
 

 

Dynamic Testing for Deadlocks via 
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Abstract—Existing deadlock detectors are either not scalable or may report false positives when suggesting cycles as potential 

deadlocks. Additionally, they may not effectively trigger deadlocks and handle false positives. We propose a technique called 

ConLock+, which firstly analyzes each cycle and its corresponding execution to identify a set of scheduling constraints that are 

necessary conditions to trigger the corresponding deadlock. The ConLock+ technique then performs a second run to enforce the 

set of constraints, which will trigger a deadlock if the cycle is a real one. Or if not, ConLock+ reports a steering failure for that 

cycle and also identifies other similar cycles which would also produce steering failures. For each confirmed deadlock, ConLock+ 

performs a static analysis to identify conflicting memory access that would also contribute to the occurrence of the deadlock. 

This analysis is helpful to enable developers to understand and fix deadlocks. ConLock+ has been validated on a suite of real-

world programs with 16 real deadlocks. The results show that across all 811 cycles, ConLock+ confirmed all of the 16 deadlocks 

with a probability of 80%. For the remaining cycles, ConLock+ reported steering failures and also identified that five deadlocks 

also involved conflicting memory accesses.  

Index Terms—Deadlock Triggering, Scheduling, Should-happen-before relation, Constraint, Reliability, Verification. 

——————————      —————————— 

1 INTRODUCTION 

Synchronization primitives are widely used in multi-
threaded programs [36] to coordinate their threads. If the 
synchronization order is not properly designed, it may 
produce concurrency bugs such as data races [12], [36], 
[55], atomicity violations [35], and deadlocks [6], [8], [28]. 
A deadlock [28] occurs when two or more threads wait to 
acquire some resource that is held by another thread re-
lated to one of the competing threads, resulting in a circu-
lar waiting cycle between this set of threads.  

Once a deadlock occurs, it is not difficult to detect and 
reproduce it [54]. However, deadlocks only occur under 
certain program interleavings, which makes online detec-
tion ineffective. Hence, both static [47], [51] and dynamic 
[6], [13], [38] deadlock prediction techniques are useful to 
detect deadlocks. Static techniques analyze program code 
to infer cycles from lock acquisitions by different threads. 
This analysis may report a large number of false positives 
[51] (i.e., deadlocks that cannot actually occur in practical 
executions). Dynamic techniques [8], [9] may also report 
false positives, but generally less frequently than their 
static counterparts.  

The happened-before relation [33], [45] or the segmentation 
graph [8] on the corresponding execution trace can be 
helpful to eliminate some of the false positives; however, 
true positives may also be eliminated [28], which makes 
this type of elimination risky.  

The most recently developed techniques (including 
DeadlockFuzzer [28], MagicScheduler [15], and ASN [14]) ac-
tively confirm each predicted deadlock (i.e. each cycle) by 
scheduling a particular program execution to achieve the 
confirmation. PCT [10] randomly executes a program (by 
following pre-generated schedules based on an approxi-
mation of the program [10]) and has a probabilistic guar-
antee of finding any concurrency bugs. A minor adapta-
tion of PCT can also be used as an alternative to deadlock 
confirmation. However, our experiment in Section 5 will 
show that these methods cannot effectively confirm dead-
locks. Additionally, they do not include a strategy for 
handling false positives, although they may have a high 
probability of triggering deadlocks [14], [15], [28]. Hence, 
a program has to be executed at least once to confirm each 
predicted cycle. 

In our discussion, we refer to an execution that is per-
formed to suggest cycles as a predictive run. Similarly, we 
refer to an execution that is performed to confirm wheth-
er a suggested cycle is a real deadlock as a confirmation 
run. We also assume that cycles have been suggested by a 
predictive technique from a predictive run [8], [13]. 

In this paper, we propose a novel dynamic technique 
called ConLock+, which is a constraint-based approach that 
manipulates program scheduling to confirm deadlocks 
and handle false positives. Given a predictive run and a 
set of cycles, ConLock+ firstly analyzes the predictive run 
and generates a set of constraints for each cycle. Each 
constraint specifies the order of a pair of events (i.e., the 
lock acquisitions and releases). This order should be fol-
lowed when the two events occur in a confirmation run. 
ConLock+ then manipulates a confirmation run and at-
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tempts to enforce these constraints for each cycle c, which 
will trigger a deadlock if cycle c is actually a real one; or if 
not, will report a steering failure, which indicates that the 
current run can no longer meaningfully confirm cycle c. If 
a steering failure is reported, ConLock+ then infers other 
similar cycles and removes a set of cycles (known as the 
akin cycles of cycle c) that cannot be triggered due to the 
same steering failure. If a deadlock is triggered, ConLock+ 
performs a further static analysis to find conflicting 
memory accesses that may also contribute to the occur-
rence of the deadlock.  

ConLock+ is an extension to our preliminary technique 
ConLock that was previously reported [16]. There are three 
main contributions of ConLock+: (1) ConLock relies on a set 
of constraints to schedule a confirmation run. Since the 
set of generated constraints may be large, ConLock equiva-
lently removes some redundant constraints based on two 
properties [16]. However, even after this equivalent re-
duction, ConLock still has to rely on a heuristic to start its 
active scheduling until the program execution reaches a 
set of scheduling points [16]. These points are helpful to 
enable some constraints to be skipped, such as those 
which have their first events happening before the sched-
uled points of the same threads, and this results in the 
enforced set of constraints not being equivalent to the 
originally-generated set. In this extension, we use three 
properties instead of two to further remove redundant 
constraints without using any scheduling points. As a 
result, ConLock+ schedules a confirmation run that aims to 
enforce a set of constraints that is equivalent to the origi-
nally-generated set. Hence, ConLock+ produces a higher 
confirmation probability on cycles that are real deadlocks. 
(2) We propose the concept of akin cycles, with which Con-

Lock+ only needs to check a small set of cycles, significant-
ly reducing both the number of confirmation runs and the 
total time to check all cycles. (3) For each triggered cycle, 
ConLock+ performs a static analysis to infer possible 
memory access conflicts. These analyses can help devel-
opers to understand the cause of deadlocks and to fix 
deadlocks.  

We have implemented a prototype of ConLock+ and val-
idated it on a suite of real-world programs, including a 
total of 16 real deadlocks. We have compared ConLock+ 
with MagicScheduler [15], DeadlockFuzzer [28], PCT [10], and 
ASN [14] on both real deadlocks and false positives. In 
these experiments, ConLock+ achieved a consistently high-
er probability (80%–100%) of triggering all 16 real dead-
locks; in contrast, the other techniques failed to trigger 
between 6 to 11 real deadlocks and/or were not effective 
enough. The other techniques did not handle false posi-
tives, while ConLock+ correctly reported steering failures 
on false positives. Compared to ConLock [16], ConLock+ 
triggered real deadlocks with higher probabilities, with 
the exception of two deadlocks. Additionally, ConLock+ 
significantly reduced the number of confirmation runs 
and the total time to check all cycles. Finally, ConLock+ 
identified all five unique sets of conflicting memory ac-
cesses. These accesses also contribute to the occurrence of 
deadlocks since they cause conflicts (i.e., a read and a 

write pair) to a shared conditional, resulting in incon-
sistent lock acquisition orders between different threads.  

The remainder of the paper is organized as follows: 
Section 2 revisits the preliminary background to this 
work. Section 3 gives an example which has motivated 
our work. Section 4 presents the ConLock+ framework. 
Section 5 describes a validation experiment, and reports 
the experimental results. Section 6 reviews related work. 
Section 7 concludes this paper.  

2 PRELIMINARIES 

2.1 Dynamic Events and Execution Traces 

During execution of a multithreaded program, there are 
two types of critical operations {acq, rel} that operate on 
locks, where acq represents a lock acquisition and rel repre-
sents a lock release. Other synchronization primitives, such 
as barriers or notify/wait operations, are handled using 
these two operations [12], [22].  

An event e = t, acq/rel, m@s, ls can be used to denote 
that a thread t performs an operation acq or rel on a lock m 
at a certain program execution point s (i.e., a Site [17], 
[28]), while that thread t is also holding a set of locks ls 
(i.e., a Lockset) at the same time, each of which is also 
associated with a site where thread t is acquiring a corre-
sponding lock.  

An execution trace  of a program p is a sequence of 
events, and t is the projection of trace  on thread t.  

In this paper, we focus on dynamic events produced 
during concrete executions, since static lock acquisition 
statements may be executed multiple times; and multiple 
executions of the same lock acquisition statement are 
usually independently involved in a deadlock (see the 
example in Fig. 5 of [12]). Therefore, we use the concept of 
site [17] to distinguish between different executions of the 
same static statement, where the site is computed based 
on the abstraction algorithm [17] for each event. In this 
paper, we simply adopt a code line number to denote the 
site of the event for that line, since each static event is on-
ly executed once (i.e., one code line number corresponds 
to one event). Furthermore, false positives in this paper 
also refer to dynamic scenarios that cannot form deadlock 
occurrences under the same inputs as the predictive runs.  

2.2 Cycle 

A cycle [15], [28] is a sequence of k mutually dependent 
events. That is, if two events ei = ti, acq, mi@si, lsi and ei+1 
= ti+1, acq, mi+1@si+1, lsi+1 are two consecutive events of a 
cycle, then event ei is dependent on event ei+1 (i.e., mi  
lsi+1). This dependency indicates that, during an execu-
tion, thread ti may try to acquire a lock mi which is al-
ready being held by thread ti+1. If all of these dependen-
cies occur during an execution then this causes a dead-
lock, as each thread is waiting for another thread from the 
same cycle to release a lock, and hence none of the 
threads can progress any further.  

Therefore, a cycle models a potential deadlock. We re-
fer to site si in event ei of cycle c as the deadlocking site of 
thread ti in cycle c.  



 

 

For instance, the underlined five statements in Fig. 1 
represent a single deadlock modelled as the cycle c4 = t1, 
acq, n@s15, {q@s09, p@s14}, t2, acq, p@s22, {n@s21}. The dead-
locking sites of threads t1 and t2 are s15 and s22, respective-
ly.  

Given a cycle c, we denote all locks that are waiting to 
be acquired by any thread in c as WLOCKc. Similarly, we 
denote the set of all locks held by any thread in c as the set 
HLOCKc. Moreover, the site that acquires lock m  WLOCKc 
and the site that acquires lock n  HLOCKc are denoted by 
WSITEc(m) and HSITEc(n), respectively.  

For the above cycle c4 in Fig. 1, we have: WLOCKc4 = {n, 
p}, WSITEc4 (n) = s15, WSITEc4 (p) = s22, HLOCKc4 = {n, p, q}, 
HSITEc4 (n) = s21, HSITEc4 (p) = s14, and HSITEc4 (q) = s09.  

Note that a cycle may actually be a false positive rather 
than a real deadlock. It is possible for deadlock detectors 
to report false positives as they infer a cycle based on 
events that occur at different times during the same pro-
gram execution. Therefore, there is no guarantee that 
these events will occur at the same time in another execu-
tion.  

Given a cycle c = e1, e2, … en, if all n events e1, e2, … en 
can be executed by n threads t1, t2, … tn at the same time, 
the cycle c is a real deadlock; otherwise, the cycle c is a 
false positive. For example, the cycle c1=t1, acq, m@s04, 
{q@s03}, t3, acq, q@s30, {m@s29} in Fig. 1 is a false positive, 
since the event in thread t3 only happens after the occur-
rence of the event in thread t1 (since thread t1 starts thread 
t3 at line s08).  

3 MOTIVATING EXAMPLE 

Fig. 1 shows a motivating example program. The pro-
gram contains three threads t1, t2, and t3 that acquire and 
release four locks q, m, n, and p within five functions fA to 
fE. Thread t1 firstly acquires two locks q and m within 
function fA and then starts two threads t2 and t3. Next, it 
executes several lock acquisitions within function fB. 
Threads t2 and t3 also execute several lock acquisitions 
and releases within function fC and within functions fD 
and fE, respectively.  

Fig. 1 also shows the execution trace , indicated by 
the arrows. During this trace, no deadlock occurs. How-
ever, six cycles are reported when this trace is analyzed 
using existing dynamic predictive techniques (e.g., [15], 
[28], [38]), which are listed in TABLE 1. Out of these six 
cycles, only three cycles c3, c4, and c5 are real deadlocks, 
while the others are false positives. However, without 
actually triggering these cycles, it is not known whether 
they are real deadlocks or false positives.  

Therefore, it is desirable that active deadlock detection 
techniques can both (1) detect real deadlocks and (2) han-
dle false positives. In the remainder of this section, we 
will illustrate the limitations of existing techniques in re-
lation to both of these aspects.  

3.1 Detecting Real Deadlocks 

Randomized Testing schedules random program execu-
tions repeatedly to discover the schedules that may cause 
deadlocks to occur. This type of techniques require a large 
number of executions to trigger deadlock occurrences. For 
example, PCT [10] is a representative randomized testing 
technique. It probabilistically guarantees to detect a con-
currency bug with a probability of 1 (𝑛 × 𝑘𝑑−1)⁄  if the bug 
has a depth d involving n threads that totally execute k 
steps. For cycle c4, the guaranteed probability is 
1 (2 × 403−1) ≈ 3.125 × 10−4⁄ . For large-scale programs 
(e.g., MySQL that can produce more than 4 × 106 events, 
see Section 5), such a guarantee may not be high enough.  

Randomized Active Schedulers introduce scheduling 
manipulations based on random testing, with the aim of 
exploring certain parts of executions. However, the exist-
ing techniques (e.g., DeadlockFuzzer [28] and MagicScheduler 
[15]) have a low probability of triggering a given cycle. In 
the remainder of this subsection, we will illustrate this 
problem for the deadlock c4. For ease of explanation, we 
will only consider two functions fB and fC within threads t1 
and t2, respectively, based on two executions, as shown in 
Fig. 2.  

DeadlockFuzzer (DF for short) and MagicScheduler (MS for 
short) both use a heuristic to schedule each individual 
thread randomly to trigger an occurrence of a given cycle 
and they suspend a thread if the thread holds a set of locks and 
tries to acquire another lock at the deadlocking site of this 
thread [15], [28]. Let us consider a deadlock c4. DF and MS 
aim to suspend thread t1 immediately before it executes 
the event acq(n) at site s15, and to suspend thread t2 imme-
diately before it executes the event acq(p) at site s22. This 

t1 t2 t1 t2

s09
s10
s11
s12
s13
s14
s15
s16
s17
s18

Func. fB
acq(q)
acq(n)
rel(n)
acq(m)
rel(m)
acq(p)
acq(n)
rel(n)
rel(p)

rel(q)

s19
s20
s21
s22
s23
s24

Func. fC
acq(q)
rel(q)
acq(n)
acq(p)
rel(p)

rel(n)

s09
s10
s11
s12
s13
s14
s15
s16
s17
s18

Func. fB
acq(q)
acq(n)
rel(n)
acq(m)
rel(m)
acq(p)
acq(n)
rel(n)
rel(p)

rel(q)

s19
s20
s21
s22
s23
s24

Func. fC
acq(q)
rel(q)
acq(n)
acq(p)
rel(p)

rel(n)





(a) Execution 1 

(a scenario with deadlock)

(b) Execution 2

(a scenario without deadlock)  
Fig. 2. Two execution scenarios of deadlock c4. 

t1 t2 t3

s01
s02
s03
s04
s05
s06

s07
s08

s09
s10
s11
s12
s13
s14
s15
s16
s17
s18

Func. fA
acq(q) {q}
rel(q) {}
acq(q) {q}
acq(m) {q,m}
rel(m) {q}
rel(q) {}

start(t2)
start(t3)

Func. fB
acq(q) {q}
acq(n) {q,n}
rel(n) {q}
acq(m) {q,m}
rel(m) {q}
acq(p) {q,p}
acq(n) {q,p,n}
rel(n) {q,p}
acq(p) {q}
rel(q)  {}

s19
s20
s21
s22
s23
s24

Func. fC
acq(q) {q}
rel(q) {}
acq(n) {n}
acq(p) {n,p}
rel(p) {n}

rel(n) {}

s25
s26
s27
s28
s29
s30
s31
s32
s33
s34
s35
s36

s37
s38
s39
S40

Func. fD
acq(m)  {m}
rel(m)  {}
acq(q)   {q}
rel(q)   {}
acq(m)  {m}
acq(q) {m,q}
rel(q) {m}
acq(n) {m,n}
acq(p) {m,n,p}
rel(p) {m,n}

rel(n) {m}
rel(m)  {}

Func. fE
acq(m)  {m}
acq(q) {m,q}
rel(q) {m}
rel(m)  {}

 

Fig. 1. An example program containing three deadlocks and three 
false positives (see TABLE 1), where functions fB and fC are adapted 

from JDBC Connector 5.0 [3] (Bug ID: 2147). 

 



 

 

type of schedule steering has also been adopted to trigger 
occurrences of known data races [27] or suspicious data 
races [32] via crowdsourcing validation [32], [52], and 
targets at two simultaneous memory accesses with or 
without lock acquisitions. 

However, as a deadlock can involve at least four lock 
acquisitions, the above steering may fail. For example, it 
could be challenging to directly apply the above strategy 
to trigger cycle c4. If the random execution is Execution 1, 
the deadlock could be triggered. However, if the random 
execution is Execution 2, the deadlock will not be trig-
gered, since thread t2 reaches site s22 first, and is then sus-
pended by DF and MS. When thread t1 executes next, af-
ter acquiring lock q at site s09, it cannot acquire a further 
lock n at site s10 as it is held by thread t2, therefore, both 
schedulers have to resume thread t2. After thread t2 re-
leases lock n at site s24, there is no longer any possibility 
that the deadlock will be triggered, even if thread t1 
reaches site s15.  

The above type of problem is known as thrashing [28]. 
Thrashing can be formally defined as occurring if, during 
confirmation of a cycle c = e1, e2, … en by an active 
scheduler X, thread ti is suspended by X immediately 
before executing event ei  c before another thread tj exe-
cutes the event ej  c, and thread tj is blocked from acquir-
ing a lock m that is held by the suspended thread ti (i.e., m 
 ls(ti)). Thus, thread tj will not reach its deadlocking site 
to execute event ej unless thread ti releases lock m.  

For deadlock c4, thrashing may also occur during other 
executions as well as Execution 2. For example, if thread t1 
is the first to reach its deadlocking site s15 before thread t2 
reaches site s19, thread t2 can then not reach its deadlock-
ing site s22, as it cannot acquire lock q at site s19 since it is 
already being held by thread t1 at site s09.  

ASN [14] was previously proposed by us to prevent 
the occurrence of thrashing. This technique suspends 
threads in a given cycle two (or three) more times than DF 
and MS, to improve the probability of triggering a dead-
lock. However, it heavily relies on randomized schedul-
ing before suspending any thread. Although ASN guaran-
tees that some types of deadlocks will be triggered, it is 
limited due to its three basic assumptions (see Section 4.4 
in [14]). Additionally, when there are two or more dead-
locks, thrashing may also still occur [14]. For the three 
real deadlocks i.e., c3, c4, and c5 from the example pro-
gram, ASN may also encounter thrashing and hence pro-

duces a low probability.  
This can be illustrated by reference to cycle c4 involv-

ing threads t1 and t2. ASN firstly identifies three barriers 
(considering its optimization): for thread t1, they are sites 
s09, s14, and s15; and for thread t2, they are sites s19, s21 and 
s22. During scheduling, ASN firstly waits for both threads 
to reach their first barriers (i.e., s09 for t1 and s19 for t2) and 
then suspends both threads, which is feasible. Next, ASN 
tries to suspend the two threads at their second barriers 
(i.e., s14 for t1 and s21 for t2). However, if thread t1 is the 
first to acquire lock q at its first barrier (i.e., site s09), 
thread t2 is then blocked at site s19 and hence cannot reach 
its second barrier. To address this thrashing, ASN has to 
continue thread t1 to release lock q at site s18. As a result, 
cycle c4 cannot be triggered because thread t1 has passed 
its deadlocking site s15. On the other hand, if thread t2 
could acquire lock q at site s19, the cycle c4 could be trig-
gered. For this reason, the ability of ASN is also compro-
mised by thrashing, similar to DF and MS.  

Therefore, existing techniques are ineffective at trigger-
ing real deadlocks. In TABLE 1, we compare the ability of 
techniques discussed above and our ConLock+ technique 
(which will be explained in Section 4) to trigger all real 
deadlocks (i.e., c3, c4, and c5) on the example program. The 
first column shows the six cycles predicted from the exe-
cution shown in Fig. 1. The second column indicates 
whether each cycle is a false positive or not. The last main 
column ("Can be handled by") shows whether each 
technique can correctly trigger/identify each real dead-
lock (indicated by a tick ""), or correctly identifies each 
false positive (indicated by a cross "", to be discussed in 
the next subsection), or whether it only triggers/identifies 
a real deadlock depending on particular scheduling (indi-
cated by a "?"). The technique HB in the last major column 
is discussed in the next subsection.  

3.2 Handling False Positives  

Due to a low probability of triggering or detecting real 
deadlocks, existing techniques cannot identify false posi-
tives. For example, PCT is only designed to detect real 
concurrency bugs (including deadlocks); other active 
schedulers DF, MS, and ASN cannot trigger all real dead-
locks due to thrashing, not mentioning handling false 
positives. Although ASN has a higher probability of trig-
gering a real deadlock than DF and MS, it cannot handle 
the scenario where two or more deadlocks occur. Our 

TABLE 1  
SIX CYCLES IN THE EXAMPLE PROGRAM 

Cycle 
False 

positive? 
Can be handled by 

PCT HB DF/MS ASN ConLock+ 

c1 = t1, acq, m@s04, {q@s03}, t3, acq, q@s30, {m@s29} Yes      
c2 = t1, acq, m@s04, {q@s03}, t3, acq, q@s38, {m@s37} Yes      
c3 = t1, acq, m@s12, {q@s09}, t3, acq, q@s30, {m@s29} No ?  ?  *  
c4 = t1, acq, n@s15, {q@s09, p@s14}, t2, acq, p@s22, {n@s21} No ?  ? ?  *  
c5 = t1, acq, m@s12, {q@s09}, t3, acq, q@s38, {m@s37} No ?  ?  *  
c6 = t1, acq, n@s15, {q@s09, p@s14}, t3, acq, p@s33, {m@s29, n@s32} Yes      

The symbols "","", and "?" indicate whether a technique can, or cannot, handle a cycle, or depends on randomized scheduling, respectively.  
For ASN on the real deadlocks (c3, c4, and c5), the analysis further considers the happened-before relation (i.e., it ignores events at s01–s06) and the re-
sults are marked with a star "*"; otherwise, ASN fails to handle these three cycles.  



 

 

experiment shows that many real-world programs (e.g., 
MySQL) may contain multiple deadlocks.  

The happened-before relationship [33] may be used to 
handle false positives by identifying cycles where the lock 
acquisitions cannot occur concurrently [9], [45]. For ex-
ample, in cycle c1, the fork-join relationship between the 
two threads prevents the two lock acquisitions on lock m 
(at sites s04 and s30) from executing concurrently. There-
fore, cycle c1 can be marked as a false positive. Although 
the use of the happened-before relationship can filter out 
some false positives, it may also filter out real deadlocks 
[28]. Additionally, not all false positives can be filtered 
out by the happened-before relationship, e.g., c6. In TA-
BLE 1, we also compare the use of the happened-before 
relationship with other techniques in column "HB".  

4 CONLOCK+ 

4.1 Overview 

There are three phases within ConLock+ that check all of 
the given cycles within an execution trace. Fig. 3 depicts 
the workflow of ConLock+ and Algorithm 1 shows its 
algorithm framework. 

Phase I: For each given cycle c, ConLock+ generates a set 
of constraints c according to -Generator (lines 02–05). 
Each constraint specifies the order that two events from 
different threads should follow in a confirmation run.  

Phase II: For each cycle c, ConLock+ actively schedules a 
confirmation run which attempts to enforce all constraints 
of this cycle (i.e., c, line 07). There are two possible out-
comes: (1) a deadlock occurs, indicating that cycle c is a 
real deadlock; or (2) a steering failure occurs, indicating 
that cycle c is a false positive (with respect to the current 
confirmation run, see Section 2.1). A steering failure oc-
curs when ConLock+ cannot schedule an execution by en-
forcing all of the constraints (i.e., further scheduling 
would violate at least one order specified by a constraint 
in c). These two outcomes significantly differentiate 
ConLock+ from existing techniques. However, thrashing 
may also occur using ConLock+; in these cases, a second 
confirmation run on the same cycle is scheduled.  

Phase III: If a steering failure occurs in Phase II, Con-

Lock+ removes all akin cycles of cycle c (lines 08–10). An 
akin cycle c' of cycle c indicates that if a steering failure 
occurs during confirming cycle c, it may also occur when 
cycle c' is confirmed (see Section 4.4). Therefore, confir-
mation of all akin cycles can be skipped, which reduces 
the number of confirmation runs and the total time re-

quired to check all cycles. If a real deadlock occurs in 
Phase II, ConLock+ performs a static analysis to infer 
whether any conflicting accesses (i.e., deadlock sensitive 
accesses) contribute to the deadlock occurrence (line 12), 
aside from the lock acquisitions. 

ConLock+ repeatedly performs the last two phases until 
all cycles have been processed.  

4.2 Phase I: Generation of Constraint Set 

If a cycle indicates a real deadlock, a schedule must exist 
that will suspend each thread in the cycle at its deadlock-
ing site. This understanding has been used by existing 
active schedulers [15], [28] to extract information from a 
predictive run that guides the manipulation of a confir-
mation run. However, an active scheduler should also 
avoid the occurrence of thrashing as much as possible. 
Hence, we include the following constraint: prior to exe-
cuting a lock acquisition at the deadlocking site, each 
thread should not be artificially blocked by any other 
thread from the same cycle as much as possible. That is, 
for an active scheduler, a thread must only be suspended 
for some necessary reasons that may trigger the 
corresponding deadlock occurrence.  

We then formulate a novel relationship entitled the 
should-happen-before relationship to (1) effectively pre-
vent the occurrence of thrashing and (2) precisely sus-
pend each thread involved in a cycle at its deadlocking 
site. We note that the should-happen-before relationship is 
the relationship between two events from the execution 
trace of a predictive run (where the run itself has no dead-
lock occurrence). It denotes that the two events should 
happen in a specified order in a confirmation run.  

4.2.1 An Intuition of the Should-Happen-Before 
Relationship 

Suppose that we try to trigger cycle c4 = t1, acq, n@s15, 
{q@s09, p@s14}, t2, acq, p@s22, {n@s21} in the example execu-
tion. Let us consider the two threads and their events 
(prior to the two deadlocking sites s15 and s22) shown in 
Fig. 2.  

To precisely trigger a deadlock, thread t2 must be sus-
pended at site s22. However, as discussed in Section 3.1, 
simply suspending thread t2 at site s22 may prevent thread 
t1 from executing the event at site s10 (i.e., acq(n)), since 
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Input:p – a program 
Input:  – an execution trace of the program p 

Input:€ – a set of cycles from  

 ≔   //a set of pairs of a cycle c and its constraint set c  
for each cycle c  € do 

│ c ≔ -Generator (, c)       //Algorithm 2 
│    ≔  ∪ {c,c} 

end for 

for each cycle c  € do 

│ call ConLock+_scheduler(p, c, c )      //Algorithm 3 
│ if a steering failure is reported then 
│ │ €' ≔ Find_akinCycles(€, c,  )      //Algorithm 4 
│ │ €  ≔ € \ €' 
│ else if a real deadlock is triggered then 
│ │ call Find_deadlockSensitiveAccesses(p, c) //Algorithm 5 
│ end if 
end for 
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Fig. 3. An overview of the ConLock+ framework. 

 

 



 

 

lock n has already been acquired by thread t2 at site s21 
(i.e., a thrashing occurs). Therefore, before suspending 
thread t2 at its deadlocking site s22, thread t1 should firstly 
execute all of its acquisitions and releases on lock n.  

In other words, if it is expected that a lock (e.g., lock n) 
will be held by a thread (e.g., thread t2 at site s21) and an-
other thread within the cycle will be waiting for this lock 
(e.g., thread t1 at site s15), any acquisitions and releases 
(e.g., at site s10 and s11) on this lock should happen before 
the event where the lock is held (e.g., at site s21).  

However, if thread t1 is simply suspended at its dead-
locking site s15 to trigger cycle c4, thread t2 may also be 
prevented from executing acq(q) at site s19 as lock q is al-
ready held by thread t1 at site s09 (i.e., thrashing occurs). 
This case is different from the case above (i.e., on lock n) 
as when deadlock c4 occurs, lock p is held by thread t1 
only and thread t2 is not waiting for it. Therefore, applica-
tion of the intuition discussed above to events on lock p 
will not resolve the thrashing in this case. 

Therefore, for any held lock (e.g., lock p), regardless of 
whether or not there is another thread waiting for it, any 
acquisitions and releases should happen before the event 
where it is held (e.g., at site s09).  

In the next subsection, we will formally introduce the 
two rules for the should-happen-before relationship.  

4.2.2 Should-Happen-Before Relationship 

We firstly revisit the happened-before relationship [33] (HBR 
for short, denoted as ↣) that describes the relationship 
between two events over a given trace of the predictive 
run. The HBR [33] is defined by the following rules:  

a) Program order: if two events e1 and e2 are executed by 
the same thread, and event e1 appears before event e2 
in the trace, then e1 ↣ e2.  

b) Lock acquire and release: if two events er and ea are a 
lock release event and a lock acquisition event, re-
spectively, and the event er appears prior to the event 
ea in the trace within the same lock, then er ↣ ea.  

c) Transitivity: if e1 ↣ e2 and e2 ↣ e3, then e1 ↣ e3.  

To simplify our subsequent presentation, we refer to 
an event ei which occurs at the deadlocking site of thread 
ti as (c, ti). We also use the site of an event e to denote e 
when describing the two relationships. For example, for 
cycle c4, (c4, t1) = s15 and (c4, t2) = s22.  

Given an execution trace , a cycle c on , and three 
threads t, t, and t that are involved in cycle c, where t  

t and t  t, the should-happen-before relationship 
(SHBR for short, denoted as ⇝) is defined by the follow-
ing rules:  

Rule 1: Suppose that e and e are two events that are 
performed by two different threads t and t, respective-
ly, and they both operate on the same lock m. If the 
three conditions (1) m  WLOCKc, (2) e ↣ (c, t), and (3) e 
= (c, t) are satisfied, then e ⇝ e.  

Rule 2: Suppose that e and e are two events performed 
by two threads t and t, respectively, and they both op-
erate on the same lock n. If the three conditions (1) n  
HLOCKc, (2) e ↣ (c, t), and (3) e = t, acq, n@HSITEc(n), 
ls for some ls are satisfied, then e ⇝ e. (Note that e  
(c, t), instead e ↣ (c, t).)  

In detail, Rule 1 prevents predictable thrashing from 
occurring on locks in the set WLOCKc. Fig. 4(a) uses Execu-
tion 2 (see Fig. 2) to illustrate this rule via lock p and cycle 
c4. In Fig. 4(a), lock p is in WLOCKc4, the site s22 is the dead-
locking site for thread t2 (i.e., t in Rule 1) that operates on 
this lock p; and the deadlocking site for thread t1 (i.e., 
thread t in Rule 1) is the site s15. Rule 1 specifies that any 
lock acquisition or release event on this lock p performed 
by thread t1 (e.g., the event e at site s14) that happened 
before the event (c4, t1) at site s15 should happen before the 
event (i.e., e) performed by thread t2 at its deadlocking 
site s22. Thus, according to Rule 1, we get s14 ⇝ s22.  

Rule 2 further prevents predictable thrashing on locks 
in the set HLOCKc. Fig. 4(b) uses Execution 2 to illustrate this 
rule via lock n. In Fig. 4(b), lock n is in HLOCKc4, and thread 
t2 (i.e., thread t in Rule 2) holds a lockset {n@s21} when 
thread t2 is about to acquire lock p at its deadlocking site 
s22. We also recall that the deadlocking site for thread t1 
(i.e., thread t in Rule 2) is the site s15. Rule 2 specifies that 
any lock acquisition or release event on lock n, performed 
by thread t1 and happened before the event occurring at 
its deadlocking site s15, should happen before the lock acqui-
sition event on n at site s21 (i.e., the event e). Thus, by Rule 
2, we obtain s10 ⇝ s21. Lock n has also been released by 
thread t1 at site s11. Therefore, by the same method we 
also obtain s11 ⇝ s21.  

Generation of all SHBRs on c4: Rule 1 and Rule 2 are 
now applied to identify a complete set of SHBRs with 
respect to cycle c4. We recall that Execution 2 in Fig. 2(b) 
operates on three locks {n, q, p} from cycle c4. Cycle c4 has 
two deadlocking sites: the site s15 for thread t1 and the site 
s22 for thread t2. Additionally, WLOCKc4 is {n, p} and HLOCKc4 
is {n, q, p}.  

For lock n: Rule 2 has been applied on this lock in order 
to identify s10 ⇝ s21, and s11 ⇝ s21 in the above illustration 
of Rule 2. Thread t1 performs an event on lock n at its 
deadlocking site s15 (i.e., (c4, t1)). For thread t2, there is 
only one event e = t2, acq, n@s21, {} operating on lock n 
and e ↣ (c4, t2). By Rule 1, we get s21 ⇝ s15.  

For lock p: Rule 1 has been applied on this lock to iden-
tify s14 ⇝ s22. As thread t2 is not operating any event on 
lock p that was happened before the event (c4, t2) at site 
s22, Rule 2 produces no further SHBR for lock p.  

For lock q: Rule 1 gives no SHBR on this lock because 
lock q is not in WLOCKc4. For cycle c4, lock q is within the 

(a) Rule 1 on the lock p: s14 ⇝ s22 (b) Rule 2 on the lock n: s10 ⇝ s21
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Fig. 4. Examples of Rule 1 and Rule 2 on Execution 2. 



 

 

lockset of an event for thread t1. By Rule 2, any event on 
lock q that happened before (c4, t2) should happen before 
the lock acquisition event on q performed by thread t1 at 
site s09. Since for thread t2, s19 ↣ (c4, t2) and s20 ↣ (c4, t2), 
we then get s19 ⇝ s09 and s20 ⇝ s09.  

Based on Execution 2, we can identify a set of six 
SHBRs for cycle c4: {s10 ⇝ s21, s11 ⇝ s21, s21 ⇝ s15, s14 ⇝ s22, 
s19 ⇝ s09, s20 ⇝ s09}, as depicted in Fig. 5(a) by dotted ar-
rows.  

Execution 2 fails to trigger a deadlock, and its execution 
path is s19, s20, s09, s21–s24, s10–s18. This path does not 
follow three of the SHBRs described above (i.e., s10 ⇝ s21, 
s11 ⇝ s21, s14 ⇝ s22) for cycle c4. In fact, any execution path 
that does not follow all of these SHBRs fails to trigger the 
deadlock.  

Execution 1 triggers a deadlock occurrence, and its exe-
cution path is s19, s20, s09–s14, s21 before the two deadlock-
ing sites s15 and s22. This execution path satisfies all SHBRs 
of cycle c4.  

In Section 3, we have illustrated that both MS and DF 
suffer from the occurrence of thrashing. This thrashing 
occurs because thread t2 acquires lock n at site s21 before 
thread t1 attempts to acquire the same lock at site s10, and 
yet thread t2 is suspended by MS and DF at site s22. The 
above set of SHBR highlights that this execution does not 
follow the SHBR s10 ⇝ s21. The thrashing that occurs using 
ASN (see Section 3) is also caused by not following the 
SHBR s19 ⇝ s09 on lock q.  

4.2.3 Generation of the Should-Happen-Before 
Relationship 

ConLock+ treats each identified SHBR as a scheduling con-
straint in the confirmation run. Algorithm 2 shows the 
constraint set generation algorithm (-Generator for 
short).  

Given an execution trace  and a cycle c, Algorithm 2 
firstly extracts all locks in WLOCKc and HLOCKc (lines 02–05). 
Then, it checks each event in the projection t of trace  
for each thread t with respect to the two rules (lines 10–

21). The checking is performed in a reverse program or-
der, starting from the deadlocking site of thread t (lines 
07–09). For each event e = t, op, l@s, ls, the algorithm 
checks whether the lock l is in the set WLOCKc (line 10). If 
so, the algorithm further checks e against e to determine 
whether the pair of events e and e forms an SHBR based 
on Rule 1 (lines 11–12). If this is also the case, the relation-
ship e ⇝ e is added to the set c (line 12). The algorithm 
then checks whether the lock l is in the set HLOCKc (line 15). 
If so, it further checks whether there is an event e operat-
ing on lock l such that l@s of the event e is in the lockset 
ls' of (c, t) (lines 16–18), indicating that the site s is 
HSITEc(l). If such an event e exists, the algorithm adds the 
relationship e ⇝ e into c (line 18) based on Rule 2.  

ConLock+ can identify all such SHBRs for each cycle, 
and it can actually easily be proved based on the two 
rules that each constraint identified by ConLock+ is a nec-
essary condition to trigger the corresponding cycle. 
Hence, it can improve the probability of triggering a 
deadlock by avoiding the occurrence of thrashing. 

ConLock+ schedules a confirmation run by enforcing all 
of the constraints. However, there may be a high runtime 
overhead incurred by scheduling an execution with such 
a large set of constraints, which may in certain cases be-
come infeasible, as has been experienced previously with 
MySQL (e.g., where more than 2,000 constraints were pro-
duced). Thus, in the next subsection, we present an 
equivalent constraint reduction algorithm to reduce the 
number of constraints.  

4.2.4 Reduction of Constraints 

The equivalent reduction of constraints is based on the 
following three properties as illustrated in Fig. 6: 

Property 1: If a constraint set includes both e1 ⇝ e2 and 
e2 ⇝ e3, then the constraint e1 ⇝ e3 is redundant.  

Property 2: If a constraint set includes both e1 ⇝ e3 and 
e2 ⇝ e3 such that e1 happens before e2 (e1 ↣ e2) within 
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Fig. 5. Generation and Reduction of constraints of the cycle c4 as well 

as a scheduling not violating the generated set of constraints. 
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Input:  – an execution trace 
Input: c – a cycle from the trace  
Output: c – a constraint set with respect to the cycle c 

c ≔ , WLOCKc ≔ , HLOCKc ≔  
for each event t, req, m@s, ls in c do  
│ WLOCKc ≔ WLOCKc ∪ {m} 
│ for each n@sn  ls, HLOCKc ≔ HLOCKc ∪ {n} 
end for 
for each t  c do  
│ let i ≔ p such that t[p] = (c, t)  
│ while i -- > 0 do  
│ │ let t[i] be e = t, op, l@s, ls //e ↣ (c, t), op  {acq, rel} 
│ │ if l WLock then //By Rule 1 
│ │ │ for each e = t, acq, m@s, ls = (c, t)  ∧ t  t do 
│ │ │ │ if l = m then, c ≔ c ∪ {e ⇝ e} // m  WLOCKc 
│ │ │ end for  
│ │ end if 
│ │ if l  HLOCKc then //By Rule 2 
│ │ │ let e ≔ t, acq, l@s, ls, where t  Threads (c) ∧ t  t  
│ │ │ let (c, t) = t, acq, m@s', ls' //the deadlocking site of t 
│ │ │ if l@s  ls' then, c ≔ c ∪ {e ⇝ e} // s= HSITEc(l) 
│ │ end if 
│ end while 
end for 

 



 

 

the same thread, then the constraint e1 ⇝ e3 is redun-
dant. (A special case of this is when e2 is a lock release 
event and e1 is the corresponding lock acquisition 
event of e2.)  

Property 3: If a constraint set includes both e1 ⇝ e4 and 
e2 ⇝ e3 such that e1 happens before e2 (e1 ↣ e2) within 
the same thread and e3 happens before e4 (e3 ↣ e4) 
within the same thread, then constraint e1 ⇝ e4 is re-
dundant.  

For each of the three properties, the redundant con-
straint is already implicitly enforced by both the hap-
pened-before relationship and the should-happen-before 
relationship, as illustrated in Fig. 6.  

Given a set of constraints generated by Algorithm 2, 
these three properties can be applied on the set to pro-
duce a smaller but equivalent set. The reduction algo-
rithm is straightforward: each of the three properties is 
recursively applied to every triple of constraints until no 
more reductions in constraints are possible. Applying 
these three properties on the constraint set of cycle c4 
(originally produced by Algorithm 2) removes two of the 
constraints: {s10 ⇝ s21, s19 ⇝ s09}, as shown in Fig. 5(b).  

By including this reduction algorithm, there is no re-
quirement for ConLock+ to adopt any scheduling points to 
start its scheduling. A scheduling point is an event which 
happens before the deadlocking site of a thread, when the 
thread holds no lock. It is used by ConLock [16] but it suf-
fers from the scalability issue, because it has to check a 
large number of constraints repeatedly during its confir-
mation runs. Although an equivalent reduction can be 
made based on two properties, even after reduction, the 
number of constraints remains relatively large. Therefore, 
ConLock skips all of the constraints with a first event that 
happens before the scheduling point [16]. For these 
points, the number of constraints to be checked can be 
non-equivalently reduced to an acceptable level (e.g., less 
than 10 in our experiment). However, during scheduling, 
ConLock also has to wait for all threads to reach their 
scheduling points (see lines 04–12 of ConLock scheduler 
[16]). This may decrease the probability of deadlock con-
firmation, especially for large-scale programs (e.g., 
MySQL).  

The generalized reduction algorithm can equivalently 
reduce the number of constraints for each cycle to an ac-
ceptable level (e.g., less than 10). This generalization will 
also be evaluated in our experiment in Section 5.4.4.  

4.3 Phase II: ConLock+ Scheduler 

This section presents the ConLock+ scheduler for a single 
cycle. Given a program p, a cycle c, and a set of con-
straints c of the cycle c, ConLock+ schedules the confirma-
tion run by enforcing the given constraint set c. It 
immediately stops the current confirmation run whenever 
it detects a steering failure, indicating that the current run 
can no longer meaningfully confirm the cycle. A few aux-
iliary concepts are firstly presented before the scheduling 
algorithm is introduced.  

State of a constraint. Each constraint h = ea ⇝ eb has the 
following state (denoted as State(h)): 
 Idle: if both events ea and eb have not been executed. 

This state means that the constraint h has to be 
checked later after events ea and eb have occurred. 

 Active: if event eb is about to be executed but event ea 
has not been executed. To enforce this constraint, the 
thread involved in event eb has to wait until the event 
ea occurs. 

 Used: if event ea has been executed. This state means 
that there is no need to further track this constraint as 
it has already been enforced in the current run.  

State of a thread. Each thread t has the following state 
(denoted as State(t)):  
 Enabled: if thread t can be scheduled to execute its 

next event.  

Algorithm 3: ConLock+_Scheduler 
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Input: p – a program  
Input: c – a cycle 
Input: c – a set of constraints of the cycle c 

EnabledSet ≔ all threads in c, SuspendedSet ≔  
for each h  c, State(h) ≔ idle 
for each thread t do 

│ State(t) ≔ Enabled, LS(t) ≔ , Req(t) ≔ , Site (t) ≔   
end for 
while  t  c ∧ State(t) = Enabled do 

│ let e ≔ t, op, m@s, ls be the next event of the thread t 
│ //check e against each constraint in c 
│ if  h = ea ⇝ eb c, eb = e ∧ State(h) = Idle then 
│ │ State(h) ≔ Active, State(t) ≔ Waiting on h 

│ │ if a steering failure occurs then 
│ │ │ print "A steering failure occurs." 
│ │ │ halt //Early termination of this confirmation run 
│ │ end if 
│ │ continue //postpone the execution of the event e 
│ else if  h = ea ⇝ eb c, ea = e ∧ State(h) = Active then 
│ │ State(h) ≔ Used, Notify(h) //State(t'): = Enabled 
│ else if  h = ea ⇝ eb c, ea = e ∧ State(h) = Idle then 
│ │ State(h) ≔ Used  
│ end if 
│ if op = acq then //execute e and check for deadlock 
│ │ Req(t) ≔ m, Site (t) ≔ s 
│ │ call CheckDeadlock() 
│ │ Req(t) ≔ , LS(t) ≔ LS(t) ∪ {m@s} 

│ else if op = rel then 
│ │ LS(t) ≔ LS(t) \ { m@s' } for some s' 
│ end if 

│ execute (e)  
end while 
Function CheckDeadlock() 
│ if  a sequence e1, e2, …, en, where ei = ti, acq, Req(ti)@Site(ti), 
│ LS(ti), for 1  i  n, is a cycle then  
│ │ │ print "a deadlock occurs." halt 
│ end if 
end Function 
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 Waiting: if thread t is about to execute an event e, 
but there is a constraint, say e' ⇝ e and the event e' 
has not been executed. To enforce this constraint, 
ConLock+ suspends thread t until event e' has been 
executed. In such cases, we say that thread t is waiting 
on the constraint, and is thus in the Waiting state.  

 Disabled: if thread t has not started, or has termi-
nated, or has been suspended by the OS. In this case, 
thread t cannot be scheduled anymore.  

A steering failure occurs in a confirmation run with re-
spect to a cycle c if:  
 ∄ t  c, such that State(t) = Enabled, and, 
  t  c, such that State(t) = Waiting.  

The occurrence of a steering failure indicates that none 
of the threads in cycle c can be scheduled to execute their 
next event; otherwise, a constraint cannot be enforced. In 
other words, since no thread in c is in an Enabled state, 
all threads in c are either in a Disabled or in a Waiting 
state. For any thread that is in a Disabled state, it cannot 
be scheduled to execute its next event. The only way to 
continue the execution of these threads is to continue 
threads in the Waiting state. However, each Waiting 
thread t is waiting on a constraint, say h = e' ⇝ e where 
the event e is the next event of thread t and the event e' is 
an expected (i.e., not executed) event from a different 
thread t'. To continue thread t, the constraint h will not be 
enforced. Since each constraint is a necessary condition to 
trigger the corresponding deadlock, the deadlock occur-
rence will fail to be triggered if a constraint is not en-
forced. Hence, ConLock+ terminates the execution since 
continuation is pointless.  

The ConLock+ scheduler is shown in Algorithm 3. A 
program p, a cycle c, and a set of constraints c are taken 
as the inputs. The scheduler firstly enables all threads; no 
thread is suspended (line 01). The state of each constraint 
is set as Idle (line 02). The status and other data for each 
thread are then initialized (line 04 and 05) including three 
maps: from thread t to a lockset as LS(t), from t to its re-
quested lock as Req(t), and from t to its requested site as 
Site(t).  

ConLock+ then starts its guided scheduling (lines 07–29). 
It randomly fetches the next event e from a random and 
Enabled thread (line 07). Before executing event e, Con-

Lock+ checks e against each constraint in c that is not in 
the Used state, and determines the states of the selected 
constraint and the current thread t (lines 10–20) to enforce 
all constraints. There are three cases:  
 If there is any constraint h = ea ⇝ eb such that 
State(h) = Idle and the current event e = eb, the ex-
ecution of event e will be postponed until event ea is 
executed. ConLock+ then sets State(h) = Active and 
State(t) = Waiting on h (lines 10). It further checks 
whether any steering failure occurs, and reports any 
violation that occurs (lines 11–14).  

 If there is any constraint h = ea ⇝ eb such that 
State(h) = Active and the current event e = ea, Con-

Lock+ sets State(h) = Used and updates the state of 
every thread that is Waiting on h to be Enabled 
(lines 16–17). On line 17, Notify(h) is used to indi-

cate the change in state of each thread (say t') waiting 
on this constraint h from Waiting to Enabled. 

 If there is any constraint h = ea ⇝ eb such that 
State(h) = Idle and the current event e = ea, Con-

Lock+ sets State(h) = Used (lines 18–19).  

ConLock+ then checks the type of event e. If it is a lock 
acquisition, ConLock+ updates the three maps Req, Site, 
and LS, and calls the function CheckDeadlock()(lines 
21–24). Otherwise, if event e is a lock release, ConLock+ 
updates the map LS only (lines 25–26). ConLock+ then exe-
cutes event e.  

If the function CheckDeadlock() (lines 30–34) finds 
any cycle, ConLock+ reports the occurrence of a real dead-
lock and terminates the current run.  

Fig. 5(c) shows the scheduling for cycle c4 by enforcing 
the set of constraints shown in Fig. 5(b). The scheduling 
successfully triggers a deadlock occurrence.  

Examples of false positives: we have discussed how 
ConLock+ guides confirmation runs to trigger deadlocks. In 
the remainder of this subsection, we show how ConLock+ 
handles these false positives (i.e., cycles c1, c2 and c6 in 
TABLE 1), which distinguishes this technique from other 
existing active schedulers.  

Cycle c1 involves lock acquisitions at sites s03 and s04 by 
thread t1 and at sites s29 and s30 by thread t3. This cycle is a 
false positive because the lock acquisitions by thread t1 
occur before the start of thread t3. Given its constraint set: 
{s03 ⇝ s30, s28 ⇝ s03, s29 ⇝ s04} (after reduction), the second 
constraint s28 ⇝ s03 (which specifies a lock acquisition or-
der on lock q) cannot be enforced by ConLock+. In other 
words, upon lock acquisition of q by thread t1 at s03, Con-

Lock+ detects that there is an Idle constraint s28 ⇝ s03 (line 
09 of Algorithm 3). It then updates the state of this con-
straint to be Active and the state of thread t1 to be Wait-
ing (line 11). Next it detects a steering failure: there is 
only one thread (i.e., thread t1) and that is in Waiting 
state. For cycle c2, the case is similar to that of cycle c1.  

For cycle c6, its constraint set is: {s13 ⇝ s29, s31 ⇝ s09, s32 
⇝ s15, s14 ⇝ s33} (after reduction). The first two constraints 
s13 ⇝ s29 and s31 ⇝ s09 cannot be enforced at the same time. 
In the first case, where thread t1 reaches site s09 before 
thread t3 reaches site s31, ConLock+ updates the state of 
thread t1 to be Waiting based on checking the constraint 
s31 ⇝ s09 (lines 10–11). Once thread t3 reaches site s29, its 
state is also updated to Waiting, based on checking the 
constraint s13 ⇝ s29. A steering failure then occurs: no 
thread is Enabled and the two threads t1 and t3 are in the 
Waiting state. In the second case, where thread t3 reaches 
site s29 before thread t1 reaches site s09, a similar scenario 
occurs. The states of both threads are also finally updated 
to be Waiting and thus a steering failure occurs.  

4.4 Phase III (1): Inferring Infeasible Scheduling 

Predictive deadlock detectors may report many cycles 
within an execution, Usually, only a small number of 
these reported cycles are real deadlocks. However, active 
schedulers have to schedule each program at least once, 
to attempt to trigger each cycle as a deadlock occurrence.  

An interesting fact that we have discovered is that 
many predicted cycles share the same set of constraints, 



 

 

due to a combination of executions of the same or similar 
pieces of program code. If a steering failure occurs while 
confirming one such cycle, the same steering failure is 
usually incurred while confirming all the other such cy-
cles (i.e., the same set of constraints cannot be enforced).  

For instance, in our example program, the constraint 
sets of cycles c1 and c2 are shown in TABLE 2. We observe 
that the last five constraints (denoted as *) from c1 also 
appear in c2; and, if we ignore the events that occur at 
the deadlocking sites (i.e., s04 and s30), all of the remaining 
constraints from c1 (i.e., *) are a subset of c2. Note 
that, given two cycles, different constraints must exist 
involving events happening at some deadlocking sites 
(e.g., the first three constraints of the two cycles c1 and c2). 

During confirmation of cycle c1, the first three con-
straints (i.e., s01 ⇝ s30, s02 ⇝ s30, and s03 ⇝ s30) can be en-
forced. However, the remaining constraints (i.e., all of the 
constraints from *) cannot be enforced, as thread t1 
starts its execution only after the execution of events at s03 
and s04. Therefore, ConLock+ reports a steering failure. Sim-
ilarly, during confirmation of cycle c2, its first three con-
straints from c2 are also enforced and the remainder 
cannot be enforced. Again, ConLock+ reports a steering 
failure.  

The two cycles c1 and c2 actually both involve the same 
set of two threads t1 and t3, and they also share the same 
event from the two cycles (i.e., t1, acq, m@s04, {q@s03}, see 
TABLE 1). The difference between the two cycles is that, 
for cycle c2, its second event (i.e., t3, acq, q@s38, {m@s37}) 
happens after the second event (i.e., t3, acq, q@s30, 
{m@s29}) of cycle c1. Therefore, if events occurring at the 
deadlocking sites of c1 are not considered, c1 is a subset 
of c2; hence, if cycle c1 cannot be triggered, cycle c2 then 
also cannot be triggered for the same reason.  

We call the above cycle c2 an akin cycle of cycle c1. A 
cycle c' is said to be an akin cycle of another cycle c if the 
constraint set c is a subset of the constraint set c', ex-
cluding constraints with an event that occurs at a dead-
locking site (e.g., the first three constraints of c1 shown 
in TABLE 2). We denote the constraints shared by c and 
c' as * (or a set of common constraints of the two cy-
cles c and c'). As seen from the above cycles c1 and c2, if a 
cycle cannot be triggered, confirmation of all of its akin 

cycles can be skipped. The correctness of this can be easily 
proven based on the following point: if a set (*) cannot 
be enforced, any of its super sets (c') also cannot be en-
forced. If there are many akin cycles, both the number of 
confirmation runs and the total confirmation time to 
check all cycles can be reduced. 

In our definition of akin cycles, we do not consider the 
constraints where one event occurs at a deadlocking site. 
However, it is possible that a steering failure occurs on 
these constraints. In this case, no akin cycles should be 
skipped. (Alternatively, a detailed analysis should be per-
formed to ensure the correctness of the use of akin cycles.)  

 An important point to note is that the relationship be-
tween akin cycles is not symmetrical. That is, given two 
cycles c and c', if c' is an akin cycle of c, there is no guar-
antee that c is also an akin cycle of c'. This is because the 
constraint set of c' (i.e., c') may contain additional con-
straints; if any of these additional constraints cannot be 
enforced, it gives no indication of whether or not a con-
straint from c could be enforced.  

Additionally, an equivalent 1  reduction on constraint 
sets is adopted (see Section 4.2.4), which may also reduce 
the content of the set of common constraints of the two 
cycles. Therefore, the original constraint sets should be 
used to identify akin cycles if a steering failure is report-
ed.  

Algorithm 4 finds all akin cycles of a given cycle c. For 
each cycle c' from all cycles €, the algorithm checks 
whether the original constraint set c is a subset of c' 
(lines 05–09), excluding constraints with an event occur-
ring at a deadlocking site. If this is true, the cycle c' is 
added into the akin cycle set €' of cycle c. At the end of the 
algorithm, the set €' contains all akin cycles of the given 
cycle c. 

4.5 Phase III (2): Inferring Deadlock Causes 

It is well-known that deadlock occurrences are caused by 
inconsistent lock acquisition orders. However, rather than 

 

1 If the reduction is not equivalent or the checked constraint set is not 
equivalent to the original one (e.g., our previous proposal ConLock), the 
use of akin cycles may produce imprecise results. This is because, in this 
case, the constraints enforced in a confirmation run may be the ones that 
are not enforced in the original set.  

TABLE 2  
CONSTRAINT SET OF CYCLES c1 AND c2 

c1 c2 
s01 ⇝ s30 
s02 ⇝ s30 
s03 ⇝ s30 

s25 ⇝ s04 
s26 ⇝ s04 
s27 ⇝ s03 
s28 ⇝ s03 
s29 ⇝ s04 

s01 ⇝ s38 
s02 ⇝ s38 
s03 ⇝ s38 

s25 ⇝ s04 
s26 ⇝ s04 
s27 ⇝ s03 
s28 ⇝ s03 

s29 ⇝ s04 

s36 ⇝ s04 

s37 ⇝ s04 
s30 ⇝ s03 
s31 ⇝ s03 

The site s30 is a deadlocking site of cycle c1 on lock q; the site s38 is also a 

deadlocking site of cycle c2 on lock q. 

  

Algorithm 4: Find_akinCycles 
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Input:€ – a set of cycles 
Input: c – a cycle 
Input:  – a set of constraints for each cycle in € 
Output: €' – a set of akin cycles of the cycle c 

€' ≔  
for each cycle c'  € ∧ c'  c do 
│ c ≔  (c), c' ≔  (c') 
│ is_akinCycle := true 
│ for each h = ei ⇝ ej c do  
│ │ if  (h c' ∨ ej occurs at a deadlocking site of c) then 
│ │ │ is_akinCycle ≔ false 
│ │ end if 
│ end for 
│ if is_akinCycle = true then 
│ │ €' ≔ €'∪ { c'} 
│ end if 
end for 

 



 

 

just detecting or triggering them, it would be more help-
ful to understand how these inconsistent lock acquisition 
orders are introduced.  

 Consider a simplified deadlock from SQLite (one of 
our benchmark programs) as shown in Fig. 7. The dead-
lock involves two threads (t1 and t2) and two locks (m and 
n). Additionally, there is a conditional inMutex with an 
initial value of 0. The conditional is used to indicate 
whether any thread is holding lock m. However, this con-
ditional does not correctly reflect the facts under multi-
threaded executions, i.e. if immediately after thread t1 
acquires lock m (i.e., thread t1 has not increased the value 
of inMutex and this value is still 0), thread t2 acquires lock 
n, reads the value of inMutex, and passes its check since 
"inMutex == 0". Then, thread t2 tries to acquire lock m 
which is blocked. Next, thread t1 increases the value of 
inMutex and tries to acquire lock n, which is also blocked. 
Thus, a deadlock occurs.  

In this example, it seems that the developers were 
aware of the possible deadlock occurrences and hence 
have introduced a conditional inMutex to avoid them. 
However, the conditional fails to prevent a deadlock from 
occurring. Therefore, besides constraints on lock acquisi-
tions, access to conditionals may also play an important 
role in the occurrence of deadlocks. We denote these ac-
cesses as deadlock sensitive accesses.  

To determine whether a deadlock that has been con-
firmed by ConLock+ also involves deadlock sensitive ac-
cesses, we design a static analysis to extract any potential 
ones. The key of our analysis is based on two simple but 
effective heuristics: (1) if there are any deadlock sensitive 
accesses, the accessed conditionals usually share a com-
mon static (variable) name; and (2) these accesses are 
usually conflicting (e.g., a read and a write to the same 
conditional).  

For example, from the deadlock shown in Fig. 7, both 
threads have static access to the same conditional named 
"inMutex" and the deadlock involves a pair of conflicting 
accesses to the conditional (i.e., the write at line 2 in 
thread t1 and the read at line 7 in thread t2).  

Our static analysis firstly collects all memory accesses 
for each thread t in a cycle c from the beginning of func-
tion fh to the end of function fw. Function fh contains the 
site where thread t acquires the lock that another thread 
in cycle c is waiting for (i.e., line 1 in thread t1 and line 6 
in thread t2 in Fig. 7). Fw contains the deadlocking site of 
thread t (i.e., line 3 in thread t1 and line 8 in thread t2 in 
Fig. 7). Our algorithm then checks for any conflicting ac-
cesses to the same static memory location (variable).  

Algorithm 5 outlines our detailed analysis. Given a cycle 

c, for each thread t in c, the functions fh and fw are firstly 
identified (lines 03–04). It then calls FindAllPaths() to ex-
tract all of the instructions from the beginning of fh to the 
end of fw based on a DFS search (line 05). Next, it extracts 
all memory accesses including the variable name (Oper-

and()), access type i.e. read or write (Opcode(), lines 07–11), 
and the source code line NO (SLine()). Finally, it checks 
whether there are two threads from the given cycle c that 
have a pair of conflicting accesses to a variable of the 
same name (lines 13–18). If so, it reports a deadlock sensi-
tive access.  

Applying Algorithm 5 on the deadlock in Fig. 7, two sets 
of accesses are otained:  
 for thread t1: {inMutex, read, 2, inMutex, write, 2, 

inMutex, read, 5, inMutex, write, 5} and, 
 for thread t2: {inMutex, read, 7, inMutex, read, 9, 

inMutex, write, 9, inMutex, read, 11, inMutex, write, 11}.  

Since a pair of two conflicting accesses inMutex, write, 2 
and inMutex, read, 7 exist to the same variable inMutex, 
Algorithm 5 reports these two accesses as deadlock sensi-
tive accesses.  

Note that there may still be some imprecision to our 
static analysis above and it could be further improved by 
combining various other techniques (e.g., static alias 
analysis and even dynamic analysis).  

5 EXPERIMENTAL RESULTS 

We have implemented ConLock+ (CL+) using both Java and 
C/C++ programs. The Java implementation used ASM 3.2 

[1] to identify all "synchronized" operations of each 
loaded class and generate wrapper code to produce 
events. The C/C++ implementation is based on Pin 2.10 
[37] in Probe mode. ConLock+ used a C/C++ binary pro-
gram to produce events by wrapping the Pthread librar-
ies.  

PCT, MagicScheduler (MS), DeadlockFuzzer (DF), and ASN 
have also been implemented using the same framework. 
Although DF is available through the current release of 
Calfuzzer [25], it works only on Java programs and addi-

inMutex = 0;   
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Thread t1 
acq(m); 
inMutex++; 
acq(n); 
rel(m); 
inMutex--; 
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11 

Thread t2 
acq(n); 
if(inMutex == 0) 
{ acq(m); 
  inMutex++;  
  rel(m) 
  inMutex--; } 

Fig. 7. A deadlock simplified from SQLite (see file 
"os_unix.c") 

Algorithm 5: Find_deadlockSensitiveAccesses 
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Input:p – a program 

Input: c – a cycle as a deadlock 

Acc ≔ , Inst ≔  
for each t, acq, m@s, ls  c do 

│ Let fw and fh be the function containing the deadlocking site 
│      and be the function containing the site where thread t  
│      acquires a lock waited by another thread in c, respectively. 
│ Inst(t) ≔ FindAllPaths(fh, fw)  
│ //all instructions on all paths from fh to fw based on a DFS search 

│ for each ins Inst(t) do 

│ │ if Opcode(ins)  {read, write} then 
│ │ │ Acc(t)  ≔ Acc(t) ∪ {Operand(ins), Opcode(ins), SLine(ins)} 
│ │ end if 
│ end for 

end for 

for any two threads t1, t2 from c do 

│ if  a1=var1, op1, line1  Acc(t1), a2=var2, op2, line2  Acc(t2),  
│ │ such that var1 = var2 ∧ {op1, op2} = {read, write} then 
│ │ │ Print "A potential conditional is found at" a1 and a2! 
│ end if 
end for 

 



 

 

tionally, when we tried to use it on a Java benchmark, 
only the test harness programs worked, and not the li-
brary files (i.e., the program code that contains the dead-
locks) preventing us from profiling any event that could 
detect a deadlock. We managed to reliably implement DF 
using a method based on [28] in conjunction with Calfuzz-

er [25] (including all its optimizations), rather than modi-
fying Calfuzzer. The original PCT tools were unavailable 
for download at the time the experiment was conducted, 
so its scheduling algorithms for deadlocks were imple-
mented according to [10]. We have checked the accuracy 
of our implementations using several programs. A static 
analysis of CL+ for C/C++ programs within LLVM [34] 
was implemented on bitcode.  

5.1 Engineering Challenges 

There are two main challenges to implementing our 
framework. The first one is how memory abstractions can 
be computed in order to identify the same lock or thread, 
as well as the same site for each event across multiple 
executions.  

To address this, we implemented an improved object 
frequency abstraction algorithm [17] to model both 
memory objects and event sites by considering the pro-
gram call stacks. This modeling also maintains a precise 
relationship between a parent thread and its child thread. 
For Java programs, this can easily be done by tracking the 
start() method of a Java Thread or Runnable instance. For 
C/C++ binaries, it becomes more difficult. We had to in-
voke some core functions of the Linux kernel, including 
the clone() and the start_thread() functions to maintain a 
parent-child relationship for the thread creation. Our cur-
rent implementation is correct for single-process pro-
grams.  

The second challenge is precisely determining the state 
of a thread during cycle confirmation. The basic concept 
used to address this is to track a set of functions (e.g., 
sleep(), wait(), and barrier()) that are related to the thread 
scheduling, other than the lock acquisitions and releases. 
This approach is relatively precise and has been adopted 
by PCT [10].  

5.2 Benchmarks 

We have selected a suite of widely-used real-world Java 

and C/C++ programs, including JDBC connector [3], Haw-
kNL [2], SQLite [5], and three versions of the MySQL data-
base server [4]. These benchmarks have been used in pre-
vious deadlock-related experiments [15], [29] and are 
available online. All of our test cases on these benchmarks 
have been taken from either [29] or their Bugzilla reposi-
tories.  

TABLE 3 shows the descriptive statistics for the 
benchmarks used in the experiments. The first three col-
umns show the benchmark name, the size of each bench-
mark in terms of SLOC (1000), and the available bug 
report number, respectively. The fourth column shows 
the functions or operations that can lead to the corre-
sponding deadlock state. The next three columns show 
the number of threads and locks, the total number of cy-
cles, and the cycle ID for each real deadlock, respectively. 
The last column shows the number of events within the 
predictive runs. 

5.3 Experimental Setup 

The experiments were run on a virtual machine installed 
with Ubuntu Linux 10.04, hosted on a Microsoft Windows 
7 system with 3.6 GHz Duo2 processor and 16GB physical 
memory. For each benchmark, MagicLock [15] was used to 
generate the set of cycles, based on the execution traces 
that had been collected. Each cycle was input into each 
technique (i.e., PCT, MS, DF, ASN, and CL+) for each test 
case and was run 100 times [15], [28]. Since PCT shows 
insensitivity to a given cycle, if a benchmark showed the 
presence of k cycles, PCT was run 100  k times.  

As each execution may produce many cycles, each 
technique was run against cycles based on the generation 
order of the events in each cycle: cycles with events that 
appear earlier in an execution were checked first.  

5.4 Results Analysis 

The effectiveness of ConLock+ on both real deadlocks and 
false positives was evaluated by comparing this method 
with other techniques.  

5.4.1 Effectiveness on Real Deadlocks 

TABLE 4 summarizes the overall experimental results. 
The first column shows the cycle ID, followed by the 
number of threads and locks, and the number of con-
straints before and after constraint reduction (i.e., "#Con. 

TABLE 3  
DESCRIPTIVE STATISTICS AND EXECUTION STATISTICS OF THE BENCHMARKS  

Benchmark 
SLOC 

( 1,000) 

Bug  

ID 
Deadlock Description 

# of 
threads  
/ locks 

# of  
cycles 

# of real  
deadlocks 
(cycle ID) 

# of  
events 

JDBC (5.0)  36.3 
14927 Connection.prepareStatement() and Statement.close() 3/131* 10 1 (c1) 5,050 
31136 PreparedStatement.executeQuery() and Connection.close() 3/134* 16 1 (c2) 5,080 
17709 Statement.executeQuery() and Conenction.prepareStatement() 3/134* 18 2 (c3–c4) 5,090 

Hawknl (.6b3) 9.3 n/a Nlshutdown() and nlclose() 3/9 2 1 (c5) 33 
SQLite (3.3.3) 74.0 1672 sqlite3UnixEnterMutex() and sqlite3UnixLeaveMutex() 3/3 2 2 (c6–c7) 16 

MySQL (6.0.4)  1,093.6 
34567 Alter on a temporary table and a non-temporary table 16/205 462 4 (c8–c11) 19,300 

37080 Insert and Truncate on a same table using falcon engine 17/206 183 1 (c12) 15,066 

MySQL (5.5.17) 1,282.7 62614 PUGE BINARY LOG acquires locks in wrong order 22/55,251 8 2 (c13–c14) 444,621 

MySQL (5.1.57) 1,146.7 60682 SHOW INNODB STATUS deadlocks if LOCK_thd_data points to LOCK_open 19/32,964 110 2 (c15–c16) 406,117 

Total 3,642.6 - - 89/89,037 811 16 900,373 

Note: * the # of locks is the # of objects in Java programs. 



 

 

bef./aft.") on each cycle. The next three major columns 
show the confirmation probability, the number of thrash-
ings that occur, and the time taken by each technique to 
confirm each cycle, respectively, including the time ("Na-
tive") of the native executions and the time ("Pred") of 
the predictive runs. Note that the time consumption that 
is reported is the time taken by each technique to success-
fully confirm one corresponding cycle as a real deadlock. 
The entry "-" indicates that the corresponding run has 
timed out after 60 seconds. On cycles c8c16, the normal 
execution time and the time needed by PCT could not be 
precisely collected, because these cycles are from MySQL 
which does not stop when used with the test harness. The 
symbol "-" is used to indicate these cases. The confirma-
tion probability is computed using the formula: sc  tr, 
where sc is the number of runs that successfully confirm 
the cycle, and tr is the total number of confirmation runs. 
Note that there may not be a direct relationship between 
the number of thrashing occurrences and the confirma-
tion probability [28].  

From TABLE 4, we observe that CL+ confirmed 16 cy-
cles as real deadlocks with probabilities ranging from 80% 
to 100%. On cycles c1 to c8, CL+ confirmed each cycle as a 
real deadlock in every run (i.e., with 100% probability); 
whereas other techniques were significantly less effective 
on these cycles. On cycles c9–c11 and c16, all techniques, 
except ASN and CL+, achieved quite low or zero confir-
mation probability. For the remaining four cycles (c12–
c15), all techniques, except ASN on cycle c14, confirmed 
them correctly with high probabilities.  

Overall, PCT, MS, and DF each had very low probabili-
ties of confirming 6 to 11 cycles as real deadlocks, and the 
corresponding cells have been highlighted in TABLE 4. 
ASN and CL+ both have high confirmation probabilities 
on some cycles (i.e., c9–c13, c15–c16), but ASN has a low 
or even zero probability on other cycles (i.e., c7, c14, and 
c16). In contrast, CL+ consistently achieved high probabil-
ities.  

It is worth emphasizing that PCT does not rely on any 
given cycle to detect it as a real deadlock. Hence, the 
comparison with PCT should be considered for reference 
only.  

The column "#Thrashing" shows that MS and DF en-
countered thrashing quite frequently, except on cycles 
c12–c14. In TABLE 4, the cells with values larger than five 
have been highlighted. ASN and CL+ encountered a small 
number of thrashings except on c7, c14, and c16 (on 
which ASN encountered a larger number of thrashings 
while CL+ encountered almost none).  

For CL+, as shown in the third column of TABLE 4, the 
numbers of constraints before reduction was generally 
larger (e.g., >2,000 on MySQL); but were reduced to be-
tween 2 and 6 by our approach. This confirms that reduc-
ing the number of constraints has no negative impact on 
triggering real deadlocks. This observation is also con-
sistent with the results of an empirical study, which show 
that concurrency bugs usually appear on short execution 
paths [36].  

5.4.2 Effectiveness on False Positives 

We also validated the ability of ConLock+ on cycles that 
were false positives: a sample of 131 cycles out of all 795 
cycles were manually inspected. These 131 cycles were 
selected using the following rules: (1) We selected all 40 
(i.e., 9+15+16) remaining cycles on JDBC. (2) On SQLite, 
there was no false positive and, on HawkNL, there was only 
one. (3) On MySQL, we selected all cycles that CL+ 
reported as steering failures (note that once CL+ reports a 
steering failure when confirming a cycle, it starts the 
process of finding all of its akin cycles so that they can be 
excluded). We manually inspected and verified that all of 
these 131 cycles were false positives. Due to time limits, 
we did not manually verify whether or not all of the other 
664 cycles were also false positives.  

TABLE 5 summarizes the mean performance of CL+ in 
handling the 131 inspected cycles, and a comparison with 

TABLE 4 
EXPERIMENTAL RESULTS COMPARING PCT, MAGICSCHEDULER (MS), DEADLOCKFUZZER (DF), ASN, AND CONLOCK

+ (CL+) 

Cycle  
ID 

#Threads 
 / #Locks 

#Con.  
bef. /aft. 

Probability #Thrashing Time (in seconds) 

PCT MS DF ASN CL+ PCT MS DF ASN CL+ Native  Pred PCT MS DF ASN CL+ 

c1 2 2 2 2 0.09 0.41 0.38 1.00 1.00 - 51 60 0 0 0.85 1.03 1.45 1.58 1.71 1.75 1.54 
c2 2 5 2 2 0 0.58 0.49 1.00 1.00 - 39 46 0 0 0.92 1.18 - 1.53 1.48 1.65 1.52 
c3 2 4 4 2 0 0.66 0.6 1.00 1.00 - 31 33 0 0 

0.88 1.06 
- 1.67 1.43 1.67 1.48 

c4 2 4 2 3 0.17 0.61 0.54 1.00 1.00 - 33 37 0 0 1.45 1.42 1.55 1.61 1.51 
c5 2 3 2 2 0.33 1.00 1.00 1.00 1.00 - 0 0 0 0 1.01 1.10 2.41 1.37 1.22 1.82 1.67 
c6 2 2 4 3 0.27 0 0 1.00 1.00 - 100 100 0 0 

2.01 2.16 
2.63 - - 3.08 2.13 

c7 2 2 4 3 0.21 0 0 0 1.00 - 100 100 100 0 2.78 - - - 2.15 
c8 2 3 2,050 3 0 0 0 0.71 1.00 - 90 92 0 0 

- - 

- - - 3.8 1.91 
c9 2 3 2,156 3 0 0.27 0.31 0.77 0.83 - 68 62 13 0 - 2.48 2.01 3.82 3.17 
c10 2 3 2,166 3 0 0 0 0.92 0.80 - 93 86 2 0 - - - 3.56 3.94 
c11 2 3 2,216 3 0 0 0 1.00 0.91 - 97 89 5 2 - - - 2.42 2.65 
c12 2 8 58 2 0 0.71 0.73 0.91 0.88 - 17 14 2 0 - - - 1.07 0.94 1.59 1.21 
c13 2 3 29 6 0 0.91 0.94 0.95 0.96 - 4 2 0 0 

- - 
- 8.96 8.24 9.12 9.03 

c14 3 3 37 6 0 0.87 0.93 0.21 0.99 - 8 2 73 0 - 9.17 8.43 9.21 9.12 
c15 2 4 68 3 0 0.64 0.62 0.86 0.87 - 31 30 6 0 

- - 
- 5.62 5.19 8.07 6.21 

c16 2 4 70 4 0 0 0 0 0.89 - 88 82 95 2 - - - - 6.27 

Highlighted cells are those with a value of zero under the column "Probability" and with values larger than five under the column "# of thrashings". 



 

 

the other methods. Since all of the other techniques do not 
aim to handle false positives, the mean data for these 
methods is shown under the sub-column "others". The 
third column shows the average number of false positives 
that we manually verified. The fourth major column 
shows the mean number of constraints before and after 
reduction ("Avg. #cons. bef./aft."). The last two col-
umns show the mean number of thrashings and the mean 
time for each technique to perform confirmation runs, 
respectively.  

TABLE 5 shows that in order to confirm cycles that 
were false positives, all of the other techniques (i.e., MS, 
DF, and ASN) were very likely to result in thrashing in 
the experiment; whereas CL+ only encountered a small 
number of thrashing occurrences (e.g., 6 on MySQL). CL+ 
completed these confirmations in 11.12 seconds, whereas 
other methods could not complete until timeout (60 sec-
onds) fired.  

Our findings: all of the false positives that we inspect-
ed can be classified into three types. The first type is 
caused by the happened-before relationship (e.g., all false 
positives from JDBC). The second type involves condi-
tional variables, such that it would not be possible for all 
events in the cycles to be executed concurrently. Condi-
tional variables may be involved even for real deadlocks 
(see Section 5.4.4). The last type is from MySQL, which 
uses a thread pool to maintain a set of threads, that only 
become active on SQL connections. The cycles involve 
two threads (one from the pool and the other not from the 
pool) that cannot be executed concurrently.  

5.4.3  Performance 

It can be seen from the column entitled "Time" in TABLE 
4 that the runtime overheads incurred by MS, DF, ASN, 
and CL+ for successful confirmations are quite close to 
each other, and they all have an absolute time require-
ment that is within a practical range.  

TABLE 5 shows that CL+ can terminate a confirmation 
run when a false positive is encountered. It also shows 
that CL+ can report a steering failure in this case, except 
for six confirmation runs where a thrashing has occurred. 
We have experimented with configuring CL+ using the 
original set of constraints without reduction. However, 
for large-scale programs (i.e., MySQL), this configuration 

caused a significant slowdown which made it infeasible 
to schedule executions.  

5.4.4 Improvements of ConLock+
 over ConLock 

ConLock+ offers three main improvements compared with 
its predecessor ConLock [16].  

(1) On Real Deadlocks. The first improvement is the 
reduction of constraints based on a generalized set of 
three properties. TABLE 6 shows the result of reducing 
the constraints and the confirmation probability on real 
deadlocks from MySQL. Since there is no scalability issue 
for other benchmarks, they are not shown as all data re-
mains unchanged.  

In TABLE 6, the second major column shows the num-
ber of constraints, both before ("Total") and after reduc-
tion. For the number of constraints after reduction, we 
show both data without ("-sp") and with ("+sp") schedul-
ing points for CL. The third major column shows the 
probability of deadlock confirmations as well as the im-
provement ("∆") of CL+ over CL.  

TABLE 6 shows that ConLock+ had a higher reduction 
in the number of constraints compared to CL, without 
scheduling points. With scheduling points, CL+ also re-
duced the number of constraints to almost the same level 
(i.e., on cycles c8–c14) or even a lower level (i.e., on cy-
cles c15–c16).  

For the probabilities, there was an improvement of 4% 
to 18% except on cycles c8 and c12. On c8, both CL and 
CL+ had a 100% confirmation probability. On c12, the 
probability was slightly decreased by 4%.  

(2) On All Cycles. The second improvement of CL+ is 
its ability to skip akin cycles when the confirmation run of 
a given cycle encounters a steering failure. This reduces 
the total number of confirmation runs and the total con-
firmation time. We show the experimental results in TA-
BLE 7.  

The third major column shows the number of groups 
of akin cycles and the time taken for detection of these 
groups by CL+. A group of akin cycles is generated as 
follows: during confirmation of a cycle c, if a steering fail-
ure is reported, all akin cycles of cycle c are collected as a 
group. The last two major columns show the number of 
runs taken by both CL and CL+ to confirm all cycles and 
the corresponding total time for each benchmark, respec-
tively. The reductions in the number of confirmation runs 

TABLE 6 
IMPROVEMENT OF CONLOCK

+ ON REAL DEADLOCKS FROM MYSQL 
  

Cycle  
ID 

# constraints 
Probability 

Total 
After Reduction 

CL (-sp) CL (+sp) CL+ CL CL+ ∆ 

c8 2,050 1,026 2 3 1.00 1.00 0.00 
c9 2,156 1,079 2 3 0.73 0.83 0.10 
c10 2,166 1,084 3 3 0.74 0.8 0.06 
c11 2,216 1,109 6 3 0.83 0.91 0.08 
c12 58 30 2 2 0.92 0.88 -0.04 
c13 29 16 4 6 0.91 0.96 0.05 
c14 37 20 4 6 0.93 0.99 0.06 
c15 68 35 32 3 0.78 0.87 0.09 
c16 70 36 33 4 0.71 0.89 0.18 

 

TABLE 5 
PERFORMANCE OF CONLOCK+ ON FALSE POSITIVES 

Benchmark 
Bug  
ID 

# false 
positives  
inspected 

Avg. 
#cons.  

bef./aft. 

Avg. #  
thrashing 

Avg. Time  
(in seconds) 

Others CL+ CL+ 

JDBC 14927 9 592 2 100 0 1.57 
JDBC 31136 15 479 3 100 0 1.63 
JDBC 17709 16 684 3 100 0 1.67 
HawkNL  n/a 1 2 2 100 0 1.83 
MySQL 34567 46 279 5 93 2 6.85 
MySQL 37080 38 158 4 91 0 5.01 
MySQL 62614 1 23 5 96 1 11.12 
MySQL 60628 5 101 4 98 3 6.96 

Note: there is no false warning on SQLite. "Others" includes MS, DF, and 
ASN. PCT is excluded due to its insensitivity to a given cycle. No time 
data is available on "Others" since these methods do not handle false posi-
tives. 



 

 

and in the total confirmation time are also shown in the 
last two minor columns ("∆"). Note that: (1) both CL and 
CL+, are configured to run a cycle twice2 to collect the to-
tal time; (2) on all versions of MySQL, two additional sec-
onds were allowed to restore database files to be the same 
on all runs (otherwise, our experience has shown that 
previous runs may produce bad data that could affect 
subsequent runs).  

As CL has to confirm each cycle at least once, the min-
imum number of runs for each benchmark is the actual 
total number of cycles. However, since CL+ can avoid con-
firmation runs on akin cycles, it is shown in TABLE 7 that 
CL+ reduced the number of confirmation runs by between 
62.5% and 93.6%, with the exception of HawkNL and 
SQLite (on which, only four cycles were reported). This 
can significantly improve the scalability for handling 
large-scale programs that may produce a larger number 
of cycles containing few real deadlocks.  

On the total time, there was also a significant reduction 
by 60.91% to 93.63%, with the exception of HawkNL and 
SQLite which both incurred a slightly higher time.  

(3) On Detection of Deadlock Sensitive Accesses. TA-
BLE 8 shows the ability of CL+ to detect conditionals that 
may also be involved in confirmed deadlocks. The third 
column shows whether any deadlock sensitive accesses 
were found, and the fourth column shows the correctness. 
The last column shows a piece of simplified code indicat-
ing how the deadlock sensitive accesses that have been 
found are related to each deadlock.  

Note that, in TABLE 8, we only show the code for each 
unique deadlock, rather than each cycle. The reason for 
this is that each unique deadlock may produce two or 
more similar cycles; however, these cycles share a set of 

 

2 We chose to execute a program against each cycle twice, in case a real 
deadlock was not triggered by the first execution. As shown in TABLE 4, 
the probability of triggering a deadlock over two executions is at least 

1 – (1 − 0.80)2 = 0.96, which is sufficient for our experiment. By increas-
ing the number of executions per cycle, the total time consumed by Con-

lock+ is decreased compared to Conlock. Assuming there are a total of k 
cycles containing h real deadlocks, and the triggering time for each cycle 

is 𝑡𝑖𝑚𝑒𝑖 (1  i  k), then if each cycle is configured to run x times, the ratio 
between the total time using Conlock+ to that using Conlock is 

∑ (𝑥×𝑡𝑖𝑚𝑒𝑖)ℎ
𝑖=1 +𝑡𝑖𝑚𝑒𝑎𝑘𝑖𝑛

∑ (𝑥×𝑡𝑖𝑚𝑒𝑖)𝑘
𝑖=1

=
∑ 𝑡𝑖𝑚𝑒𝑖

ℎ
𝑖=1 +

𝑡𝑖𝑚𝑒𝑎𝑘𝑖𝑛
𝑥

∑ 𝑡𝑖𝑚𝑒𝑖
𝑘
𝑖=1

, which decreases as x increases, 

where 𝑡𝑖𝑚𝑒𝑎𝑘𝑖𝑛 is the total time to find akin cycles and is a constant. 

similar static code.  
From TABLE 8, we can observe that five out of the nine 

unique deadlocks involve deadlock sensitive accesses, 
which were all found by ConLock+. From the simplified 

code, it is easy to understand how a deadlock occurs. For 
the remaining four unique deadlocks (i.e., BugIDs: 14927, 
17709, 34567, and 62614), no deadlock sensitive accesses 
are involved, which has been manually confirmed. In de-
tail, two of these four deadlocks (BugIDs: 14927 and 
17709) involve complicated lock acquisitions and the re-
maining two deadlocks (BugIDs: 34557 and 62614) in-
volve a thread that consecutively acquires two locks. We 
also note this point in TABLE 8.  

As well as identifying the deadlock sensitive accesses 
that are shown in TABLE 8, ConLock+ also reported several 
false positives (i.e., accesses to variables from two threads 
unrelated to deadlock occurrences). For example, on 
MySQL (BugID=37080), ConLock+ also reported two other 
variables named section and sectionId. These two variables 
are defined as method-local variables, but are used as 
handlers of two shared data structures. However, dead-
locks do not occur by accessing these variables, so it is 
suggested that these variables could be dynamically 
pruned. We leave this as future work.  

TABLE 7 
IMPROVEMENT OF CONLOCK

+ ON ALL CYCLES  

Benchmark Bug ID 
Akin cycles The minimal # runs Total Time 

# of groups Time CL CL+ ∆ CL CL+ ∆ 

JDBC 14927 2 0.06s 10 3 -70.0% 35.4 9.7 -72.60% 
JDBC 31136 4 0.93s 16 3 -81.3% 58.3 17.7 -69.64% 
JDBC 17709 3 0.11s 18 5 -72.2% 65.2 17.2 -73.62% 
HawkNL n/a 0 0.01s 2 2 0.0% 7.3 7.5 +2.74% 
SQLite 1672 0 0.01s 2 2 0.0% 8.3 8.4 +1.20% 
MySQL 34567 46 5.06s 462 50 -89.2% 7,399.6 852.1 -88.48% 
MySQL 37080 38 1.32s 183 39 -78.7% 2,186.1 451.2 -79.36% 
MySQL 62614 1 0.01s 8 3 -62.5% 181.1 70.8 -60.91% 
MySQL 60682 5 0.10s 110 7 -93.6% 1,763.3 112.3 -93.63% 

Two runs for each cycle. Two seconds (exactly) are allowed for workspace initialization for each cycle on MySQL. All time data is shown in seconds by 

default. 

TABLE 8  
DETECTION OF DEADLOCK SENSITIVE ACCESSES BY CONLOCK

+ 

Bench-
mark 

Bug  
ID 

F
o

u
n

d
 

C
o

rr
e

ct
? 

Simplified Code 
(only showing lock acquisitions 
 and deadlock sensitive accesses) 

JDBC 14927 No  Two complicated lock acquisitions. 

JDBC 31136 Yes  
T1: acq(m);if(isClosed) return; else acq(n); 
T2: acq(n);if(isClosed) return; else acq(m);           
   isClosed=true; 

JDBC 17709 No  Two complicated lock acquisitions. 

Hawknl n/a Yes  
T1: if(valid(socket)){acq(m); acq(n);} 
T2: acq(n);if(socket){acq(m); socket=NULL;} 

SQLite 1672 Yes  See Fig. 7. 

MySQL 34567 No  A thread acquires two locks consecutively.  

MySQL 37080 Yes  
T1: acq(m); if(deleting) return; acq(n); 
T2: deleting=true; acq(n); acq(m); 

MySQL 62614 No  A thread acquires three locks consecutively. 

MySQL 60682 Yes  
T1: acq(m); if(killed) goto _return_;acq(n); 
T2: acq(n); killed=true; acq(k); 
T3: acq(k); acq(m); 

  



 

 

5.5 Limitations 

Our implementation is based on binary instrumentation. 
An implementation of ConLock+ using symbolic execution 
[11] might produce more effective results (e.g., higher 
confirmation probability) as the constraints can be 
determined more precisely. However, symbolic execution 
is still not scalable for handling large-scale programs. As 
noted in [18]: "the largest programs that can be symbolically 
executed today are on the order of thousands of lines of code". In 
our benchmarks, MySQL has millions of lines of source 
code (i.e., SLOC), which is beyond the ability of state-of-
the-art symbolic execution engines.  

We have not manually validated all identified cycles 
on MySQL due to time and effort constraints. The probabil-
ities, the ratios of thrashing, and the time taken by each of 
the techniques may be different if different numbers of 
runs, different benchmarks, or different tool implementa-
tions were used to conduct the experiment.  

Another limitation is that ConLock+ reports a steering 
failure to indicate that the cycle that is being confirmed is 
a (dynamic) false positive. However, it is possible that, 
the corresponding cycle as well as the inferred akin cycles 
(if any) might be a real deadlock if different inputs were 
given to the program. This limitation is actually suffered 
by many dynamic techniques that analyze concurrency 
bugs (e.g., data race detection [22]). One possible way to 
overcome this limitation is still to adopt symbolic 
execution to search for alternative inputs [20]. Again, 
symbolic execution is currently not scalable for large-scale 
programs.  

6 RELATED WORK 

6.1 Deadlock Detection  

Many previous techniques [6], [13], [15], [19], [26], [40], 
[47], [51] have aimed to predict deadlocks through static 
or dynamic analyses. However, they all suffer from re-
porting false positives and it is important that real dead-
locks can be identified from the set that is reported. 
Kahlon et al. [31] proposed a static theoretical model for 
analyzing concurrency bugs with well-nested lock acqui-
sitions and releases. However, there exists a huge gap 
between static models and modern programming lan-
guages [23]. Hence, unlike ConLock+, their model cannot 
handle the occurrence of thrashing. Marino et al. [39] 
proposed a static approach for detecting deadlocks in 
object-oriented programs using data-centric synchroniza-
tions. However, their approach needs manual annotations 
to identify the ordering between atomic-sets. ConLock+ is 
an automated dynamic approach.  

We have intensively reviewed the potential of several 
active schedulers (i.e., DeadlockFuzzer, MagicScheduler, and 
ASN) to trigger deadlocks, and compared these methods 
with our ConLock+ technique. WOLF [45] also predicts 
deadlocks from execution traces and aims to improve the 
probability of triggering real deadlock occurrences. How-
ever, WOLF skips cycles based on a relaxed happened-
before relationship, which may also skip real deadlocks 
[28] before any confirmation is performed. In contrast, 
ConLock+ either schedules a program to confirm each cycle 

or skips only akin cycles. All of these active scheduling 
techniques suffer from the limitations of being unable to 
handle false positives. However, ConLock+ can effectively 
handle false positives through identification of steering 
failures.  

Model checking (e.g., Java Path Finder (JPF)) has the 
potential to explore all possible schedules from a single 
input. These schedules can be integrated with a deadlock 
detector to find deadlocks. Synchronization coverage 
techniques [24], [44], [53] may also explore more sched-
ules using a single input to detect deadlocks. However, 
these techniques are unable to handle large-scale multi-
threaded programs (e.g., MySQL) even using symbolic exe-
cution [18].  

6.2 Deadlock Prevention and Healing 

Dimmunix [29], [30] prevents the re-occurrence of each 
deadlock that has previously occurred through online 
monitoring executions that are similar to the previous 
executions that incurred deadlocks. Gadara [50] statically 
predicts deadlocks in a program and inserts correspond-
ing deadlock avoidance code at the gate position of each 
predicted deadlock to prevent the deadlock occurrence. 
However, due to the imprecision of static analysis, it may 
not only miss real deadlocks but also mistakenly insert 
code to prevent false positives, reducing the parallelism 
of multithreaded program executions. Nir-Buchbinder et 
al. [41] use an execution serialization strategy for dead-
lock healing. While both Dimmunix and Gadara suffer from 
false positives, deadlock healing may even introduce new 
deadlocks [41].  

6.3 Deadlock Synthesis 

ESD [54] synthesizes an execution using a core dump of a 
previous execution that contained a deadlock occurrence. 
PENELOPE [48] also synthesizes an execution and uses a 
scheduling strategy similar to DeadlockFuzzer and Mag-

icScheduler to detect real atomicity violations. Constraints 
are not used to avoid thrashing. However, it may not be 
feasible to execute a synthesized program, due to a lack of 
concurrent test cases. ConTeGe [43] automatically gener-
ates concurrent test suites to detect concurrency bugs. 
OMEN [46] further synthesizes program executions for 
deadlock detection. Sherlock [20] actively infers test cases 
that could trigger deadlocks (predicted under different 
test cases) through concolic execution [49]. ConLock+ has 
the ability to take any cycle as an input, regardless of 
whether it is a deadlock or not.  

6.4 Others 

ConTest [21] and CTrigger [42] inject noise into a run to 
increase the probability of triggering concurrency bugs. 
Since ConLock+ is not a completely randomized scheduler, 
it does not need to adopt such a strategy. It uses con-
straints to detect false positives.  

Replay techniques (e.g., [7]) can reproduce runs that 
contain concurrency bugs. However, they are unable to 
turn a run containing a suggested cycle into a run con-
taining a real deadlock.  



 

 

7 CONCLUSION  

ConLock+ has been proposed to actively check a set of cy-
cles predicted from an execution trace. ConLock+ generates 
constraints for predicted cycles and schedules confirma-
tion runs in order to enforce constraints. It tries to trigger 
real deadlock occurrences or report steering failures. If a 
real deadlock is triggered, it performs a static analysis to 
identify possible deadlock sensitive accesses that may 
also contribute to deadlock occurrences. If a steering fail-
ure is reported, it avoids further checking of akin cycles in 
order to reduce the total time, since confirmation of these 
cycles would also incur steering failures. The experi-
mental results have shown that ConLock+ is both effective 
and efficient compared with existing techniques for trig-
gering real deadlocks and handling false positives.  
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