A Generalized Gelfond-Lifschitz Transformation for Logic Programs with Abstract Constraints

Yi-Dong Shen

Chinese Academy of Sciences Beijing, China

ydshen@ios.ac.cn

http://lcs.ios.ac.cn/~ydshen

Jia-Huai You

University of Alberta Edmonton, Canada

you@cs.ualberta.ca

http://www.cs.ualberta.ca/~you

AAAI 2007, Vancouver, Canada

Background

- Answer Set Programming (ASP)
 - Logic programming with the stable model semantics; an effective formalism for solving combinatorial search problems
- Logic Programs with Abstract Constraints
 - Extensions of ASP with means to model aggregate constraints in particular, and abstract constraints on sets in general
 - Represent and reason with sets of atoms, in contrast with
 traditional logic programs primarily for reasoning with individuals
 (Marek & Remmel 2004; Marek & Truszczynski 2004)

Background

- Abstract Constraint Atoms (C-Atoms)
 - A *c*-*atom* A = (Ad, Ac), where Ad is a finite set of atoms and $Ac \subseteq 2^{Ad}$ (Marek & Remmel 2004; Marek & Truszczynski 2004)
 - Represent any constraints with a finite set *Ac* of admissible *solutions* over a finite *domain Ad*
- Logic Programs with C-atoms
 - Consist of clauses of the form

H1 v ... v Hk \leftarrow *A1, ..., Am, not B1, ..., not Bn* where *Hi*, *Ai* and *Bi* are either atoms or c-atoms

Issues of Semantics

- The Standard Gelfond-Lifschitz Transformation
 - For logic programs without c-atoms (Gelfond & Lifschitz 1988; 1991)
 - Not applicable to logic programs with c-atoms
- A Challenging Question:
 - What is an appropriate semantics for logic programs with c-atoms?

Existing Proposals

- Unfolding (Translation) Approaches
 - Transform *P* with c-atoms to *P'* without c-atoms and define an interpretation *I* as a stable model of *P* if it is a stable model of *P'* (Pelov et al. 2003; Son et al. 2006)
- Fixpoint (Operator-Based) Approaches
 - Apply some immediate consequence operator to construct a fixed point *lfp(P)* and define *I* as a stable model if *I = lfp(P)* (Marek & Truszczynski 2004; Pelov 2004; Son et al. 2006)
- Minimal Model Approaches
 - Define a stable model to be a minimal model (Faber et al. 2004)

Our Proposal

• Define the stable model semantics for logic programs with abstract constraints by developing

A generalized Gelfond-Lifschitz transformation

Our Contributions

- A Formal Definition of the Semantics of C-Atoms
 - Currently, the meaning of a c-atom is interpreted by means of propositional interpretations (truth assignments)
- A Succinct Abstract Representation of C-Atoms
 - A c-atom is coded with a substantially smaller size than using the current power set form representation
- A Generalization of the Gelfond-Lifschitz Transformation
 - Used to define the stable model semantics for disjunctive logic
 programs with arbitrary c-atoms appearing anywhere in a clause

1. Semantics of C-Atoms

• Marek & Truszczynski's Definition

- The meaning of a c-atom *A* is interpreted by means of propositional interpretations (truth assignments)
- An interpretation *I satisfies* A = (Ad, Ac), written as $I \vDash A$, if $I \cap Ad \in Ac$; *I satisfies* **not** A if $I \cap Ad \notin Ac$
- Our Observation
 - Marek & Truszczynski's truth assignment-based interpretation can be concisely formalized using a logic expression, thus leading to a formal definition of the semantics of c-atoms

1. Semantics of C-Atoms

• Our Formalization

Definition 1 Let $A = (A_d, A_c)$ be a c-atom. Its semantics is defined by

$$A \equiv \bigvee_{S \in A_c} S \wedge not \ (A_d \setminus S)$$

 $A = (\{a, b\}, \{\{a\}, \{b\}, \{a, b\}\})$ semantic definition $A \equiv (a \land not \ b) \lor (b \land not \ a) \lor (a \land b)$ (1)

1. Semantics of C-Atoms

• Justification of Our Formalization

Theorem 1 An interpretation I satisfies A iff I satisfies $\bigvee_{S \in A_c} S \wedge not \ (A_d \setminus S)$ I satisfies not A iff I satisfies $not \ (\bigvee_{S \in A_c} S \wedge not \ (A_d \setminus S))$

Logical Equivalence Simplification

For any S_1 and S_2 , $(S_1 \wedge \underline{L} \wedge S_2) \vee (S_1 \wedge \underline{not} \ \underline{L} \wedge S_2) \equiv S_1 \wedge S_2$

> $A = (\{a, b\}, \{\{a\}, \{b\}, \{a, b\}\})$ semantic definition $A \equiv (a \land not \ b) \lor (b \land not \ a) \lor (a \land b)$ logically simplified $A \equiv a \lor b$

- Current <u>Power Set Form</u> Representation
 - A = (Ad, Ac)
 - $Ac \subseteq 2^{A_d}$ would be extremely large
- Our <u>Power Set Free</u> Abstract Representation
 - $A = (Ad, Ac^*)$
 - $W \uplus V$ in Ac^* covers all W-prefixed power sets of V in Ac

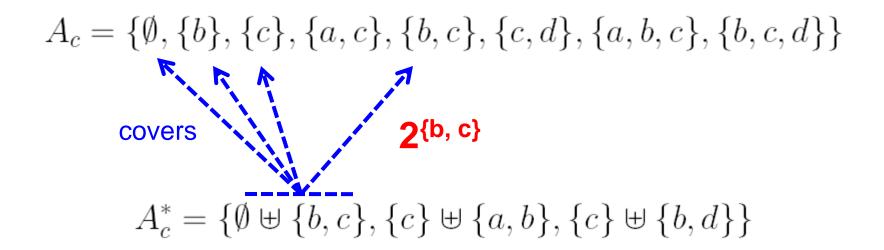
i.e., $W \uplus V = \{W \cup S \mid S \in 2^V\}$

 $A_c = \{\emptyset, \{b\}, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$

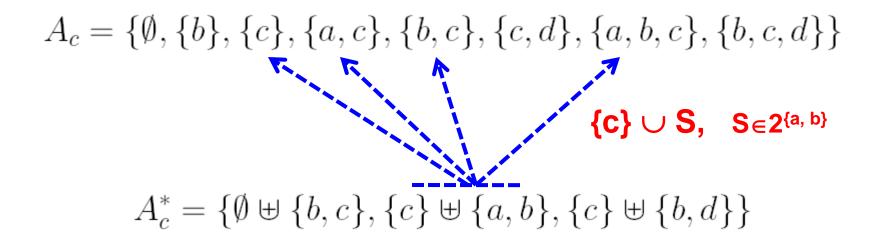
Power set form representation

$$A_c^* = \{ \emptyset \uplus \{b, c\}, \{c\} \uplus \{a, b\}, \{c\} \uplus \{b, d\} \}$$

Abstract representation



** $W \uplus V$ covers a set S if $W \subseteq S$ and $S \subseteq (W \cup V)$



Theorem 2 Let $A = (A_d, A_c)$ be a c-atom.

1. A has a unique abstract form (A_d, A_c^*) .

2. An interpretation $I \models A$ iff A_c^* contains $W \uplus V$ covering $I \cap A_d$.

3. A_c^* is power set free.

***** In many cases, $|Ac^*| \ll |Ac|$; in an extreme case, |Ac|= $2^{|Ad|}$, but $|Ac^*| = 1$ ($Ac = 2^{Ad}$, $Ac^* = \{ \emptyset \uplus Ad \}$)

• C-atoms can be characterized in terms of the abstract representation

Theorem 3 Let A be a c-atom. Then

$$A \equiv \bigvee_{W \uplus V \in A_c^*} W \wedge not \ (A_d \backslash (W \cup V))$$
(2)

***** This theorem lays a solid basis for the development of the semantics of logic programs with c-atoms

• Abstract Satisfiable Sets

Definition 2 Let A be a c-atom and I an interpretation.

- 1. $W \uplus V \in A_c^*$ is an *abstract satisfiable set* if $W \uplus V$ covers $I \cap A_d$.
- 2. W is called a *satisfiable set* if there is an abstract satisfiable set $W \uplus V$.

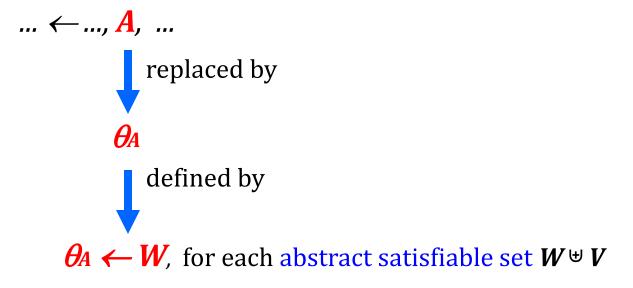
• Characterizing C-Atoms in terms of Abstract Satisfiable Sets

Theorem 4 Let A be a c-atom and I an interpretation. $I \models A$ iff I satisfies $\forall \qquad W \land not \ (A_d \setminus (W \cup V))$

each abs. sat. set $W \uplus V \land not (A_d$

3. A Generalization of the Gelfond-Lifschitz Transformation

• Key Ideas (1): for each c-atom *A* in the body of a clause



3. A Generalization of the Gelfond-Lifschitz Transformation

• Key Ideas (2): for each c-atom *A* in the head of a clause

$$... A ... \leftarrow ...$$

replaced by
 β_A
defined by
 $B \leftarrow \beta_A$, for each B in $I \cap Ad$
 $\bot \leftarrow B$, β_A , for each B in $Ad \setminus (I \cap Ad)$
 $\beta_A \leftarrow I \cap Ad$

** These new clauses define that $\beta_A \text{ iff } I \cap Ad$

3. A Generalization of the Gelfond-Lifschitz Transformation

 Key Ideas (3): for a c-atom A = (Ad, Ac), its negation not A is treated as the complement of A; i.e.,

> *not* $A = (Ad, 2^{A_d} \setminus Ac)$ the complement of Ac

Definition 3 Given a logic program P and an interpretation I, the generalized Gelfond-Lifschitz transformation of P w.r.t. I, written as P^{I} , is obtained from P by performing the following four operations:

- 1. Remove from P all clauses whose bodies contain either a negative literal not A such that $I \not\models not A$ or a c-atom A such that $I \not\models A$.
- 2. Remove from the remaining clauses all negative literals, and then
- 3. Replace each c-atom A in the body of a clause with a special atom θ_A and introduce a new clause $\theta_A \leftarrow A_1, ..., A_m$ for each satisfiable set $\{A_1, ..., A_m\}$ of A w.r.t. $I \cap A_d$.
- Replace each c-atom A in the head of a clause with ⊥ if I ⊭ A, or replace it with a special atom β_A and introduce a new clause B ← β_A for each B ∈ I ∩ A_d, a new clause ⊥ ← B, β_A for each B ∈ A_d \ (I ∩ A_d), and a new clause β_A ← I ∩ A_d.

Stable Models under the Generalized Gelfond-Lifschitz Transformation

Definition 4 For any logic program P, an interpretation I is a *stable model* of P if $I = M \setminus \{\theta_X, \beta_X\}$, where M is a minimal model of the generalized Gelfond-Lifschitz transformation P^I .

Main Properties (1)

Theorem 5 Let P be a logic program such that c-atoms appearing in the heads of its clauses are all elementary. Any stable model of P is a minimal model of P.

** An elementary c-atom is of the form ({*a*}, {{*a*}}), where *a* is an atom.

Main Properties (2)

Theorem 6 Let *P* be a non-disjunctive logic program. An interpretation *I* is a stable model if and only if it is a stable model under Son et al.'s fixpoint definition.

** T. C. Son, E. Pontelli and P. H. Tu. Answer sets for logic programs with arbitrary abstract constraint atoms. In *AAAI-06*, 2006.

Complexity

Theorem 8 Let P be a logic program with n different c-atoms.

- 1. The time complexity of computing all satisfiable sets of A is linear in the size of A_c^* .
- 2. The time complexity of the generalized Gelfond-Lifschitz transformation is bounded by $O(|P| + n * (2M_{A_c^*} + M_{A_d} + 1))$, where $M_{A_c^*}$ and M_{A_d} are the maximum sizes of A_c^* and A_d of a c-atom in P, respectively.
- 3. The size of P^{I} is bounded by $O(|P| + n * (M_{A_{c}^{*}} + M_{A_{d}} + 1))$.
- 4. The time to compute A_c^* from A_c is bounded by $O(|A_c|^3 * |A_d|)$.

Relationship to Existing Approaches

 Essentially different from the existing approaches in that we define the stable model semantics for logic programs with c-atoms by developing a generalized Gelfond-Lifschitz transformation based on the formal semantics and abstract representation of c-atoms.

Relationship to Existing Approaches (1)

• Let r be a clause $B \leftarrow A_1, ..., A_m$. An unfolding approach (Pelov et al. 2003; Son and Pontelli 2006) will transform r into $n_1 * \ldots * n_m$ new clauses of the form $B \leftarrow \overline{A}_1, \dots, \overline{A}_m$, where each \overline{A}_i is built from an aggregate solution of A_i . Our approach transforms r into $1 + n'_1 + \ldots + n'_m$ clauses, where n'_i is the number of satisfiable sets of A_i . In general, for each *i* we have $n_i \gg n'_i$.

** **n***i* is the number of aggregate solutions of **A***i*

Relationship to Existing Approaches (2)

- Stable models defined using our approach coincide with those applying Son et al.'s fixpoint approach (Son et al. 2006; 2007) for non-disjunctive logic programs with arbitrary c-atoms.
- ** Son et al. show that their fixpoint semantics coincides with that of Marek and Truszczynski (2004) for non-disjunctive logic programs with monotone c-atoms; with that of Faber et al. (2004) and Ferraris (2005) for positive basic logic programs with monotone c-atoms; with that of Denecker et al. (2001; 2003) for positive basic logic programs with arbitrary c-atoms.

Relationship to Existing Approaches (3)

• Our approach has the minimality property for the class of logic programs in which c-atoms appearing in clause heads are all elementary. It is different from the minimal model approach by Faber et al. (2004).

Summary

- We introduced a formal characterization of the semantics of catoms
- We created an abstract representation of c-atoms
- We developed a generalized Gelfond-Lifschitz transformation based on the formal semantics and abstract representation of c-atoms
- Stable models coincide with Son et al.'s fixpoint approach for non-disjunctive logic programs with arbitrary c-atoms

Yi-Dong Shen

ydshen@ios.ac.cn

http://lcs.ios.ac.cn/~ydshen/Shen-AAAl07.pdf