
Magiclock: Scalable Detection of Potential
Deadlocks in Large-Scale Multithreaded

Programs
Yan Cai and W.K. Chan†

Abstract—We present Magiclock, a novel potential deadlock detection technique by analyzing execution traces (containing no

deadlock occurrence) of large-scale multithreaded programs. Magiclock iteratively eliminates removable lock dependencies

before potential deadlock localization. It divides lock dependencies into thread specific partitions, consolidates equivalent lock

dependencies, and searches over the set of lock dependency chains without the need to examine any duplicated permutations

of the same lock dependency chains. We validate Magiclock through a suite of real-world, large-scale multithreaded programs.

The experimental results show that Magiclock is significantly more scalable and efficient than existing dynamic detectors in

analyzing and detecting potential deadlocks in large-scale execution traces from large-scale multithreaded programs.

Index Terms—deadlock detection; multithreaded programs; concurrency; lock order graph; scalability

—————————— ——————————

1 INTRODUCTION

Many real-world large-scale multithreaded programs are
error-prone. They suffer from concurrency bugs [34] such
as data races [18], [19], [46], atomicity violations [27], [32],
[34], and deadlocks [14], [15], [29], [36]. For instance, a
deadlock occurrence in an execution may prevent (a part
of) the program execution from making further progress.

Resource deadlock [14], [29] and communication deadlock
[28], [31] are two broad kinds of deadlocks. A resource
deadlock occurs when a set of threads is holding some re-
sources (locks) and is waiting for the other resources held
by the threads in the same set. A communication deadlock
occurs when some threads wait for some messages but
they never receive these messages. Previous works (e.g.,
[28]) have illustrated that it could be infeasible to precise-
ly detect all kinds of deadlocks by the same technique. In
this paper, we study the detection of resource deadlocks
in multithreaded programs, where locks are resources.

Many predictive deadlock detection techniques have
been proposed, such as static analysis [23], [41], [45], dy-
namic analysis [15], [29], model checking [26], runtime
monitoring [44], and their integrations [14], [28]. Some
studied lock order graphs [36] and their integrations [15]
with the happened before relation [33]; others studied
confirmation of potential deadlocks [16], [24], [29], or
deadlock avoidance/healing [30], [40], [44].

Among these techniques, static analysis and model
checking techniques can analyze the whole program in-
cluding open frameworks. They either report many false

positives [45] or are unable to scale up to handle large-
scale programs [28]. Dynamic analysis analyzes a given
program execution trace and may reduce false positives
but its scopes is restricted by the given input (i.e., report-
ing false negatives). Dynamic confirmation techniques are
able to automatically confirm a potential deadlock if it is a
real one, but they cannot guarantee that a cycle will never
deadlock. Avoidance and healing techniques are often
pattern based, which may imprecisely quantify deadlock
triggering conditions, producing incomplete solutions.
Besides, they slow down the program executions further,
and may not prevent the same deadlock to re-occur.

Modern dynamic deadlock detection techniques [36]
use lockset based strategies to analyze an execution trace
consisting of threads locking behaviors (which does not
contain any deadlock occurrence) and predict potential
deadlocks in other executions. Once a potential deadlock
is found, deadlock confirmation, avoidance, or healing
strategies can be applied. However, without successfully
analyzing the execution trace, no potential deadlock can
be reported for subsequence steps to take actions.

At the heart of the preliminary version [21] of this pa-
per is Magiclock, a novel algorithm for potential deadlock
detection. In this paper, we present the generalized
Magiclock algorithm. To ease our presentation, we refer to
the version of Magiclock in [21] as ML1, and refer to the
generalized version proposed by this paper as Magiclock.

Magiclock monitors a set of critical events in a program
execution and generates a trace, consisting of a sequence
of lock dependencies [21], [29] (Section 3.2). It then analyzes
the trace to detect potential deadlocks, each of which is in
the form of lock dependency sequence such that in the
sequence, (1) the (i+1)-th lock dependency depends on the
i-th lock dependency, and (2) the first one depends on the
last one. To ease our presentation, we also refer to a po-
tential deadlock as a deadlock warning or a cycle.

————————————————

 Yan Cai is with Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong. E-mail: ycai.mail@gmail.com.

 W.K. Chan is with Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong. E-mail:
wkchan@cityu.edu.hk.

† Correspondence author.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

Magiclock then classifies all the locks appearing in a
trace into four sets. We show that if a potential deadlock
appears in the trace, then all the involved locks must re-
side in exactly one of the four sets (denoted by Cyclic-set).

Moreover, we exploit the insights that (1) any thread
can only occur once in any potential deadlock, (2) the se-
quence of all threads in a same permutation are the same,
and (3) detecting one permutation of the same potential
deadlock suffices to confirm the presence of the potential
deadlock in the trace. Magiclock partitions the subset of all
lock dependencies in a relation whose locks also appear
in Cyclic-set into thread specific partitions. It arranges
such partitions into a fixed order so that only one permu-
tation of each potential deadlock needs to be explored
and the remaining are eliminated.

We further exploit the insights that (1) many lock de-
pendencies in a trace can be regarded as equivalent from
the viewpoint of potential deadlock detection, and (2)
detecting one cycle among these non-equivalent classes of
partitions suffices to infer the presence of the other equiv-
alent cycles. As such, Magiclock selects only one lock de-
pendency among all its equivalent ones for cycle localiza-
tion. The net result is a new algorithm that traverses each
reduced and thread specific lock dependency relation to
locate each set of lock dependencies at most once, and
reports all inferred cycles equivalent to the located cycles.

Magiclock generalizes ML1 in multiple aspects: (1) it
formulates a generalized lock classification scheme (see
Algorithm 1). As we will illustrate via Fig. 3 in Section 4,
where ML1 produces the graph in Fig. 3(a), this general-
ized scheme can produce a significantly much smaller set
of lock dependencies (see Fig. 3(c)) to be considered for
cycle localization. (2) It develops a new lock dependency
equivalency reduction strategy and a new cycle inference
strategy (in Algorithm 5). (3) Magiclock has been further
optimized to divide the set of lock dependencies pro-
duced by Algorithm 1 into disjoint subsets, and runs Algo-
rithm 5 over each of these disjoint subsets.

We have conducted a comprehensive validation exper-
iment that includes 11 benchmarks with more than 10
real-world deadlock cases, and evaluates Magiclock in
multiple dimensions. The experimental results show that
Magiclock can scale up significantly better than existing
techniques including ML1.

The main contribution of this paper is threefold. (i) We
propose a generalized Magiclock to address the scalability
challenges in analyzing traces and detecting potential
deadlocks in large-scale multithreaded programs. (ii) We
implement a prototype to show the feasibility of this gen-
eralized version of Magiclock. (iii) Last, but not the least,
we report an experiment on a suite of real-world large-
scale multithreaded benchmarks. The experimental
results show that Magiclock can be significantly more
efficient and scalable than MulticoreSDK, iGoodlock, and
ML1 in handling large-scale programs.

The rest of this paper is organized as follows. Section 2
gives a motivating example and Section 3 presents the
preliminaries. Section 4 presents Magiclock followed by its
validation experiment in Section 5. We review the related
work in Section 6. Section 7 concludes the paper.

2 MOTIVATING EXAMPLE

Example A: We motivate our work via an example pro-
gram as shown in Fig. 1. The example program includes
six functions (funA to funF), three threads (denoted by t1, t2,

and t3), and nine locks (denoted by l1 to l9).
A deadlock in the example occurs as follows: the

thread t1 firstly calls funA(l1, l2) and acquires l1 at s02. At
this moment, suppose that t2 calls funC(l2, l1) and acquires
l2 at s14. Then, when t1 attempts to acquire l2 at s03, it is
blocked by t2. Similarly, when t2 attempts to acquire l1 at
s15, it is blocked by t1. Now, both threads t1 and t2 are mu-
tually blocked and a deadlock occurs. After the thread t3
terminates, the entire execution ceases to proceed further.

A lock order graph [14], [15], [26] is a directed multi-
graph and describes the lock acquisition relations among
threads and locks. In such a graph, a node represents a
lock. For instance, in Fig. 2 (a), the two nodes labeled as l1

and l2 represent the two locks l1 and l2, respectively. A
directed edge from the node l1 to the node l2 annotated
with a set of labels (e.g., t1 as a label) represents that, in
the course of execution, t1 acquires l2 while holding l1.

 Fig. 2(a) shows the lock order graph generated by ana-
lyzing the execution trace that fully executes t1 followed
by t2 and finally t3. We also highlight the illustrated dead-
lock using dotted edges.

The Goodlock algorithm [14], [15] directly constructs a
lock order graph to detect all cycles on it (e.g., Fig. 2(a)).
However, Goodlock is not scalable enough to handle large-
scale programs. For instance, Luo et al. [36] report that
such a graph for an IBM in-house program (i.e., ITCAM)
consists of more than 300K nodes and 600K edges; and
the Goodlock algorithm spent 48 hours and 13.6 GByte of
memory to find all cycles on it [36].

Lock Reduction: MulticoreSDK [36] is the latest tech-
nique based on lock order graph. It uses locations (where
the locks are acquired) information to reduce the lock

Locks: l1, l2, l3, l4, l5, l6, l7, l8, l9;

s01
s02
s03
s04
s05
s06
s07
s08
s09
s10
s11
s12
s13
s14
s15
s16

s17
s18

funA (lock m, lock n) {
acquire (m);

acquire (n);
release (n);

release (m);
}
funB (lock m, lock n) {

acquire (m);
acquire (n);
release (n);

release (m);
}
funC (lock m, lock n) {

acquire (m);
acquire (n);
release (n);

release (m);
}

s19
s20
s21
s22
s23
s24
s25

s26

s27

s28

s29

s30

s31

s32

s33

s34

s35

s36

s37

s38

funD (lock m, lock n) {
acquire (m);

acquire (n);
release (n);

release (m);
}
funE (lock m, lock n) {

acquire (l1);
acquire (m);

acquire (n);
release (n);

release (m);
release (l1);

}
funF (lock m, lock n) {

acquire (m);
acquire (n);
release (n);

release (m);
}

Thread 1 (t1)

funA (l1, l2);
funC (l2, l3);
funA (l3, l4);
funF (l7, l3);

Thread 2 (t2)

funC (l2, l1);
funE (l8, l9);
funA (l1, l6);

Thread 3 (t3)

funB (l4, l5);
funB (l6, l7);
funD (l5, l4);

Fig. 1. Example program (Note that FunA, FunB, FunC, FunD, and
FunF have the same locking code but they could be different in their
non-locking code, such as memory accesses. Similar code existed
in multiple functions may also have impacts on the performance of
different techniques.)

order graph and locate cycles on the reduced graph. It
firstly groups the locks acquired at the same code location
into one group and then merges multiple groups into one
if they share any lock (because a lock may be acquired at
different locations). These two phases result in a location
based lock order graph, as shown in Fig. 2(b), where a
node is a group and there is an edge from a group G1
to another group G2 if there is an edge from a lock in
G1 to some lock in G2. In Fig. 2(b), groups A, B, and C
form three cycles. Then, MulticoreSDK only considers the
locks in these located groups (i.e., groups A, B, and C) in
its second phase, where it constructs an ordinary lock
order graph (see Fig. 2(c)). Because the locks in a group
that does not involve in any cycle in a location based lock
order graph also does not appear in the final lock order
graph, this approach alleviates the scalability problem in
cycle detection. Nonetheless, from Fig. 2(c), the resultant
graph to locate cycles may not prune many nodes irrele-
vant to any cycle.

Search Strategy: iGoodlock [29] is the core algorithm in
DeadlockFuzzer that searches for cycles on the full permuta-
tions of the whole set of lock dependencies generated
from an execution trace (with a heuristic pruning strate-
gy). iGoodlock is the same as Goodlock [26] except that it is
more efficient but may consume much more memory [29].
But, iGoodlock still incurs undesirable features. For exam-
ple, by the nature of its algorithmic design, it cannot
avoid locating the same cycle multiple times in its search
process. Hence, it uses a less desirable strategy, which is
to suppress the reporting of the duplicated cycles or
chains (rather than preventing them by design). Note that
this problem is also suffered by the traditional lock order
graph (e.g., Goodlock and MulticoreSDK).

In addition, although the total number of cycles pre-
dictable from an execution trace could be small, yet there
could be a large number of lock dependency chains (see
the definition in Section 3.3). In our experiment (Section
5), on a majority of the large-scale benchmarks, iGoodlock
consumed all the memory that a Linux process was al-
lowed to consume before reporting any/all cycles.

3 PRELIMINARIES

3.1 Events and Execution Trace

Following [20], [29], [36], Magiclock monitors three types of
critical events involving threads and locks: (1) create(t, t'):
thread t creates a new thread t'; (2) acquire(t, m): thread t ac-

quires a lock m; (3) release(t, m): thread t releases a lock m.
We use Thread and Lock to denote all threads and all

locks, respectively.
An execution trace 𝜎 is a sequence of critical events.

3.2 Lock Dependency

Following [21], [29], we use the lock dependency relation
to describe an execution trace.

A lock dependency = t, m, L is a triple containing a
thread t, a lock m, and a lockset L such that the thread t
acquires a lock m while holding all the locks in the lockset
L. In Example A, at the execution step where t1 calls fu-

nA(l1, l2) and acquires the lock l2 at s03 while holding the
lockset {l1}, the corresponding lock dependency is t1, l2,

{l1}. Each lock dependency t, m, L corresponds to a set of
edges, one for each ni L to m in a corresponding lock
order graph and each edge is labeled with t.

A lock dependency relation D on the execution trace 𝜎p
is a sequence of lock dependencies. To ease our presenta-
tion, we may simply refer to a lock dependency as a de-
pendency and a lock dependency relation as a relation.

Moreover, we say that two dependencies t1, m1, L1
and t2, m2, L2 are equivalent whenever t1 = t2 m1 = m2
L1 = L2. If two dependencies are equivalent, we say that
they belong to the same lock acquisition pattern.

Note that there is a site information [22] associate with
each dependency. However, a site is not used in cycle
detection but is only kept to report cycles for subsequent
analyses (e.g., deadlock confirmation or avoidance / heal-
ing) to take actions. That is, when Magiclock reports a cycle,
it also outputs the site information associated with all
dependencies in the cycle. As such, we do not show such
information along with a dependency.

3.3 Lock Dependency Chain

Given a sequence of k (where k > 1) dependencies d = 1,
2 … k where i = ti, mi, Li, if m1 L2 … mk-1 Lk, ti ≠ tj,
and Li ∩ Lj = ∅ for 1 ≤ i, j ≤ k (i ≠ j), we refer to d as a lock
dependency chain (or chain for simplicity). In particular, if
mk L1, d is called a cyclic lock dependency chain (or cy-
clic chain, cycle for simplicity). A cyclic chain represents a
potential deadlock.

For example, the cycle for the dotted edges in Fig. 2 (a)
is t1, l2, {l1}, t2, l1, {l2}, which forms a real deadlock as
illustrated by Example A.

3.4 Removable and Irremovable Locks

This section presents a few elementary definitions neces-
sary for our technique to be presented in Section 4. The
indegree and outdegree of a node n are total number of in-
coming edges to the node n and total number of outgoing
edges from the node n, respectively; and edgesFromTo is
the total number of edges from one node to another node.
Formally, the three concepts are defined as follows:

 indegree (m) = |L’|, L’ { L| t, m’, L D ∧ m = m’}.

 outdegree (n) = |S|, S = {| = t, m’, L D, n L}.

l1 l2

l8

l3

l5

l7

l4

t1
t2

t2

t1

t3

t2

t3l6

t3

t1

l9

t2

t2

t1

l1 l2

l3

l5

l7

l4

t1
t1

t3

t2

t3l6

t3

t1

t2

t1

t1

t1, t2 t3
A

B C

{l2, l4, l6}

{l1, l3} {l5, l7}

{l9}

D

t2
t3

t1

{l8}

E

t2 t2

(a) Traditional lock order graph (b) Location based lock order graph (c) Filtered lock order graph

Fig. 2. Lock order graph example. Edges that indicate a deadlock are shown in dotted lines.

 edgesFromTo (n, m) = |S|, S = {| = t, m’, L D, n L

∧ m = m’}.

A lock m is said to be removable if it does not appear
in any cycle. Similarly, if a lock appears in at least one
cycle, it is said to be irremovable. Eliminating a remova-
ble lock as well as the edges directly connected to this
lock does not affect the presence of any cycle in a given
set of lock dependencies. However, eliminating an irre-
movable lock destroys all cycles that contain this lock,
compromising the cycle detection ability of a technique.

4 MAGICLOCK

4.1 Overview

Magiclock aims at efficiently and effectively analyzing an
execution trace (that does not contain any deadlock oc-
currence) to report cycles as depicted in Fig. 3. Given a
program with an input, it firstly collects the execution
trace as follows (Fig. 3(a)):

Let w be an empty execution trace. Whenever an event
create (t) occurs, Magiclock allocates a new thread identifier
and an empty lockset Lt for the thread t. Whenever an
event acquire (t, m) occurs, it firstly appends the values of
the triple t, m, Lt to w, and then adds m to Lt (i.e., Lt := Lt
∪ {m}). Also, whenever an event release (t, m) occurs, it
removes the lock m from Lt (i.e., Lt := Lt\{m}).

After collecting an execution trace, it begins to perform
its cycle localization. Magiclock first reduces the locks as
well as edges directly connecting to these locks and gen-
erates a reduced trace (Sections 4.2 and 4.3). On the re-
duced trace, it uses the thread specificity strategy to ar-
range all lock dependencies according to their thread IDs
into n partitions (where n is the total number of threads)
so that during searching, only one lock dependency is
selected from each partition (Section 4.4). Next, it further
selects a set of representative lock dependencies from
each partition through equivalency analysis among lock
dependencies so that during searching, when a lock de-
pendency is selected from each partition, the dependency
is the representative one among all its equivalent ones
(Section 4.5). Finally, Magiclock groups all representative
lock dependencies into different disjoint components and
searches for cycles on each disjoint component (Section
4.6). Whenever it reports a cycle, all non-representative
lock dependencies are considered. In this way, Magiclock
reports all cycles in the collected execution traces. After a
set of cycles have been identified, developers may further
use deadlock confirmation techniques (e.g., MagicScheduler
[21]) to attempt to confirm them as real deadlocks. Fig. 3
depicts the whole as stated above.

4.2 Analysis: Reduction of Locks

Our lock reduction relies on two insights. The first one is:
a necessary condition for the lock dependency t, m, L in
a relation D to be a part of a cyclic chain is that both the
indegree and outdegree of the lock m cannot be zero. Ne-
gating this necessary condition means that a lock m with
either a zero indegree or a zero outdegree is not a part of
any cyclic chain in D. Such a lock m must be removable;
and the lock dependency t, m, L can be eliminated from
D without hampering the number of cycles that can be
detected based on the reduced relation D' from D.

By so doing, the indegree and outdegree of the remain-
ing locks in D can be reduced by not counting its connec-
tion to all eliminated removable locks without affecting
the precision of cycle detection. It is because the reduced
amount of indegree or outdegree of any lock should not
be related to any cycle existing in D. A consequence is
that, by not counting such edges, a lock may then have a
zero indegree or a zero outdegree (in D'), indicating that
the lock only connects to or from the locks marked as re-
movable. Such a lock can also be marked as removable
and the corresponding lock dependency can be removed
from D'. As such, more lock dependencies can be itera-
tively removed from D', and the indegree and the outde-
gree of more locks will be iteratively reduced.

Our second insight in lock reduction is that, in a cyclic
chain d = 1, 2 … n, each lock mi in i = ti, mi, Li for 1 ≤ i
≤ n requires the lock itself to have been acquired by at
least two threads (i.e., any two threads ti and ti+1, where
tn+1 = t1). Therefore, if a lock is only acquired and released
by only one thread, this lock can also be removed without
compromising the effectiveness of potential deadlock de-
tections. Moreover, once such a lock has been eliminated,
it will open up a new opportunity to eliminate other locks
based on the first insight above.

4.3 Algorithm: Reduction of Locks

To identify removable locks as many as possible,
Magiclock iteratively classifies each lock in the set of locks
Lock on a relation D into one of the following four sets.

 Independent-set = {m | m Lock, indegree (m) = 0 ∧
outdegree (m) = 0}.

 Intermediate-set = {m | m Lock, (indegree (m) = 0
outdegree (m) = 0) ∧ (indegree (m) = 0 ∧ outdegree (m)
= 0)}.

 Inner-set = {m | m Lock, (t, m, L D, n L, n
Intermediate-set ∪ Inner-set) (t, n, L D,m L ∧
n Intermediate-set ∪ Inner-set)}

 Cyclic-set = {m |m Lock, m Independent-set ∪ In-
termediate-set ∪ Inner-set}.

dc 1 dc k…

Rep. Cycles

Full traces Reduced traces

Execution Lock Reduction

Sections 4.2 and 4.3

Thread
Specificity
Section 4.4

Equivalency
Analysis

Section 4.5

Dependencies from t1

Dependencies from tn

… Program +

input

All Cycles
Cycle Detection

on each DC
Section 4.6

…
Rep. Dependencies from t1 All others from t1

All others from tnRep. Dependencies from tn

+ …

(a) (b) (c) (d)

(e)

(f)

Deadlock

Confirmation

Deadlocks
Other

Cycles

(including dynamic

instrumentation, event

monitoring, abstraction computation)
Deadlock

Healing

…

Fig. 3. Overview of Magiclock (Note: "Rep." stands for "Representative" and "dc" stands for "Disjoint Component".)

We define a function mode(m, D) to identify whether
the lock m has been acquired by exactly one thread in the
relation D. The possible values of mode(m, D) are:

 0: the lock m has never been acquired by any thread.
 −1: the lock m has been acquired by two or more

threads.
 t: the lock m has been acquired by exactly one thread,

which is the thread t.

We firstly present the lock reduction algorithm (LockRe-

duction) and then illustrate it using Example B.
LockReduction (Algorithm 1) firstly calls LockClassification

to classify all locks appearing in D into the above four sets.
From line 2 to line 18, LockReduction removes all the locks
that each has been used by exactly one thread through
checking the usage mode mode(m, D) for each lock m in
Cyclic-set. After the removal, there might be additional
locks that can be further removed. LockReduction then
projects the relation D into a new relation D' by taking
out each dependency t, m, Lt in D into D' such that m
Cyclic-set. The new relation D' will be further checked by
calling LockReduction recursively (at line 21 of Algorithm 1)
to remove locks that cannot appear in any cycle. After the
termination of Algorithm 1, the locks in Cyclic-set will be
used to search for potential deadlock cycles (which will
be presented in Section 4.6).

Before invoking LockReduction, the data structures are in-
itialized in InitClassification (Algorithm 2). In InitClassification,
indegree, outdegree, and mode are arrays that each maps
each lock (as an index) to a number. edgesFromTo is a two-
dimensional array (a sparse matrix), where an empty rec-
ord indicates a value of zero.

LockClassification (Algorithm 3) firstly identifies all the
locks that should belong to independent-set by checking,
for each lock m, whether the indegree(m) and outdegree(m)
are both zero (lines 34). Then, it further identifies all the
locks that should belong to intermediate-set by checking,
for each lock m, whether one of indegree(m) and outde-
gree(m) is zero (lines 67). Such an identified lock must be
removable. Hence, all such locks and their edges can be
removed from the subsequent consideration of cycle de-
tection. Then, for each lock that belongs to intermediate-set,
LockClassification also pushes it into a stack S (line 8).

After the classification of the locks to the first two sets,
LockClassification enumerates the content of the stack S to
identify the locks that should belong to inner-set. The pro-
cedure is as follows: for each lock m in S, there are two
cases: (Case 1) indegree(m) = 0 and (Case 2) outdegree(m) = 0.
For Case 1, LockClassification subtracts both indegree(n) and
outdegree(m) from edgesFromTo(m, n), respectively, for
each n connected from m. It then resets edgesFromTo(m, n)
to be 0, indicating that all edges from the lock m to the
lock n have been labeled as “removed”. After the subtrac-
tion and reset (if any), if indegree(n) becomes zero, the lock
n will be classified to inner-set and also be pushed into S
(lines 1424) for further inference in subsequent itera-
tions. For Case 2, LockClassification performs the similar ac-
tions as what it does to handle Case 1 (lines 2535).

Algorithm 1: LockReduction (D)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

call LockClassfication (D)
for each lock m Cyclic-set do
│ if mode(m, D) -1 then
│ │ remove m from Cyclic-set // further reduce locks in cyclic-set
│ │ for each lock n Cyclic-set do
│ │ │ if edgesFromTo(m, n) ≠ 0 do
│ │ │ │ indegree(n) := indegree(n) – edgesFromTo(m, n)
│ │ │ │ edgesFromTo(m, n) := 0
│ │ │ end if
│ │ end for
│ │ for each lock n Cyclic-set do
│ │ │ if edgesFromTo(n, m) ≠ 0 do
│ │ │ │ outdegree(n) := outdegree(n) – edgesFromTo(n, m)
│ │ │ │ edgesFromTo(n, m) := 0
│ │ │ end if
│ │ end for
│ end if
end for
D' := projection of D on the locks in Cyclic-set
if D' D
│ call LockReduction (D')
end if

Algorithm 2: InitClassification(D)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

for each m D.Lock do
│ indegree(m) := 0
│ outdegree(m) := 0
│ mode(m, D) := 0
end for
edgesFromTo :=
for each lock dependency t, m, L D do
│ if mode(m, D) t mode(m, D) 0 then
│ │ mode(m, D) := -1
│ else
│ │ mode(m) := t
│ end if
│ for each lock n L
│ │ indegree(m) := indegree(m) + 1
│ │ outdegree(n) := outdegree(n) + 1
│ │ edgesFromTo(n, m) := edgesFromTo(n, m) + 1
│ end for
end for

Algorithm 3: LockClassification (D)

1

2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41

Stack S := ; Independent-set := ; Intermediate-set := ;
 Inner-set := ; Cyclic-set :=

for each lock m D.Lock
│ if indegree(m) = 0 and outdegree(m) = 0 then
│ │ add m to Independent-set // keep in independent-set
│ else
│ │ if indegree(m) = 0 or outdegree(m) = 0 then
│ │ │ add m into Intermediate-set // keep in intermediate-set
│ │ │ push m into S
│ │ end if
│ end if
end for

while S is non-empty do
│ pop m from S
│ if indegree(m) = 0 then
│ │ for each n D.Lock n ≠ m do
│ │ │ indegree(n) := indegree(n) – edgesFromTo(m, n)
│ │ │ outdegree(m) := outdegree(m) – edgesFromTo(m, n)
│ │ │ edgesFromTo(m, n) := 0
│ │ │ if indegree(n) = 0 then
│ │ │ │ push n into S
│ │ │ │ add n into inner-set // keep in inner-set
│ │ │ end if
│ │ end for
│ end if
│ if outdegree(m) = 0 then
│ │ for each n D.Lock and n ≠ m do
│ │ │ outdegree(n) := outdegree(m) – edgesFromTo(n, m)
│ │ │ indegree(m) := indegree(m) – edgesFromTo(n, m)
│ │ │ edgesFromTo(n, m) := 0
│ │ │ if outdegree(n) = 0 then
│ │ │ │ push n into S
│ │ │ │ add n into Inner-set //keep in inner-set
│ │ │ end if
│ │ end for
│ end if
end while

for each lock m D.Lock do
│ if m Independent-set ∪ Intermediate-set ∪ Inner-set then
│ │ add m to Cyclic-set // keep in cyclic-set
│ end if
end for

For the remaining locks, LockClassification classifies them
into Cyclic-set (lines 3741). In Section 4.7, we present a
theorem to show that LockClassification correctly classifies
all irremovable locks into Cycle-set.

Example B: Take the lock order graph in Fig. 2(a) for
our illustration purpose. TABLE 1 shows the indegree and
outdegree of each lock for the lock order graph in Fig. 2(a).

TABLE 1
THE INDEGREES AND OUTDEGREES FOR THE LOCKS ON THE

GRAPH SHOWN IN FIG. 2(a)
Lock instance l1 l2 l3 l4 l5 l6 l7 l8 l9

indegree 1 1 2 2 1 1 1 1 2
outdegree 4 2 1 1 1 1 1 1 0

After the initialization of indegree, outdegree, mode, and
edgesFromTo for every lock, LockClassification aims to classi-
fy locks to independent-set. As shown in TABLE 1, no lock
has 0 in both the indegree and the outdegree rows;
hence, no lock is classified into independent-set. Then, it
classifies the lock l9 into intermediate-set because it has a
value of 0 in its outdegree row, and the algorithm pushes l9
into the stack S (initially empty). Then, no lock has zero-
indegree or zero-outdegree. Next, LockClassification itera-
tively pops each lock in S and reduces indegree or outde-
gree of other locks connecting to the popped lock. The
lock l9 is firstly popped out and the outdegree of the locks
l1 and l8 are reduced by 1 and 1, respectively; however,
the outdegree of the lock l1 is non-zero and it is not
pushed into S; but the outdegree of the lock l8 becomes 0.
It is then classified into inner-set and is pushed into S.
LockClassification further pops l8 from S. Similarly, it reduc-
es the outdegree of l1 by 1. After that, l1 has non-zero
indegree or non-zero outdegree. The stack S becomes
empty. LockClassification terminates its iteration on S. Next,
LockClassification classifies all locks that has not been classi-
fies into the first three sets into Cyclic-set. Finally LockClas-

sification terminates and the Cyclic-set includes the locks {l1,
l2, l3, l4, l5, l6, l7}, as shown in Fig. 4(a).

Next, LockReduction further removes the locks l3 and l5
from Cyclic-set because these two locks have only been
acquired and released by the thread t1 and the thread t3,
respectively, which results in Fig. 4(b). Then, by only con-
sidering the lock dependencies for the set of locks identi-
fied by the current Cyclic-set (i.e., the locks {l1, l2, l4, l6, l7}),
LockReduction calls itself recursively, which invokes
LockClassification again. LockClassification removes three more
locks l4, l6 and l7 by classifying them into Independent-set,
Intermediate-set, and Inner-set, respectively, in this round
of lock classification. Finally, only the locks {l1, l2} are re-
mained in the final Cyclic-set, as shown in Fig. 4(c).

Compared to Magiclock, ML1 only works on the in-
putted relation D once and hence can only produce the
result corresponding to the lock order graph in Fig. 4(a).
This graph is much larger than that in Fig. 4(c).

We emphasize that Algorithm 1 uses Cyclic-set to iden-
tify a set of irremovable locks and does not alter the con-
tents of any lock dependencies. By the definition of cyclic
chain (Section 3.3), the locksets of lock dependencies of a
chain should be pairwise disjoint, leaving no room for a
gate lock (or a guarding lock) [44] to appear in cyclic
chain.

4.4 Analysis: From Non-Equivalent Many to One

Let us firstly consider an example on the relation Deg = {1,
2, 3, 4}, and the lock dependency sequence that we want
to discuss is d = 4, 2, 1, 3. To ease our discussion, we
further suppose that the thread ID for the lock dependen-
cy i is ti. We distinguish two cases for 3, 4 to be a chain
and not to be a chain. If 3, 4 is a chain, then d is a cyclic
chain; otherwise, d is not cyclic.

We firstly take iGoodlock as the algorithm to illustrate
the challenges in existing approaches. iGoodlock uses a
breadth first search (BFS) strategy. At the first iteration
level, iGoodlock checks every pair of lock dependencies in
Deg, and produces all chains of length 2, and there are 3
such chains in total if d is not a cyclic chain and 4 in total
if d is a cyclic chain. The former case has one fewer chain
(i.e., without 3, 4). With this set of chains, iGoodlock con-
tinues to its second iteration level. It checks each chain
produced at the first iteration level against each lock de-
pendency in Deg, and produces 2 and 4 chains of length 3
each for the chain d not being cyclic and d being cyclic,
respectively. Then, iGoodlock continues to produce 1 and 4
chains of length 4 each at the third iteration level for the
two cases, respectively. It produces no chain at the fourth
iteration level, and hence the algorithm terminates.

As a whole, if d is not a cyclic chain, iGoodlock produces
up to 3 chains at an iteration level (i.e., at the first iteration
level), iterates on Deg for 10 times, visits 44 nodes in total,
and does not report any cyclic chain. If d is a cyclic chain,
iGoodlock produces 4 chains at the third iteration level,
iterates on Deg for 16 times, visits 52 nodes in total, and
finally reports one cyclic chain as well as suppresses the
reporting of 3 other duplicated cyclic chains (i.e., 1, 3, 4,
2, 2, 1, 3, 4, and 3, 4, 2, 1).

From above, we observe the following: for each cyclic
chain d, the existing algorithm produces many redundant
chains, which are nonetheless treated as the same chain in
cycle reporting at the end. Moreover, suppose only one
(say 4, 2, 1, 3) of the four cyclic chains at the third iter-
ation level is the cycle to be reported. Then, there is in-
deed no need to produce some of the prefixes of all other
three cyclic chains at the first two iteration levels, which
are used to produce 1, 3, 4, 2, 2, 1, 3, 4, or 3, 4, 2,
1. If d is not a cyclic chain, the situation is better because
in this case, 3, 4 is not a chain, and so, less redundant
chains will be generated.

To address these problems, we propose the Thread
Specificity strategy as follows: Magiclock firstly partitions
the set of lock dependencies (that are produced by Algo-
rithm 1) by their thread IDs and sorts the partitions in the
ascending order (or any other fixed order) of their thread

l1 l2

l3

l5

l7

l4

t1
t1

t3

t2

t3l6

t3

t1

t2

t1

l1 l2

l7

l4

t1

t2

t3l6t2

l1 l2
t1

t2

(a) Lock order graph after the

first call to LockClassification

(b) Lock order graph after

removing the locks l3 and l5

(c) The final

lock order graph

Fig. 4. Illustration of LockReduction on the example in Fig. 1.

IDs. It then searches one specific permutation of every
potential deadlock cycle such that a lock dependency
with a lowest thread ID is always searched first in the
permutation. Because each thread can only occur once in
a cycle, there is no need to pick more than one lock de-
pendency from each such partition. Besides, Magiclock
avoids exploring any next sub-tree whose root (the sub-
root) is in the nodes from the root node to the current
node in the search tree. If the permutation is a cyclic
dependency chain, it is reported as a cycle.

Each lock dependency I in Deg refers to one specific
thread ti. Therefore, Magiclock firstly divides Deg into four
partitions, denoted by D1, D2, D3, and D4, respectively,
where Di = {i}. We show the search process using the
thread specificity strategy as follows with help of Fig. 6:

 During the search for cycles, Magiclock firstly
checks D1 against D2. It finds no chain as shown in Fig.
6(a) by the dotted arrow between the node 1 and the
node 2. It then checks D1 against D3 and finds a chain 1,
3. Because Magiclock uses a depth first search (DFS) ap-
proach, when 1, 3 is found, it further checks 1, 3
against D2 and finds no chain. Next, it checks 1, 3
against D4 and finds 1, 3, 4. Similarly, it further checks
1, 3, 4 against D2, and gets {1, 3, 4, 2}, which is a
cycle. It then terminates searching on this path and goes
back. It further checks D1 against D4 and finds no chain.

 Then, it searches for cycles starting from D2 and
skips checking against D1. When it checks D2 against D3,
no chain is found as shown in Fig. 6(b). It further checks
D2 against D4 and still no chain is found.

 Similarly, it searches starting from D3 and skips
checking D1 and D2, as shown in Fig. 6(c). When it checks
D3 against D4, a chain 3, 4 is found. However, there is
no more partition to be checked along this path.

 Finally, it searches starting from D4, but there is no
partition to be checked with, as shown in Fig. 6(d).

When the whole searching terminates, Magiclock visits
13 nodes in total (i.e., the sum of all nodes in Fig. 6) no
matter the dependency d is a cyclic chain or not, which is
much fewer than that visited by iGoodlock (i.e., 44 or 52).

Magiclock uses a depth first search among the parti-
tions. It needs to keep only one intermediate result at each
iteration level, and needs not to check the intermediate
chain against any partition that one of its lock dependen-
cies has appeared in the intermediate result denoted by
the current search path. By so doing, it saves many un-
necessary comparisons incurred by existing algorithms.

Magiclock searches the whole tree, and hence does not
miss to report any cycles. For a cyclic chain with a length
of k, it only searches for one permutation which starts
with the thread with the lowest thread ID and avoids
(instead of suppressing) the generation of other k − 1

permutations. (Note that the thread IDs of other
dependencies except the first one in a reported cycle may
not appear in ascending order.) Its algorithmic design
also avoids comparing any two or more dependencies
sharing the same thread ID (i.e., two dependencies from
the same partition), which saves computational time.

4.5 Analysis: From Equivalent Many to One

A longer execution trace means that more critical events
have been monitored during the execution of a program.
The time to search for cycles over a longer trace may tend
to grow exponentially. It is because the number of edges
in a lock order graph (or dependencies in the
corresponding relation) is usually much larger than the
number of locks in the same execution trace. On the other
hand, a technique needs to search over a permutation of
these locks/dependencies in order to locate cycles.

We observe that a thread may repeat its lock
acquisition procedure (e.g., in a loop to process an array
of shared data) [19]. As such, the same lock acquisition
pattern (see its definition in Section 3.2) may appear mul-
tiple times in a trace. Because multiple lock dependencies
can be regarded as equivalent (that suffices for dependen-
cy based potential deadlock detection), we exploit this
insight to scale up Magiclock further.

We firstly give an example to further motivate our
work. Fig. 5 shows an example program with two threads
t1 and t2. The thread t1 calls funA twice, where each call
results in lock acquisitions and releases on the locks l1 and
l2 in a nested manner. The thread t2 also calls funA twice
but two calls results in two different nested orders on
acquisition and releases of two locks l1 and l2.

The generated sequences of lock dependencies with
respect to each thread are: t1 = 1, 2 and t2 = 3, 4.
Note that we do not show any lock dependency with an
empty lockset because such a dependency is irrelevant to
any cyclic chain. According to the above scenario, we
have 1 = t1, l2, {l1} which models the lock acquisition at
the location s03 via the first invocation to funA by t1. Also,
we have 2 = t1, l2, {l1}, 3 = t2, l1, {l2}, and 4 = t2, l2, {l1},
which can be interpreted similarly. As the locking orders
on the two locks by the two threads are not the same,
there are two potential deadlocks 1, 3 and 2, 3.

We observe that 1 and 2 are equivalent dependencies
with each other. For a set X of equivalent dependencies, if
one of them appears in a lock dependency chain, any
other dependencies in X can be a substitute of this lock
dependency to construct a new chain. Most importantly,
if one of them does not appear in any cycle, all other
dependencies in X cannot appear in any cycle. Deadlock
in a real-world multithreaded program does not
frequently occur. Besides, most lock dependencies in the
relation D should be irrelevant to any cycle. Hence they
should fall within this case.

1

2 3 4

2 4

2

2

3 4

3

4

4(a) (b) (c) (d)

two dependencies form a chain.

two dependencies do not form a chain.
Fig. 6. Search Process on the Relation Deg = {1, 2, 3, 4}

s01
s02
s03
s04
s05
s06

funA(lock m, lock n) {
acquire (m);

acquire (n);
release (n);

release (m);
}

Thread 1 (t1)

funA (l1, l2);
funA (l1, l2);

Thread 2 (t2)
funA (l2, l1);
funA (l1, l2);

Fig. 5. Example for Equivalent Lock Dependency Identification

The basic idea of our equivalence reduction strategy is
as follows: for each thread specific partition, we put all

lock dependencies equivalent to one another into the
same group. During cycle detection, we only select one
lock dependency from each group as the representative
case to stand for the entire group to be searched for cy-
cles. When a cycle is located, we report all inferred cycles
by substituting the each representative case by each de-
pendency in the same group. Otherwise, if the representa-
tive case does not appear in any cycle, all other depend-
encies in the same group need not be searched.

In the above example, there is one group {1, 2} in t1
and two groups {3} and {4} in t2. On cycle detection,
there are only two combinations to be considered: 1, 3
and 1, 4 if we select 1 from the t1 (alternatively, 2, 3
and 2, 4 if we select 2 from t1). As such, we locate one
cycle 1, 3, and then infer another cycle 2, 3 because 2
is equivalent to 1, and 3 is in a singleton group. As a re-
sult, two cycles are reported. Moreover, 2 has not been
used in searching at all.

4.6 Algorithm: Cycle Detection Algorithm

A relation D produced by Algorithm 1 may contain dis-
joint components (which corresponds to disjoint sub-
graphs in a lock order graph). Instead of simply searching
cycles on the whole relation D, Magiclock splits D into a set
of disjoint components, and then searches cycles on each
of these components. We use the edgesFromTo information
in Algorithm 2 to split the chains into disjoint components
such that the dependencies of each cycle must retain in
the same disjoint component. Algorithm 4 shows the dis-
joint component finder algorithm. It is adopted from the
well-known Tarjan Graph algorithm [43] to find strongly
connected components, except that Algorithm 4 iterates
on each edge in the maintained edgesFromTo data struc-
ture (see Algorithms 1 and 2).

Algorithm 5 shows the cycle detection algorithm of
Magiclock on each disjoint component. To ease our presen-
tation, let i to be the thread id of ti, for 0 i k.

Lines 212 in CycleDetection show the lock dependency
partitioning and equivalent dependencies reduction pro-
cess on each disjoint component (dc) reported by Algo-
rithm 4. Magiclock only needs to examine the lock depend-
encies having locks in the cyclic-set and with non-empty
lockset at line 4. Before adding a lock dependency into a
partition Di, a checking on equivalent lock dependency is
performed through the function findEquDepGroup. If this
lock dependency is equivalent to another lock dependen-
cy that has already been added into the partition Di, the
group g associated with this lock dependency is re-
turned and the lock dependency is added to the group
(line 6). Otherwise, the lock dependency is added into
the current partition Di, and a new empty group is associ-
ated with this lock dependency (lines 89).

Next, CycleDetection searches for cycles on each disjoint
component. The array isTraversed(i) tracks whether the
thread ti has already been included on the current path.
CycleDetection iteratively (at lines 17 and 32) searches lock
dependency chains as follows: on visiting the partition Di,
it restricts itself to further explore other partitions Dj for
i+1 ≤ j ≤ k, where k is the number of threads in D (line 22),
skipping those visited (line 23) in its depth first search.

Algorithm 4: DisjointComponentsFinder (Cyclic-set)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

DCS dcs := //Disjoint Component Set
DC dc := //Disjoint Component
visited (m) := false, for each m Cyclic-set
for each m Cyclic-set do
│ if visited(m) = false then
│ │ visitEdgesFrom (m, dc)
│ │ dcs := dcs {dc}
│ │ dc :=
│ end if
end for
Function visitEdgesFrom (m)
│ if visited(m) = false then
│ │ dc := dc {m} //add m to the current disjoint component
│ │ visited(m) := true
│ │ for each edge <m, n> from m do
│ │ │ //i.e., n Cyclic-set, edgesFromTo(m, n) 0
│ │ │ visitEdgesFrom (n)
│ │ end for
│ end if
end Function

Algorithm 5: CycleDetection(dc, D)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

k := |D.Thread|, Group :=
isTraversed(i) := false, Di := , for each i from 1 to k
for each dependency = t, m, L D do
│ if m dc L then
│ │ if findEquDepGroup(Di,) returns a Group g then
│ │ │ g := g ∪ {} //equivalent dependency
│ │ else
│ │ │ add into Di //non-equivalent dependency
│ │ │ Group() :=
│ │ end if
│ end if
end for
Stack S :=
for each i from 1 to k do
│ for each Di do
│ │ isTraversed(i) := true
│ │ call DFS_Traverse(i, S,)
│ end for
end for
Function DFS_Traverse(i, S,)
│ push into S
│ for each j from i+1 to k do //repeated cycles elimination
│ │ if isTraversed(j) = false then //otherwise, skip all visited Dj
│ │ │ for each ’ Dj do
│ │ │ │ := S
│ │ │ │ push ’ into
│ │ │ │ if forms a chain then
│ │ │ │ │ if forms a cyclic chain then
│ │ │ │ │ │ call reportCycles(, 0, an empty chain)
│ │ │ │ │ else
│ │ │ │ │ │ isTraversed (j) := true
│ │ │ │ │ │ call DFS_Traverse(i, S, ’)
│ │ │ │ │ │ isTraversed (j) := false
│ │ │ │ │ end if
│ │ │ │ end if
│ │ │ end for
│ │ end if
│ end for
│ pop from S
end Function
Function findEquDepGroup(chain D, dependency d)
│ for each di in D do
│ │ if di is equivalent to d then
│ │ │ return Group(di)
│ │ end if
│ end for
│ return
end Function
Function reportCycles(Cycle , Size s, Chain equCycle)
│ if s = sizeof() then
│ │ report equCycle as a potential deadlock!
│ else
│ │ for each dependency d in Group([s+1]) do
│ │ │ equCycle := equCycle +{d} //concatenation of chains
│ │ │ reportCycles(, s+1, equCycle)
│ │ │ equCycle := equCycle - {d} //subtraction of chains
│ │ end for
│ end if
end Function

Note that the first parameter of DFS_Traverse (i.e., i at line
20) is in an increasing order whenever it is called (lines 14
and 16), which determines each reported cycle always
starts with a thread with lowest thread ID. Also, at line
32, the first parameter of DFS_Traverse is the same as that
at line 20. If a cycle is detected, the cycle and all cycles
equivalent to this one are reported by reportCycles. For all
dependencies in the input cycle (lines 49–59), report-

Cycles substitutes them by every possible combination of
equivalent lock dependencies in their corresponding
groups, and reports each substituted cycle.

4.7 Correctness Proof of Lock Classification

In this section, we present the theorem to show that Algo-
rithm 3 correctly classifies all irremovable locks on the
given relation D into the Cycle-set.

Lemma 1. Given a lock dependency relation D and a set
of removable locks K on D, if a lock n on a new lock de-
pendency relation D' is a removable lock, where D' is
constructed from D by deleting all locks in K and all
edges from or to any lock in K, then the lock n is also a
removable lock in D.

Proof. Suppose that the lock n is an irremovable lock in D.
By definition, there must exist a cycle c that contains the
lock n. Let's denote all locks in the cycle c as a set Lc and
the edges on the cycle c by Ec which are only from the
locks in Lc and to the locks in Lc. As any lock in a cycle
is an irremovable lock by definition, all locks in Lc are
irremovable locks in D. Therefore, Lc and K do not share
any lock (i.e., Lc K =). Hence, all locks in Lc must
appear in D'. Besides, all edges Ec also appear in D' as
each of them links two locks in Lc only. Therefore, the
cycle c (i.e., all locks in Lc and all edges in Ec) also ap-
pears in D'. By definition, any locks in c should be an ir-
removable lock. So, the lock n in the cycle c is also an ir-
removable lock in D', which contradicts the given con-
dition that the lock n is a removable lock in D'. Hence,
the lock n is a removable lock in D.

Lemma 2. Given a lock dependency relation D and a re-
movable lock k in it. If the indegree of a lock n is the
same as edgesFromTo(k, n) or the outdegree of a lock n is
the same as edgesFromTo(n, k), then n is removable.

Proof. Consider the case that the lock n only associates
with edges incoming from the lock k. Suppose that the
lock n appears in a cycle (say cn), then the lock k must
also appear in the cycle cn because the lock n has no
other incoming edge except edges from the lock k. This
contradicts the given condition that k is not in any cycle
as k is a removable lock. Hence, n is a removable node.
Similarly, if n only associates with edges outgoing to k,
the lock n is also a removable lock.

Lemma 3. After executing Algorithm 3, every lock m in
independent-set or intermediate-set is removable.

Proof. When a lock m is added into independent-set (at line
4) or intermediate-set (at line 7), either the indegree or
the outdegree of the lock m is zero according to the cor-
responding conditions at lines 3 and 6, respectively. So,
at least one original value of the indegree and outde-

gree of m is zero. If one of the original values of the
indegree and outdegree of m is zero, the lock m has
been classified into the independent-set at line 4 or the in-
termediate-set at line 7 because m has no dependency
with other locks and hence it cannot be a part of any
cyclic chain. By definition, m is a removable lock.

Lemma 4. If a lock m ever appears in the stack S (at lines
8, 20, and 31) in Algorithm 3, then m is removable.

Proof. We prove Lemma 4 by mathematical induction on
the order of locks pushed into the stack S. We firstly
prove the base case: when the first lock is pushed into S,
it is a removable lock. It is because the first lock must be
pushed into S at line 8 (otherwise, the stack S is empty
at line 12 and no lock is pushed into the stack S) and
this lock also belongs to intermediate-set which contains
removable locks only by Lemma 3. The base case is
proved. Now, suppose that the first q lock(s) pushed in-
to the stack S are removable locks. Consider the (q+1)-th
lock (denoted by the lock n’) pushed into S. According
to Algorithm 3, the only changes are that: the indegree
or the outdegree of the node n’ are reduced by the
number of edges from the lock m or to the lock m at
lines 16 or 27. Because the lock m is a removable lock,
by Lemma 1, the lock n', which is the (q+1)-th lock
pushed into the stack S, is also a removable lock. By
mathematical induction, the result follows.

Lemma 5. Given a lock dependency relation D, after ap-
plying Algorithm 3 on D, all the locks in the sets inde-
pendent-set, intermediate-set, and inner-set are removable
locks.

Proof. Suppose that the lock m is in independent-set ∪ in-
termediate-set. By Lemma 3, m will not appear in any cy-
cle. Similarly, suppose that m is in inner-set. Because all
these locks are pushed into S by Algorithm 3 (at lines 8,
20, and 31), by Lemma 4, the lock m is removable.

Theorem 1. Given a lock dependency relation D, after
applying Algorithm 3 on D, all locks that are parts of
any cycle in D are in the set cyclic-set.

Proof. By Lemma 5, no lock that is not removable is classi-
fied into sets independent-set, intermediate-set, and inner-
set. By lines 3840 of Algorithm 3, the result follows.

5 EXPERIMENT

5.1 Implementation and Benchmarks

Implementation. We implemented our tool for C/C++
programs with Pthread and used Pin tool 2.9 [35] in Probe
mode. For each event, a location is also generated as
needed by MulticoreSDK. To compare with our tool, we
also faithfully implemented iGoodlock [29] and Multi-

coreSDK [36] based on their papers and downloadable
artifacts because their original tools are either unavailable
or can handle Java programs only. We used the abstrac-
tion algorithm presented in [22] to compute the site in-
formation for each lock dependency.

Benchmarks. We have selected a set of 11 large-scale,
real-world, and open-source multithreaded benchmarks.
Six of them have, in total, 11 real deadlock cycles. They

allow us to validate Magiclock on scenarios with and with-
out potential deadlocks. The set of benchmarks includes
HawkNL [4], SQLite [10], three versions of MySQL [5] (one
version has been used on two different test cases as MySQL
3 and MySQL 4), Chromium [1], Firefox [3], Open Office

[8], Evolution [2], and Thunderbird [12]. For HawkNL,
we used the test case from [30]. SQLite is an embedded
database program and we wrote a test harness program
with 4 client threads to concurrently send SQL queries to
it. For all versions of MySQL, we used the test cases based
on their bug reports [10]. For Firefox and Chromium,
we opened 9 web pages, which have a total size of more
than 14.8MB. For OpenOffice, we opened a WinWord
*.doc file with a size of 226.5KB, containing text, tables,
and figures (which actually is a paper draft). For Thun-
derbird and Evolution, we configured them to fetch all
emails from a Gmail.com account (212 emails in total).
The details of test inputs and/or the bug descriptions are
shown in the last column of TABLE 2.

To further evaluate the scalability of Magiclock, we
conducted an additional experiment on MySQL by using a
system testing tool SysBench [11] to send different SQL
queries to MySQL. We configured SysBench to produce
scenarios of (1) increasing number of requests sent by
each thread with a fixed number of threads and (2)
increasing number of threads that each sends a fixed
number of requests, respectively.

We performed the experiment on a 32-bit Ubuntu
Linux 10.04 with four 2.80GHz processors and 3.9GB
physical memory.

In the reset of Section 5, we firstly present the
generated traces and monitoring overhead of our tool and
then give the data analysis in Section 5.3. In Section 5.4,
we present the scalability result of Magiclock on MySQL.

5.2 Traces and Monitoring Overhead

TABLE 2 shows the descriptive statistics of the bench-
marks that evaluated Magiclock, including the name, ver-
sion, Bug ID, and code size (SLOC [9]) of each bench-
mark. The fifth columns show the number of threads and
the number of locks, respectively. The next two columns
show the execution trace file size and the number of lock
acquisitions and releases in a trace. The last column
shows the test input the can lead the occurrence of
deadlocks and/or the brief description of deadlocks in
each benchmark.

Fig. 7 summarizes the time spent on deadlock detec-
tion by each component to generate traces (as described
in TABLE 2): On each benchmark, we collected the time
of native run, Pin base time, instrumentation time, event
monitoring time, abstraction computation time, time
spent by Magiclock (taken from TABLE 3), and time spent
by deadlock confirmation. We then computed the per-
centage of each of these components out of the total time
spent. Fig. 7 shows that the trace collection overhead by
Magiclock is not heavy (less than 4.4% without considering
confirmation run). With the introduction of Magiclock, the
time spent on abstraction computation now becomes no-
ticeable in the process of deadlock detection.

5.3 Data Analysis

5.3.1 Result Summary

TABLE 3 summarizes the overall comparisons among
iGoodlock, MulticoreSDK (denoted as MSDK), and Magiclock
in aspects of the memory footprint in Megabytes (MB) (or
GB for Gigabytes), the time cost in second (s) (or m for
minutes, and h for hours), and the number of unique cy-
cles reported. The last two columns show the number of
real deadlock cycles (confirmed by the latest MagicSched-

uler [13], [21]) among the detected cycles and the number
of threads in the reported cycles. Due to the out of
memory error of iGoodlock, we cannot collect its data in
full. We mark these cells with “>” indicating that the data
in the cell is just the value before the tool has exhausted
all the memory (and hence cannot complete) or timed out.
We also use this marker in TABLE 4 for the same purpose.

From TABLE 3, we observe that, on HawkNL and
SQLite, the three techniques performed similarly in
memory and time consumption, which is not surprising

Fig. 7. Descriptive statistics of overhead on trace collection.

0%

20%

40%

60%

80%

100%

Native Pin Instrumentation
Event Monitoring Abstraction computation Magiclock
Confirmation

TABLE 2
DESCRIPTIVE STATISTICS OF BENCHMARKS

Benchmark Version
Bug
ID

SLOC
(k)

of
threads
/ locks

Trace size
Test input and/or deadlock descriptions File size

 (MB)

of

 a/r events
HawkNL 1.6b3 n/a 9,300 3 / 8 0.84K 28 nlshutdown() and nlclose()
SQLite 3.3.3 1672 74.0 5 / 3 0.0467 1,920 4 working-threads, each sends 10 queries

sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex()
MySQL 1 5.5.17 62614 1,282.7 21 / 55,297 12.1 444,846 PUGE BINARY LOG acquires locks in the wrong order.
MySQL 2 5.1.57 60682 1,146.7 26 / 33,458 13.1 480,790 SHOW INNODB STATUS deadlocks when LOCK_thd_data points to

LOCK_open
MySQL 3 6.0.4 37080 1,093.6 17 / 231 0.478 15,860 alter on a temporary table and a non-temporary table using falcon engine
MySQL 4 6.0.4 34567 1,093.6 17 / 367 0.783 25,918 insert and truncate on a same table using falcon engine
Chromium 24.0 n/a 8,397.0 66 / 35,117 270.9 9,396,752 Open 9 pages: 3 "cnn.com", 3 "bbc.com", 3 "sohu.com" (>14.8MB)
Firefox 3.0 n/a 2,601.3 52 / 8,726 975.1 33,321,814 Open 9 pages: 3 "cnn.com", 3 "bbc.com", 3 "sohu.com" (>14.8MB)
OpenOffice 3.2 n/a 5,445.8 10 / 9,629 133.0 4,524,654 Open a Doc file (paper draft) with 226.5KB.
Evolution 2.28.3 n/a 420.4 84 / 1,903 445.6 15,271,570 Fetch 212 e-mails from a Gmail.com account
Thunderbird 3.0.1 n/a 3,039.2 17 / 2,497 373.6 13,110,044 Fetch 212 e-mails from a Gmail.com account

Note: a/r events refer to acquisition and release events; n/a means no bug ID available.

as TABLE 2 shows that their execution traces are quite
small. None suffered from the scalability problem. They
also reported the same number of cycle. On MySQL 1, the
three techniques also reported the same number of cycles;
iGoodlock and MSDK consumed much more memory than
Magiclock; however, MulticoreSDK and Magiclock consumed
more time than iGoodlock. We have analyzed this case and
found that, though the trace sizes (and the number of
threads and locks) are relative large, most of lock acquisi-
tions were not nested in any other lock acquisition (or
dependencies with empty lockset). Readers may refer to
TABLE 4 (the columns "# of chains by iGoodlock", "# of
locks", and "# of edges") and Section 5.3.2 for more de-
tailed analysis. Therefore, iGoodlock was able to directly
and quickly finish its searching; but MulticoreSDK and
Magiclock both had to filter locks that were not on any cy-
cle. As a result, the filtering strategies in MulticoreSDK and
Magiclock have led them to consume more analysis time.

Except on HawkNL, SQLite, and MySQL 1, iGoodlock con-
sumed the most memory, and ran out of memory when
analyzing the execution traces of MySQL 2-4, Chromium,
Firefox, OpenOffice, Evolution, and Thunderbird.
This result is consistent with what the authors stated in
their paper [29] that iGoodlock consumed more memory
than the traditional techniques. MulticoreSDK consumed
up to hundreds of MB memory or even up to 2.0 GB
memory. Magiclock consumed the least memory on all
benchmarks except on HawkNL, SQLite, and MySQL 2.

The three techniques took less than 1 second on Haw-
kNL, SQLite, or MySQL 1. On all other benchmarks, Multi-

coreSDK did not finish within our time limit of 10 hours.

iGoodlock had exhausted all the available memory before
completing its analyses.

On the reported numbers of cycles, the three tech-
niques reported the same number of cycles on the first
three programs (HawkNL, SQLite, and MySQL 1). On the
next four programs (MySQL 2-4 and Chromium), Multi-

coreSDK reported no cycle, and iGoodlock can report some
but not all these cycles. Because iGoodlock did not finish its
third iteration, it was unable to report any cycle with 4
threads on MySQL 3-4 due to its memory-consuming
search strategy. Magiclock was able to finish its search and
reported 4, 12, 17, 1 cycle, respectively. On the remaining
ones (Firefox, OpenOffice, Evolution, and Thunder-
bird), all three techniques did not report any cycle.

In summary, in terms of memory and time consump-
tions, Magiclock is more scalable than iGoodlock and Multi-

coreSDK in our experiment. Besides, the effectiveness of
iGoodlock and MulticoreSDK may be compromised by their
inefficiency being unable to analyze the whole given
execution trace in time (e.g., on MySQL 2-4 and Chromium
in TABLE 3).

5.3.2 Comparing iGoodlock with Magiclock

We compared the number of chains produced by iGood-

lock and Magiclock as shown in the second and the third
main columns in TABLE 4(a). iGoodlock uses an iterative
algorithm to find all cycles that has to store all intermedi-
ate results [29], TABLE 4(a) thus shows the intermediate
results on each benchmark produced by iGoodlock (denot-
ed by DF0 which is the initial set of chains produced, and
DFx (x ≥ 1) which is the number of chains produced by the
x-th iteration). If there is no need to iterate, we mark the

TABLE 4
COMPARISONS BETWEEN iGoodlock AND Magiclock AND BETWEEN MulticoreSDK AND Magiclock

 (a) Magiclock vs. iGoodlock (b) Magiclock vs. MulticoreSDK

Benchmark Magiclock
of chains by iGoodlock # of locks # of edges

DF0 DF1 DF2 DFi
(i ≥ 3) Total MSDK Magiclock Total MSDK Magiclock

HawkNL 6 6 - - - 8 5 3 9 9 9
SQLite 6 290 - - - 3 2 2 290 290 6
MySQL 1 24 562 - - - 55,297 203 6 682 303 29
MySQL 2 180 45,492 >5,054,890 - - 33,458 908 5 82,626 8,037 363
MySQL 3 485 7,890 34,668 158,277 >964,101 231 230 39 46,347 46,157 2,494
MySQL 4 1,466 12,846 298,415 >4,440,382 - 367 366 97 65,062 64,761 6,536
Chromium 53 697,953 >3,360,901 - - 35,117 33,140 2 1,088,229 802,242 193
Firefox 250 3,246,061 >574 - - 8,726 7,171 32 6,684,710 2,524,145 882
OpenOffice 561 2,240,282 >2,061,186 - - 9,629 7,632 2 13,662,579 11,681,875 3,793
Evolution 13 507,186 >3,663,748 - - 1,903 954 5 1,085,958 771,464 24
Thunderbird 93 375,042 1,577,064 >2,432,715 - 2,497 2,255 23 607,711 596,783 207

MSDK refers to MulticoreSDK; “>“ means no data collected in the cell due to crash error; “” means that the cycle detection has terminated on the previ-
ous iterations (not marked with a “”).

TABLE 3
MEMORY AND TIME COMPARISONS AMONG IGOODLOCK, MULTICORESDK, AND MAGICLOCK

Benchmark
Memory (MB) Time (second) # of unique cycles # of real

deadlocks cycles
of threads

in cycles iGoodlock MSDK Magiclock iGoodlock MSDK Magiclock iGoodlock MSDK Magiclock

HawkNL 1.098 1.125 1.195 0.001 0.001 0.001 2 2 2 1 2

SQLite 1.367 1.348 1.277 0.016 0.012 0.008 1 1 1 1 2

MySQL 1 12.086 29.633 2.336 0.432 1.408 0.680 2 2 2 2 2

MySQL 2 >2.8G 1.347 2.375 >55 >10h 0.876 >4 >0 4 2 2, 3

MySQL 3 >2.8G 2.0G 2.164 >480.8 >10h 0.112 >10 >0 12 1 2, 3, 4

MySQL 4 >2.8G 2.0G 3.016 >168.6 >10h 0.456 >9 >0 17 4 2, 3, 4

Chromium >2.8G 601.6 3.953 >268m >10h 17.809 >0 >0 1 unconfirmed 2

Firefox >2.8G 2.0G 2.606 >163m >10h 51.739 >0 >0 0 - -

OpenOffice >2.8G 987.4 43.742 >10h >10h 16.085 >0 >0 0 - -

Evolution >2.8G 919.5 1.414 >191m >10h 22.269 >0 >0 0 - -

Thunderbird >2.8G 835.0 2.160 >512m >10h 19.053 >0 >0 0 - -

MSDK refers to MulticoreSDK; “>” means the data is collected before the tool has exhausted all available memory or has timed out (10 hours); "-"
means no data collected.

corresponding cell with the marker ‘’.
From TABLE 4(a), we observe that, except on HawkNL,

SQLite, and MySQL 1, iGoodlock produced quite many
chains at either its initial iteration (DF0) or the later itera-
tions; whereas, Magiclock produced much fewer chains. In
particular, on Evolution, iGoodlock initially produced
nearly 39,000 times more chains than that produced by
Magiclock. The result of the first iteration is shown in col-
umn DF1. Compared to the number of chains in its initial
results (DF0), iGoodlock produced quite many chains dur-
ing its iterations. Moreover, iGoodlock had exhausted all
the available memory either in the second (DF2) or in the
later (DFi, i 3) iterations on all benchmarks except on
HawkNL, SQLite, and MySQL 1.

5.3.3 Comparing MulticoreSDK with Magiclock

TABLE 4(b) shows the comparisons between Multi-

coreSDK and Magiclock in terms of the numbers of nodes
and edges on lock order graph. The second main column
shows the sizes of the lock order graph constructed by a
traditional graph, by MulticoreSDK, and by Magiclock, re-
spectively. Note that the first sub-column (Total) is the
same as the total number of locks because each lock cor-
responds to a node in a lock order graph. The columns on
the right show the numbers of edges produced by a tradi-
tional graph, by MulticoreSDK (denoted by MSDK), and by
Magiclock, respectively. To facilitate a fair comparison, on
counting the number of edges for Magiclock, we have con-
verted each lock dependency to a set of edges. For exam-
ple, a lock dependency t, m, {l1, l2} corresponds to two
edges (i.e., edges from l1 to m and from l2 to m) in a lock
order graph.

TABLE 4(b) shows that MulticoreSDK only pruned
small numbers of nodes and edges except on HawkNL,
SQLite, and MySQL 1-2. On these four benchmarks, both
MulticoreSDK and Magiclock pruned many locks, but
Magiclock simply pruned much more. On the remaining
benchmarks, MulticoreSDK pruned fewer locks and edges
than Magiclock. On Evolution, MulticoreSDK pruned near-
ly 50% nodes and nearly 30% edges; whereas, Magiclock
pruned more than 99% nodes and more than 99% edges.

5.3.4 Improvement of Magiclock

TABLE 5 shows the comparisons between ML1 and
Magiclock in terms of memory consumption, time con-
sumption, # of chains generated, # of locks and # of edges
(in the sense of lock order graph) used in cycle detection.

From TABLE 5, we observe a significant improvement

made by Magiclock. The memory consumption, except on
MySQL 1, is reduced. On MySQL 1, Magiclock consumed
slightly more memory than ML1. Overall, the introduction
of new strategy of Magiclock did not increase the memory
consumption much. For the time consumption, the im-
provement is significant, especially on the last six bench-
marks. Magiclock never explores more edges or nodes than
ML1, and often explores fewer.

5.4 Further Evaluation on MySQL

This section reports a further validation on the scalability
of Magiclock on MySQL 1 benchmark. We selected the MySQL

benchmark because it is a widely-used large-scale server
program and its traces are sufficiently large to stress the
scalability of the deadlock detection. Besides, on MySQL,
there are deadlocks that have only been reported by con-
ducting "high concurrency test" (e.g., 200 concurrent con-
nections can discover a real deadlock [6]).

The SysBench tool [11] is a widely used automated tool
for testing the performance of operating systems and da-
tabase servers including MySQL. We used SysBench to send
inputs (SQL queries) to MySQL. We configured SysBench to
send requests by increasing the number of requests from
each client thread as well as the total number of client
threads, respectively. For each configuration, we collected
the time spent, the memory consumption, and the num-
ber of dependencies needed to complete the search.

5.4.1 Scalability with Increasing Number of Requests
by Each Thread

We used SysBench with a fixed 16 client threads (which is
a default value) to send requests to MySQL and increased
the requests sent by each thread from 1,000 to 10,000 with
step 1,000. The result is summarized in Fig. 8(a)-(c).

Fig. 8(a) shows the time spent by ML1 and Magiclock to
search for cycles with respect to different numbers of re-
quests per client thread. We observe that, with increasing
number of requests sent per client thread, the time con-
sumed by ML1 increased significantly and exponentially.
It grows from 9.8 seconds to 48008.6 seconds when the
number of requests per client thread grows from 1,000 to
10,000. Moreover, Magiclock consumes much less time in
each case, and only grows quite moderately as the num-
ber of requests per client thread increases. It grows from
12.9 seconds to 109.2 seconds when the number of re-
quests per client thread grows from 1,000 to 10,000.

Both ML1 and Magiclock require searching for depend-
ency chains, which the amount of chains to be searched

TABLE 5
IMPROVEMENT OF MAGICLOCK

Benchmark
Memory(MB) Time (second) # of chains # of edges # of locks

ML1 Magiclock ML1 Magiclock ML1 Magiclock ML1 Magiclock ML1 Magiclock

HawkNL 1.216 1.195 0.001 0.001 6 6 9 9 3 3
SQLite 1.277 1.254 0.012 0.008 290 6 290 6 2 2
MySQL 1 2.266 2.336 0.884 0.680 187 24 194 29 6 6
MySQL 2 12.535 2.375 2.992 0.876 2,737 180 4,844 363 5 5
MySQL 3 2.453 2.164 4.708 0.112 4,501 485 25,673 2,494 119 39
MySQL 4 3.324 3.016 284.478 0.456 8,444 1,466 40,503 6,536 195 97
Chromium 9.402 3.953 77.505 17.809 6,348 53 11,210 193 5 2
Firefox 92.723 2.606 1,887.302 51.739 580,241 250 589,222 882 63 32
OpenOffice 260.027 43.742 37.274 16.085 881,677 561 5,924,278 3,793 1,222 2
Evolution 4.481 1.414 147.909 22.269 17,302 13 41,465 24 7 5
Thunderbird 2.262 2.160 20.137 19.053 3,156 93 594 207 29 23

grows exponentially as the number of lock dependency
increases. Fig. 8(b) shows that with a linear increasing
number of requests per thread, for ML1, the number of
dependencies considered by the cycle detection algo-
rithm, almost increased at the same rate. Fig. 8(b) also
shows that the use of the equivalent lock dependencies in
Magiclock effectively alleviates the growth in the number
of lock dependencies to be searched for cycles.

Fig. 8(c) shows the maximum memory consumptions
by ML1 and Magiclock with increasing number of requests
per client thread. The figure shows that the memory foot-
prints of the two tools were close to each other. Both in-
creased quite linearly when the numbers of requests per
client thread increase linearly.

5.4.2 Scalability with Increasing Number of Threads

We increased the total number of SysBench threads to
send requests (100 per-thread) to MySQL. The numbers of
client threads used were 4, 8, 16, 32, 64, and 128.1 The
summary of the results is shown in Fig. 8(d), (e), and (f).

Fig. 8(d) shows the time consumed by ML1 and
Magiclock. Although, the time consumption by both ML1
and Magiclock increased exponentially, the increase by
Magiclock was much slower. For instance, when there
were only 4 client threads, ML1 and Magiclock consumed
1.9 and 1.3 seconds, respectively. Whereas, when there
were 128 client threads, ML1 and Magiclock consumed
129.0 and 12.5 seconds, respectively.

Magiclock has not explored how to determine whether
two lock dependencies across different threads refer to
same usage in the program (where we do not know the
program semantics). As such, the equivalent lock de-
pendency strategy used in Magiclock does not help to alle-
viate the scalability issue in this dimension. On the other
hand, Fig. 8(e) shows that the number dependencies

1 We have found out that the numbers of MySQL threads for the
corresponding SysBench configuration were 20, 24, 32, 48, 80, and
144. That is, MySQL needed a baseline of 16 threads. We cannot set to
use more threads (e.g., 256 or more) that exceeds the “default set-
ting” of MySQL. Once we changed the default setting, errors had
occurred due to lost connection, and we cannot to collect the corre-
sponding execution traces to complete the experiment.

searched by Magiclock increased much slower than ML1. It
indicates that Magiclock is able to reduce the number of
dependencies for the same thread by using the equivalent
lock dependency strategy.

Fig. 8(f) shows that both ML1 and Magiclock consumed
fairly small amounts of memory as the number of client
threads grew. The grow trend of either tool is quite mod-
erate. Magiclock consumed more memory than ML1. How-
ever, in each case, the difference was less than 0.5MB.
This is the memory needed to keep additional data struc-
tures for the equivalency information among lock de-
pendencies used by Algorithm 5.

5.5 Summary

In summary, in the experiment, Magiclock shows a signifi-
cantly improvement over ML1 and can be significantly
more scalable than iGoodlock and MulticoreSDK to analyze
execution traces of large-scale benchmarks2.

Compared to ML1, Magiclock can reduce the time used
to search for cycles without significantly compromising
other studied aspects (e.g., memory consumption). Com-
pared to iGoodlock and MulticoreSDK, Magiclock can be
more effective to deal with large-scale benchmarks.

The experiment also shows that iGoodlock may con-
sume less memory than Magiclock on analyzing small-
scale traces such as the trace for HawkNL, which consists of
28 lock acquisitions and releases only. In this case, there is
no need to apply the innovation made by Magiclock to ad-
dress the scalable challenge.

6 RELATED WORK

Concurrency bugs are difficult to find and reproduce. To
detect them, the process can be both time- and memory-
consuming, prohibiting detection techniques to scale up
to handle real-world large-scale multithreaded programs.

2 Originally, we have attempted to compare ML1 and Magiclock on
the benchmarks larger than MySQL 1 for Section 5.4. As shown by Fig
5(a), the time spent by ML1 has already exceeded 48,000 seconds.
TABLE 3 shows that the time needed to complete the analysis by
ML1 on each larger benchmark is much larger than that on MySQL 1.
As such, we did not further compare the two techniques.

Fig. 8. Scalability Comparisons of ML1 and Magiclock on MySQL

0

10

20

30

40

50

60

T
im

e
(1

,0
0

0
 s

ec
o

n
d

)

Number of requests by each client thread

ML1 Magiclock

0
10
20
30
40
50
60
70
80

N
u
m

b
er

 o
f

d
ep

en
d

n
ec

ie
s

(1
,0

0
0

)

Number of requests by each client thread

0

5

10

15

20

M
em

o
ry

 (
M

B
)

Number of requests by each client thread

0

0.5

1

1.5

2

2.5

3

3.5

4 8 16 32 64 128

N
u
m

b
er

 o
f

d
ep

en
d

en
ci

es
 (

1
,0

0
0

)

Number of client threads

0

0.5

1

1.5

2

2.5

3

4 8 16 32 64 128

M
em

o
ry

 (
M

B
)

Number of client threads

1

4

16

64

256

4 8 16 32 64 128

T
im

e
(s

ec
o

n
d

)

Number of client threads

(a) (b) (c)

(f)(e)(d)

PCT [17] and PPCT [39] are randomized schedulers
with a probabilistic guarantee to find concurrency bugs.
Unlike Magiclock, they do not require deadlock detection
by analyzing the program execution trace beforehand.
However, its theoretically guaranteed probability and the
actual values observed from their experiments are low.

Happened-before based predictive data race detectors
[18], [20], [25], [37] have been proposed. Recently, re-
searchers mainly focused on the efficiency of the on-the-
fly detection approach. By the introduction of epoch [25],
memory access sampling [18], [37], [46], and the redun-
dancy vector clock elimination due to synchronization
events [19], the efficiency of such detectors have been im-
proved. Magiclock is also a predictive detector. It deals
with the orders of locks in an execution. The epoch-based
optimization is inapplicable because the use of epoch only
optimizes the use of vector clock in the implementation of
a happened-before based detector. Our deadlock predic-
tion approach needs no vector clock implementation.
Sampling approach is also inapplicable because if a par-
ticular lock dependency is not sampled, any cycle related
to this lock dependency could not be detected, making
the detector incomplete with respect to the monitored
execution trace. The elimination of redundant vector
clocks approach only removes identical entities that occur
consecutively along the same thread in an execution,
which cannot remove the edges between two locks.

Improving the efficiency often compromises other as-
pects [25], such as completeness, even though tolerable
sometimes. For structured parallel languages [41], a scal-
able and precise dynamic algorithm has been proposed to
reduce the memory consumption [41]. Magiclock is
complete with respect to the monitored execution trace.

Deadlock detection techniques can be static or dynam-
ic. We have compared our Magiclock with iGoodlock and
MulticoreSDK extensively, and indirectly compared with
Goodlock [26], which uses the traditional lock order graph
for the detection of potential deadlock cycles.

Many static techniques [14], [23], [38], [41], [42], [45]
analyze the source code and infer lock order graphs to
find potential deadlock cycles. They have an advantage to
apply for software that is not closed such as the Java li-
brary. These techniques however suffer from high false
positives. For example, an early work [45] reports 1,000
potential deadlock cycles, but only 7 of them are real
deadlocks. More recently, Naik et al. [38] combine a suite
of static analysis techniques to reduce the false positive
rates. However, problems like conditional variables and
scalability are still the concerns on using static techniques
to analyze large-scale applications. Magiclock is a dynamic
approach to predict deadlock potentials by analyzing
program execution traces, and it has the potential to han-
dle large-scale real-world applications.

Joshi et al. [28] monitor the annotated conditional vari-
ables as well as lock synchronization and threading oper-
ations in a program to produce a trace program contain-
ing not only thread and lock operations but also the val-
ues of conditionals. Then they apply a model checker (Ja-
va Pathfinder) to check all abstracted and inferred execu-
tion paths of the trace program to detect both communi-

cation deadlocks and resource deadlocks. Their technique
however suffers from needing manual effort to design
and add annotations, which can be error-prone, and suf-
fers from the scalability issue to handle large-scale pro-
grams. Magiclock has not been extended to deal with
communication deadlocks, which is an interesting future
work. Bensalem et al. [15], [16] use the happened-before
relation to improve the precision of cycle detection, and
use a guided scheduler to confirm deadlocks. Ur and col-
leagues [24], [39] propose ConTest that uses the Goodlock
approach to identify cycles, and actively introduces noise
to increase the probability of deadlock occurrence [24].
Magiclock works similar to iGoodlock to use lock dependen-
cy set to identify cycles. Moreover, as we have presented
in this paper, Magiclock includes Algorithms 1–5 to address
the scalability issue.

Deadlock Immunity [30] prevents the second occurrence
of a deadlock by maintaining a database containing all
patterns of occurred deadlocks and using online monitor-
ing. Unlike Magiclock, it has no potential deadlock cycle
detection component but detects deadlocks when they
really occur. Gadara [44] inserts lock acquisitions at the
gate position of statically detected deadlocks. It avoids
deadlock occurrence at runtime whenever a statically de-
tected deadlock is like to occur. Magiclock detects deadlock
dynamically and has not extended to fix deadlocks.

Deadlock confirmation techniques take all reported cy-
cles as their inputs, and attempt to generate thread
schedules to trigger real deadlocks. Examples of these
techniques include MagicScheduler [21] and DeadlockFuzzer
[29]. The former takes a set of cycles, and schedules a
program execution at the lock acquisitions sites specified
in the cycles. The use of set of cycles is the improvement
over the latter [29]. Magiclock uses equivalent lock de-
pendencies to locate cycles to alleviate the runtime over-
head in cycle detection. If Magiclock reports a located cy-
cle, Magiclock also reports every possible cycle containing
at least one lock dependency that is equivalent to a corre-
sponding lock dependency of the located cycle. Note that
different lock dependencies have their own information
(e.g., sites) obtained from the execution trace for potential
deadlock detection. Each of these inferred or located cy-
cles can then be confirmed via a deadlock confirmation
technique. One may further use cycle segmentation
through happened-before relations [14] to eliminate more
false positives before applying a confirmation technique.

7 CONCLUSION

Existing dynamic potential deadlock detection techniques
are not scalable enough to handle many real-world large-
scale multithreaded programs. This paper has proposed
Magiclock, a novel dynamic technique to detect potential
deadlocks. It is particularly suitable to analyze traces on
large-scale multithreaded programs. The experiment has
validated that Magiclock can be highly efficient and scala-
ble, and has the potential to tackle the challenges in han-
dling large-scale real-world multithreaded programs. In
future, we will study how to isolate false positives from
all reported cycles because current techniques [21], [29]

can only confirm real deadlocks. It is interesting to study
more efficient abstraction computation algorithms.

ACKNOWLEDGMENT

We thank the editors and the anonymous reviewers for
their invaluable comments and suggestions. This work is
supported in part by the Early Career Scheme of the Re-
search Grant Council of Hong Kong (project no.123512).

REFERENCES

[1] Chromium, http://code.google.com/chromium.
[2] Evolution, http://projects.gnome.org/evolution.
[3] Firefox, http://www.mozilla.org/firefox.
[4] HawkNL, http://hawksoft.com/hawknl.
[5] MySQL, http://www.mysql.com.

[6] MySQL bug, http://lists.mysql.com/mysql/209535.
[7] http://bugs.mysql.com/bug.php?id=36526.
[8] OpenOffice, http://www.openoffice.org.
[9] SLOCCount 2.26. http://www.dwheeler.com/sloccount.
[10] SQLite, http://www.sqlite.org.
[11] SysBench, http://sysbench.sourceforge.net.
[12] Thunderbird, http://www.mozilla.org/thunderbird.
[13] http://www.cs.cityu.edu.hk/~51948163/magicfuzzer.
[14] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-

Buchbinder, S. D. Stoller, S. Ur, and L. Wang. Detection of
deadlock potentials in multithreaded programs. IBM Journal of
Research and Development, Vol. 54 (5), Sep. 2010, 520–534,

[15] S. Bensalem and K. Havelund. Scalable dynamic deadlock
analysis of multi-threaded programs. In PADTAD, 2005.

[16] S. Bensalem, J.C. Fernandez, K. Havelund, and L. Mounier.
Confirmation of deadlock potential detected by runtime
analysis. In Proc. PADTAD, 41−50, 2006.

[17] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding
bugs. In Proc. ASPLOS, 167–178, 2010.

[18] M. D. Bond, K.E. Coons and K.S. Mckinley. PACER:
proportional detection of data races. In Proc. PLDI, 255–268,
2010.

[19] Y. Cai and W.K. Chan. Lock trace reduction for multithreaded
programs. IEEE Transactions on Parallel and Distributed Systems,
24(12), 2407−2417, 2013.

[20] Y. Cai and W.K. Chan. LOFT: redundant synchronization event
removal for data race detection. In Proc. ISSRE, 160–169, 2011.

[21] Y. Cai and W.K. Chan. MagicFuzzer: scalable deadlock
detection for large-scale applications. In Proc. ICSE, 606−616,
2012.

[22] Y. Cai, K. Zhai, S.R. Wu, and W.K. Chan. TeamWork:
synchronizing threads globally to detect real deadlocks for
multithreaded programs. In Proc. PPoPP, 311–312, 2013.

[23] J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan.
Symbolic deadlock analysis in concurrent libraries and their
clients. In Proc. ASE, 480–491, 2009.

[24] E. Farchi, Y. Nir-Buchbinder, and S. Ur. A cross-run lock
discipline checker for java. In PADTAD, 2005.

[25] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. In Proc. PLDI, 121–133, 2009.

[26] K. Havelund, Using runtime analysis to guide model checking
of java programs. In Proc. SPIN, 245–264, 2000.

[27] G. Jin, L.H, Song, W. Zhang, S. Lu, B. Liblit. Automated
atomicity-violation fixing. In Proc. PLDI, 389–400, 2011.

[28] P. Joshi, M. Naik, K, Sen, and D. Gay. An effective dynamic
analysis for detecting generalized deadlocks. In Proc. FSE, 327–
336, 2010.

[29] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized
dynamic program analysis technique for detecting real
deadlocks. In Proc. PLDI, 110–120, 2009.

[30] H. Jula, D. Tralamazza, C. Zamfir, and G.e Candea. Deadlock
immunity: enabling systems to defend against deadlocks. In
Proc. OSDI, 295–308, 2008.

[31] E. Knapp. Deadlock detection in distributed database systems.
ACM Computing Surveys, 19(4):303−328, 1987.

[32] Z.F. Lai, S.C. Cheung, and W.K. Chan, Detecting atomic-set
serializability violations for concurrent programs through

active randomized testing. In Proc. ICSE, 235244, 2010.
[33] L. Lamport. Time, clocks, and the ordering of events in a

distributed system. Comm. of the ACM 21(7):558–565, 1978.
[34] S. Lu , S. Park , E. Seo , Y.Y. Zhou. Learning from mistakes: a

comprehensive study on real world concurrency bug
characteristics. In Proc. ASPLOS, 329–339, 2008.

[35] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In Proc. PLDI, 191–200, 2005.

[36] Z.D. Luo, R. Das, and Y. Qi,. MulticoreSDK: a practical and
efficient deadlock detector for real-world applications. In Proc.
ICST, 309–318, 2011.

[37] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
effective sampling for lightweight data-race detection. In Proc.
PLDI, 134–143, 2009.

[38] M. Naik, C.S. Park, K. Sen, and D. Gay. Effective static deadlock
detection. In Proc. ICSE, 386–396, 2009.

[39] S. Nagarakatte, S. Burckhardt, M. M.K. Martin, M. Musuvathi.
Multicore acceleration of priority-based schedulers for
concurrency bug detection. In Proc. PLDI, 543–554, 2012.

[40] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from
exhibiting to healing. In Proc. RV, 104–118, 2008.

[41] R. Raman, J.S. Zhao, V. Sarkar, M. Vechev, and E. Yahav.
Scalable and precise dynamic datarace detection for structured
parallelism. In Proc. PLDI, 531–542, 2012.

[42] V.K. Shanbhag. Deadlock-detection in java-library using static-
analysis. In Proc. APSEC, 361–368, 2008.

[43] R. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2): 146–160, 1972.

[44] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke.
Gadara: dynamic deadlock avoidance for multithreaded
programs. In Proc. OSDI, 281–294, 2008.

[45] A. Williams, W. Thies, and M.D. Ernst. Static deadlock
detection for java libraries. In Proc. ECOOP, 602–629, 2005.

[46] K. Zhai, B.N. Xu, W.K. Chan, and T.H. Tse. CARISMA: a
context-sensitive approach to race-condition sample-instance
selection for multithreaded applications. In Proc. ISSTA, 221–
231, 2012.

Yan Cai is a PhD student at Department of
Computer Science, City University of Hong
Kong. He received his BEng degree in Com-
puter Science and Technology from Shandong
University, China in 2009. His current research
interest is concurrency bug detection and re-
production in large-scale multithreaded and
concurrent systems. His research results have
been reported in venues such as ICSE, ISSRE,
ICWS, SPE, JWSR, and TPDS.

W.K. Chan is an assistant professor at Depart-
ment of Computer Science, City University of
Hong Kong. He is an editorial board member of
Journal of Systems and Software, and was
guest co-editors of a few international software
engineering journals, program co-chairs of AST
2010 and QSIC 2010, and innovative showcase
chairs of ICWS and SCC for both 2009 and
2010. He is a program or review committee
member of ICSE'15, ICSE’13 DS, and FSE’14.

His research results have been reported in many venues including
TOSEM, TSE, TPDS, TSC, CACM, COMPUTER, ICSE, FSE, IS-
STA, ASE, ICDCS, and WWW. His current research interest includes
program analysis and testing of large-scale software systems.

