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Abstract—Many real-world multithreaded programs contain 

deadlock bugs. These bugs should be detected and corrected. 

Many existing detection strategies are not consistently scalable to 

handle large-scale applications. Many existing dynamic confir-

mation strategies may not reveal detectable deadlocks with high 

probability. And many existing runtime deadlock-tolerant strat-

egies may incur high runtime overhead and may not prevent the 

same deadlock from re-occurring. This paper presents the cur-

rent progress of our project on dynamic deadlock detection, con-

firmation, and resolution. It also describes a test harness frame-

work developed to support our proposed approach. 
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I. INTRODUCTION 

Multithreaded programs may contain deadlock bugs. De-
tecting these bugs is critical in improving the dependability of 
these programs. Some deadlock bugs however may have not 
been fixed before the programs are used. Hence, it is necessary 
to develop a runtime resolution scheme to handle programs that 
may trigger deadlocks. This paper reports our progress in for-
mulating and engineering a framework for dynamic detection, 
confirmation, and resolution of deadlock bugs.  

Our framework includes components for lock trace reduc-
tion, object abstraction, deadlock detection, dynamic deadlock 
confirmation, and deadlock resolution. These components are 
briefly presented from Section II to Section VI, respectively. In 
Section VII, we present the current progress in the test harness 
implementation of our framework. Section VIII discusses the 
related work and our work. Section IX concludes the paper. 

II. LOCK TRACE REDUCTION 

A dynamic deadlock detection technique (Section IV) ana-
lyzes an execution trace to find potential deadlock scenarios. 
We have developed LOFT [4] to clean up certain locking op-
eration records in such a trace (e.g., to alleviate data race detec-
tion [3]). A slight adaption of LOFT (by associating the execu-
tion contexts of the removed locking operations to the remain-
ing lock operations) is applicable to the trace reduction for dy-
namic deadlock detection.  

III. OBJECT ABSTRACTION 

Effective deadlock confirmation relies on an effective mod-
eling of the same object across multiple execution traces. We 
observe that in general, in an execution trace, the same pro-
gram statement associating with the same call stack may be 
exercised multiple times (e.g., in a loop), and yet only some of 
them may be involved in a deadlock. On top of an existing 
stack-based object abstraction strategy [10][11], we have for-
mulated the Object Frequency Abstraction (OFA) [6], which 
considers different occurrence counts of the same object type. 
This enhancement is to reduce the potential mismatches among 
different objects in the same trace or across multiple traces. 

IV. DYNAMIC DETECTION  

In an execution trace of a real-world program, only a small 
fraction of all lock dependencies [5] may be involved in cyclic 
chains; otherwise, the program may contain many deadlock 
bugs. We have proposed Magiclock [5] to firstly reduce the set 
of lock dependencies by removing irrelevant locks and then 
searching over the reduced set of lock dependencies to detect 
cyclic chains using a partition-based strategy. TABLE I shows 
that Magiclock can be more promising than MulticoreSDK [13] 
and iGoodLock [10] in analyzing large-scale benchmarks. Fig. 1 
also depicts the relationship between LOFT and Magiclock. 

V. DYNAMIC CONFIRMATION  

The component for deadlock confirmation aims at trigger-
ing deadlocks based on the detected cyclic chains. A prelimi-
nary version has been formulated as the MagicScheduler tool, 

which is a part of MagicFuzzer [5]. MagicScheduler is a random-
ized rescheduling approach. It uses the cyclic chains annotated 
with object abstractions as inputs, and monitors the trace until 
an event matching with some object abstraction of the given 
cyclic chains is detected. It then discards other cyclic chains 
and focuses on triggering deadlocks for the matched or partial-
ly matched cyclic chain(s).   
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Fig. 1. LOFT and Magiclock 

TABLE I. Memory and Time Comparisons among iGoodlock, Multi-
coreSDK (MSDK), and Magiclock (taken from [5]) 

Benchmark 
Memory (MB) Time in second (s) 

iGoodlock MSDK Magiclock iGoodlock MSDK Magiclock 

SQLite 1.05 1.05 1.05 0.002 0.003 0.002 

MySQL >2800 1.15 1.05 >125 398 1.73 

Chromium >2800 >48.2 8.01 >6420 >3600 102 
Firefox >2800 122.41 4.14 >640 7.43 3.06 

OpenOffice 245.20 >48.4 8.01 6360 >3600 0.67 

Thunderbird 298.83 40.09 4.15 973 4.75 1.18 
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VI. DYNAMIC RESOLUTION 

Deadlocks may also be resolved at runtime. In this catego-
ry, existing approaches [11][14][15] often aim to serialize the 
execution of the program portion involved in deadlocks. To 
ease our presentation, we refer to a lock involved in a deadlock 
as a wait-lock, and a thread involved in the same deadlock as a 
wait-thread. We have not constructed this component.  

We plan to actively assign the corresponding wait-lock of a 
wait-thread to the wait-thread when the wait-thread acquires 
any wait-lock of a deadlock. We conjecture that this active lock 
assignment strategy resolves the circular waiting condition for 
deadlock, which is also illustrated as a Java program shown in 
Fig. 2(a) because many programming languages (e.g., Java and 
C#) themselves support reentrant locks. This feature allows the 
same thread to successfully acquire the same lock that the 
thread is holding. Hence, a pre-acquisition of a wait-lock by a 
wait-thread is to avoid blocking the thread’s acquisition of the 
wait-lock at the deadlocking site.  
Our strategy suggests two possible solutions for the scenario in 
Fig. 2(a). They are the pre-acquisitions of the locks B and A by 
the threads t1 and t2, respectively, as shown in Fig. 2(b) and 
Fig. 2(c). For example, for the solution in Fig. 2(b), during 
execution, two threads will compete for the lock acquisition on 
the lock B. After one of the two threads firstly acquires the lock 

B, another thread has to wait until one thread exits from the 

execution protected by the lock B. For the thread t1, though it 

needs to acquire the lock B twice, the deadlock is prevented. 

We note that even though the thread t1 has a lock order from A 

to (the second acquisition of) B which still violates the lock 
order in the thread t2, the order is protected by its first one from 
(the first acquisition of) B to A which is the same as that of the 
thread t1. (The gate-lock resolution strategy proposed in [14] is 
inapplicable if there is a pair of wait()-notify() statements 
between t1 and t2 within the inserted gate-lock block.)  

Several technical challenges still exist: A pre-acquisition of 
a lock by a thread may alter the original lock acquisition order 
of the program, introducing new deadlocks. We plan to analyze 
the lock dependency set to determine whether some potential 
solutions are undesirable and avoid generating them. The in-
volved static or dynamic analysis on such a set could be impre-
cise. We also plan to devise a novel dynamic lock retreat strat-
egy to release the actively pre-acquired wait-lock from a wait-
thread to resolve “thrashing” [10]. However, it may not be 
generally feasible to pre-acquire a wait-lock at the boxed posi-
tions as illustrated by Fig. 2. Multiple deadlocks may interfere 
with one another. A further investigation is necessary. 

A deadlock resolution strategy could be applied to either 
binary or source code of the program. It depends on the testing 
harness support which needs to be further studied. 

VII. ENGINEERING THE TEST HARNESS 

We are building the test harness implementation of our 
framework. To handle C/C++ programs on the Linux platform, 
we build the implementation on top of the Pin tool [12] using 
its Probe mode. The implementation also maintains the rela-
tionship between parent thread and child thread (when a new 
thread is created) to support dynamic analysis. This infor-
mation is useful for techniques that need to track the happens-
before relationship between threads. For instance, in data race 
detection, the vector clock of a parent thread should be known 

to a child thread right after the parent thread creates the child 
thread before the execution of the latter thread [4]. Similarly, 
for deadlock detection, one can use such happens-before rela-
tionship information to eliminate false warnings [1].  

The implementation of a Pthread in a Linux system is to 
use the system call clone to create a new thread and then in-
voke the system call start_thread to start the newly created 
thread, where clone is called in the parent thread and 

start_thread is called in the child thread. An argument of 
either function is the memory address of the newly created 
thread. Our testing harness implementation thus produces two 
customized events (preCloneThread and preStartThread), 
respectively whenever it monitors the occurrences of these two 
system calls. It then uses the memory address of the child 
thread (child_addr) to relate these two events to model the 
parent-child relationships by checking the values in the 
memory address before and after a child is created.  

Our test harness implementation also computes the object 
abstraction because Pin offers no API to index the same 
thread/lock across multiple execution traces. Moreover, it 
computes an object abstraction for each thread and for each 
lock whenever the thread or the lock is created. It furthermore 
computes a call stack and a counter (hash value) mapped from 
each creation event.  

The algorithm to compute the required call stack for an ob-
ject abstraction is shown in Algorithm 1. Given a program sp 

(stack top pointer) and ebp (stack base pointer), the algorithm 
iteratively searches for the valid call functions (lines 3 and 12–
14), computes their relative addresses (lines 7–9), and saves 
them into the given vector instance (line 10). The depth argu-
ment is used to limit the length of the required stack (line 4). 

Fig. 3 shows an example program containing one resource 
deadlock (at lines 5, 6 and 11, 12). When executing this pro-
gram, our test harness implementation generates two log files 

Thread t1: sync(A){ sync(B){…}} 
Thread t2: sync(B){ sync(A){…}} 

(a) A simple deadlock code illustration 

Thread t1: sync(B){ sync(A){ sync (B){…}}} 
Thread t2: sync (B){ sync(A){}} 

(b) Pre-acquisition of the lock B by thread t1 

Thread t1: sync(A){ sync(B){…}} 
Thread t2: sync(A){ sync(B){ sync(A){…}}} 

(c) Pre-acquisition of the lock A by the thread t2  

Fig. 2 Two potential solutions in (b) and (c) may handle the deadlocking 

scenario illustrated in (a). The dynamically inserted codes are boxed. 

Algorithm 1: Call Stack Computation 
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void getCallStack  
(uint sp, uint ebp, int depth, vector<uint>& st){ 
   uint eip, insPtr; RTN rtn; int cnt = 0; 
   insPtr = (uint) *(uint*) sp; 
   while (cnt++ < depth && sp <= ebp) { 

     rtn = RTN_FindByAddress(insPtr); 
     if (RTN_Valid(rtn)) { 

   uint addrImgLow =    
     IMG_LowAddress(SEC_Img(RTN_Sec(rtn))); 

       uint rtnAddr = RTN_Address(rtn); 
       st.push_back(rtnAddr - addrImgLow); 
     } else break; //end of if-else 
     eip    = ebp + sizeof(uint*); 
     insPtr = (uint) *(uint*) eip; 
     ebp    = (uint) *(uint*) ebp; 
   }//end of while 
} 

 



(one for each thread) as shown in TABLE II, in which each 
line in a log file has the following format: {lockID, 

call_stack, counter}+, which can be used to derive a partic-
ular lock dependency [5]. For simplicity, we do not show those 
lock dependencies containing an empty lockset.  

The test harness (which implements Magiclock) reads these 
files and detects one cyclic lock dependency chain from the 
trace, and TABLE II shows the result 1, lock1, {lock2}, 2, 

lock2, {lock1}, whose abstraction is shown in Fig. 2 (a). 
Consider the example illustrated in Fig. 2 (a). The test har-

ness implementation (which implements MagicScheduler) firstly 
reads this cyclic dependency chain, and then schedules the 
thread execution of the example program over the same input. 
In such a confirmation execution, when the thread child1 is 
about to execute the statement at line 6 or the thread child2 is 
about to execute the statement at line 12, the test harness sus-
pends the execution of every thread, and check whether a real 
deadlock has been triggered. As such, the cyclic dependency 
chain is confirmed as a real deadlock and is reported to stand-
ard output by the test harness implementation.  

Our current framework implementation instruments the 
program under test using Pin [12] to generate lock traces. Then 
it analyzes each lock trace to find deadlock potentials. For each 
reported potential deadlock, our implementation executes the 
given program with the same test case and confirms the dead-
lock potential if it is a real deadlock. Our current implementa-
tion has not been able to resolve the detected deadlocks yet.  

In the rest of this section, we demonstrate how to use the 
current test harness to detect and confirm real deadlocks. They 
have been packaged as the MagicFuzzer tool. The tool can be 
invoked in three phases, which we refer to as Phase I, Phase II, 
and Phase III, respectively, in this section. 

In the sequel, we suppose that a tester has installed the Pin 
framework and placed it at the directory denoted by 
PIN_HOME. (We have tested this tool on Pin 2.10 (45467) on 

a 32-bit Linux system.) The tool can be downloaded from the 
URL: http://www.cs.cityu.edu.hk/~51948163/magicfuzzer/ 

To invoke Phase I of MagicFuzzer, the tester types the fol-
lowing command, where traceDIR is the name of the folder 
which keeps the execution trace(s) generated by MagicFuzzer. 

 

To invoke Phase II, the tester should execute Magiclock: 

 

If the execution generated by Phase I contains any cyclic 
dependency chain, the tester will find these chains in the file: 
traceDIR/Deadlock.dlk (which is a text file).   

The tester can further invoke Phase III (i.e., MagicScheduler) 
of MagicFuzzer to confirm whether any cyclic chain may be 
manifested into a real deadlock by the following command: 

 

If a cyclic dependency chain is confirmed as a real dead-
lock, MagicFuzzer reports the deadlock to the standard output. 

Fig. 4 shows a sequence of images and related operations 
of the test harness implementation that illustrate the actual op-
erations of the implementation. The benchmark that we used in 
the demonstration is hawknl, which was taken from the follow-
ing site: http://code.google.com/p/dimmunix/.   

The first image illustrates Phase I and the command is 
highlighted in bold. Similarly, the second image illustrates 
Phase II, and the last image illustrates Phase III. The third im-
age shows the result of identifying the parent-child relation-
ships among threads, as discussed in Section II of this paper. 
The fourth image shows a potential deadlock.  

VIII. DISCUSSION AND RELATED WORK  

Several kinds of object abstractions have been proposed in 
the literature, including the k-object-sensitivity abstract [10], 
and call stack based abstraction [11], for example.  

MulticoreSDK [13] and iGoodlock [10] have been com-
pared to Magiclock [5] as shown in TABLE I of this paper for 
dynamic deadlock detection.  

In [2], an experiment was conducted using PCT, a purely 
randomized scheduler tool which is unaware of bug types. It 
shows that the probability of detecting deadlocks by PCT can 
be an order of magnitude lower than 1%, even though PCT 

suffers from no thrashing. ConTest [7] simply injects arbitrary 
timeouts to alter the thread schedule with the intent to trigger 
deadlocks only with empirical data to back up the claim on 
effectiveness. DeadlockFuzzer [10] was shown to be effective 
in triggering deadlock on small to medium-scale benchmarks. 

We have reviewed how we use Pin to perform dynamic 
deadlock analysis (including trace generation, detection, con-
firmation, and resolution) for C/C++ multithreaded programs. 
For Java programs, there are other tools, such as Calfuzzer [9] 

and RoadRunner [8]. Unlike Pin [12], these tools instrument the 
whole Java program, producing many irrelevant events.  

Nir-Buchbinder et al. [14] proposed inserting a gate lock 
right before each thread involved in a deadlock acquires its 
problematic lock. Nonetheless, their method cannot handle 
some non-trivial resource deadlocks, and may introduce new 
deadlocks due to gate lock insertions. Deadlock Immunity [11] 

PIN_HOME/pin –t ./MagicFuzzer.so traceDIR -- 

Your_Program Program_Arguments 

./Magiclock traceDIR 

PIN_HOME/pin –t ./MagicScheduler.so traceDIR -- 

Your_Program Program_Arguments 
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 pthread_mutex_t lock1, lock2; 

 pthread_t child1, child2; 

 void* child( void* arg ){ 

    if( 1 == (int)arg ){ 

        pthread_mutex_lock(&lock1); 

        pthread_mutex_lock(&lock2);             

        pthread_mutex_unlock(&lock2); 

        pthread_mutex_unlock(&lock1); 

    } else { 

        sleep(1000); 

        pthread_mutex_lock(&lock2); 

        pthread_mutex_lock(&lock1); 

        pthread_mutex_unlock(&lock1); 

        pthread_mutex_unlock(&lock2); 

    } 

 } 

 int main ( void ) { 

    pthread_mutex_init(&lock1, NULL); 

    pthread_mutex_init(&lock2, NULL); 

    pthread_create(&child1,NULL,child,(void*)1); 

    pthread_create(&child2,NULL,child,(void*)2); 

    pthread_join(child2, NULL); 

    pthread_join(child1, NULL); 

    return 0; 

} 

Fig. 3. An example program with a real deadlock 

TABLE II. A fragment of the execution trace for the code shown in Fig. 3. 
We assign an identical integer to each thread and each lock and there are 
two map files from an integer mapped to an abstraction of a thread or a 
lock. Here we have omitted these two map files due to page limitation. 

thread 1.log //child1 thread 2.log //child2 

1, <stack1, 1>, 2, <stack1, 2> 1, <stack2, 1>, 2, <stack2, 2> 

 

http://www.cs.cityu.edu.hk/~51948163/magicfuzzer/
http://code.google.com/p/dimmunix/


prevented the second occurrence of a deadlock by recording 
the pattern of its first occurrence and matching the pattern in 
later executions. Such a pattern matching strategy is imprecise, 
failing to avoid deadlocks from re-occurrence even though it 
suffers from a light slowdown factor (e.g., 15% [11]). Gadara 

[15] detects potential deadlocks offline. At runtime, any 
matched cycle along the run will trigger a serialization of the 
corresponding deadlock potential code; however, many such 
occurrences in the same run may prolong the run significantly.  

IX. CONCLUSION 

In this paper, we have reviewed our current progress in 
building a test harness for dynamic deadlock detection, confir-
mation, and resolution. We have described the techniques for 
individual components of the test harness, and discussed some 
standard elements across similar test harness implementations. 
These standard elements include maintaining the relationship 
between parent thread and child thread and obtaining the call 
stack and using it for further computation. We have also de-
scribed how to use our current harness tool.  
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(1) Command  
$pin -t ./MagicFuzzer.so ./demoTrace --./test/ hawknl/deadlock3 

(4) Detected potential deadlock. 

 

 

(5) Command  
$pin -t ./MagicScheduler.so ./demoTrace -- ./test/ hawknl/deadlock3 

 

(2) Command  $./Magiclock ./demoTrace 

 
(3) Example dependencies of a thread obtained 

 
Fig. 4. A sequence of images for illustration of the three phases of the operations of MagicFuzzer 

 




