

To Appear in IEEE Transactions on Parallel and Distributed Systems

Lock Trace Reduction for
Multithreaded Programs

Yan Cai and W.K. Chan

Abstract—Many happened-before based detectors for debugging multithreaded programs implement vector clocks to

incrementally track the casual relations among synchronization events produced by concurrent threads and generate trace logs.

They update the vector clocks via vector-based comparison and content assignment in every case. We observe that many such

tracking comparison and assignment operations are removable in part or in whole, which if identified and used properly, have

the potential to reduce the log traces thus produced. This paper presents our analysis to identify such removable tracking

operations and shows how they could be used to reduce log traces. We implement our analysis result as a technique entitled

LOFT. We evaluate LOFT on the well-studied PARSEC benchmarking suite and five large-scale real-world applications. The

main experimental result shows that on average, LOFT identifies 63.9% of all synchronization operations incurred by the

existing approach as removable and does not compromise the efficiency of the latter.

Index Terms—redundant operation optimization, threads, synchronization

—————————— ——————————

1. INTRODUCTION

With the advent of multicore processor technology,
developing multithreaded programs is increasingly
popular [25]. A program execution of a multithreaded
program typically consists of multiple threads [16],
each of which executes a sequence of instructions. A
program may use locks or user-defined synchroniza-
tion idioms [21] to coordinate (or interleave) its threads
to share resources (e.g., memory locations [16]).

Multithreaded program is difficult to reason due to
the huge amount of interleaving sequences (even for
the same input). Any improper interleaving may lead
to the occurrences of concurrency bugs such as data
races [10],[16],[32], atomicity or order violations [23],
[25], and deadlocks [4],[13],[22]. Debugging such a
program against a concurrency bug can be intricate
because a concurrency bug often manifests itself into a
failure only in some but not all thread interleaving
schedules, even for the same input [25].

Typically, in debugging, developers and bug detec-
tors require analyzing the available execution trace
logs. Using a short (or shorter) trace that indicates the
program locations of the detected failures (due to such
concurrency bugs) and how the thread interleaving in
the monitored execution leads to these failures can
ease developers to diagnose the reported problems.

Many dynamic concurrency bug detectors (e.g.,
[16],[27],[30],[21],[32],[35]) use the same vector clock
approach [29] to track the happened-before relations [27]
among synchronization events acting on lock objects
and events for thread management, which we refer to

it as the FF algorithm [16]. FF conservatively logs all
such events to ensure the causal relations between a
pair of such events that can be inferred.

Can this conservative requirement be relaxed? Our
analysis results show that such a relaxation not only is
feasible in theory (Section 4) but also results in a re-
duced lock trace, which is significantly shorter than
the original lock trace (Section 5). To the best of our
knowledge, this paper is the first work on the relaxa-
tion of lock traces for multithreaded programs (which
refer it to as a lock trace reduction technique).

The relaxation of such trace log requirements plays
an important role in software testing and bug diagno-
sis. For example, in regression testing, as presented in
a recent comprehensive survey [36], numerous test
suite reduction, minimization, and prioritization tech-
niques have been proposed. To the best of our
knowledge, a vast majority of them use the coverage
data on the executed program entities in individual
trace logs of the corresponding test cases as their in-
puts. They (1) select a subset of such logs such that the
subset still maximally includes all logged program
entities at least once, (2) make such a subset to be min-
imal in terms of the number of logs retained, or (3) pri-
oritize the corresponding trace logs. A common attrib-
ute of them is that they identify duplicated subse-
quences among trace logs, and only retain one subse-
quence for every set of duplicated subsequences.

Another example is bug reproduction. To reproduce
an observed failure, many state-based deterministic
replay techniques (e.g., [8],[19]) capture every input,
schedule decision, and read or write value of each var-
iable instance. They are valuable but slow, which
should be improved [7]. ODR [7] efficiently finds an
alternate execution trace log that produces the same
failure as the original via an execution trace that may
not be the same as the original trace to gain efficiency.

Our work is developed on top of an interesting ob-

————————————————

 Yan Cai is with Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong. E-mail:
yancai2@student.cityu.edu.hk

 W.K. Chan is with Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong. E-mail:
wkchan@cityu.edu.hk. (contact author)

Manuscript received (insert date of submission if desired). Please note that
all acknowledgments should be placed at the end of the paper, before the
bibliography

servation: In the course of an execution of a multi-
threaded program, a thread may consecutively acquire
the same lock; and during which, no other thread uses
this particular lock. If this is the case, as long as at the
end of every such period, the vector clocks associated
with this particular lock and the thread in question can
be maintained properly, all the intermediate updates on
these vector clocks may be skipped. The key technical
challenge is to characterize a condition that a log trace
reduction technique can safely replace the involved
tracking operations on these vector clocks by some
maintenance of thread-local data structure. Moreover,
it is desirable for this condition to be effective and ap-
plicable to a wide range of applications. To ease our
presentation, this paper refers to such a vector-based
operation (e.g., comparison and copy between two
vectors) that can be skipped as a removable operation.

In [12], we identified synchronization events in the
online data race detection that one may remove from
trace logging. This paper generalizes the preliminary
work [12] by analyzing how nested locks and synchro-
nization barriers can be handled and presenting a gen-
eralized framework. The evaluation of this paper has
also significantly extended by including five additional
large-scale real-world benchmarks and validating the
technique comprehensively.

Specifically, we analyze all the scenarios involving a
pair of consecutive synchronization events of the same
thread, and show that our formulated condition can
infer the presences of removable operations precisely.
With this result, we define a new scheme to generate
happened-before lock traces, and refer to the proposed
technique as LOFT. We have evaluated LOFT on a
well-studied PARSEC benchmark suite [9],[1],[15],[21]
and five large-scale open-source C/C++ real-world
applications (Apache Httpd [1], Chromium [2], Firefox

[3], MySQL [4], and Thunderbird [5]). The experimental
result shows that, compared to FF, LOFT identifies
63.9% of the tracked operations being removable; and
on average, and the size of the generated lock traces is
reduced by 48.9% and 27.4% before and after compres-
sion, respectively. Moreover, the mean tracking time of
LOFT is 12−24% shorter than FF, which shows that the
reduction can be achieved without compromising its
performance. Additional experimentations on selected
Java benchmarks can be found in the online supple-
mentary document.

The main contribution of this paper is threefold. (1)
This paper proposes the first online approach to pre-
cisely skipping removable operations from logging. (2)
We present a theoretical model that shows the correct-
ness of our algorithm. (3) We report an experiment
that confirms that LOFT is both effective and efficient.

In the rest of the paper, Section 2 presents a moti-
vating example. Section 3 revisits the preliminaries.
Section 4 presents our analysis and algorithm (LOFT).
Section 5 reports an experiment to validate LOFT. Sec-
tion 6 reviews related work. Section 7 concludes the
paper.

2. MOTIVATING EXAMPLE

Figure 1(a) shows a motivating example adapted from
the classical Producer and Consumer Problem. It shows a
shared location pool protected by a lock m and two
threads Producer and Consumer. The Producer repeti-
tively produces a datum, and puts it into pool, from
which the Consumer repetitively fetches a datum. The
lock m aims to protect pool from concurrent accesses
by the two threads at lines s1, s2, s3 and s4.

Figure 1(b), from top to bottom, shows a program
execution of the program. The two threads are indicat-
ed by the rightmost (Producer) and the leftmost (Con-
sumer) columns of Figure 1(b). The Producer thread
firstly acquires the lock m and then releases it twice (at
lines e1−e4). Then, the Consumer thread acquires and
then releases this lock twice (at lines e5−e8). Finally, the
Producer thread acquires and then releases the same
lock once more (at lines e9−e10). In total, the execution
has 5 lock acquisition and 5 lock release events.

FF [16],[35]: The algorithm FF (see Section 3.3 for
more discussion) firstly sets up three vector clocks for
Consumer, m, and Producer, denoted by Cc, Lm, and Cp,
respectively, shown as the three columns in the middle
part of Figure 1(b). To track each lock acquisition or re-
lease operation, FF needs to perform two vector-based
operations (one for comparing two vector clocks; and
another one for updating a vector clock for Lm, Cp, or
Cc). As such, the algorithm needs in total 10 such vec-
tor clock operations. Figure 1(b) also shows the values
of the three vector clocks along the execution.

Our observation: The lock acquisition (release, re-
spectively) operations marked with a star “*” (“-”,
respectively) symbol in Figure 1(b) either changes no
content of any vector clock (see those fully shaded vec-
tor clocks) or merely assigns a value to one entry (see
those partially shaded vector clocks) of exactly one
vector clock. The reason is that the same lock is ac-
quired and then released by the same thread consecu-
tively without any interruption from other threads. As
such, there is no need to update the vector clock for the

Shared variables: int: pool[1000]; Lock: m; bool: Empty, Full;
Consumer Producer

s1

s2

while(true)
{

while(Empty)sleep(100);
Acquire(m);

//fetch a datum from pool
Release(m);

}

s3

s4

while(true)
{

while(Full) sleep(100);
Acquire(m);

//add a datum to pool
Release(m);

}

(a) The code

A sample interleaving scenario.
(for brevity, we only show acquire and release operations)

Consumer Cc Lm Cp Producer
 1, 1 0, 0 1, 1

 e5
e6
e7
e8

Acquire(m); +
Release(m); -
Acquire(m); *
Release(m); -

1, 2
2, 2
2, 2
3, 2

0, 0
1, 1
1, 1
1, 2
1, 2
1, 2
1, 2
2, 2
2, 2
2, 3

1, 1
1, 2
1, 2
1, 3

2, 3
2, 4

e1
e2
e3
e4

e9
e10

Acquire(m); *
Release(m); +
Acquire(m); *
Release(m); -

Acquire(m); +
Release(m); -

(b) Analysis on vector clock instances on a possible execution

Figure 1. An Example: Consumer and Producer

thread to collect the timestamp of some other threads.
For this reason, the involved vector-based opera-

tions for these “*” and “-” rows can be either removed
or replaced by simpler and native assignment opera-
tions on primitive data type. The “*” rows are particu-
larly interesting as they shorten the lock trace as well.

In summary, by a proper strategy, only the opera-
tion marked with a plus symbol “+” needs to take a
vector-based operation. Seven other vector-based op-
erations are removable, which can be substituted by
scalar assignments (such as updating the value in the
initialized vector clock of the lock m from “1” to “2” on
the second release of the Producer thread, which is the
current timestamp of the Producer thread) or such
assignments can be skipped completely. By doing so, a
technique can reduce the length of a trace log on these
critical synchronization events. For example, after re-
duction, the trace log for the execution in Figure 1(b)
only includes six events: e1, e4, e5, e8, e9, e10.

3. PRELIMINARIES

3.1 Synchronization Events for Monitoring

The algorithm FF [16],[23],[30] for a happened-before
based detector typically monitors a set of critical oper-
ations such as the events for lock acquisition (acq for
short) and release (rel for short) for each lock m, the
events for thread management (fork or join) of each
thread t as well as other events like wait, notify and
notifyAll, and barrier. In this paper, we present how our
model handles this set of above eight critical opera-
tions; as the extension to cover other events is similar
and quite straightforward [16]. This paper also uses
the terms “event” and “operation” interchangeably.

We assume that a lock can only be acquired by at
most one thread at a time, which is enforced by the
underlying programming model such as JVM or the
C/C++ Pthreads library; a thread can only release a
lock that it is holding; and the execution being moni-
tored is sequentially consistent.

A lock trace σ is the projection of an execution of a
program p on the above set of critical operations. In
particular, if t is a thread in an execution of a program
p, we use 𝜎 to denote the projection of σ on t. For ex-
ample, for the execution of the Consumer thread in
Figure 1(b), 𝜎 = e5, e6, e7, e8.

One popular lock usages in an execution is the pres-
ence of nested locks. For example, suppose that 𝜎 = …
acq(m), acq(l), rel(l), rel(m) … is a trace projection on
the thread t, where m and l are two locks, and the pair
of acq and rel of the lock l is nested within the pair of
acq and rel of the lock m. If an inner lock (e.g., l in
trace 𝜎) is the same as its outer lock (e.g., m in trace 𝜎),
this situation is called lock reentrance, which is normally
handled by the underlying framework [17], and is
transparent to FF.

3.2 The Happened-before Relation
A happened-before relation, denoted by

→ , is a partial or-

der of pairs of events in a parallel system [27]. It is de-
fined by the following three conditions.

(a) Program order: If 𝛼 and 𝛽 are any two critical events per-
formed by the same thread and 𝛼 precedes 𝛽, then we
write

→ .

 (b) Release and acquire: If 𝛼 is a release operation of a lock m,
and 𝛽 is an acquire operation of the same lock m per-
formed by a thread different from the one performing 𝛼,
and 𝛼 precedes 𝛽, then we write

→ .

 (c) Transitivity: if

→ and

→ , then

→ .

3.3 The Algorithm FF
In this section, we revisit the algorithm FF [16],[23],[30]
as shown in Figure 2.

A timestamp is a number. A vector clock is a finite
sequence of timestamps, the size of which is at least
the same as the number of threads in the trace. The
algorithm FF assigns one vector clock 𝐶 to each thread
t. This vector clock 𝐶 logs the current timestamp of the
thread t as well as the timestamps of other threads vis-
ible to t. It also assigns one vector clock 𝐿 to each lock
m.

Each thread t has its own timestamp variable that is
incremented by 1 on each release operation on any lock
performed by t. At the same time, supposed that m is
the lock released by the thread t, then the vector clock
𝐿 records a snapshot of 𝐶 when t releases m. On ac-
quiring the lock m by t, the vector clock 𝐶 records the
current timestamp of the thread t and those of other
threads gotten from the vector clock 𝐿 of the lock m.

We firstly present some standard auxiliary nota-
tions to ease our subsequent presentation. We then
describe each case with the aid of Figure 2:
 Suppose that 𝑉 and 𝑉 are two vector clocks, and

the number of elements in either one is n. If 𝑉 [i]
𝑉 [𝑖] for 1 i n, we denote this condition by
𝑽 ⊑ 𝑽 . Similarly, if 𝑉 [i] = 𝑉 [𝑖] for 1 i n, we
denote this condition by 𝑽 = 𝑽 . (Note that both
relations “⊑” and “=” are transitive.)

 We also define 𝑽 ⊔ 𝑽 to be a vector clock 𝑉 such
that 𝑉 [i] = max(𝑉 [i], 𝑉 [𝑖]) for 1 i n, and the
number of elements in the vector clock is also n.

 The checking of every such operation (i.e., 𝑉 ⊑ 𝑉 ,
𝑉 = 𝑉 , and 𝑉 ⊔ 𝑉) is O(n) in time complexity.

To maintain the data structure, FF uses the follow-
ing strategies. For every acquisition on the lock m by the
thread t, FF updates 𝐶 so that each of its entries is the
maximum of the corresponding entries in 𝐿 and 𝐶
(i.e., 𝐶 = 𝐶 ⊔ 𝐿) as shown at line 3 in Figure 2. On eve-
ry release of a lock m, FF copies the contents of 𝐶 to 𝐿
(i.e., 𝐿 =𝐶), and then increments the timestamp kept at
𝐶 [] by 1 as shown at lines 4 and 5 in Figure 2.

Figure 2. The FF algorithm that tracks happened-before relations for syn-
chronization events.

Algorithm: FF
On initialization:

1. For each thread t, 𝐶 [i] =1, where i is from 1 to n.
2. For each lock m, 𝐿𝑚 [i] = 0, where i is from 1 to n.

On acquiring a lock m for thread t:
3. 𝐶 [i] = max {𝐶 [i], 𝐿𝑚 [i]}, where i is from 1 to n.

On releasing a lock m for thread t:
4. 𝐿𝑚 [i] = 𝐶 [i], where i is from 1 to n.
5. 𝐶 [t] = 𝐶 [t] +1.

4. OUR ANALYSIS AND THE LOFT ALGORITHM

Figure 3 depicts an overview on the role of LOFT.
LOFT replaces the FF algorithm in the central box for
the purpose of generating shorter lock traces.

In Figure 3, a program has been instrumented by a
dynamic instrumentation framework [17][26] to gener-
ate critical events (i.e., synchronization and memory
access events). The event collection framework for-
wards every such generated synchronization event to
LOFT, or forwards it to the other units of the detectors
(e.g., bug detector) if it is a non-synchronization event.

As stated in Section 3.1, pair of lock acquisition and
release events may be nested in another pair(s) of lock
acquire and release events. We firstly analyze the non-
nested scenarios in Section 4.1, and then extend our
analysis to handle nested locks in Section 4.2. In Sec-
tion 4.3, we present the LOFT algorithm.

4.1 Non-nested Lock Acquisition and Release
We characterize the situation of lock acquisition and
release operations by enumerating all possible scenari-
os in between a pair of critical operations consecutive-
ly performed by the same thread. We organize them as
six cases as depicted in Figure 4.

We use 𝑒 (for j=1, 2 …) to denote a critical opera-
tion. We also define two auxiliary functions: last-
Lock(t) denotes the most recent lock that the thread t
has released, and lastThread(m) denotes the most
recent thread that has released the lock m. For instance,
in the motivating example, when the Consumer thread
reaches the line e5 to acquire the lock m, it has not yet
acquired any lock. So, with respect to acquire(m) at e5,
the function lastLock(Consumer) returns null. At this
moment, the lock m has been most recently released by
the Producer thread at e4. So, the function
lastThread(m) at e5 returns Producer.

On acquiring or releasing a lock m by a thread t, there
are four cases for each operation according to whether
the thread returned by lastThread(m) is t and wheth-
er the lock returned by lastLock (t) is m:

 lastThread(m) = t and lastLock (t) = m.
 lastThread(m) ≠ t and lastLock (t) = m.
 lastThread(m) = t and lastLock (t) ≠ m.
 lastThread(m) ≠ t and lastLock (t) ≠ m.
On lock acquisition, as indicated at line 3 in Figure 2,

the FF algorithm wants to ensure that 𝐿 ⊑ 𝐶 holds.
However, if 𝐿 ⊑ 𝐶 is already holding right before this
acquire(m) event occurs, the corresponding vector clock
comparisons and updates will not change the content
of 𝐶 . Therefore, if lastLock(t) = m holds (irrespective
to whether the condition lastThread(m) = t holds or
not) on acquiring m by t, it suffices to infer that

𝐿 ⊑ 𝐶 must hold (see the Case 1 and the Case 2 in
following analysis). However, on handling lock releas-
es, 𝐶 = 𝐶 is required to be held, which may not hold
if the timestamps of the thread t has been updated. So,
we still need to analyze whether 𝐶 = 𝐶 holds in each
of the four cases. In short, there are two cases for lock
acquisitions and four cases for lock releases to consider.

We are going to analyze these six cases in details. In
each case, the condition refers to the one when the
event 𝑒 in the case occurs, which is also the highlight-
ed (bold acq or rel) event for the corresponding case
example depicted in Figure 4. In this figure, both and
𝑠 are threads; both 𝑚 and 𝑙 are locks; and rel(m) and
acq(m) represent the release(m) and acquire(m) events,
respectively. We use the notation “→” to stand for the
direction of vector clock assignment between a pair of
thread and lock: (1) (green) arrows ended with a dot
correspond to the removable acq(m) or rel(m) opera-
tions. (2) Dotted arrows show these acq(m) or rel(m)
operations, which are not removable. (3) gray arrows
are just for references and are not important to our
analysis. Besides, in the following description, the sub-
case where the event 𝑒 does not exist is straightfor-
ward for analysis, and for brevity, we omit its discus-
sion. For each of the 6 cases, we outline the proof of
correctness. The detailed proof is shown in Appendix A.

We firstly analyze scenarios in which 𝑒 is an ac-
quire(t, m). There are two cases: Case 1 and Case 2.

Case 1. [if lastThread(m) = t].
Let 𝑒 be an event in a trace where t releases m such

that lastThread(m) = t, and 𝑒 be an event in the same
trace that t acquires m after the occurrence of 𝑒 .

Consider the trace …𝑒 …𝑒 …, as illustrated by Case
1 of Figure 4. When 𝑒 occurs, according to FF (at lines
3 and 4 in Figure 2), we have 𝐿 ⊑ 𝐶 .

When the event 𝑒 occurs, because the condition
lastThread(m) = t holds, 𝐿 must have not been
changed by any other thread. However, the values in
𝐶 may be incremented because t may have acquired
some other lock(s) in between 𝑒 and 𝑒 (as illustrated
by “***” in Case 1 of Figure 4); otherwise, 𝐶 must re-
main unchanged. No matter 𝐶 is incremented or not,
we have 𝐿 ⊑ 𝐶 . Therefore, there is no need to perform
any comparison between 𝐿 and 𝐶 , and the compari-
son can be removed (shown as an arrow ended with a
dot in Case 1 of Figure 4) when 𝑒 occurs.

Case 2. [if lastThread(m) ≠ t].
Let 𝑒 be an event that t acquires m.
Consider the trace …𝑒 …. When 𝑒 occurs, because

we have lastThread(m) ≠ t, there are two sub-cases to
consider: m must either have been released by another
thread t’ (i.e., t’ ≠ t) or have not been updated since it
was initialized. In the former case, 𝐿 must once con-
tain a value the same as that of 𝐶 ⊔ 𝐿 (as illustrated
by the first arrow in Case 2 of Figure 4). In the latter
case, the value of 𝐿 must be different from that of 𝐶
because all locks are initialized as all 0s, whereas all
threads are initialized as all 1s (see lines 1 and 2 of Fig-

ure 2). Therefore, without further checking, we cannot

Event

Collection

Framework

(e.g., Pin)

Program

Dynamic Happened-before Detection

Critical

events

LOFT

(to track synchronization

events)

Concurrency Bug Detection

Synchronization

events

Memory access

events

Vector clock

access

Critical

events after

filtering

Bug locations

Post-

mortem

analysis

(e.g., fault

diagnosis)Log

file

Figure 3. The overview of LOFT

determine a definite happened-before relationship be-
tween 𝐿 and 𝐶 . As such, when 𝑒 occurs, the corre-
sponding comparison and its associated potential as-
signment from 𝐶 ⊔ 𝐿 to 𝐶 are necessary. In other
words, no operation is removable (shown as the sec-
ond (dotted) arrow in Case 2 of Figure 4).

We now analyze scenarios in which 𝑒 is a release(t,
m). There are four cases: Cases 3−6.

Case 3. [if lastThread(m) = t and lastLock(t) = m].
Let 𝑒 be an event where t releases m such that

lastThread(m) = t and lastLock(t) = m. Also let 𝑒 be
the event that t releases m, and 𝑒 be the corresponding
lock acquisition event performed by t with respect to 𝑒 .

Consider the trace …𝑒 …𝑒 …𝑒 …, which is also de-
picted as Case 3 in Figure 4. When 𝑒 occurs, because
lastThread(m) = t holds, the situation is the same as
that in Case 1. As such, both 𝐿 and 𝐶 share the same
contents except for the entries 𝐿 [] and 𝐶 [].

When 𝑒 occurs, only 𝐶 [] but not 𝐿 [] is changed.
So, to make 𝐿 = 𝐶 true, we only need to update 𝐿 []
to be 𝐶 []; and the removable vector clock assignment
from 𝐶 to 𝐿 can be eliminated (which is depicted by
the third arrow ended with a dot in Case 3 of Figure 4).

Case 4. [if lastThread(m) = t and lastLock(t) ≠ m].
Let 𝑒 be an event that t releases m such that last-

Thread(m) = t, 𝑒 be an event that t releases m, and 𝑒
be the corresponding lock acquire operation of 𝑒 . These
three events are depicted as the first (rel(m)) and the
last two events (acq(m) and rel(m)) in Case 4 of Figure 4.

Consider the trace …𝑒 …𝑒 …𝑒 …. When 𝑒 occurs,
because lastThread(m) = t holds, the situation is the
same as that in Case 1. As such, both 𝐿 and 𝐶 share
the same contents except for the entries 𝐿 [] and 𝐶 [].

When 𝑒 occurs, because of the condition last-
Lock(t) ≠ m, 𝐶 may have been adjusted due to acquir-
ing and releasing some other lock in between 𝑒 and 𝑒
(as depicted by the acq(l) and rel(l) operations in Figure

4). So, we only have 𝐿 ⊑ 𝐶 (instead of 𝐿 = 𝐶).
When 𝑒 occurs, the condition lastThread(m) = t

implies that m has not been acquired and released by
any other thread in between 𝑒 and 𝑒 . Hence, 𝐿 re-
mains unchanged since 𝑒 occurs. Besides, 𝐶 is also not
updated because no release operation has been done in
between 𝑒 and 𝑒 . To ensure the condition 𝐿 = 𝐶
true, we cannot remove the assignment from 𝐶 to 𝐿 .

Case 5. [if lastThread(m) ≠ t and lastLock(t) = m].
Let 𝑒 be an event that t releases m such that last-

Lock(t) = m, 𝑒 be an event that t releases m, and 𝑒 be
the corresponding lock acquire operation of 𝑒 . These
three events are depicted as the first (rel(m)) and the
last two events (acq(m) and rel(m)) in Case 5 of Figure 4.

Consider the trace …𝑒 …𝑒 …𝑒 … . When 𝑒 occurs,
according to FF at line 4 in Figure 2, both 𝐿 and 𝐶

share the same contents except for the entries 𝐿 [] and
𝐶 [] . When 𝑒 occurs, because lastThread(m) ≠ t
holds, like Case 2, the vector clock 𝐶 will be updated
to 𝐶 ⊔ 𝐿 . The net result is that the two vector clocks
𝐿 and 𝐶 only differ at the positions 𝐿 [] and 𝐶 [].

When 𝑒 occurs, we only need to update 𝐿 [] to be
𝐶 []. As such, the vector clock assignment from 𝐶 to
𝐿 can be eliminated.

Case 6. [if lastThread(m) ≠ t and lastLock(t) ≠ m].
In this case, we know nothing about the relation be-

tween 𝐿 and 𝐶 . Therefore, no vector-based compari-
son or assignment can be removed. An example sce-
nario is depicted as Case 6 in Figure 4: when the thread
t releases the lock m, t has acquired another lock (i.e.,
the lock l) and m has been acquired and released by
another thread (i.e., the thread s).

Analysis Summary: For Case 1, we may skip the
corresponding tracking on the event 𝑒 . For Case 3 and
Case 5, we can merely update 𝐿 [] to be 𝐶 [] without
applying the tracking as used in the FF algorithm, and
can still achieve the same happened-before tracking
result. For the other cases, we need to apply FF.

4.2 Nested Lock Acquire and Release
In order to handle nested locks, we are going to further
analyze each of the six cases presented in Section 4.1,
and enhance each case if necessary.

In Cases 2, 4, and 6, no vector comparison or as-
signment is removed. Hence, even in the nested locks
scenarios, the analyses require no revision. Therefore,
we only need to analyze the nested versions for Cases
1, 3, and 5. We call their nested lock versions as Cases
1’, 3’, and 5’, respectively. Figure 5 illustrates a sce-
nario for each case.

In Case 1’, if a thread t is holding other locks (l in
Case 1’) when it reacquires a lock m, 𝐶 may have
been incremented. However, this operation does not
affect the condition 𝐿 ⊑ 𝐶 . Hence, the comparisons
between 𝐿 and 𝐶 can still be safely eliminated.

In Cases 3’ and 5’, if a thread t is holding other
locks (e.g., l in Case 3’ and Case 5’ in Figure 5) when

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
 𝑚 𝑚 𝑠 𝑚 𝑙 t 𝑚 𝑚 𝑠 𝑙 𝑚 𝑠

rel(m) rel(m) rel(m) rel(m) rel(m) rel(m)

*** acq(m) acq(m) acq(l) acq(m) acq(l)

acq(m) rel(m) rel(l) rel(m) rel(l)

acq(m) acq(m) acq(m)

rel(m) rel(m) rel(m)
Figure 4. Example scenarios of the six cases on acquiring or releasing a lock (The stars (“***”) mean that there may be additional pairs of acq(x)

and rel(x) where x can be any lock (except m).)

Case 1’ Case 3’ Case 5’
𝑙 𝑚 l t m 𝑙 𝑚 𝑠

rel(m) rel(m) rel(m)

*** acq(l) acq(m)

acq(l) acq(m) acq(l) rel(m)

acq(m) rel(m) acq(m)

rel(m)
Figure 5. Nested lock example (Underlined operations are nested outer lock
acquires. indicates that where there may exist more acq(x) operations that
acquire a lock x. Other symbols are the same as that in Figure 4)

it reacquires the lock m, 𝐶 may have been incremented
due to acquiring some other locks. In between the ac-
quisition and release events of m, the thread t might
have already acquired other locks, some of which have
not been released yet. Therefore, on the release of m, the
condition 𝐶 [𝑖] = 𝐿 [𝑖] (1 i n, i ≠ t) may not hold. So,
the assignment from the whole vector clock 𝐶 to 𝐿 is
necessary. To distinguish Case 3 from Case 3’ and
Case 5 from Case 5’, we define the third auxiliary
function acqCounter(t). It returns the number of locks
that the thread t has acquired but not yet released
since its most recently released lock returned by last-
Lock(t).1

Analysis Summary: considering both non-nested
lock usage and nested lock usage, the vector clock
comparison can be removed if either of the following
two conditions is satisfied.

 On acquire(m) by t: [lastThread(m) = t], or
 On release(m) by t: [lastLock(t) = m and ac-

qCounter(t)= 1].

4.3 The LOFT Algorithm
Figure 6 shows the LOFT algorithm. Apart from the
introduction of the conditions stated at the end of Sec-
tion 4.2, LOFT extends FF by adding two variables
(Lock and n) to each thread and one variable (Tid) to
each lock as shown in the State section in Figure 6.

To ease our presentation, we use the same notations
as those used in [16]. LOFT maintains an analysis state
(C, L) composing of two parts: (1) C maps each thread t
(identified by a unique identity Tid) to a vector clock 𝐶 ,
a lock m (denoted as . 𝐿𝑜𝑐𝑘) to keep lastLock(t), and a
counter n to keep acqCounter(t). (2) L maps each lock
m to a vector clock 𝐿 and a thread t (denoted as 𝑚. 𝑇𝑖𝑑)
to keep lastThread(m).

Initially, each thread is mapped to a triple: a newly
initialized vector clock with all contents as 0s, an emp-
ty lock, and the variable n to 0. Moreover, each lock is
mapped to an empty thread and a newly initialized
vector clock with 1 in every entity of it.

Operations on Lock Acquisition: As shown in Fig-
ure 6, on acquiring a lock m by a thread t, LOFT firstly
checks whether lastThread(m) = t holds (i.e., =
𝑚. 𝑇𝑖𝑑). If this condition is satisfied, LOFT does noth-
ing on 𝐶′ . Otherwise, it performs 𝐶′ = 𝐶[≔ 𝐶 ⨆𝐿] ,

1 Note that acqCounter(t) is not the total number of locks that t has ac-
quired but not released. acqCounter(t) is set to be 0 initially. On acquire(x)
(where x is a lock) by thread t, acqCounter(t) is incremented by 1; and
on release(y) (where y is also a lock), acqCounter(t) is reset to be 0.

where the notation 𝐶′ = 𝐶[≔ 𝑥] means that 𝐶′ is con-
structed from 𝐶 by substituting the entry 𝐶[] by x.
Finally, LOFT increments t.n by 1 (that is . 𝑛′ ∶= . 𝑛 + 1).

Operations on Lock Release: On releasing a lock m
by a thread t, LOFT firstly checks whether last-
Lock(t)= m (i.e., 𝑚 = . 𝐿𝑜𝑐𝑘) and . 𝑛 = 1 hold. If these
two conditions are satisfied, 𝐿′ = 𝐿[𝑚 ∶= 𝐿 [∶= 𝐶 ()]] is
performed; otherwise, an O(n) operation 𝐿′ = 𝐿[𝑚 ≔ 𝐶]
is performed. Lastly, LOFT increases the timestamp of
the thread t (𝐶′ = 𝐶[∶= 𝑖𝑛𝑐 (𝐶)], where 𝑖𝑛𝑐 (𝑋) means
 𝑋 = [∶= 𝑋[] + 1]), and resets . 𝑛 to 0. It also updates
the mapping (lastThread and lastLock) between m
and t by performing both 𝑚. ∶= 𝑇𝑖𝑑 and . 𝐿𝑜𝑐𝑘 ∶= 𝑚.

Other operations: There are some other operations
that must be considered to track the happened-before
realtions among the critcial events. These operations
include fork(), join(), wait(), notify(), notifyAll(), and
barrier(), as shown in Figure 6. LOFT takes fork() and
join() in the same way as presented in [16]. Other
operations (wait(), notify(), notifyAll(), and barrier()) are
monitored as follows:

On wait(), LOFT firstly performs a lock release oper-
ation (pre-wait()). After either a notify() or a notifyAll() is
performed, the wait() operation will return to its caller.
Just before the return from the wait(), LOFT performs a
lock acquisition acquire() (post-wait()). In this way, the
happened-before relation on the pair of wait() and noti-
fy() or wait() and notifyAll () can be monitored.

Every barrier() operation involves a barrier instance
b. Every such an instance is mapped to a vector clock
(𝐿) in L. (Because any barrier instances can be distin-
guished from any lock instance by their distinct ad-
dresses, we can safely use the same L to map all locks
and all barriers to their vector locks without causing
any mistake.) However, to handle a barrier() operation,
the required action is different from that to handle a
lock acquisition or release. For each barrier instance b,
𝐿 is initialized to contain 0 in each entity. On pre-
barrier(t, b), LOFT performs 𝐿 = 𝐿 ⊔ 𝐶 . After all
threads reach at the barrier b, 𝐿 collects the newest
vector clocks of each thread that has called barrier(b).
When a thread t returns from a barrier() call, a post-
barrier(b) operation is performed so as to update 𝐶 to
reflect the latest timestamps of all other threads in-
volved in the barrier(b) by performing 𝐶 = 𝐿 ⊔ 𝐶 , as
shown in Figure 6.

Figure 6. The LOFT Algorithm

Algorithm: LOFT State: C: Tid → (VC, Lock, n) L: Lock → (VC, Tid)
On Acquire (t, m) On Fork(t, u):

𝐶′ = 𝐶[𝑢 ≔ 𝐶𝑢⨆𝐶 , : = 𝑖𝑛𝑐 (𝐶)]

(𝐶, 𝐿) ⟹𝑓𝑜𝑟𝑘 (,𝑢) (𝐶′, 𝐿)

On Join(t, u)

𝐶′ = 𝐶[𝑢 ≔ 𝐶𝑢⨆𝐶 ,𝑢: = 𝑖𝑛𝑐𝑢(𝐶𝑢)]

(𝐶, 𝐿) ⟹𝑗𝑜𝑖𝑛 (,𝑢) (𝐶′,𝐿)

On Wait(t, m)
[pre-wait(t, m)]

call Release(t, m)

[post-wait(t, m)]

call Acquire(t, m)

On Barrier(t, b)
[pre-barrier(t, b)]

𝐿′ = 𝐿[𝑏 ∶= 𝐶 ⨆𝐿𝑏]

(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 (,𝑚) (𝐶, 𝐿′)

[post-barrier(t, b)]

𝐶′ = 𝐶[∶= 𝐶 ⨆𝐿𝑏]

(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 (,𝑚) (𝐶′,𝐿)

[lastThread (m) = t]

 .𝑛′ ∶= .𝑛 + 1

(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 (,𝑚) (𝐶, 𝐿)

[Otherwise]
𝐶′ = 𝐶[≔ 𝐶 ⊔ 𝐿𝑚]

 .𝑛′ ∶= .𝑛 + 1
(𝐶, 𝐿) ⟹𝑎𝑐𝑞𝑢𝑖𝑟𝑒 (,𝑚) (𝐶′,𝐿)

On Release (t, m)
[lastLock(t) = m and .𝑛 = 1]

𝐿′ = 𝐿[𝑚 ∶= 𝐿𝑚 [∶= 𝐶 ()]]

𝐶′ = 𝐶[: = 𝑖𝑛𝑐 (𝐶)]
 .𝑛 ∶= 0
𝑚.𝑇𝑖𝑑 ∶=

(𝐶, 𝐿) ⟹𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (,𝑚) (𝐶′, 𝐿′)

[Otherwise]
𝐿′ = 𝐿[𝑚 ≔ 𝐶]

𝐶′ = 𝐶[∶= 𝑖𝑛𝑐 (𝐶)]
 .𝑛 ∶= 0
𝑚.𝑇𝑖𝑑 ∶=
 .𝐿𝑜𝑐𝑘 ∶=𝑚

(𝐶, 𝐿) ⟹𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (,𝑚) (𝐶′,𝐿′)

5. EXPERIMENT

5.1 Implementation and Benchmark
To support our evaluation, we implemented both FF
and LOFT for C++ programs with Pthreads on top of
Pin 2.9 [26], which is a program dynamic instrumenta-
tion tool. For LOFT, on top of the implementation of
FF, we further added a 32-bit integer to every lock to
record the last thread (lastThread) that releases the
lock concerned and a 32-bit integer to every thread,
with its first 16 bits to record the most recent lock
(lastLock) released by the thread concerned and with
its last 16 bits to record the number of the locks (ac-
qCounter) that this thread has acquired but did not
released after the most recently released lock which is
the same as its lastLock. For a program with n
threads and k locks, the worst case space complexity to
keep the state for these threads and locks is O(n2 + kn),
which is the same as that of the FF. The introduction of
the additional integers in our technique does not affect
this worst case space complexity order.

We also implemented LOFT and FF for data race
detection as LOFTrace and FFrace, respectively. See Ap-
pendix B for the implementation details. FFrace is essen-
tially the state-of-the-art FastTrack algorithm [16].

5.2 Benchmark
We selected the PARSEC benchmark suite 2.1 [9] and
five widely-used large-scale real-world open-source
applications to evaluate LOFT. These large-scale ap-
plications (Apache Httpd [1], Chromium [2], Firefox

[3], MySQL [4], and Thunderbird [5]) have been used to
evaluate techniques in [13]. The PARSEC benchmark
suite includes a set of multithreaded programs for
emerging and system applications [9]. The application
domains include financial analysis, engineering, com-
puter vision, enterprise storage, animation, rendering,
data mining, and media processing (see TABLE I for
details). These benchmarks have been well studied to
validate the concurrency related experiments includ-
ing concurrent bug detection techniques
([11],[15],[21],[33]). The PARSEC benchmark suite in-
cludes 13 benchmarks: black-scholes, bodytrack,
canneal, dedup, facesim, ferret, fluidanimate,

freqmine, raytrace, stream-cluster, swaptions,
vips, and x264. Among these benchmarks, freqmine

does not use the Pthreads library, we discard it be-
cause our implementations were built on top of the
Pthreads library; ferret and fluidanimate crashed
even we ran them under the Pin environment (without
the use of our tool) due to segmentation faults. All
other 10 benchmarks can be successfully invoked and
completed under the Pin environment. For each PAR-
SEC benchmark, we use the simsmall input test. For
each remaining benchmark, our test harness starts and
then stops it as what we did in [13].

5.3 Experimental Setup
We performed the experiment on a machine running
the Ubuntu 10.04 Linux with 3.16GHz Duo2 processor
and 3.25G physical memory. Each benchmark was run
100 times. TABLE I shows the average number of vec-
tor operations performed and time needed to complete
all such tracking on each benchmark (Vector opera-
tions and Time, respectively). For the PARSEC
benchmark suite, we set each benchmark to have 8
worker threads except vips which were preset to have
4 fixed worker threads in the downloaded suite. For
other five applications, we used their owned
configurations, which cannot be changed by us.

We also experimented to see how the actual size (in
terms of bytes) of the log files can be affected by our
scheme. The log files were generated using the follow-
ing scheme: on acquire(t, m) or release(t, m): FFrace
adds a corresponding event line “Thread t [ac-
quires] a lock m.” or “Thread t [releases] a lock
m.” to the log file for each benchmark. For LOFTrace, if
both conditions [lastThread(m) = t] and [lastLock(t)
= m and acqCounter(t) = 1] are satisfied on acquire(t,
m) or release(t, m), it does nothing; otherwise, it also
adds a corresponding event line. When a data race is
detected, either tool adds a line to the log file: Data
race at: source file:line number. We compare
the file sizes with and without compression by using
the Linux Gzip compressor.

We also compared FF with LOFT by using different
numbers of threads on the benchmarks. We systemati-
cally varied the number of threads: 2, 4, 8, 16, 32, and

TABLE I. Comparisons on effectiveness and its efficiency of LOFT and FF on C/C++ benchmarks.

Benchmarks
Application
Domain

Size
(lines of code)

of worker
threads

of Vector operations Time (µs)
FF (A) LOFT (B) (B) (A) FF (C) LOFT (D) (D) (C)

facesim Animation 29,428 8 49,021.1 25,318.4 0.52 18,146.3 16,057.8 0.88
raytrace Rendering 13,323 8 291.1 112.8 0.39 113.6 97.0 0.85

bodytrack Computer Vision 11,891 8 6,520.4 3,205.0 0.49 2,819.4 2,283.4 0.81

swaptions Financial Analysis 1,629 8 46.0 2.0 0.04 18.8 15.8 0.84
blackscholes Financial Analysis 1,665 8 3.0 1.0 0.33 1.7 1.3 0.76

canneal Engineering 4,526 8 61.0 11.0 0.18 25.3 21.3 0.84

streamcluster Data Mining 2,429 8 314,333.8 131,021.4 0.42 109,798.1 95,347.9 0.87
MySQL Database 1,015,047 12 396,569.7 135,000.5 0.34 130,615.4 112,275.8 0.86

vips Media Processing 131,103 4 11,724.3 8,221.7 0.70 4,004.9 3,454.4 0.86

dedup Enterprise Storage 3,704 8 17,545.9 14,276.1 0.81 9,661.3 8,337.9 0.86

x264 Media Processing 37,526 8 1,601.6 1,251.8 0.78 671.2 517.4 0.77

Httpd Web server 47,145 30 1,896.0 56.0 0.03 699.5 590.4 0.84
Chromium Web browser 3,907,957 22 631,223.4 117,382.7 0.19 184,816.2 150,369.5 0.80

Firefox Web browser 3,807,299 17 3,819,783.2 293,813.3 0.08 1,335,533.0 1,096,242.5 0.81
Thunderbird E-mail client 4,252,805 21 1,979,290.8 215,625.3 0.11 692,602,4 567,992.2 0.82

Total - 13,267,477 - 7,229,911.30 945,299.00 0.131 2,489,527.05 2,053,631.66 0.825

Mean - - - - - 0.361 - - 0.831

64, and re-ran the test harnesses of the benchmarks in
each case by 100 times each. The subjects vips, dedup,
Httpd, Chromium, Firefox, and MySQL, and Thunder-
bird either used a pre-configured number of worker
threads or we were unable to modify this setting.
Hence, we did not report the result of these seven sub-
jects in the scalability experiment. On dedup, when the
number of thread is 32 or more, it crashed under Pin
even without applying our tools. Hence, we did not
report the result on this subject as well.

As we have stated in the implementation para-
graph, compared to FF, LOFT needs to maintain one
more variable for each thread and one more variable
for each lock. However, the number of threads and
locks in a typical program execution are often limited.
Take Httpd for example. The number of locks encoun-
tered in the subjects is only 21. The number of threads
in a program execution (as we will study in the next
section) is also a small integer. Because the addition of
each of the two variables only means an extra space of
one integer, we anticipate that the extra space needed
for LOFT is insignificant. As such, we skipped the ex-
periment that measured the memory footprints con-
sumed by LOFT and FF.

5.4 Data Analysis
TABLE I summarizes the results of the experiment. The
second and the third columns (Application Domain
and Size) report the application domain ([1],[9],[4])
and the lines of code for each benchmark, respectively.
The column “# of worker threads” shows the num-
ber of threads used in the experiment. The column
“Vector operations” shows the number of vector
clock operations performed by FF and LOFT, as well
as the ratio of LOFT to FF in the column “(B) (A)”.
The column “Time” shows the corresponding time
needed to complete all such tracking in microsecond
(µs) for FF and LOFT, as well as the ratio of LOFT to
FF in the column “(D) (C)”. We note that the re-
ported time for LOFT has included the time overhead
to maintain the lastThread and lastLock conditions.

Dimension 1 (The Amount of Removable Operations):
From TABLE I, we observe that LOFT, on average,

identifies 0.639 of all the vector clock operations that
are needed by FF for lock acquisition or release as re-
movable. Specifically, compared to FF, on swaptions,

Httpd, and Firefox, LOFT identifies 0.96, 0.97, and
0.92 of all vector clock operations, respectively, as re-
movable. If we consider the total amount of operations
that can be removed from the entire suite of bench-
marks, LOFT identifies 0.869 of all such operations as
removable. This experimental result is consistent with
our conjecture that a lock is often acquired and released
consecutively by the same thread in an execution. In other
words, in theory, one can find that the conjecture may
not hold; but in practice, our findings show that this
phenomenon popularly occurs in executions in pro-
grams that can be represented by this experiment.

TABLE II shows the sizes of the lock trace (log) files
generated by FFrace and LOFTrace, without (“Log size”)
and with (“Compressed by gzip”) applying compres-
sion on the generated lock trace files.

From TABLE II, we observe that, on average,
LOFTrace reduces up to 0.489 of the log files generated
by FFrace. On swaptions and Firefox, we find that
most of the lock acquisitions and releases were only
performed by the main thread; therefore, the size of
the log files generated by LOFTrace was much smaller
than that generated by FFrace. After compression, the
mean size of the log files genreated by LOFTrace is 0.274
smaller than that generated by FFrace.

 We also classified all benchmarks into four set
according to their appliction types as shown in the
third column (“Application clssfication”) in TA-
BLE II. The four sets are: Computer Graphics, Compute-
bound programs, Data-centric programs, and Web

Applications. We find from column “(F)÷(E)” that
the lock trace reduction ratio for the benchmarks in the
Web Application category is 0.65−0.95. For the com-
pute-bound benchmarks, the corresponding ratio is
0.50−0.92. Such saving is significant. For the other two
categories, the reduction ratios vary from 0.02 to 0.75.

Noticeably, for the four programs with millions line
of code (MySQL, Chromium, Firefox, and Thunder-
bird), the reduction ratios are 0.32−0.95 without com-
pression and 0.27−0.94 with compression.

TABLE II. Size of Log Files on C/C++ benchmarks.

Benchmarks
Application

Domain

Application

Classification

Log size (bytes) Compressed by gzip (bytes)

FFrace (E) LOFTrace (F) (F) (E) FFrace (G) LOFTrace (H) (H) (G)

facesim Animation
Computer

Graphics

2,030,782.8 1,228,941.5 0.61 35,976.6 20,395.9 0.57

raytrace Rendering 12,525.9 9,731.6 0.78 523.4 512.6 0.98

bodytrack Computer Vision 273,703.7 239,662.1 0.88 4,526.4 4,236.6 0.94

swaptions Financial Analysis Compute-

bound

2,040.0 170.0 0.08 126.0 111.0 0.88

blackscholes Financial Analysis 170.0 85.0 0.50 101.0 97.0 0.96

canneal Engineering

Data-centric

2,712.0 672.0 0.25 169.4 155.0 0.92

streamcluster Data Mining 31,203,402.4 11,080,455.5 0.36 138,847.4 113,956.7 0.82

MySQL Database 16,686,778.0 11,302,350.1 0.68 84,853.8 61,977.7 0.73

vips Media Processing 487,771.9 386,395.0 0.79 5,594.4 4,638.6 0.83

dedup Enterprise Storage 782,809.8 756,066.8 0.97 63,791.2 63,613.0 1.00

x264 Media Processing 75,403.9 73,789.6 0.98 1,407.1 1,325.1 0.94

Httpd Web server

Web

Application

244,246.3 49,159.1 0.20 3,554.8 1,828.0 0.51

Chromium Web browser 24,244,261.5 8,512,124.2 0.35 287,403.4 125,909.1 0.44

Firefox Web browser 339,161,513.7 16,423,195.9 0.05 2,461,324.2 152,920.7 0.06

Thunderbird E-mail client 83,558,698.4 14,745,031.1 0.18 645,895.1 197,800.7 0.31

Total - 498,766,820.30 64,807,829.50 0.130 3,734,094.20 749,477.70 0.201

Mean - - - 0.511 - - 0.726

Appendix D shows supplementary results.

Dimension 2 (Scalability of LOFT): Figure 7 shows
the ratio (x-axis) on the number of vector operations
retained in a log trace generated by LOFT to that of FF
at different numbers of threads (y-axis) on each
benchmark that we are able to configure the number of
threads used for the benchmark. From Figure 7, we
observe that the ratio is fairly stable across different
numbers of threads on the same benchmark, except on
bodytrack and raytrace. On average, in the experi-
ment, LOFT can remove 0.55 of all such operations in
the lock traces. From Figure 7, on bodytrack and ray-
trace, the curves move up with an increasing number
of threads. On the two Computer-Graphics benchmarks,
we found that the interleaving among the threads be-
comes more complex and lock contentions among
worker threads are increasingly noticeable.

Dimension 3 (Online Tracking Time): From the Time
column in TABLE I, we find that, on average, LOFT
ran 16.9% faster than FF on tracking all the critical
events. The results were consistent across all the
benchmarks. On the three large-scale real-life pro-
grams, LOFT runs 18−20% faster than FF. The result
indicated that the overheads of LOFT can be well-
compensated by the amount of reduced removable
operations. Appendix E shows the corresponding
hypothesis testing result that confirm the difference is
statistically meaningful.

Dimension 4 (Precision on Concurrency Bug Detec-
tions): Although we have analyzed in Section 4 that
LOFT does not compromise the tracking of critical
events (and hence, it does not affect the precision of
the associated concurrency bug detections), we still
report the results here as a second-line validation of
LOFT. We find that FFrace and LOFTrace reported the
same number of data races on all subjects we used. The
numbers of races detected by either technique for the
subjects listed in TABLE I, from top to bottom, are 0, 13,

5, 0, 5, 0, 29, 12, 0, 0, 26, 12, 134, 2, and 3, respectively.
Appendix C shows a further evaluation on a suite of

Java benchmarks. The results on Java benchmarks are
consistent with the results reported above.

6. RELATED WORK

Tracking of Happened-before Relations: Online
dynamic concurrency bug detectors (e.g., [10],[16],[21],

[27],[30]) often use vector clocks to track the happened-
before relations among the monitored events. The em-
pirical results of FastTrack [16] show that most of such
events are data access events, and FastTrack optimizes
the bug detection algorithm for such data access events.
If the amount of data access events can be reduced
such as by sampling some but not all data access
events, the incurred overhead can be reduced, but then
the amount of synchronization events emerges to be-
come the bottleneck [10].

Our approach can be regarded as a strategy toward
addressing this bottleneck by identifying two kinds of
synchronization events (as quantified as Case 1, Case 3,
and Case 5 in Section 4) not to be tracked in full. We
have compared to FastTrack extensively in this experi-
ment. LiteRace [28] is another sampling strategy, that it
consists of an online monitoring phase and an offline
tracking phase to detect concurrency bugs. RaceZ [33]
is also a sampling strategy on data race detection;
however, it is based on lockset and collects memory
accesses through hardware rather than through soft-
ware instrumentation. Carisma [38] can effectively de-
tect race conditions when the sampling rate is very low.
They all fully track the synchronizations among lock
and thread events. Our technique is applicable during
their synchronization collection phases, and comple-
ments their techniques as well as in other fields (i.e.,
atomicity violation detection [23] and execution replay
[7]) that also employ the happened-before relation to
track synchronization events.

FastTrack [16] introduces the concept of epoch for
the tracking of memory accesses. Their idea cannot be
applied to track the happened-before relations among
synchronization events because the successful applica-
tion of epoch relies on the insight that the write opera-
tions of the same memory location among threads in
an execution forms a total order; and yet for lock ac-
quisition and release events among threads, no such
total order can be assumed.

Event Filtering: To iron out the thread-local
memory locations from the pool of all memory loca-
tions, using a state machine event filter is popular in
many detectors (e.g., [30],[31],[37]). Such a strategy
reduces the slowdown overhead without compromis-
ing the precision of such detectors. Another type of
filter is to remove irrelevant lock dependency generat-
ed from a log trace, which in [13], we showed that such
a strategy can significantly improve the performance
of a detector in an empirical study. LOFT can also be
regarded as an event filter. It complements existing
work by filtering removable synchronization events.

Log Reduction: There is also a large body of log re-
duction techniques. Checkpointing [14] records part of
the execution logs such that these logs are adequate to
replay the given program with aim to reproduce bugs.
Lee et al. [24] use the rich runtime information to re-
duce the log size. It firstly instruments the given pro-
gram to record the selective events (e.g., read and write)
in forms of units (e.g., for-loops) during runtime. Then,
it analyzes the recorded logs offline and eliminates the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 8 16 32 64

R
a

ti
o

Number of threads

blackscholes bodytrack canneal

facesim raytrace streamcluster

swaptions x264 Avg.

Figure 7. Scalability of LOFT relative to FF.

event that has no dependency relation to the next
event. However, these reduction techniques are only
applicable for sequential programs [24]. LOFT is ap-
plicable to reduce traces of multithreaded programs.
Tallam et al. [34] proposed a demand-driven approach
to log reduction. For a given bug signature, their tech-
nique identifies the threads and execution regions that
are irrelevant to the bug and removes them. LOFT is
generic and does not rely on any bug signature.
SimTrace [20] is an offline and static technique to sim-
plify an execution trace by merging two events if they
are performed by the same thread and no any other
event occurs in between them through trace equiva-
lence. LOFT is a dynamic and on-the-fly technique.

7. CONCLUSION

In this paper, we have proposed an approach entitled
LOFT to substitute removable operations in the online
tracking of the happened-before relations of synchro-
nization events by thread-local timestamp updating.
We have analyzed the scenarios of consecutive thread-
centric lock operations and have identified a sound
condition that a technique can rely on it to safely re-
move the involved vector clock comparisons and con-
tent copy of vector clock in the tracking of such rela-
tionships among such events. We have conducted an
experiment to validate LOFT. In the experiment, using
FF as the baseline, LOFT has identified, on average
63.9% of all the vector comparisons and updates as
removable, reduced 87.0% in terms of the lock trace
size, and run 16.9% faster in completing such tracking.

Our work only answers an aspect of log reduction.
As discussed in Section I, the potential of duplicated
subsequences in log traces have been explored by a
large body of regression testing techniques. It is inter-
esting to integrate the log traces generated by our ap-
proach with such techniques.

ACKNOWLEDGEMENT

This work is supported in part by the General Re-
search Fund of the Research Grant Council of Hong
Kong (project nos. 111410 and 716612).

References

[1] Apache Httpd 2.3.8, http://httpd.apache.org.
[2] Chromium 18.0.1025.151, http:// www.chromium.org.
[3] Firefox 14.0.1, http://www.mozilla.org/firefox.
[4] MySQL 5.0.92, http://www.mysql.com.
[5] Thunderbird 14.0, http://www.mozilla.org/thunderbird.
[6] R. Agarwal, L. Wang, and S.D. Stoller, Detecting potential

deadlocks with static analysis and run-time monitoring. In
Hardware and Software, Verification and Testing, LNCS
3875/2006, 191207, 2006.

[7] G. Altekar and I. Stoica. ODR: output-deterministic replay for
multicore debugging. In Proc. SOSP, 193–206, 2009.

[8] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M.
Drini ć, D. Mihoˇcka, and J. Chau. Framework for instruction-
level tracing and analysis of program executions. In Proc. VEE,
154–163, 2006.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-
mark suite: characterization and architectural implications. In
Proc. PACT, 72–81, 2008.

[10] M. D. Bond, K. E. Coons and K. S. Mckinley. PACER: Propor-
tional detection of data races. In Proc. PLDI, 255–268, 2010.

[11] N. Barrow-Williams, C. Fensch and S. Moore. A Communica-
tion characterization of SPLASH-2 and PARSEC. In Proc.
IISWC, 86–97, 2009.

[12] Y. Cai and W.K. Chan. LOFT: Redundant synchronization
event removal for data race Detection. in Proc. ISSRE, 160–169,
2011.

[13] Y. Cai and W.K. Chan. MagicFuzzer: Scalable deadlock detec-
tion for large-scale applications. In Proc. ICSE, 606–616, 2012.

[14] K.M. Chandy and L. Lamport. Distributed snapshots: determin-
ing global states of distributed systems. ACM TOCS, 3(1):63–75,
1985.

[15] G. Contreras and M. Martonosi. Characterizing and improving
the performance of Intel threading building blocks. In Proc.
PACT, 57–66, 2008.

[16] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. In Proc. PLDI, 121–133, 2009.

[17] C. Flanagan and S. N. Freund. The RoadRunner dynamic anal-
ysis framework for concurrent programs. In Proc. PASTE, 1–8,
2010.

[18] C. Flanagan, S.N. Freund, and J. Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded pro-
grams. In Proc. PLDI, 293–303, 2008.

[19] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debug-
ging for distributed applications. In USENIX Annual Technical
Conference, General Track, 289–300, 2006.

[20] J. Huang and C. Zhang. An efficient static trace simplification
technique for debugging concurrent programs. In Proc. SAS,
163–179, 2011.

[21] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy. Helgrind+:
an efficient dynamic race detector. In Proc. IPDPS, 1–13, 2009.

[22] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea, Deadlock
immunity: enabling systems to defend against deadlocks. In
Proc. OSDI, 295–308, 2008.

[23] Z.F. Lai, S.C. Cheung, and W.K. Chan, Detecting atomic-set
serializability violations for concurrent programs through ac-
tive randomized testing. In Proc. ICSE, 235244, 2010.

[24] K.H. Lee, Y.H. Zheng, N. Sumner, and X.Y Zhang, Toward
generating reducible replay logs. In Proc. PLDI, 246257, 2011.

[25] S. Lu, S. Park, E. Seo, and Y.Y. Zhou, Learning from mistakes: a
comprehensive study on real world concurrency bug character-
istics. In Proc. ASPLOS, 329–339, 2008.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. Pin: building custom-
ized program analysis tools with dynamic instrumentation. In
Proc. PLDI, 191–200, 2005.

[27] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21(7):558–565,
1978.

[28] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
effective sampling for lightweight data-race detection. in Proc.
PLDI, 134–143, 2009.

[29] F. Mattern. Vitual time and global states of distributed systems.
In Workshop on Parallel and Distributed Algorithm, 215-226. 1988.

[30] E. Pozniansky and A. Schuster. Efficient on-the-fly data race
detection in multithreaded C++ programs. In Proc. PPoPP, 179–
190, 2003.

[31] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. Ander-
son. Eraser: a dynamic data race detector for multithreaded
programs. ACM TOCS, 1997, 15(4): 391–411.

[32] K. Serebryany and T. Iskhodzhanov. Threadsanitizer – data
race detection in practice. In Proc. WBIA, 62–71, 2009.

[33] T.W. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W.G. Chen,
and W.M. Zheng. RACEZ: A lightweight and non-invasive race
detection tool for production applications. In Proc. ICSE, 401–
410, 2011.

[34] S. Tallam, C. Tian, R. Gupta, and X.Y. Zhang. Enabling tracing
of long-running multithreaded programs via dynamic execu-
tion reduction. In Proc. ISSTA, 207–218, 2007.

[35] X.W. Xie and J.L. Xue. ACCULOCK: Accurate and efficient
detection of data races. In Proc. CGO, 201–212, 2011.

[36] S. Yoo and M. Harman. Regression testing minimization, selec-
tion and prioritization: a survey. Software Testing, Verification
and Reliability, to appear. DOI: 10.1002/stvr.430.

[37] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detec-
tion of data race conditions via adaptive tracking. In Proc.
SOSP, 221–234, 2005.

[38] K. Zhai, B.N. Xu, W.K. Chan, and T.H. Tse. CARISMA: a con-
text-sensitive approach to race-condition sample-instance selec-
tion for multithreaded applications. In Proc. ISSTA, 221–231,
2012.

Yan Cai is a PhD student at Department of Computer
Science, City University of Hong Kong. He received his
BEng degree in Computer Science and Technology from
Shandong University, China, in 2009. His research inter-
est is concurrency bug detection and reproduction in mul-
tithreaded programs and distributed systems.

W.K. Chan is an assistant professor at Department of
Computer Science, City University of Hong Kong. He is
on the editorial board of Journal of Systems and Software.

He served as guest co-editors of a number of internation-
al software engineering journals, program chairs of AST
2010 and QSIC 2010, and innovative showcase chairs of
ICWS and SCC for both 2009 and 2010. His research
results have been extensively reported in top-notch ven-
ues such as TOSEM, TSE, CACM, COMPUTER, ICSE,
FSE, ISSTA, ASE, WWW, and ICDCS. His current re-
search interest includes program analysis and testing for
large-scale software systems.

Supplementary File for the TPDS Manuscript:

Lock Trace Reduction for Multithreaded Programs
Yan Cai and W.K. Chan

APPENDICES

A. Correctness Proof

In this section, we extend Section 4.1 with the correct-
ness proof for the cases where the vector clock updates
can be eliminated. To distinguish the different vector
clock content at different events, we use the symbol 𝑉

to denote the vector clock content when the event e
occurs. For example, on event ea = acquire(t, m), we use
𝐶

 to denote the vector clock of the thread t and 𝐿
 to

denote the vector clock of the lock m.
We firstly analyze the scenarios in which 𝑒 is an

acquire(t, m). There are two cases: Case 1 and Case 2.

Case 1. [if lastThread(m) = t].
Let 𝑒 be an event in a trace denoting that t releases

m such that lastThread(m) = t, and 𝑒 be an event in
the same trace that t acquires m after the occurrence of
𝑒 .

Consider the trace …𝑒 … 𝑒 …, when 𝑒 occurs, ac-
cording to FF (at lines 3 and 4 in Figure 2), we must
have:
 𝐿

 [𝑖] = 𝐶
 [𝑖] (1 i n, i ≠ t), and

𝐿
 [𝑖] < 𝐶

 [𝑖] (i = t)
(1)

When 𝑒 occurs, because lastThread(m) = t holds, 𝐿

is not changed by any other thread. So, we have:
 𝐿

 = 𝐿
 (2)

However, the values in 𝐶 may be incremented because
t may acquire some other lock(s) in between 𝑒 and 𝑒
(as illustrated by the “***” symbols in Case 1 of Figure

4); otherwise, 𝐶 must remain unchanged. No matter 𝐶
is incremented or not, we have
 𝐶

 ⊑ 𝐶
 (3)

From Eq. (1), (2), and (3), when 𝑒 occurs, we have
𝐿
 ⊑ 𝐶

 . Therefore, there is no need to perform any
comparison between 𝐿 and 𝐶 , and the corresponding
comparison can be removed when 𝑒 occurs. Moreover,
we need not to update the timestamp at 𝐶

 [𝑡] on this
acquire event according to FF (at line 5 in Figure 2).

Case 2. [if lastThread(m) ≠ t].
Let 𝑒 be an event that t acquires m.
Consider the trace … 𝑒 …, when 𝑒 occurs, because

we have lastThread(m) ≠ t, there are two sub-cases to
consider: m must either have been released by a thread
t’ (where t’ ≠ t) or have not been updated since it was
initialized. In the former case, 𝐿 must once contain a
value the same as that of 𝐶 ⊔ 𝐿 . In the latter case, the
value of 𝐿 must be different from that of 𝐶 because
all locks are initialized as all 0s, whereas all threads are
initialized as all 1s (see lines 1 and 2 of Figure 2). There-
fore, without further checking, we cannot determine a

definite happened-before relation between 𝐿 and 𝐶 .
In this situation, when 𝑒 occurs, such a comparison
and its associated potential assignment from 𝐶 ⊔ 𝐿 to
𝐶 are necessary. Hence such operations are not re-
movable (which is depicted by the second (dotted) ar-
row in Case 2 of Figure 4).

We now analyze scenarios in which 𝑒 is a release(t,
m). There are four cases: Cases 3−6.

Case 3. [if lastThread(m) = t and lastLock(t) = m].
Let 𝑒 be an event in a trace that t releases m such

that lastThread(m) = t and lastLock(t) = m, 𝑒 be an
event that t releases m, and 𝑒 be the corresponding
lock acquisition operation performed by t with respect
to 𝑒 .

Consider the trace … 𝑒 … 𝑒 … 𝑒 …, when 𝑒 occurs,
because lastThread(m) = t held, the situation is the
same as that in Case 1. According to Case 1, we have:
 𝐿

 [𝑖] = 𝐶
 [𝑖] (1 i n, i ≠ t), and

𝐿
 [𝑖] < 𝐶

 [𝑖] (i = t)
(4)

and
 𝐿

 = 𝐿
 (5)

In between the occurrences of 𝑒 and 𝑒 , because of the
condition lastLock(t) = m, we have:
 𝐶

 = 𝐶
 (6)

(Note that Eq. (6) is different from Eq. (3) for Case 1
because, here, we know that t neither acquires nor re-
lease any other lock in between 𝑒 and 𝑒 due to the
condition lastLock(t) = m.) Therefore, we have:
 𝐶

 = 𝐶
 (7)

Besides, in between the occurrences of 𝑒 and 𝑒 , m is
held by t and has not been released by the latter. So, 𝐿
must be kept unchanged. Therefore, we have:
 𝐿

 = 𝐿
 (8)

From Eq. (4), (5), (6), (7), and (8), we obtain the follow-
ing:

𝐿
 [𝑖] = 𝐶

 [𝑖] (1 i n, i ≠ t) and
𝐿
 [𝑖] < 𝐶

 [𝑖] (i = t).

Therefore, to make 𝐿 = 𝐶 true when 𝑒 occurs, we
only need to update 𝐿 [𝑡] to be 𝐶 [𝑡]; and the remova-
ble vector clock comparison between 𝐶 and 𝐿 can be
eliminated.

Case 4. [if lastThread(m) = t and lastLock(t) ≠ m].
Let 𝑒 be an event that t releases m such that

lastThread(m) = t, 𝑒 be an event that t releases m, and
𝑒 be the corresponding acquire operation of 𝑒 .

Consider the trace …𝑒 …𝑒 …𝑒 …, when 𝑒 occurs,
because lastThread(m) = t holds, the situation is the
same as that in Case 1, we have:
 𝐿

 [𝑖] = 𝐶
 [𝑖] (1 i n, i ≠ t) (9)

𝐿
 [𝑖] < 𝐶

 [𝑖] (i = t)
When 𝑒 occurs, because of the condition lastLock(t)
≠ m, 𝐶 may have been adjusted due to acquiring and
releasing some other lock. So, we only get:
 𝐶

 ⊑ 𝐶
 (10)

When 𝑒 occurs, the condition lastThread(m) = t im-
plies that m has not been acquired and released by any
other thread in between 𝑒 and 𝑒 . Hence, we have:
 𝐿

 = 𝐿
 = 𝐿

 (11)

In between the occurrences of 𝑒 and 𝑒 , t has not ac-
quired and released any other lock, we have:
 𝐶

 = 𝐶
 (12)

From Eq. (9), (10), (11), and (12), we can only infer that
𝐿
 ⊑ 𝐶

 = 𝐶
 holds. Therefore, to ensure the condition

𝐿 = 𝐶 to be true, the vector clock assignment from 𝐶
to 𝐿 is not removable.

Case 5. [if lastThread(m) ≠ t and lastLock(t) = m].
Let 𝑒 be an event that t releases m such that last-

Lock(t) = m, 𝑒 be an event that t releases m, and 𝑒 be
the corresponding lock acquire operation of 𝑒 .

Consider the trace …𝑒 …𝑒 …𝑒 …, on 𝑒 , according
to FF at line 4 in Figure 2, we have:
 𝐿

 [𝑖] = 𝐶
 [𝑖] (1 i n, i ≠ t)

𝐿
 [𝑖] < 𝐶

 [𝑖] (i = t)
(13)

From lastThread(m) ≠ t, we know that, between 𝑒
and 𝑒 , there must exist at least one pair of lock acqui-
sition and release events on m performed by some oth-
er thread s such that s ≠ t. To ease our proof, we denote
the last pair of such lock acquisition and release events
by s as 𝑒 and 𝑒 , respectively.

From 𝑒 to 𝑒 , because held lastLock(t) = m, 𝐶 must
keep unchanged and 𝐿 must have been incremented.
Therefore, we have:
 𝐶

 = 𝐶
 = 𝐶

 , and

𝐿
 ⊑ 𝐿

 ⊑ 𝐿

(14)

When 𝑒 occurs, because lastThread(m) ≠ t holds,
which is the same as Case 2. We have
 𝐶

 [𝑖] = max {𝐶
 [𝑖], 𝐿

 [𝑖]}, (1 i n) (15)

In between the occurrences of 𝑒 and 𝑒 , 𝐿 cannot be
changed because no release event of m occurs. Hence,

we have:
 𝐿

 = 𝐿
 (16)

Then, from Eq. (13), (14), (15), and (16), we infer that
 𝐶

 [𝑖] = 𝐿
 [𝑖] (1 i n, i ≠ t) (17)

In between the occurrences of 𝑒 and 𝑒 , both vector
clocks of m and t cannot be changed, which implies:
 𝐶

 = 𝐶
 and

𝐿
 = 𝐿

(18)

So, when 𝑒 occurs, from Eq. (17) and (18), we have:
𝐶

 [𝑖] = 𝐿
 [𝑖] (1 i n, I ≠ t) and

𝐶
 [𝑖] < 𝐿

 [𝑖] (i = t).
Hence, to make sure 𝐿 = 𝐶 true when 𝑒 occurs, we

only need to update 𝐿 [𝑡] to be 𝐶 [𝑡] and the removable
vector clock comparison between 𝐶 and 𝐿 can be
eliminated.

Case 6. [if lastThread(m) ≠ t and lastLock(t) ≠ m].
In this case, we know nothing about the relation be-

tween 𝐿 and 𝐶 . Therefore, no vector-based compari-
son or assignment is removed.

B. Implementation
We have shown by a theoretical analysis in Section 4
that our algorithm can identify removable operations,
and update the set of vector clocks for threads and
locks to achieve an equivalent result of FF in tracking
critical events. We have further implemented the data
race tracking algorithm (FastTrack) presented in [16] to
LOFT. The detail is as follows. We note that both FF
and LOFT have no need to track memory accesses.

Memory Shadow: To track memory accesses, we
adopted a two level shadow implementation M0 as
described in [41]. We also used a Copy-on-Write strate-
gy to start to shadow a memory location on the first
access to it which is either a read or a write so that the
allocated but non-accessed memory was not shadowed,
which could save the memory consumption and the
time needed to shadow those non-accessed memory.
For each thread, because Pin supplies a thread-local
storage (TLS) per thread [26], we used this TLS to store
a data set (e.g., thread vector clock) for each thread.

TABLE III. Comparisons on effectiveness and its efficiency of LOFT and FF on Java benchmarks.

Benchmarks
Application

Domain
Size

(lines of code)
of worker

threads

of Vector operations Time (µs)

FF (K) LOFT (L) (L) (K) FF (M) LOFT (N) (N) (M)

crypt IDEA Encryption 1,191 7 12.0 2.0 0.17 80.1 35.2 0.44

lufact LU Factorisation 1,580 4 12.0 4.0 0.33 89.3 37.6 0.42

moldyn Molecular Dynamics Simulation 1,351 4 22.0 2.0 0.09 113.8 58.5 0.51

montecarlo Monte Carlo Simulation 3,630 4 22.0 2.0 0.09 108.6 51.3 0.47

series Fourier Coefficient Analysis 919 4 12.0 2.0 0.17 79.5 34.1 0.43

sor Successive Over-relaxation 828 4 12.0 2.0 0.17 82.6 35.0 0.42

sparse Sparse Matrix Multiplication 820 4 12.0 2.0 0.17 108.0 38.1 0.35

tsp Traveling Saleman Problem 718 5 45.0 36.5 0.81 213.3 166.3 0.78

raja Ray Tracer 10,516 9 17.1 5.0 0.29 107.1 48.1 0.45

raytracer 3D Ray Tracer 1,938 4 48.5 11.0 0.23 227.9 139.7 0.61

elevator Discrete Events Simulator 550 4 5,174.4 1,962.3 0.38 14,151.2 11,188.2 0.79

philo Dinning Philosophers Simulator 116 6 24.0 4.1 0.17 153.2 59.4 0.39

Total - 24,157 - 5,413.0 2,034.9 0.376 15,514.6 11,891.4 0.766

Mean - - - - - 0.255 - - 0.506

For each lock and each barrier, we used an unordered
map supplied by the GCC compiler to map the lock or
the barrier to a set of data (e.g., a vector clock).

C. Further Evaluation on Java Bench-
marks

In Section 5, we have evaluated LOFT on a suite of
C/C++ multithreaded programs. In this section, we
further evaluated LOFT on a set of multithreaded Java
benchmarks.

We firstly downloaded the RoadRunner framework
[17] that included the latest implementation of
FastTrack [16] written by the authors of FastTrack. We
then implemented LOFT2 on top of this FastTrack im-
plementation on the downloaded RoadRunner. We ran
the benchmarks for both LOFT and FF as well as FFrace
and LOFTrace in the same machine as reported in Sec-
tion 5.

We selected 12 benchmarks including crypt, lu-
fact, moldyn, montecarlo, series, sor, sparse, tsp,
raja, raytracer, elevator, and philo. All these
benchmarks are from [16] that have been used to eval-
uate FFrace. We did not use the other benchmarks such
as jbb reported in [16] due to our financial budget
issue as they were paid benchmarks. We did not in-
clude eclipse because we found that the download-
ed RoadRunner framework fails to run correctly when
monitoring eclipse even without any changes we
made to implement LOFT on it.

TABLE III shows the average number of vector op-
erations performed and time taken to complete such
tracking on each Java benchmark. The columns of TA-

BLE III carry the same meanings as these of TABLE I.
From TABLE III, we find the following: (1) on average,
LOFT identifies 74.5% of vector clock operations need-
ed by FF are removable; (2) for the online tracking time,
on average, LOFT ran 49.4% faster than FF. These re-
sults are similar to our findings on the C/C++ bench-

2 Our LOFT is available at: www.cs.cityu.edu.hk/~51948163/loft/ .

marks reported in Section 5 of this paper.
TABLE IV shows the size of trace log on the Java

benchmarks both before and after compression. The
columns of TABLE IV carry the same meanings as
these of TABLE II. From TABLE IV, we observe that
LOFTrace reduces up to 74.5% of log files generated by
FFrace. After compression, on average, a reduced log file
is 9.1% smaller than that generated by FFrace.

The numbers of reported data races on these Java
benchmarks by FFrace and LOFTrace are the same, which
are 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, and 0 for the benchmarks
in TABLE III from top to down, respectively. Note that
two of these numbers (on montecarlo and raja) are
different from the original data reported in [16]. This is
because we used the latest version of FFrace and the
original implementation used in [16] has an implemen-
tation bug as reported in [40] by the same authors of
the FastTrack.

D. Study on Generated Lock Trace
To understand the generated log trace better, we
further study the generated lock trace files. TABLE VI
shows the corresponding parts of the log files on the
benchmark raytrace in the first column and the sec-
ond column generated by FFrace and LOFTrace, respec-
tively. On raytrace, thread 0 consecutively acquired
and released a lock m for 22 times; and then it acquired
and released a lock n once, followed by acquiring and
releasing the lock m again for another 5 times. At this
moment, thread 1 acquired and released a lock k, and
a data race was detected. Therefore, FFrace generated
one log event line for each acquire or release event, as
shown in the first column. In total, there were 60 event
lines before the data race is reported. LOFTrace was able
to identify the consecutive acquire and release of the
same lock through lastThread, lastLock, as well as
acqCounter. It avoided generating the corresponding
log event lines incurred by FFrace. As shown in the sec-
ond column of TABLE VI, LOFT merely generated 8

TABLE IV. Size of Log Files on Java benchmarks.

Benchmarks
Application

Domain

Application

Classification

Log size (bytes) Compressed by gzip (bytes)

FFrace (O) LOFTrace (P) (P) (O) FFrace (Q) LOFTrace (R) (R) (Q)

crypt IDEA Encryption

Compute-

bound

324.0 54.0 0.17 79.0 76.0 0.96

lufact LU Factorisation 324.0 108.0 0.33 85.0 84.0 0.99

moldyn Molecular Dynamics Simulation 594.0 54.0 0.09 82.0 77.0 0.94

montecarlo Monte Carlo Simulation 594.0 54.0 0.09 86.0 81.0 0.94

series Fourier Coefficient Analysis 324.0 54.0 0.17 80.0 77.0 0.96

sor Successive Over-relaxation 324.0 54.0 0.17 77.0 74.0 0.96

sparse Sparse Matrix Multiplication 324.0 54.0 0.17 87.0 84.0 0.97

tsp Traveling Saleman Problem 1,215.0 991.7 0.82 146.1 142.0 0.97

raja Ray Tracer Computer

Graphics

459.5 135.3 0.29 95.4 88.4 0.93

raytracer 3D Ray Tracer 1,404.0 297.0 0.21 128.8 120.7 0.94

elevator Discrete Events Simulator
Simulation

137,577.7 52,413.2 0.38 1,210.1 505.7 0.42

philo Dinning Philosophers Simulator 648.0 110.2 0.17 87.7 82.1 0.94

Total - 144,112.2 54,379.4 0.377 2,244.2 1,492.1 0.665

Mean - - - 0.255 - - 0.909

event lines for the event trace of raytrace before re-
porting the same data race as FFrace did. It not only re-
sults in a log file that is only 15% of the original log file
size, but also can be more comprehensible for pro-
grammers to study the reported race problem.

Indeed, from the generated log files, we found that
during the startup period of a program in the bench-
mark suites, the main thread popularly and consecu-
tively acquired and released the same lock. For exam-
ple, as shown in TABLE VI, on raytrace, the main
thread consecutively acquired and released a same
lock for 22 times before acquired and released a second
lock, and then acquired and released the first lock con-
secutively for another 5 times. It is interesting to study
on why programs were developed as such.

E. Mann-Whitney U Test Result on Track-
ing Time

To further compare the online tracking time, we also
computed the Mann-Whitney U Test result using the
Matlab ranksum tool [39] on the dataset that composed
the timing statistics presented in TABLE I and TABLE

IV. The result is presented in TABLE V, which shows
that LOFT and FF are different significantly at the
0.001 significance level across all the benchmarks.

F. Threats to Validity
The C/C++ version of our LOFT and FF were imple-
mented by us and the Java versions are based on the
original FF implementation [16]. We have assured our
implementations on several small multithreaded
C/C++ and Java programs. Different implementations
may have different effects on the performance and the
collected data. All benchmarks we used (including
both C/C++ and Java benchmarks) are widely studied
in previous experiments. Using other set of bench-
marks may produce different results. Besides, profiling
an execution may affect the original program execu-
tion. However, since both LOFT and FF only analyze
the synchronizations; and the profiling is much less
intrusive than profiling memory accesses. We com-
pared LOFT and FF by using the following three met-
rics: the number of vector operations on synchroniza-
tions, the size of generated log files, and the time taken
to track all these synchronizations. Using different

metrics may have different results.

REFERENCE

[39] Matlab 7.8.0 (R2009a), at http://www.mathworks.com.

[40] C. Flanagan and S.N. Freund. Adversarial memory for detecting
destructive races. In Proc. PLDI, 244–254, 2010.

[41] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In Proc. VEE, 65–74, 2007.

TABLE VI. Part of Log Files on raytrace from C/C++ benchmarks.

Log file generated by FFrace Log files generated by LOFTrace

1

2

…

45

46

47

48

…

59

60

61

Thread 0 [acquires] a lock (m)

Thread 0 [releases] a lock (m)

… (here above pair (lines 1 and 2) repeated for 21 additional times)

Thread 0 [acquires] a lock (n)

Thread 0 [releases] a lock (n)

Thread 0 [acquires] a lock (m)

Thread 0 [releases] a lock (m)

… (here above pair (lines 47 and 48) repeated for 5 additional times)

Thread 1 [acquires] a lock (k)

Thread 1 [releases] a lock (k)

Data race at: RTTL/common/RTThread.hxx:19.

1

2

3

4

5

6

7

8

9

Thread 0 [acquires] a lock (m)

Thread 0 [releases] a lock (m)

Thread 0 [acquires] a lock (n)

Thread 0 [releases] a lock (n)

Thread 0 [acquires] a lock (m)

Thread 0 [releases] a lock (m)

Thread 1 [acquires] a lock (k)

Thread 1 [releases] a lock (k)

Data race at: RTTL/common/RTThread.hxx:19.

TABLE V. Mann-Whitney U Test Result on Tracking Time

Benchmarks
Mann-Whiney

U Test Result
Benchmarks

Mann-Whiney

U Test Result

C/C++ Java

facesim < 0.00001 crypt < 0.00001

raytrace < 0.00001 lufact < 0.00001

bodytrack < 0.00001 moldyn < 0.00001

swaptions < 0.00001 montecarlo < 0.00001

blackscholes 0.00062 series < 0.00001

canneal < 0.00001 sor < 0.00001

streamcluster < 0.00001 sparse < 0.00001

MySQL < 0.00001 tsp < 0.00001

vips < 0.00001 raja < 0.00001

dedup < 0.00001 raytracer < 0.00001

x264 < 0.00001 elevator < 0.00001

Httpd < 0.00001 philo < 0.00001

Chromium < 0.00001

Firefox < 0.00001

Thunderbird < 0.00001

