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Introduction

@ Answer set programming (ASP) is a major logic programming
paradigm for knowledge representation and reasoning.

@ As summarized by [Lif10], there have been thirteen different
definitions of answer sets in the literature.

@ In this paper, we are devoted to a currently widely used
definition of answer sets, called

FLP semantics [FLP04]

Let 1 be a normal logic program with rules of the form

Ao < A1,--- ,Am,not Api1,- -+ ,not Ay
where each A; is an atom. Given an interpretation /, the FLP
reduct of M w.r.t. /, denoted ', consists of all rules in
ground(I) whose bodies are satisfied by /. / is an FLP answer set
of M if / is a minimal model of fI1’.
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Introduction

@ It was recently observed that when applied to more general
logic programs, the FLP semantics may produce unintuitive
answer sets with circular justifications caused by
self-supporting loops [SY09, LPST10, Shell, SW11].

Circular justifications of the FLP semantics

Consider the following general logic program [BLM11]:

M p(2) < p(2) A(=p(—1) V p(1)). r
p(—1) « ~p(—=1) V p(1) V p(2). z
p(1) « p(=1). 3

Let I = {p(—1),p(1)} be an interpretation. The FLP reduct of Iy
w.rt. [is fl1} = {r, r3}. I is a minimal model of fM} and thus is
an answer set of Iy under the FLP semantics. Observe that this
FLP answer set has circular justifications caused by the following
self-supporting loop:

p(1) < p(=1) < =p(=1) V p(1) vV p(2) < p(1)
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Introduction

@ In this paper, we address the circular justification problem for
general logic programs by enhancing the FLP semantics with
a level mapping formalism.

@ In particular, we extend the Gelfond-Lifschitz three step
definition of the standard answer set semantics from normal
logic programs to general logic programs and define for
general logic programs the first FLP semantics that is free of
circular justifications. We call this FLP semantics the
well-justified FLP semantics.

@ This method naturally extends to general logic programs with
additional constraints like aggregates, thus providing a
unifying framework for defining the well-justified FLP
semantics for different types of logic programs.
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General Logic Programs

Rules
A rule is of the form H + B, where H and B are first-order

formulas. Such a rule r expresses an if-then statement, saying that
if the logic property B holds then infer H.

General logic programs [BLM11]

A general logic program I (also called a logic program with
first-order formulas) consists of a finite set of rules. I is a normal
logic program if each rule r is of the form

Ay AN o AAR A —Apr1 Ao A DA,
where each A; is an atom without equality and function symbols.
A positive logic program is a normal logic program without
negative literals.
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General Logic Programs

Grounding

Let ChC C be a non-empty, finite set of constants including all
constants occurring in 1. A closed instance of a rule is obtained by
replacing every free variable in the rule with a constant in Cy. The
grounding of M w.r.t. Cp, denoted ground(IN), is the set of closed
instances of all rules in 1.

Satisfaction

An interpretation | satisfies a closed instance r of a rule if it
satisfies head(r) or it does not satisfy body(r). I is a model of a
logic program I1 if it satisfies all rules in ground(IT).
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FLP Semantics of General Logic Programs

Definition 1

Let 1 be a general logic program and / an interpretation. The
FLP-reduct of Il w.r.t. | is

fN! = {r € ground(N) | I satisfies body(r)}.

I is an FLP answer set of T if | is a minimal model of fN’.

** This FLP semantics for general logic programs is reformulated
by [BLM11] in terms of a modified circumscription.
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Well-Justified FLP Answer Sets

Key points:

@ Rules H < B in a logic program differ essentially from
implications B D H in classical logic because rules define a
level mapping on their answer sets s.t. answers at upper levels
are derived from answers at lower levels by applying the rules
in the way that if the rule bodies hold then infer the heads.

@ However, the FLP semantics is unable to capture such a level
mapping. For | to be an answer set of I1, the FLP semantics
only requires / to be a minimal model of fM’. This amounts
to treating all rules H < B in 1’ as implications B D H in
classical logic because / is a model of the rules H < B in 1’
if and only if / is a model of the corresponding implications
B D H in classical logic. Since classical implications define no
level mapping on their models, some minimal models of 1’
may have no level mapping and thus some FLP answer sets
may have circular justifications.
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Well-Justified FLP Answer Sets

@ Therefore, the key to overcome the circular justification
problem is to enhance the FLP semantics with a level
mapping formalism whereby the FLP reduct is treated as rules
instead of classical implications.

@ To achieve this, let us first look at how the standard answer
set semantics builds a level mapping for its answer sets from
normal logic programs.

** For an interpretation /, We denote /= for Hyx \ /, and =/~ for

{-A | A€ I}, where Hy is the set of ground atoms of the
signature X.
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Well-Justified FLP Answer Sets

Let 1 be a normal logic program and / an interpretation.

Three step definition of the standard answer set semantics [GL88|

@ Eliminate from ground(IN) all rules whose bodies contain a
negative literal not satisfied by /.

@ Eliminate all negative literals from the remaining rules.
** All negative literals removed in the second step are in =/~. The

remaining part of ground(IN) after the two steps of transformation is
called the Gelfond-Lifschitz reduct, denoted MN'.

© Compute a fixpoint T (1) from N’ via { |£|_I(®)>?20' where
T9,(0) =0 and for i > 0 T/ (D) = Tru(T1, (D))
G Tp(S), where P is a positive logic program and S a set of ground

atoms, is the van Emden-Kowalski provability operator [VEK76] defined by
Tp(S) = {head(r)|r € ground(P) such that body(r) is satisfied by S}.

Then, [ is an answer set of I if | = T5,(0).
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Well-Justified FLP Answer Sets

o Note that the derivation sequence (T/,(0))52, defines a level
mapping on / such that A€ | is at level i > 0if A€ TILI,((Z))
but A¢ T/71(0).

@ As a result, for any A € [ at level i there is a rule
r € ground(I) whose head is A such that all negative literals
in neg(r) are in =/~ and all positive literals in pos(r) are in

TI 1(@)
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Well-Justified FLP Answer Sets

@ The above Gelfond-Lifschitz three step definition of answer
sets for normal logic programs is not applicable to general
logic programs, since rule heads and bodies of a general logic
program are arbitrary first-order formulas.

@ To deal with arbitrary first-order formulas in rule heads and
bodies in a general logic program, we propose to extend the

above Gelfond-Lifschitz three step definition of answer sets to
general logic programs.
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Well-Justified FLP Answer Sets

Let 1 be a general logic program and / an interpretation.

Extension of the three step definition of answer sets

© We extend the first step to first-order formulas by eliminating
from ground(I) all rules whose bodies are not satisfied by /.
This yields the FLP reduct f1’.

@ Instead of directly eliminating from T’ all negative literals in
—/~, we adapt the second step to first-order formulas by
adding the negative literals in =/~ as constraints on fI'.

© We extend the third step to first-order formulas by computing
a fixpoint O% from £’ under the constrains =/~ via a
sequence (O')%°,, where O° = {) and for i > 0 and any rule r
in M, if body(r) is true in O'~1 under the constrains =/,
i.e. O'"1U—I~ |= body(r), then head(r) is in O, where = is
the entailment relation.
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Well-Justified FLP Answer Sets

Define <Oi>‘,?§0 using a one-step provability operator:

@ We extend the van Emden-Kowalski operator Tp(S), which is
applicable only to a positive logic program P parameterized
with a set S of ground atoms, to a new operator Tp(O, N),
which is applicable to a general logic program Tl
parameterized with two first-order theories O and N.

e Intuitively, by applying Tn(O, N) we infer all rule heads from

ground(I) whose rule bodies are true in O under the
constraints M.

@ Formally we define
Tn(O, N) = {head(r) | r € ground() s.t.0O U N |= body(r)}.
@ Therefore, we can apply the operator T (O, N) to define

(0122, by letting O' = T;n,((b,ﬁl_) and 0% = T¢,,(0,-17).
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Well-Justified FLP Answer Sets

Properties of T/, (0,-/7):

Theorem

Lgt | be a mode{ of a general logic program T1. For any i > 0,
Th(0,=17) = T/q/(0,~17) and thus T§(0,~17) = T&(0,—17).

Theorem

| A

Let | be a model of a normal logic program 1. For any i > 0,
TL(0) = TH(0,~17) and thus TS (0) = T(0,~/7).

| A\

Corollary

A model | of a normal logic program [1 is an answer set under the
standard answer set semantics if and only if | = T5,(0) if and only
if | = Tq(0,=17) if and only if | = T, (0, =17).
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Well-Justified FLP Answer Sets

We use T§(0,—/7) to define answer sets:

Definition of the well-justified FLP semantics

Let / be a model of a general logic program 1. [ is a well-justified

FLP answer set of I if for each Ac I, T¢,(0,~17)U~I~ | A

Example

Consider the general logic program [1; in the introduction.
I ={p(—1),p(1)} is a model of My and is also an FLP answer set.

=~ contains =p(2). T¢,(0,—=17) = 0. Neither p(—1) € I nor
1

p(1) € I can be proved true in Tf‘n{

=17, so | is not a well-justified FLP answer set of I1;.

(@, —17) under the constraints
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Well-Justified FLP Answer Sets

Properties of the well-justified FLP semantics:

Theorem

If I is a well-justified FLP answer set of a general logic program T1,
then | is an FLP answer set of 1.

Level mapping

Well-justified FLP answer sets have a level mapping, which is built
from the FLP reduct f1’ via the sequence (T (0, =17))2,
where for each A€ [, Ais at level i > 0 if

Tiu(0,~17)U~I~ = Abut T/Z1(0,~17)U~I~ (£ A,

| 5\

The enhancement of the level mapping makes the resulting FLP
answer sets free of circular justifications.
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Extensions to Logic Programs with Constraints

The well-justified FLP semantics has been extended to general
logic programs with aggregates, and to description logic programs
(dl-programs).
@ When this method is applied to normal logic programs with
aggregates, the well-justified FLP semantics agrees with the
conditional satisfaction based semantics defined by [SPTO07].

@ When applied to dl-programs, the semantics agrees with the
strongly well-supported semantics defined by [Shell].
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Related Work

@ The FLP semantics is first introduced in [FLP04] for normal
(and disjunctive) logic programs with aggregates. It is then
extended to dl-programs and Hex programs [EIST05, EILT08],
modular logic programs [DTEFK09], disjunctive dI-programs
[Luk10], and general logic programs with aggregates [BLM11].
[Trul0] and [FLL11] also extend the FLP semantics of
[FLPO4] to propositional formulas and first-order formulas,
respectively. As illustrated in [BLM11], these two extensions
do not agree with the FLP semantics of [BLM11] (see
Definition 1) for general logic programs.

@ We observe that the problem of circular justifications with the
FLP semantics persists in all the above extensions.
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Related Work

e For normal logic programs with aggregates, [SY09] observe
that answer sets under the FLP semantics of [FLP04] have
circular justifications. They propose a default semantics by
translating a propositional logic program to a default logic
theory and show that the default semantics agrees with the
conditional satisfaction based semantics of [SPTO07].

e [LPST10] also indicate the circular justification
(self-supportedness) problem with the FLP semantics of
[FLPO4]. They propose a computation based semantics for
normal logic programs with aggregates, which proves to
coincide with the conditional satisfaction based semantics.

e For dl-programs, [Shell] observes the circular justification
problem with the FLP semantics defined by [EIST05]. For
disjunctive dl-programs, [SW11] notice the circular

justification problem with the FLP semantics defined by
[Luk10].
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