benchmarks including crypt, lu-
fact, moldyn, montecarlo, series, sor, sparse, tsp, 
raja, raytracer, elevator, and philo. All these 
benchmarks are from [16] that have been used to eval-
uate FFrace. We did not use the other benchmarks such 
as jbb reported in [16] due to our financial budget 
issue as they were paid benchmarks. We did not in-
clude eclipse because we found that the download-
ed RoadRunner framework fails to run correctly when 
monitoring eclipse even without any changes we 
made to implement LOFT on it. 

TABLE III shows the average number of vector op-
erations performed and time taken to complete such 
tracking on each Java benchmark. The columns of TA-

BLE III carry the same meanings as these of TABLE I. 
From TABLE III, we find the following: (1) on average, 
LOFT identifies 74.5% of vector clock operations need-
ed by FF are removable; (2) for the online tracking time, 
on average, LOFT ran 49.4% faster than FF. These re-
sults are similar to our findings on the C/C++ bench-

                                                                                 
2 Our LOFT is available at: www.cs.cityu.edu.hk/~51948163/loft/ . 

marks reported in Section 5 of this paper. 
TABLE IV shows the size of trace log on the Java 

benchmarks both before and after compression. The 
columns of TABLE IV carry the same meanings as 
these of TABLE II. From TABLE IV, we observe that 
LOFTrace reduces up to 74.5% of log files generated by 
FFrace. After compression, on average, a reduced log file 
is 9.1% smaller than that generated by FFrace.   

The numbers of reported data races on these Java 
benchmarks by FFrace and LOFTrace are the same, which 
are 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, and 0 for the benchmarks 
in TABLE III from top to down, respectively. Note that 
two of these numbers (on montecarlo and raja) are 
different from the original data reported in [16]. This is 
because we used the latest version of FFrace and the 
original implementation used in [16] has an implemen-
tation bug as reported in [40] by the same authors of 
the FastTrack.  

D. Study on Generated Lock Trace 
To understand the generated log trace better, we 
further study the generated lock trace files. TABLE VI 
shows the corresponding parts of the log files on the 
benchmark raytrace in the first column and the sec-
ond column generated by FFrace and LOFTrace, respec-
tively. On raytrace, thread 0 consecutively acquired 
and released a lock m for 22 times; and then it acquired 
and released a lock n once, followed by acquiring and 
releasing the lock m again for another 5 times. At this 
moment, thread 1 acquired and released a lock k, and 
a data race was detected. Therefore, FFrace generated 
one log event line for each acquire or release event, as 
shown in the first column. In total, there were 60 event 
lines before the data race is reported. LOFTrace was able 
to identify the consecutive acquire and release of the 
same lock through lastThread, lastLock, as well as 
acqCounter. It avoided generating the corresponding 
log event lines incurred by FFrace. As shown in the sec-
ond column of TABLE VI, LOFT merely generated 8 

TABLE IV. Size of Log Files on Java benchmarks. 

Benchmarks  
Application 

Domain 

Application 

Classification 

Log size (bytes) Compressed by gzip (bytes) 

FFrace (O) LOFTrace (P) (P)  (O) FFrace (Q) LOFTrace (R) (R)  (Q) 

crypt IDEA Encryption 

Compute- 

bound 

324.0 54.0 0.17 79.0 76.0 0.96 

lufact LU Factorisation 324.0 108.0 0.33 85.0 84.0 0.99 

moldyn Molecular Dynamics Simulation 594.0 54.0 0.09 82.0 77.0 0.94 

montecarlo Monte Carlo Simulation 594.0 54.0 0.09 86.0 81.0 0.94 

series Fourier Coefficient Analysis 324.0 54.0 0.17 80.0 77.0 0.96 

sor Successive Over-relaxation 324.0 54.0 0.17 77.0 74.0 0.96 

sparse Sparse Matrix Multiplication 324.0 54.0 0.17 87.0 84.0 0.97 

tsp Traveling Saleman Problem 1,215.0 991.7 0.82 146.1 142.0 0.97 

raja Ray Tracer Computer 

Graphics 

459.5 135.3 0.29 95.4 88.4 0.93 

raytracer 3D Ray Tracer 1,404.0 297.0 0.21 128.8 120.7 0.94 

elevator Discrete Events Simulator 
Simulation 

137,577.7 52,413.2 0.38 1,210.1 505.7 0.42 

philo Dinning Philosophers Simulator 648.0 110.2 0.17 87.7 82.1 0.94 

Total - 144,112.2 54,379.4 0.377 2,244.2 1,492.1 0.665 

Mean - - - 0.255 - - 0.909 

 



 

event lines for the event trace of raytrace before re-
porting the same data race as FFrace did. It not only re-
sults in a log file that is only 15% of the original log file 
size, but also can be more comprehensible for pro-
grammers to study the reported race problem.  

Indeed, from the generated log files, we found that 
during the startup period of a program in the bench-
mark suites, the main thread popularly and consecu-
tively acquired and released the same lock. For exam-
ple, as shown in TABLE VI, on raytrace, the main 
thread consecutively acquired and released a same 
lock for 22 times before acquired and released a second 
lock, and then acquired and released the first lock con-
secutively for another 5 times. It is interesting to study 
on why programs were developed as such.  

E. Mann-Whitney U Test Result on Track-
ing Time 

To further compare the online tracking time, we also 
computed the Mann-Whitney U Test result using the 
Matlab ranksum tool [39] on the dataset that composed 
the timing statistics presented in TABLE I and TABLE 

IV. The result is presented in TABLE V, which shows 
that LOFT and FF are different significantly at the 
0.001 significance level across all the benchmarks.   

F. Threats to Validity 
The C/C++ version of our LOFT and FF were imple-
mented by us and the Java versions are based on the 
original FF implementation [16]. We have assured our 
implementations on several small multithreaded 
C/C++ and Java programs. Different implementations 
may have different effects on the performance and the 
collected data. All benchmarks we used (including 
both C/C++ and Java benchmarks) are widely studied 
in previous experiments. Using other set of bench-
marks may produce different results. Besides, profiling 
an execution may affect the original program execu-
tion. However, since both LOFT and FF only analyze 
the synchronizations; and the profiling is much less 
intrusive than profiling memory accesses. We com-
pared LOFT and FF by using the following three met-
rics: the number of vector operations on synchroniza-
tions, the size of generated log files, and the time taken 
to track all these synchronizations. Using different 

metrics may have different results. 
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TABLE VI. Part of Log Files on raytrace from C/C++ benchmarks. 

Log file generated by FFrace Log files generated by LOFTrace 

1 

2 

… 

45 

46 

47 

48 

… 

59 

60 

61 

Thread 0 [ acquires ] a lock (m) 

Thread 0 [ releases ] a lock (m)  

… (here above pair (lines 1 and 2) repeated for 21 additional times) 

Thread 0 [ acquires ] a lock (n) 

Thread 0 [ releases ] a lock (n)  

Thread 0 [ acquires ] a lock (m) 

Thread 0 [ releases ] a lock (m)  

… (here above pair (lines 47 and 48) repeated for 5 additional times) 

Thread 1 [ acquires ] a lock (k) 

Thread 1 [ releases ] a lock (k)  

Data race at: RTTL/common/RTThread.hxx:19. 

1 

2 

 

3 

4 

5 

6 

 

7 

8 

9 

Thread 0 [ acquires ] a lock (m) 

Thread 0 [ releases ] a lock (m)  

 

Thread 0 [ acquires ] a lock (n) 

Thread 0 [ releases ] a lock (n)  

Thread 0 [ acquires ] a lock (m) 

Thread 0 [ releases ] a lock (m)  

 

Thread 1 [ acquires ] a lock (k) 

Thread 1 [ releases ] a lock (k)  

Data race at: RTTL/common/RTThread.hxx:19. 

 

TABLE V. Mann-Whitney U Test Result on Tracking Time  

Benchmarks  
Mann-Whiney 

U Test Result 
Benchmarks  

Mann-Whiney 

U Test Result 

C/C++ Java 

facesim < 0.00001 crypt < 0.00001 

raytrace < 0.00001 lufact < 0.00001 

bodytrack < 0.00001 moldyn < 0.00001 

swaptions < 0.00001 montecarlo < 0.00001 

blackscholes 0.00062 series < 0.00001 

canneal < 0.00001 sor < 0.00001 

streamcluster < 0.00001 sparse < 0.00001 

MySQL < 0.00001 tsp < 0.00001 

vips < 0.00001 raja < 0.00001 

dedup < 0.00001 raytracer < 0.00001 

x264 < 0.00001 elevator < 0.00001 

Httpd < 0.00001 philo < 0.00001 

Chromium < 0.00001   

Firefox < 0.00001   

Thunderbird < 0.00001   

 


