
Taming Deadlocks in Multithreaded Programs

Yan Cai

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

ycai.mail@gmail.com

W.K. Chan

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cityu.edu.hk

Y.T. Yu

Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

csytyu@cityu.edu.hk

Abstract—Many real-world multithreaded programs contain

deadlock bugs. These bugs should be detected and corrected.

Many existing detection strategies are not consistently scalable to

handle large-scale applications. Many existing dynamic confir-

mation strategies may not reveal detectable deadlocks with high

probability. And many existing runtime deadlock-tolerant strat-

egies may incur high runtime overhead and may not prevent the

same deadlock from re-occurring. This paper presents the cur-

rent progress of our project on dynamic deadlock detection, con-

firmation, and resolution. It also describes a test harness frame-

work developed to support our proposed approach.

Keywords—deadlock; healing; detection; multithreaded programs

I. INTRODUCTION

Multithreaded programs may contain deadlock bugs. De-
tecting these bugs is critical in improving the dependability of
these programs. Some deadlock bugs however may have not
been fixed before the programs are used. Hence, it is necessary
to develop a runtime resolution scheme to handle programs that
may trigger deadlocks. This paper reports our progress in for-
mulating and engineering a framework for dynamic detection,
confirmation, and resolution of deadlock bugs.

Our framework includes components for lock trace reduc-
tion, object abstraction, deadlock detection, dynamic deadlock
confirmation, and deadlock resolution. These components are
briefly presented from Section II to Section VI, respectively. In
Section VII, we present the current progress in the test harness
implementation of our framework. Section VIII discusses the
related work and our work. Section IX concludes the paper.

II. LOCK TRACE REDUCTION

A dynamic deadlock detection technique (Section IV) ana-
lyzes an execution trace to find potential deadlock scenarios.
We have developed LOFT [4] to clean up certain locking op-
eration records in such a trace (e.g., to alleviate data race detec-
tion [3]). A slight adaption of LOFT (by associating the execu-
tion contexts of the removed locking operations to the remain-
ing lock operations) is applicable to the trace reduction for dy-
namic deadlock detection.

III. OBJECT ABSTRACTION

Effective deadlock confirmation relies on an effective mod-
eling of the same object across multiple execution traces. We
observe that in general, in an execution trace, the same pro-
gram statement associating with the same call stack may be
exercised multiple times (e.g., in a loop), and yet only some of
them may be involved in a deadlock. On top of an existing
stack-based object abstraction strategy [10][11], we have for-
mulated the Object Frequency Abstraction (OFA) [6], which
considers different occurrence counts of the same object type.
This enhancement is to reduce the potential mismatches among
different objects in the same trace or across multiple traces.

IV. DYNAMIC DETECTION

In an execution trace of a real-world program, only a small
fraction of all lock dependencies [5] may be involved in cyclic
chains; otherwise, the program may contain many deadlock
bugs. We have proposed Magiclock [5] to firstly reduce the set
of lock dependencies by removing irrelevant locks and then
searching over the reduced set of lock dependencies to detect
cyclic chains using a partition-based strategy. TABLE I shows
that Magiclock can be more promising than MulticoreSDK [13]
and iGoodLock [10] in analyzing large-scale benchmarks. Fig. 1
also depicts the relationship between LOFT and Magiclock.

V. DYNAMIC CONFIRMATION

The component for deadlock confirmation aims at trigger-
ing deadlocks based on the detected cyclic chains. A prelimi-
nary version has been formulated as the MagicScheduler tool,

which is a part of MagicFuzzer [5]. MagicScheduler is a random-
ized rescheduling approach. It uses the cyclic chains annotated
with object abstractions as inputs, and monitors the trace until
an event matching with some object abstraction of the given
cyclic chains is detected. It then discards other cyclic chains
and focuses on triggering deadlocks for the matched or partial-
ly matched cyclic chain(s).

l1

l2l3

l6

l4

l7

l5

t1t1

t2

t3

t3

t3

t3

t3 t3

t3

l1

l2

t1

t2

Partition-based

deadlock

potential

detection

Irrelevant lock

dependency

removal

Online

reduced lock

trace

generation

Adapted LOFT

Magiclock

Convert into the

object

abstraction form

Fig. 1. LOFT and Magiclock

TABLE I. Memory and Time Comparisons among iGoodlock, Multi-
coreSDK (MSDK), and Magiclock (taken from [5])

Benchmark
Memory (MB) Time in second (s)

iGoodlock MSDK Magiclock iGoodlock MSDK Magiclock

SQLite 1.05 1.05 1.05 0.002 0.003 0.002

MySQL >2800 1.15 1.05 >125 398 1.73

Chromium >2800 >48.2 8.01 >6420 >3600 102
Firefox >2800 122.41 4.14 >640 7.43 3.06

OpenOffice 245.20 >48.4 8.01 6360 >3600 0.67

Thunderbird 298.83 40.09 4.15 973 4.75 1.18

wkchan
Text Box
To appear in The Symposium on Engineering Test Harness 2013 co-located with The 13th International Conference on Quality Software (QSIC 2013)

VI. DYNAMIC RESOLUTION

Deadlocks may also be resolved at runtime. In this catego-
ry, existing approaches [11][14][15] often aim to serialize the
execution of the program portion involved in deadlocks. To
ease our presentation, we refer to a lock involved in a deadlock
as a wait-lock, and a thread involved in the same deadlock as a
wait-thread. We have not constructed this component.

We plan to actively assign the corresponding wait-lock of a
wait-thread to the wait-thread when the wait-thread acquires
any wait-lock of a deadlock. We conjecture that this active lock
assignment strategy resolves the circular waiting condition for
deadlock, which is also illustrated as a Java program shown in
Fig. 2(a) because many programming languages (e.g., Java and
C#) themselves support reentrant locks. This feature allows the
same thread to successfully acquire the same lock that the
thread is holding. Hence, a pre-acquisition of a wait-lock by a
wait-thread is to avoid blocking the thread’s acquisition of the
wait-lock at the deadlocking site.
Our strategy suggests two possible solutions for the scenario in
Fig. 2(a). They are the pre-acquisitions of the locks B and A by
the threads t1 and t2, respectively, as shown in Fig. 2(b) and
Fig. 2(c). For example, for the solution in Fig. 2(b), during
execution, two threads will compete for the lock acquisition on
the lock B. After one of the two threads firstly acquires the lock

B, another thread has to wait until one thread exits from the

execution protected by the lock B. For the thread t1, though it

needs to acquire the lock B twice, the deadlock is prevented.

We note that even though the thread t1 has a lock order from A

to (the second acquisition of) B which still violates the lock
order in the thread t2, the order is protected by its first one from
(the first acquisition of) B to A which is the same as that of the
thread t1. (The gate-lock resolution strategy proposed in [14] is
inapplicable if there is a pair of wait()-notify() statements
between t1 and t2 within the inserted gate-lock block.)

Several technical challenges still exist: A pre-acquisition of
a lock by a thread may alter the original lock acquisition order
of the program, introducing new deadlocks. We plan to analyze
the lock dependency set to determine whether some potential
solutions are undesirable and avoid generating them. The in-
volved static or dynamic analysis on such a set could be impre-
cise. We also plan to devise a novel dynamic lock retreat strat-
egy to release the actively pre-acquired wait-lock from a wait-
thread to resolve “thrashing” [10]. However, it may not be
generally feasible to pre-acquire a wait-lock at the boxed posi-
tions as illustrated by Fig. 2. Multiple deadlocks may interfere
with one another. A further investigation is necessary.

A deadlock resolution strategy could be applied to either
binary or source code of the program. It depends on the testing
harness support which needs to be further studied.

VII. ENGINEERING THE TEST HARNESS

We are building the test harness implementation of our
framework. To handle C/C++ programs on the Linux platform,
we build the implementation on top of the Pin tool [12] using
its Probe mode. The implementation also maintains the rela-
tionship between parent thread and child thread (when a new
thread is created) to support dynamic analysis. This infor-
mation is useful for techniques that need to track the happens-
before relationship between threads. For instance, in data race
detection, the vector clock of a parent thread should be known

to a child thread right after the parent thread creates the child
thread before the execution of the latter thread [4]. Similarly,
for deadlock detection, one can use such happens-before rela-
tionship information to eliminate false warnings [1].

The implementation of a Pthread in a Linux system is to
use the system call clone to create a new thread and then in-
voke the system call start_thread to start the newly created
thread, where clone is called in the parent thread and

start_thread is called in the child thread. An argument of
either function is the memory address of the newly created
thread. Our testing harness implementation thus produces two
customized events (preCloneThread and preStartThread),
respectively whenever it monitors the occurrences of these two
system calls. It then uses the memory address of the child
thread (child_addr) to relate these two events to model the
parent-child relationships by checking the values in the
memory address before and after a child is created.

Our test harness implementation also computes the object
abstraction because Pin offers no API to index the same
thread/lock across multiple execution traces. Moreover, it
computes an object abstraction for each thread and for each
lock whenever the thread or the lock is created. It furthermore
computes a call stack and a counter (hash value) mapped from
each creation event.

The algorithm to compute the required call stack for an ob-
ject abstraction is shown in Algorithm 1. Given a program sp

(stack top pointer) and ebp (stack base pointer), the algorithm
iteratively searches for the valid call functions (lines 3 and 12–
14), computes their relative addresses (lines 7–9), and saves
them into the given vector instance (line 10). The depth argu-
ment is used to limit the length of the required stack (line 4).

Fig. 3 shows an example program containing one resource
deadlock (at lines 5, 6 and 11, 12). When executing this pro-
gram, our test harness implementation generates two log files

Thread t1: sync(A){ sync(B){…}}
Thread t2: sync(B){ sync(A){…}}

(a) A simple deadlock code illustration

Thread t1: sync(B){ sync(A){ sync (B){…}}}
Thread t2: sync (B){ sync(A){}}

(b) Pre-acquisition of the lock B by thread t1

Thread t1: sync(A){ sync(B){…}}
Thread t2: sync(A){ sync(B){ sync(A){…}}}

(c) Pre-acquisition of the lock A by the thread t2

Fig. 2 Two potential solutions in (b) and (c) may handle the deadlocking

scenario illustrated in (a). The dynamically inserted codes are boxed.

Algorithm 1: Call Stack Computation

1

2
3
4

5
6
7
8
9
10
11
12
13
14
15
16

void getCallStack
(uint sp, uint ebp, int depth, vector<uint>& st){
 uint eip, insPtr; RTN rtn; int cnt = 0;
 insPtr = (uint) *(uint*) sp;
 while (cnt++ < depth && sp <= ebp) {

 rtn = RTN_FindByAddress(insPtr);
 if (RTN_Valid(rtn)) {

 uint addrImgLow =
 IMG_LowAddress(SEC_Img(RTN_Sec(rtn)));

 uint rtnAddr = RTN_Address(rtn);
 st.push_back(rtnAddr - addrImgLow);
 } else break; //end of if-else
 eip = ebp + sizeof(uint*);
 insPtr = (uint) *(uint*) eip;
 ebp = (uint) *(uint*) ebp;
 }//end of while
}

(one for each thread) as shown in TABLE II, in which each
line in a log file has the following format: {lockID,

call_stack, counter}+, which can be used to derive a partic-
ular lock dependency [5]. For simplicity, we do not show those
lock dependencies containing an empty lockset.

The test harness (which implements Magiclock) reads these
files and detects one cyclic lock dependency chain from the
trace, and TABLE II shows the result 1, lock1, {lock2}, 2,

lock2, {lock1}, whose abstraction is shown in Fig. 2 (a).
Consider the example illustrated in Fig. 2 (a). The test har-

ness implementation (which implements MagicScheduler) firstly
reads this cyclic dependency chain, and then schedules the
thread execution of the example program over the same input.
In such a confirmation execution, when the thread child1 is
about to execute the statement at line 6 or the thread child2 is
about to execute the statement at line 12, the test harness sus-
pends the execution of every thread, and check whether a real
deadlock has been triggered. As such, the cyclic dependency
chain is confirmed as a real deadlock and is reported to stand-
ard output by the test harness implementation.

Our current framework implementation instruments the
program under test using Pin [12] to generate lock traces. Then
it analyzes each lock trace to find deadlock potentials. For each
reported potential deadlock, our implementation executes the
given program with the same test case and confirms the dead-
lock potential if it is a real deadlock. Our current implementa-
tion has not been able to resolve the detected deadlocks yet.

In the rest of this section, we demonstrate how to use the
current test harness to detect and confirm real deadlocks. They
have been packaged as the MagicFuzzer tool. The tool can be
invoked in three phases, which we refer to as Phase I, Phase II,
and Phase III, respectively, in this section.

In the sequel, we suppose that a tester has installed the Pin
framework and placed it at the directory denoted by
PIN_HOME. (We have tested this tool on Pin 2.10 (45467) on

a 32-bit Linux system.) The tool can be downloaded from the
URL: http://www.cs.cityu.edu.hk/~51948163/magicfuzzer/

To invoke Phase I of MagicFuzzer, the tester types the fol-
lowing command, where traceDIR is the name of the folder
which keeps the execution trace(s) generated by MagicFuzzer.

To invoke Phase II, the tester should execute Magiclock:

If the execution generated by Phase I contains any cyclic
dependency chain, the tester will find these chains in the file:
traceDIR/Deadlock.dlk (which is a text file).

The tester can further invoke Phase III (i.e., MagicScheduler)
of MagicFuzzer to confirm whether any cyclic chain may be
manifested into a real deadlock by the following command:

If a cyclic dependency chain is confirmed as a real dead-
lock, MagicFuzzer reports the deadlock to the standard output.

Fig. 4 shows a sequence of images and related operations
of the test harness implementation that illustrate the actual op-
erations of the implementation. The benchmark that we used in
the demonstration is hawknl, which was taken from the follow-
ing site: http://code.google.com/p/dimmunix/.

The first image illustrates Phase I and the command is
highlighted in bold. Similarly, the second image illustrates
Phase II, and the last image illustrates Phase III. The third im-
age shows the result of identifying the parent-child relation-
ships among threads, as discussed in Section II of this paper.
The fourth image shows a potential deadlock.

VIII. DISCUSSION AND RELATED WORK

Several kinds of object abstractions have been proposed in
the literature, including the k-object-sensitivity abstract [10],
and call stack based abstraction [11], for example.

MulticoreSDK [13] and iGoodlock [10] have been com-
pared to Magiclock [5] as shown in TABLE I of this paper for
dynamic deadlock detection.

In [2], an experiment was conducted using PCT, a purely
randomized scheduler tool which is unaware of bug types. It
shows that the probability of detecting deadlocks by PCT can
be an order of magnitude lower than 1%, even though PCT

suffers from no thrashing. ConTest [7] simply injects arbitrary
timeouts to alter the thread schedule with the intent to trigger
deadlocks only with empirical data to back up the claim on
effectiveness. DeadlockFuzzer [10] was shown to be effective
in triggering deadlock on small to medium-scale benchmarks.

We have reviewed how we use Pin to perform dynamic
deadlock analysis (including trace generation, detection, con-
firmation, and resolution) for C/C++ multithreaded programs.
For Java programs, there are other tools, such as Calfuzzer [9]

and RoadRunner [8]. Unlike Pin [12], these tools instrument the
whole Java program, producing many irrelevant events.

Nir-Buchbinder et al. [14] proposed inserting a gate lock
right before each thread involved in a deadlock acquires its
problematic lock. Nonetheless, their method cannot handle
some non-trivial resource deadlocks, and may introduce new
deadlocks due to gate lock insertions. Deadlock Immunity [11]

PIN_HOME/pin –t ./MagicFuzzer.so traceDIR --

Your_Program Program_Arguments

./Magiclock traceDIR

PIN_HOME/pin –t ./MagicScheduler.so traceDIR --

Your_Program Program_Arguments

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

 pthread_mutex_t lock1, lock2;

 pthread_t child1, child2;

 void* child(void* arg){

 if(1 == (int)arg){

 pthread_mutex_lock(&lock1);

 pthread_mutex_lock(&lock2);

 pthread_mutex_unlock(&lock2);

 pthread_mutex_unlock(&lock1);

 } else {

 sleep(1000);

 pthread_mutex_lock(&lock2);

 pthread_mutex_lock(&lock1);

 pthread_mutex_unlock(&lock1);

 pthread_mutex_unlock(&lock2);

 }

 }

 int main (void) {

 pthread_mutex_init(&lock1, NULL);

 pthread_mutex_init(&lock2, NULL);

 pthread_create(&child1,NULL,child,(void*)1);

 pthread_create(&child2,NULL,child,(void*)2);

 pthread_join(child2, NULL);

 pthread_join(child1, NULL);

 return 0;

}

Fig. 3. An example program with a real deadlock

TABLE II. A fragment of the execution trace for the code shown in Fig. 3.
We assign an identical integer to each thread and each lock and there are
two map files from an integer mapped to an abstraction of a thread or a
lock. Here we have omitted these two map files due to page limitation.

thread 1.log //child1 thread 2.log //child2

1, <stack1, 1>, 2, <stack1, 2> 1, <stack2, 1>, 2, <stack2, 2>

http://www.cs.cityu.edu.hk/~51948163/magicfuzzer/
http://code.google.com/p/dimmunix/

prevented the second occurrence of a deadlock by recording
the pattern of its first occurrence and matching the pattern in
later executions. Such a pattern matching strategy is imprecise,
failing to avoid deadlocks from re-occurrence even though it
suffers from a light slowdown factor (e.g., 15% [11]). Gadara

[15] detects potential deadlocks offline. At runtime, any
matched cycle along the run will trigger a serialization of the
corresponding deadlock potential code; however, many such
occurrences in the same run may prolong the run significantly.

IX. CONCLUSION

In this paper, we have reviewed our current progress in
building a test harness for dynamic deadlock detection, confir-
mation, and resolution. We have described the techniques for
individual components of the test harness, and discussed some
standard elements across similar test harness implementations.
These standard elements include maintaining the relationship
between parent thread and child thread and obtaining the call
stack and using it for further computation. We have also de-
scribed how to use our current harness tool.

ACKNOWLEDGMENT

This work is supported in part by Strategic Research Grant
(project no. 7002873) from City University of Hong Kong and
General Research Fund (project no. 111410) and Early Career
Scheme (project no. 123512) from Hong Kong Research
Grants Council.

REFERENCES

[1] S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-

threaded programs. In Proc. HVC'05, 208–223, 2005.
[2] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A

randomized scheduler with probabilistic guarantees of finding bugs. In
Proc. ASPLOS’10, 167–178, 2010.

[3] Y. Cai and W.K. Chan. LOFT: Redundant synchronization event
removal for data race detection. In Proc. ISSRE'11, 160–169, 2011.

[4] Y. Cai and W.K. Chan. Lock trace reduction for multithreaded
programs. In IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2013, to appear.

[5] Y. Cai and W.K. Chan. MagicFuzzer: scalable deadlock detection for
large-scale applications. In Proc. ICSE'12, 606–616, 2012.

[6] Y. Cai, K. Zhai, S.R. Wu, and W.K. Chan. TeamWork: synchronizing
threads globally to detect real deadlocks for multithreaded programs. In
Proc. PPoPP'13, poster article, 311–312, 2013.

[7] E. Farchi, Y. Nir-Buchbinder, and S. Ur. A cross-run lock discipline
checker for Java. In PADTAD’05, 2005.

[8] C. Flanagan and S.N. Freund. The RoadRunner dynamic analysis
framework for concurrent programs. In Proc. PASTE'10, 1–8, 2010.

[9] P. Joshi, M. Naik, C.S. Park, and K.Sen. CalFuzzer: an extensible active
testing framework for concurrent programs. In Proc. CAV'09, 675–681,
2009.

[10] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized dynamic
program analysis technique for detecting real deadlocks. In Proc.
PLDI’09, 110–120, 2009.

[11] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock immunity:
enabling systems to defend against deadlocks. In Proc. OSDI’08, 295–
308, 2008.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V.J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proc. PLDI'05,
191–200, 2005.

[13] Z.D. Luo, R. Das, and Y. Qi. MulticoreSDK: A practical and efficient
deadlock detector for real-world applications. In Proc. ICST’11, 309–
318, 2011.

[14] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from exhibiting to
healing. In Proc. RV’08, 104–118, 2008.

[15] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
dynamic deadlock avoidance for multithreaded programs. In Proc.
OSDI’08, 281–294, 2008.

(1) Command
$pin -t ./MagicFuzzer.so ./demoTrace --./test/ hawknl/deadlock3

(4) Detected potential deadlock.

(5) Command
$pin -t ./MagicScheduler.so ./demoTrace -- ./test/ hawknl/deadlock3

(2) Command $./Magiclock ./demoTrace

(3) Example dependencies of a thread obtained

Fig. 4. A sequence of images for illustration of the three phases of the operations of MagicFuzzer

