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Abstract—Nonnegative matrix factorization (NMF) is a pop-
ular technique for learning parts-based representation and data
clustering. It usually uses the squared residuals to quantify the
quality of factorization, which is optimal specifically to zero-
mean, Gaussian noise and sensitive to outliers in general cases.
In this paper, we propose a robust NMF method based on the
correntropy induced metric, which is much more insensitive to
outliers. A half-quadratic optimization algorithm is developed
to solve the proposed problem efficiently. The proposed method
is further extended to handle outlier rows by incorporating
structural knowledge about the outliers. Experimental results
on data sets with and without apparent outliers demonstrate
the effectiveness of the proposed algorithms.

Keywords-robust non-negative matrix factorization, half-
quadratic optimization, correntropy induced metric

I. INTRODUCTION

In many applications in data mining and machine learning,

one if often confronted with high dimensional data. Matrix

factorization, which usually seeks two or more lower dimen-

sional matrices to approximate the original data, is popular

for data analysis. The factorization results in a reduced

representation of the original data. It can be seen either as a

feature extraction or a dimensionality reduction technique.

The popular matrix factorization methods include Principle

Component Analysis (PCA), Singular Value Decomposition

(SVD) and Non-negative Matrix Factorization (NMF) [1].

Unlike PCA and SVD, NMF aims to find two non-

negative matrices whose product provides a good approx-

imation to the original matrix. Due to the non-negativity

constraints, each data is represented as additive combination

of basis factors. As a result, NMF can be interpreted as

a part-based representation of the data. Recently, many

variants of NMF with different forms of factorization and

regularization have also been developed to improve original

NMF from different perspectives, including [2], [3], [4],

[5], [6]. The NMF technique has been applied to many

applications in the fields of DNA gene expression analysis

[7], object recognition [8], and clustering [9].

The original NMF and its many variants usually use the

sum of squared error or the L2 error function to measure the

quality of approximation. Although it has nice mathematical

properties and shown their effectiveness in many tasks, it

is not always the best choice for data analysis [10]. It

has been shown that the squared error is optimal for zero

mean, Gaussian noise [11]. Actually, real world problems

almost always involve data that do not conform to the

assumptions made by the model. Previous studies show

that the least-squares error measure is sensitive to outliers.

Sometimes, even a single corrupted point can arbitrarily

degrade the quality of the approximation. Recently, some

variants have been proposed to improve the robustness of

original NMF. The L1−L2 function in [12] was used for the

purpose of robust factorization. The optimization problem

is solved by a general gradient descent scheme, which is

computational expensive. L2,1-NMF [11] was proposed to

measure the quality of decomposition using the L2,1-norm

function, which assumes the fitting error follows Laplacian

distribution. SR-NMF [13], [14] was proposed to perform

standard NMF by subtracting an outlier matrix, which is

assumed to be sparse.

In this paper, we propose to replace the quadratic form of

residuals by less increasing functions to achieve robust fac-

torization. Instead of directly minimizing the non-quadratic

and possibly non-convex loss function, we develop an iter-

ative algorithm relying on the half-quadratic minimization

technique. At each iteration, the optimization problem is

reduced to a weighted least square NMF, which can be

solved in a similar way to standard NMF. In particular, we

first propose a novel robust NMF method based on the cor-

rentropy induced metric, called CIM-NMF. The correntropy

has been shown to obtain robust analysis in information

theoretic learning and effectively handle non-Gaussian noise

and large outliers [15]. We then extend CIM-NMF to handle

outlier rows by incorporating structural knowledge about the

outliers, which leads to rCIM-NMF. Due to the connection

between the correntropy induced metric and the robust M-

estimators, we further extend to use the Huber’s function

to measure the quality of approximation and have Huber-

NMF. The optimization problems for CIM-NMF, rCIM-

NMF, and Huber-NMF can be efficiently solved by the

iterative algorithm. We also discuss the connections between

our methods and existing robust NMFs and weighted NMFs.

Experimental results on benchmark datasets with/without

outliers demonstrate the effectiveness of the proposed meth-

ods.

The rest of the paper is organized as follows: in Section

II, we give a brief overview of NMF. In Section III, we
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introduce the generic learning algorithm based on half

quadratic minimization. In section IV, we introduce three

robust variants of NMF, that is, CIM-NMF, rCIM-NMF,

and Huber-NMF. In Section V, we discuss the relations to

existing works. In Section VI, we present the experimental

results. Finally, in Section VII, we conclude the paper with

future works.

II. A BRIEF REVIEW OF NMF

Given a non-negative data matrix X ∈ R
N×M , whose

rows correspond to data instances and columns to features.

We use Xi∗ to denote the ith row and X∗j to denote the jth

column in X . NMF aims to find two nonnegative matrices

U ∈ R
N×K and V ∈ R

M×K , whose product can well

approximate the original matrix X:

X ≈ UV T . (1)

There are different criteria to quantify the quality of the

decomposition. Lee et al. [1], [16] proposed two objective

functions: the square of the Euclidean distance and the

Kullback-Leibler divergence. The standard NMF can be

formulated as minimizing the following sum of squared

residuals:

min
U,V

N∑
i=1

||Xi∗ − Ui∗V T ||2 =
N∑
i=1

M∑
j=1

(Xij − (UV )ij)
2 (2)

s.t. U ≥ 0, V ≥ 0,

Although the objective function in Eq. (2) is convex with

respect to U only or V only, it is not convex in both variables

together. It is proved that a local minimum can be found by

the following iterative multiplicative update rules:

Uik = Uik
(XV )ik

(UV TV )ik
(3)

Vjk = Vjk
(XTU)jk
(V UTU)jk

. (4)

III. A GENERIC ALGORITHM BASED ON

HALF-QUADRATIC MINIMIZATION

In this paper, we will derive several robust variants of

NMF by replacing the squared error with other functions.

Here, we first introduce the generic robust NMF framework

based on Half-Quadratic minimization technique. We will

use this results repeatedly later.

A. The Half-Quadratic Minimization

Let the residual e be the difference between the actual

value of the data and the value predicted by NMF model.

Replacing the squared residual on each entry1 with a generic

1Note that the residual e can also be defined on rows or columns instead
of the entries, which is the case of the rCIM-NMF (see Section IV-C).

function, which yields

J (U, V ) =

N∑
i=1

M∑
j=1

�(Eij), (5)

where Eij = Xij −
∑K

k=1 UikVjk, and �(·) is chosen to be

robust to outliers or gross errors.

Generally, the loss function is non-quadratic and possibly

non-convex, and it is difficult to be minimized directly.

Fortunately, the half-quadratic minimization technique has

been developed to optimize those loss functions. By intro-

ducing additional auxiliary variable, it reformulates a non-

quadratic loss function as an augmented objective function

in an enlarged parameter space. It has been shown that

the half-quadratic iterations is a quasi-Newton method and

substantially faster than gradient based methods [17].

According to the conjugate function [18] and half-

quadratic theory [17], for a fixed Eij , the following equa-

tions holds

�(Eij) = min
Wij∈R

Q(Eij ,Wij) + φ(Wij), (6)

where φ(Wij) is the conjugate function of �(Eij), Wij is

the corresponded auxiliary variable, and Q(·, ·) : R → R is

a quadratic term for Eij and Wij . In this paper, we only

consider the quadratic term of multiplicative form [19]

Q(Eij ,Wij) =
1

2
WijE

2
ij . (7)

Substituting Eq. (6) and Eq. (7) into Eq. (5), we have the

augmented objective function

min
U,V

{
J (U, V ) =

n∑
i=1

�(Eij)

}

= min
U,V,W

{
J (U, V,W ) =

n∑
i=1

[
1

2
WijE

2
ij + φ(Wij)]

}
(8)

The loss function in Eq. (8) can be optimized by the

following alternating minimization scheme:

• When U and V are fixed, the minimization of the

objective function in Eq. (8) becomes convex with

respect to W . The explicit optimum is given by

Wij =
�′(Eij)

Eij
, (9)

which only depends on the loss function �(·). It is

expected that outliers often cause large fitting errors

and the corresponding weights Wij should be small.

For inliers with small errors, the weights Wij should

be large. Therefore, Wij can be seen as an outlier mask.

Some examples of these weight functions can be found

in Figure 1(b).

• When W is fixed, the minimization of the objective

function in Eq. (8) reduces to the weighted NMF
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presented in Eq. (12). A local minimum can be found

by the following update rules

Uik = Uik
(W ⊗XV )ik

(W ⊗ (UV T )V )ik
(10)

Vjk = Vjk
((W ⊗X)TU)jk

((W ⊗ (UV T ))TU)jk
. (11)

More details about weighted NMF can be found in next

subsection.

The update sequence generated by the above scheme will

converges. The objective function in Eq. (8) is nonincreasing

under the update rules in Eq. (9) and Eq. (10). It can be

verified that the objective function is also bounded. A similar

proof of the convergence of weighted NMF can be found in

[20], [11].

B. Weighted NMF

By assigning a non-negative weight on each entry, the

weighted NMF with squared error can be formulated as the

following optimization problem [21], [22]

min
U,V

N∑
i=1

M∑
j=1

Wij(Xij −

K∑
k=1

UikVjk)
2 (12)

s.t. U ≥ 0, V ≥ 0,

where W ∈ R
N×M is a non-negative matrix, which indi-

cates the importance of entries in X .

Since the objective function in Eq. (12) is not convex

with U and V jointly, we aim to find a local minimum by

iteratively updating U and V in a similar way with the un-

weighted NMF in Eq. (2).

Computation of U : Given V , the optimization problem

with respect to U is equivalent to minimizing

LU (U) =
N∑
i=1

(Xi∗ − Ui∗V T )Ai(Xi∗ − Ui∗V T )T + tr(ΦU),

where Ai = diag(Wi∗) ∈ R
M×M , Φ = [Φik] is the

Langrange multiplier for the nonnegative constraint Uik ≥ 0.

The partial derivatives of LU with respect to Uik is:

∂LU

∂Uik
= −2(Xi∗AiV )k + 2(Ui∗V TAiV )k +Φik. (13)

Using the KKT conditions ΦikUik = 0, we get the following

equations

[−(Xi∗AiV )k + (Ui∗V TAiV )k]Uik = 0. (14)

The above equation leads to the following update rule:

Uik = Uik
(Xi∗AiV )k

(Ui∗V TAiV )k
(15)

= Uik
(W ⊗XV )ik

(W ⊗ (UV T )V )ik
, (16)

where ⊗ is the Hadamard product, i.e., element wise product

between two matrices. Here we assume Hadamard product

has higher operator precedence over regular matrix product,

i.e., AB ⊗ CD = A(B ⊗ C)D.

Computation of V : Given U , the optimization problem

with respect to V is equivalent to minimizing

LV (V ) =
M∑
j=1

(X∗j − UV T
j∗)

TBj(X∗j − UV T
j∗) + tr(ΨV ),

where Bj = diag(W∗j) ∈ R
N×N . Similarly, the optimal

solution for V is given by the following updating rule

Vjk = Vjk
(X∗jBjU)k

(Vj∗UTBjU)k
(17)

= Vjk
((W ⊗X)TU)jk

((W ⊗ (UV T ))TU)jk
. (18)

IV. ROBUST NONNEGATIVE MATRIX FACTORIZATION

In this section, we will derive three robust NMFs, which

use the Correntropy Induced Metric or the Huber M-

estimator to measure the quality of matrix approximation.

A. Correntropy Induced Metric

Recently, the concept of correntropy [15] was proposed

in information-theoretic learning (ITL) to process non-

Gaussian and impulsive noise. Based on the information

potential of Renyi’s quadratic entropy [23], the correntropy

is defined as a generalized similarity between two arbitrary

variables x and y

Vσ(x,y) = Expectation[kσ(x− y)], (19)

where kσ(·) is the kernel function. In practice, the joint

probability density function is often unknown, and only a

finite number of data {(xi, yi)}
n
i=1 are available, which leads

to the following sample estimator of correntropy:

V̂σ(x,y) =
1

n

n∑
i=1

kσ(xi − yi). (20)

Based on the above correntropy, Liu et al. [15] further

proposed the Correntropy Induced Metric (CIM) for any two

vectors in the sample space as follows:

CIM(x,y) = (k(0)−
1

n

n∑
i=1

kσ(ei))
1/2, (21)

where ei is defined as ei = xi − yi, and we only consider

the Gaussian kernel g(e, σ) = 1√
2πσ

exp(−e2/2σ2) in this

paper.

Unlike the objective function in Eq. (2), which increases

quadratically with the fitting error and amplifies the side

effects of large errors, the value of CIM in Eq. (21) for

large error is close to 1. Since the large errors are often

induced by outliers, the effect of these outliers in CIM is

limited and even insignificant. In other words, CIM is mainly

determined by small errors, which correspond to inliers.

Thus, CIM is very useful for cases when the measurement
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error is nonzero mean, non-Gaussian with large outliers.

The CIM has shown its superiority in terms of robustness

in signal processing [15], feature extraction [24], and face

recognition [25]. Besides, due to the connection between

correntropy and M-estimators [15], it is also practical to

choose an appropriate kernel size.

B. CIM-NMF

Substituting the squared error on each entry in Eq. (2) with

the squared CIM, we have the CIM-NMF by minimizing the

following objective function:

J (U, V ) = 1−
1

NM

N∑
i=1

N∑
j=1

g(Xij −

K∑
k=1

UikVjk, σ),

which is equivalent to solve the following optimization

problem

min
U,V

N∑
i=1

M∑
j=1

(1− g(Xij −

K∑
k=1

UikVjk, σ)) (22)

s.t. U ≥ 0, V ≥ 0.

According to Eq. (8), the above optimization problem

of CIM-NMF is equivalent to minimizing the following

augmented objective function in an enlarged parameter space

min
U,V,W

N∑
i=1

M∑
j=1

[Wij(Xij −
K∑

k=1

UikVjk)
2 + φ(Wij)], (23)

which can be solved by the generic algorithm in Section 3.

Concretely speaking, we optimize the objective function in

Eq. (23) with respect to one variable while fixing the other

variables. This procedure repeats until convergence.

Computation of W : When U and V are fixed, the

optimization problem with respect to W can be solved

separately, and the optimal value of Wij is given by

Wij =

d
dEij

(1− g(Eij , σ))

Eij

∝ exp(−
(Xij −

∑K
k=1 UikVjk)

2

2σ2
). (24)

Computation of U and V : When W is given, the

optimization problem in Eq. (23) is reduced to the weighted

NMF in Eq. (12). Therefore, the multiplicative update rules

in Eq. (15) and Eq. (17) can be directly applied.

Like any kernel method, the selection of kernel size will

affect the performance of the proposed algorithm, and kernel

size is often determined empirically. In this paper, the kernel

size is computed as average reconstruction error, i.e.,

σ2 =
1

2NM

N∑
i=1

M∑
j=1

(Xij −
K∑

k=1

UikVjk)
2. (25)

The complete algorithm to solve CIM-NMF is summa-

rized in algorithm 1.

Algorithm 1 CIM-NMF Algorithm Description

Input: The data matrix X ∈ R
N×M , the initial values of

U ∈ R
N×K and V ∈ R

M×K .

Output: U , V , and weight matrix W .

repeat

Update W by Wij = exp(−
(Xij−

∑K
k=1

UikVjk)
2

2σ2 );

Update U by Uik = Uik
(W⊗XV )ik

(W⊗(UV T )V )ik
;

Update V by Vjk = Vjk
((W⊗X)TU)jk

((W⊗(UV T ))TU)jk
;

Update σ2 by 1
2NM

∑N
i=1

∑M
j=1(Xij −

∑K
k=1 UikVjk)

2;

until Converges

C. rCIM-NMF

In many applications, we have additional knowledge on

outliers. For example, in a microarray data set, if one record

(row) is corrupted, then it is likely that the qualities of

most of the entries in its corresponding row are low and

it should be better to consider the entire row as outlier. To

find such outlier pattern and decrease their contribution to

the optimization problem automatically, we can measure the

quality of matrix factorization by considering all entries in

one row as a whole. In this way, rows of the data matrix are

assigned to different weights, and entries in the same row

are equally weighted.

Concretely, we substitute the squared residuals on each

row (left equation in Eq. (2)) with the squared CIM, and get

the row-based CIM-NMF (rCIM-NMF) by minimizing the

following objective function:

J(U, V ) = 1−
1

N

N∑
i=1

g(||Xi∗ − Ui∗V T ||, σ), (26)

which is equivalent to the following optimization problem

min
U,V

N∑
i=1

(1− g(||Xi∗ − Ui∗V T ||, σ)) (27)

s.t. U ≥ 0, V ≥ 0.

Similar to CIM-NMF in Eq. (22), we also solve the

optimization problem via the half-quadratic minimization

framework in Section 3. According to Eq. (8), the optimiza-

tion problem in Eq. (27) is equivalent to minimizing the

following objective function

min
U,V,w

N∑
i=1

[wi||Xi∗ − Ui∗V T ||2 + φ(wi)], (28)

where wi is the weight associated on row Xi∗.
Computation of w: Using the generic algorithm of

Section 3, the optimal value of wi is given by

wi = exp(−
||Xi∗ − Ui∗V T ||2

2σ2
). (29)
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Computation of U and V : When w is given, the

optimization problem with respect to U and V becomes the

weighted NMF problem

min
U,V

N∑
i=1

M∑
j=1

Wij(Xij −
K∑

k=1

UikVjk)
2, (30)

where W = w1
T
M . Thus, the optimal value of U and V can

also be obtained by the update rules in Eq. (15) and Eq.

(17).

The kernel size for rCIM-NMF can also be estimated in

a similar way to Eq. (25). The complete algorithm to solve

rCIM-NMF is summarized in algorithm 2.

Algorithm 2 rCIM-NMF Algorithm Description

Input: The data matrix X ∈ R
N×M , the initial values of

U ∈ R
N×K and V ∈ R

M×K .

Output: U , V , and weight vector w.
repeat

Update wi by wi = exp(− ||Xi∗−Ui∗V
T ||2

2σ2 ),W = w1
T
M ;

Update U by Uik = Uik
(W⊗XV )ik

(W⊗(UV T )V )ik
;

Update V by Vjk = Vjk
((W⊗X)TU)jk

((W⊗(UV T ))TU)jk
;

Update σ2 by 1
2N

∑N
i=1 ||Xi∗ − Ui∗V T ||2;

until Converges

D. Extensions to M-estimators and Huber-NMF

In robust statistics, M-estimators [26] are generalized

maximum likelihood estimation to the minimization of the

sums of functions of the data. They have been widely used

in machine learning and data minging for robust learning

[25]. In robust regression, IRLS is often used to solve M-

estimators. Another common used technique is the half-

quadratic optimization [19]. By the multiplicative and the

additive half-quadratic reformulation of M-estimator, the

original problem is solved by the alternate minimization

of an augmented objective function. Some popular M-

estimators [27] include Lp function, L1 − L2 function,

Huber’s function, Cauchy’s function, and Welsh function.

It seems difficult to select a proper M-estimator for

general purpose. In this paper, we also take the Huber

function in Eq. (31) to measure the quality of approximation

by considering its connection to L2-norm and L1-norm.

�huber(e) =

{
e2 if |e| ≤ c
2c|e| − c2 if |e| ≥ c

, (31)

where c is the cutoff parameter to tradeoff between L2-norm

and L1-norm.

The Huber-NMF can be formulated as the following

optimization problem:

min
U,V

N∑
i=1

M∑
j=1

�huber(Eij), (32)

where Eij = Xij −
∑K

k=1 UikVjk.

Again, the Huber-NMF can be solved by the generic

algorithm in Section 3.

Computation of W : When U and V is given, the optimal

value of W is given by

Wij =

{
1 if |Eij | ≤ c
c

|Eij | otherwise
(33)

Computation of U and V : Similarly, the minimization

of Eq. (32) can also be achieved by the equations in Eq.

(15) and Eq. (17).

As [28], the cutoff parameter c is set to the median of

reconstruction errors, i.e.,

c = median(|Eij |). (34)

The complete algorithm to solve Huber-NMF is summarized

in algorithm 3.

Algorithm 3 Huber-NMF Algorithm Description

Input: The data matrix X ∈ R
N×M , the initial values of

U ∈ R
N×K and V ∈ R

M×K .

Output: U , V , and weight matrix W .

repeat

Update wi by Wij =

{
1 if |Eij | ≤ c
c

|Eij | otherwise
;

Update U by Uik = Uik
(W⊗XV )ik

(W⊗(UV T )V )ik
;

Update V by Vjk = Vjk
((W⊗X)TU)jk

((W⊗(UV T ))TU)jk
;

Update c by median(|Eij |);
until Converges

E. Discussion

To get a better understanding to the behaviors of these

functions, we plot these loss functions and their correspond-

ing weight functions of multiplicative half-quadratic form

in Figure 1. The interesting observation is as follows: 1)

compared with L2-norm, other functions are less increasing

and give less punishment to large fitting errors; 2) though L1

norm is often used to pursue robustness, the corresponding

weight 1/|e| is not upper bounded, so the objective function

would be dominated by the data points with near-zero fitting

errors which leads to the singularity problem [28]; 3) the

Welsch function, which is equivalent to CIM in Eq. (22),

behaves like an L2 norm on small errors, like an L1 norm

on relative larger errors, and approaching L0 norm with the

further increase of errors. The weight is upper bounded by

1 for small error and lower bounded by 0 for large error.

The different property is determined by a scale parameter.

4) the Huber function behaves like an L2 norm on small

errors and like L1 norm on large errors, controlled by a

cutoff parameter; 5) the Cauchy function is also insensitive

with large errors, which has been used for robust embedding

learning [29].
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Figure 1: (a) Five popular error functions �. (b) The corre-

sponding weight funtions w.

V. RELATIONS TO EXISTING WORKS

In this section, we discuss some approaches which are

closely related to our methods.

Clearly, the standard NMF can be seen as a special case of

weighted NMF by setting W = 1
N×M . In order to pursue

robustness of NMF, Kong et.al. [11] proposed L21-NMF to

minimize L1 error on rows, i.e.,

min
U,V

N∑
i=1

||Xi∗ − Ui∗V T ||, (35)

and L1-NMF to minimize L1 error on entries, i.e.,

min
U,V

N∑
i=1

M∑
j=1

|Xij −

K∑
k=1

UikVjk|, (36)

Besides, the L1 − L2-NMF [12] was proposed to minimize

the following objective function

min
U,V

√√√√1 +

N∑
i=1

M∑
j=1

(Xij −

K∑
k=1

UikVjk)2 − 1. (37)

Actually, both the L1 function and the L1 − L2 function

belong to M-estimators, as we mentioned earlier. That is

to say, L2,1-NMF, L1-NMF, and L1−L2-NMF can also be

solved by our generic half-quadratic minimization algorithm

in Section 3.

It should be noteworthy that one special case of the

weighted NMF in Section 3.2 has been presented in [21],

[22] for the task of collaborative filtering. Previous work

uses a binary weight matrix with its entries to indicate

whether the rating is missing, however, we aim to improve

the robustness of NMF by automatically adjust the weights

of outliers and inliers.

Finally, our methods also draw connections to recent

proposed WFS-NMF [20], which assigns different weights

on data points and features to indicate their importance and

can be formulated as follows

min
U,V,W

N∑
i=1

M∑
j=1

Wij(Xij −

K∑
k=1

UikVjk)
2 (38)

s.t. U ≥ 0, V ≥ 0,Wij = aibj ,
N∑
i=1

aαi = 1,
M∑
j=1

bβj = 1.

Similar to L1-norm, the weight of each entry derived from

the Lp-norm on the simplex is also not upper bounded for

near-zero errors, which may cause the singularity problem.

VI. EXPERIMENTS RESULTS

In this section, we present experiments to demonstrate

the effectiveness of the proposed NMF variants on data sets

with/without apparent outliers.

A. Compared Methods and Parameters Settings

We compare the performance of CIM-NMF, rCIM-NMF,

and Huber-NMF with the following methods. (1) Kmeans:

standard Kmeans algorithm; (2) PCA-Km: PCA is firstly ap-

plied to reduce the data dimension followed by the Kmeans

clustering; (3) RPCA-Km: robust PCA [30] is firstly applied

for subspace learning and followed by Kmeans; (4) Ncut

[31]: a spectral clustering algorithm; (5) NMF [1]: standard

NMF algorithm; (6) SR-NMF [13], [14]: a robust NMF

under the assumption of sparse noise; (7) L2,1-NMF [11]: a

robust NMF which uses the L2,1 to measure the quality of

factorization; (8) WFS-NMF [20]: a weighted NMF where

data points and features are assigned to different weights to

indicate their importance.

To make a fair comparison, the parameters of these

algorithms are set as follows. For PCA and RPCA, the

reduced dimensionality is set to preserve 99% variance.

For RPCA and SR-NMF, the regularization parameter is

searched from the grid {0.1, 0.2, 0.3, 0.4, 0.5}. For Ncut,

the similarities are computed using the standard Gaussian

kernel, and the kernel size is set in an automatic way using

the method introduced in [32]. For all NMFs, we set the

parameter K to be the number of clusters and initialize them

using the results of Kmeans, which is often suggested in the

literature [4], [11]. The power parameters α and β in WFS-

NMF are set to 0.7, as suggested by [20].

B. Evaluation Metrics

To evaluate their performance, we compare the generated

clusters with the ground truth by computing the following

two performance measures.

Clustering accuracy (ACC). The first performance mea-

sure is the clustering accuracy, which discovers the one-to-

one relationship between clusters and classes. Given a point

xi, let pi and qi be the clustering result and the ground truth

label, respectively. The ACC is defined as follows:

ACC =
1

n

n∑
i=1

δ(qi,map(pi)), (39)

where n is the total number of samples and δ(x, y) is the

delta function that equals 1 if x = y and equals 0 otherwise,

and map(·) is the permutation mapping function that maps

each cluster index to a true class label. The best mapping

can be found by using the Kuhn-Munkres algorithm [33].
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Table I: Description of the data sets

Data sets # instances # classes # features

COIL20 1440 1024 20

JAFFE 213 676 10

CSTR 476 1000 4

WebKB 827 4134 7

The greater clustering accuracy means the better clustering

performance.

Normalized mutual information (NMI). Another eval-

uation metric that we adopt here is the normalized mutual

information, which is widely used for determining the qual-

ity of clustering. Let C be the set of clusters from the ground

truth and C′ obtained from a clustering algorithm. Their

mutual information MI(C, C′) is defined as follows:

MI(C, C′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) log

p(ci, c
′
j)

p(ci)p(c′j)
, (40)

where p(ci) and p(c′j) are the probabilities that a data point

arbitrarily selected from the data set belongs to the cluster

ci and c′j , respectively, and p(ci, c
′
j) is the joint probability

that the arbitrarily selected data point belongs to the cluster

ci as well as c′j at the same time. In our experiments, we

use the normalized mutual information as follows:

NMI(C, C′) =
MI(C, C′)

max(H(C), H(C′))
, (41)

where H(C) and H(C′) are the entropies of C and C′, respec-

tively. Again, a larger NMI indicates a better performance.

C. Clustering on Data Sets without Apparent Outliers

In this experiment we study the performance of different

methods on data sets without apparent outliers. Each cluster-

ing algorithm is repeated 10 times and the average clustering

result is recorded.

Data Sets Table I summarizes the characteristics of the

data sets used in the experiments. Detailed descriptions of

the data sets are as follows.

• COIL20. This dataset contains 1,440 grayscale images

with black background for 20 objects with each object

having 72 different images. Each image is processed to

a size of 32× 32 pixels.

• JAFFE. This database contains 213 images of 7 facial

expressions (6 basic facial expressions + 1 neutral)

posed by 10 Japanese female models. Each image has

been rated on 6 emotion adjectives by 60 Japanese

subjects.

• CSTR. This is the dataset of the abstracts of tech-

nical reports (TRs) published in the Department of

Computer Science at University of Rochester from

1991 to 2002. The dataset contained 476 abstracts,

which were divided into four research areas: Natural

Language Processing(NLP), Robotics/Vision, Systems,

Table II: Clustering Accuracy

Data set COIL20 JAFFE CSTR WebKB

Kmeans 0.631 0.657 0.727 0.520

PCA-Km 0.638 0.780 0.749 0.527

RPCA-Km 0.652 0.753 0.703 0.615

Ncut 0.380 0.795 0.714 0.430

NMF 0.651 0.861 0.758 0.557

SR-NMF 0.671 0.839 0.777 0.603

L2,1-NMF 0.658 0.893 0.771 0.614

WFS-NMF 0.649 0.879 0.784 0.664

Huber-NMF 0.661 0.928 0.765 0.617

rCIM-NMF 0.695 0.882 0.798 0.675

CIM-NMF 0.670 0.927 0.761 0.652

Table III: Clustering NMI

Data set COIL20 JAFFE CSTR WebKB

Kmeans 0.743 0.745 0.651 0.042

PCA-Km 0.743 0.821 0.663 0.056

RPCA-Km 0.755 0.831 0.603 0.022

Ncut 0.578 0.833 0.638 0.151

NMF 0.679 0.859 0.665 0.155

SR-NMF 0.758 0.862 0.687 0.176

L2,1-NMF 0.713 0.908 0.681 0.157

WFS-NMF 0.740 0.872 0.687 0.013

Huber-NMF 0.743 0.932 0.675 0.172

rCIM-NMF 0.755 0.897 0.691 0.177

CIM-NMF 0.753 0.942 0.668 0.153

and Theory. We select the top 1000 words by mutual

information with class labels.

• WebKB2. It contains about 6,000 web pages collected

from the web sites of computer science departments

of four universities (Cornell, Texas, Washington, and

Wisconsin). Each web page is labeled with one out

of seven categories: student, professor, course, project,

staff, department, and other. The subset from Cornell

is used in our experiments.

Clustering Results: Tables II and III show the clustering

accuracy and NMI results on these data sets. The best two

results are shown in bold. From the experimental compar-

isons, we observe that: 1) the weighted variants of NMF, i.e.,

the last six methods, usually outperform the standard NMF

since they decrease the weights of entries, rows, or columns

with large fitting errors. This may indicate that, though these

data sets are usually used for non-robust learning, a careful

weighting scheme can still improve the performance of un-

weighted NMF; 2) our proposed methods, CIM-NMF, rCIM-

NMF and Huber NMF, often outperform other algorithms on

these datasets. For image data sets, CIM-NMF and Huber-

NMF perform better that others, one plausible reason is that

the possible outliers are scattered among the whole matrix.

While rCIM-NMF performs better on text data sets, which is

consistent with the normalized cut weighting (NCW) scheme

used in [9].

2http://www.nec-labs.com/∼zsh/files/link-fact-data.zip
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Table IV: Clustering Accuracy on the ORL face database (mean% ± std)

r(%) Kmeans PCA-Km RPCA-Km Ncut NMF SR-NMF L2,1-NMF WFS-NMF Huber-NMF rCIM-NMF CIM-NMF

5 51.1±2.9 50.6±1.2 52.1±2.5 44.2±2.9 54.7±3.2 58.2±2.1 56.0±3.4 56.5±3.0 57.1±2.9 56.7±3.3 61.0±2.1
10 48.7±2.5 48.4±2.6 48.8±1.9 34.6±1.5 51.5±3.0 54.3±2.7 52.9±2.8 53.6±2.7 55.4±2.2 53.9±2.7 60.7±3.5
15 45.5±2.6 45.4±2.0 45.7±2.0 33.8±2.4 49.6±1.7 50.5±3.0 49.9±2.6 50.5±2.5 51.8±3.0 50.6±2.8 58.8±3.3

20 43.3±2.4 43.7±2.4 43.8±2.6 35.0±2.2 45.9±2.5 48.0±2.2 47.1±2.5 47.8±2.1 50.2±2.5 47.8±2.3 57.2±2.6
25 40.5±2.3 41.5±2.3 41.5±1.7 35.4±2.0 44.2±2.8 46.1±1.8 44.9±2.7 45.5±3.4 47.6±1.8 44.6±2.5 54.8±3.5
30 39.1±2.2 39.8±1.7 39.2±1.7 35.1±1.6 42.2±2.8 42.7±2.7 42.5±2.2 42.1±2.8 44.5±2.7 42.1±2.5 51.6±3.2

35 37.1±1.9 37.3±1.7 38.1±2.1 34.4±1.8 38.7±1.9 40.6±2.0 39.4±2.1 39.6±2.4 41.3±2.3 40.6±2.0 47.1±2.4
40 34.6±1.6 35.0±1.7 35.8±1.7 32.8±1.5 36.9±2.2 38.0±2.0 37.1±1.7 38.7±2.5 38.4±1.6 37.0±2.1 43.0±2.7

45 34.1±1.5 34.0±1.4 34.5±1.5 33.3±1.3 36.2±2.1 37.1±1.3 37.9±2.5 36.1±3.1 37.6±2.2 36.8±1.7 42.0±2.8
50 32.1±1.6 32.8±1.5 33.2±1.3 32.3±1.7 34.4±1.8 35.4±2.0 35.0±2.1 35.4±2.4 35.9±2.0 35.0±2.1 39.7±2.1

Avg. 40.6 40.8 41.3 35.1 43.4 45.1 44.3 44.6 46.0 44.5 51.6

Table V: Clustering NMI on the ORL face database (mean% ± std)

r(%) Kmeans PCA-Km RPCA-Km Ncut NMF SR-NMF L2,1-NMF WFS-NMF Huber-NMF rCIM-NMF CIM-NMF

5 70.8±1.4 70.6±1.1 72.0±1.2 64.4±2.9 72.1±1.5 74.8±1.0 73.4±1.9 73.6±2.2 74.3±2.0 74.2±1.9 77.6±1.6
10 68.4±1.1 67.9±1.5 69.3±1.0 54.9±1.6 69.5±1.5 71.9±1.5 70.7±1.5 71.0±1.8 72.4±1.2 70.9±2.0 77.4±1.6

15 65.5±1.5 65.4±1.3 66.7±0.9 54.8±2.6 67.7±1.2 68.3±1.3 68.1±1.6 68.6±1.8 69.6±1.4 68.2±1.8 75.7±2.1
20 63.8±1.3 64.0±1.4 64.6±1.3 56.5±2.0 65.3±1.7 66.6±1.7 65.5±1.4 66.1±1.3 67.0±1.4 66.6±1.5 74.4±1.4

25 61.4±1.4 62.0±1.1 63.1±1.3 57.8±2.0 63.4±1.8 65.0±1.4 63.9±1.6 64.0±1.6 64.9±1.5 63.5±1.8 72.1±1.9
30 59.8±1.6 60.4±1.0 61.2±1.0 57.3±1.8 61.4±2.1 62.2±1.8 61.7±1.5 62.1±1.5 62.8±1.6 61.6±1.3 69.9±2.3
35 57.8±1.2 58.6±1.4 60.0±1.2 56.5±1.9 59.5±1.3 60.7±1.5 59.8±1.8 59.3±1.4 60.0±1.9 60.9±1.5 66.6±1.7

40 56.6±1.0 56.8±1.3 57.9±1.2 55.7±1.5 57.5±1.3 59.0±1.5 58.0±1.0 58.8±1.2 59.1±1.6 57.5±1.3 63.8±2.0
45 56.2±1.6 56.1±1.1 57.0±1.4 56.3±1.1 57.2±1.3 58.1±1.0 58.1±1.3 58.1±1.4 58.7±1.5 57.6±1.4 62.7±1.5
50 54.4±1.4 55.1±1.0 56.0±1.3 55.2±1.6 55.8±1.7 56.9±1.5 56.4±1.3 56.6±1.1 56.5±1.6 56.9±1.4 60.1±1.3

Avg. 61.5 61.7 62.8 56.9 63.0 64.4 63.5 63.9 64.5 63.8 70.0

D. Experiments on Face Database with Malicious Occlusion

In this experiment, we aim to test the performance of

the compared algorithms when data sets are contaminated

with outliers. The ORL face database is used in this ex-

periment. It contains 400 gray scale images of 40 indi-

viduals. The images are captured at different times, under

different lighting conditions, with different facial expression

and with/without glasses. All the face images are manually

aligned and cropped. The size of each cropped image is

32 × 32 pixels, with 256 gray levels per pixel. Thus, each

image is represented as a 1024-dimensional vector.

To simulate outliers, different percents of images (r =
5%, 10%, . . . , 50%) are randomly selected and partially

occluded on some key facial features (eyes or mouth)

according to [24]. To reduce statistical variety, 20 tests

were conducted on different randomly chosen percent of

outliers, and the average performance as well as the standard

derivation is reported.

Clustering Results: Tables IV and V show the detailed

clustering results measured by Accuracy and NMI, respec-

tively. As can be seen, our CIM-NMF algorithm significantly

outperforms the other algorithms in all the cases. Compared

with the second best algorithm, our method, CIM-NMF,

achieves 12.1% relative improvement in clustering accuracy.

For mutual information, it achieves 8.5% improvement over

the second best algorithm.

For all the compared algorithms, their clustering per-

formances decrease with the increase of outliers. Interest-

ingly, when the number of outliers is relatively small (e.g.,

r = 5%, 10%, 15%), we observe that: 1) the results of

CIM-NMF is relatively stable while other NMF variants

degrade quickly; 2) all other variants of NMF outperform

standard NMF, which may indicate these variants are robust

to outliers in some extent; 3) CIM-NMF achieves similar

results on these occlusion, that is to say, the performance of

CIM-NMF is almost not affected by these outliers. When r
becomes larger, CIM-NMF still performs best and all other

NMF variants achieve similar results to standard NMF. All

these results show that CIM-NMF is more robust over a

large range of outliers.

Classification Results: To further investigate the perfor-

mance of these compared algorithms on corrupted data,

we perform nearest neighbor classification based on the

learned low dimensional representation. We select 3 images

per subject as the training data and the rest are used for

testing. For each differently chosen percentage of outliers,

50 training/testing splits are randomly generated and thus

20× 50 classification accuracies are recorded.

Table VI shows the detailed classification accuracies of

compared algorithms. Here, we use all features without

dimension reduction as a weak baseline. Ncut is used to

compute the graph embedding based representation. Again,

CIM-NMF significantly outperforms all other algorithms in

all cases. It achieves 15.4% relative improvement against the

second best algorithm.

Visualization of Reconstructed Faces: To get a better

understanding of our approach, Figure 2 shows the recon-

structed images of several NMFs and the weight matrix

of CIM-NMF. Here, we randomly select 25 face images
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Table VI: Classification Accuracy on the ORL face database (mean% ± std)

r(%) All Features PCA RPCA Ncut NMF SR-NMF L2,1-NMF WFS-NMF Huber-NMF rCIM-NMF CIM-NMF

5 73.3±2.4 73.6±2.3 73.4±2.4 69.9±2.7 73.4±2.2 77.2±2.3 75.8±2.3 75.4±2.6 77.8±2.4 75.4±2.5 81.1±2.5
10 68.8±2.5 69.5±2.4 68.9±2.5 56.9±2.8 70.2±2.5 72.5±2.4 71.3±2.5 71.9±2.7 73.0±2.6 70.7±2.6 81.0±2.4
15 64.6±2.6 65.3±2.7 64.6±2.6 54.0±2.8 65.5±2.6 67.8±2.6 67.0±2.5 66.8±2.5 67.8±2.6 66.2±2.7 79.2±2.8

20 60.8±2.8 61.1±2.6 60.8±2.7 51.4±3.3 61.3±2.7 63.1±2.6 62.2±2.7 62.4±2.4 63.3±2.7 61.9±2.6 76.2±2.8
25 58.1±2.7 58.7±2.8 57.9±2.7 50.0±3.0 59.1±2.7 60.0±2.8 59.1±2.8 59.7±2.6 60.6±2.9 58.5±2.7 72.6±2.9
30 55.0±2.9 55.3±3.0 54.8±2.8 48.1±2.9 55.0±3.1 56.2±3.2 55.4±3.1 55.8±2.1 56.8±2.9 54.5±3.4 68.3±3.1

35 52.2±2.9 52.3±3.1 51.8±2.9 45.9±3.2 52.1±3.3 53.0±3.0 52.2±3.0 52.3±2.6 53.1±3.1 51.9±2.9 63.1±3.2
40 49.3±2.9 49.7±3.0 48.7±2.9 43.8±3.3 49.3±3.1 50.1±2.9 49.2±3.0 49.6±2.0 50.1±3.3 48.6±3.1 59.3±3.2

45 48.2±3.0 48.4±3.0 47.7±3.0 43.8±3.0 47.5±3.2 48.1±3.1 47.5±3.4 48.2±2.2 48.7±3.2 47.5±3.0 56.0±3.3
50 45.7±3.1 45.6±3.1 45.1±3.1 41.9±3.0 44.7±3.1 45.8±3.2 45.0±3.2 45.4±2.8 46.0±3.3 44.4±3.1 51.7±3.4

Avg. 57.6 58.0 57.4 50.6 57.8 59.4 58.5 58.8 59.7 58.0 68.9

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Original images corrupted by occlusion. (b),

(c), (d), (e) Reconstructed images by NMF, SR-NMF, L2,1-

NMF, and CIM-NMF. (f) Weight matrix learned by CIM-

NMF.

from one test with r = 20% corrupted samples. As can be

seen, the faces reconstructed by CIM-NMF are much clearer

than compared algorithms and the weight matrix of CIM

indeed assign small weights to obvious outliers (continuous

occlusion). The SR-NMF and L2,1-NMF can hardly identify

the entries or samples which contain outliers.

Visualization of Basis Vectors: In this test, we randomly

choose one test with r = 20% corrupted samples and show

the basis vectors obtained by NMF, and CIM-NMF in Figure

3. As can be seen, 10 basis vectors in NMF are partially

occluded, while only 4 subjects are occluded in CIM-NMF.

Comparing the basis vectors obtained by CIM-NMF with

the results of NMF, we find that our approach CIM-NMF

can indeed generate much clear basis vectors which are less

affected

VII. CONCLUSION

In this paper, we propose a novel robust NMF method

based on the correntropy induced metric, called CIM-NMF.

(a) (b)

Figure 3: (a) Basis vectors learned by NMF. (b) Basis vectors

learned by CIM-NMF.

To deal with the minimization of non-quadratic and non-

convex functions efficiently, we develop an iterative algo-

rithm based on the half-quadratic minimization technique.

At each iteration, the optimization problem is reduced to

a weighted least square NMF, which can be solved in a

similar way to standard NMF. The proposed method is

further extended to handle outlier rows by incorporating

structural knowledge about the outliers, which leads to

rCIM-NMF. Due to the connection between CIM and robust

M-estimators, we also extend to use the Huber’s function

to measure the quality of approximation and have Huber-

NMF. The optimization problems for both rCIM-NMF and

Huber-NMF are also solved by the algorithm developed

for CIM-NMF. Experimental results on benchmark datasets

with/without outliers demonstrate the effectiveness of the

proposed methods.

Several questions remain to be investigated in our future

work. There are many different robust loss functions, it

remains unclear how to choose these functions theoretically.

The robustness of the proposed algorithms depends on a free

parameter, such as scale parameter σ and cutoff parameter c.
Though an empirical strategy is provided, we plan to further

investigate other parameter selection methods suggested in

[25], [15], [28]. The robustness is pursued on stand NMF,

it is also interested to improve the robustness of other NMF

variants such as NMTF [4], and SymNMF [34].

VIII. ACKNOWLEDGMENTS

We would like to thank all anonymous reviewers for

their helpful comments. This work is supported in part by

99209



the National Natural Science Foundation of China (NSFC)

grants 60970045 and 60833001.

REFERENCES

[1] D. Lee, H. Seung et al., “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp.
788–791, 1999.

[2] P. Hoyer, “Non-negative matrix factorization with sparseness
constraints,” JMLR, vol. 5, pp. 1457–1469, 2004.

[3] A. Pascual-Montano, J. Carazo, K. Kochi, D. Lehmann, and
R. Pascual-Marqui, “Nonsmooth nonnegative matrix factor-
ization (nsnmf),” PAMI, vol. 28, no. 3, pp. 403–415, 2006.

[4] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnega-
tive matrix t-factorizations for clustering,” in Proceedings of
the 12th ACM SIGKDD, 2006, pp. 126–135.

[5] D. Cai, X. He, J. Han, and T. Huang, “Graph regularized non-
negative matrix factorization for data representation,” PAMI,
vol. 33, no. 8, pp. 1548–1560, 2011.

[6] C. Ding, T. Li, and M. Jordan, “Convex and semi-nonnegative
matrix factorizations,” PAMI, vol. 32, no. 1, pp. 45–55, 2010.

[7] J. Brunet, P. Tamayo, T. Golub, and J. Mesirov, “Metagenes
and molecular pattern discovery using matrix factorization,”
PNAS, vol. 101, no. 12, pp. 4164–4169, 2004.

[8] S. Li, X. Hou, H. Zhang, and Q. Cheng, “Learning spatially
localized, parts-based representation,” in Proceedings of the
2001 IEEE CVPR, vol. 1, 2001, pp. I–207.

[9] W. Xu, X. Liu, and Y. Gong, “Document clustering based on
non-negative matrix factorization,” in Proceedings of the 26th
ACM SIGIR, 2003, pp. 267–273.

[10] R. Sandler and M. Lindenbaum, “Nonnegative matrix factor-
ization with earth mover’s distance metric for image analysis,”
PAMI, vol. 33, no. 8, pp. 1590–1602, 2011.

[11] D. Kong, C. Ding, and H. Huang, “Robust nonnegative matrix
factorization using �21-norm,” in Proceedings of the 20th
ACM CIKM, 2011, pp. 673–682.

[12] A. Hamza and D. Brady, “Reconstruction of reflectance
spectra using robust nonnegative matrix factorization,” IEEE
Transactions on Signal Processing, vol. 54, no. 9, pp. 3637–
3642, 2006.

[13] L. Zhang, Z. Chen, M. Zheng, and X. He, “Robust non-
negative matrix factorization,” Frontiers of Electrical and
Electronic Engineering in China, pp. 1–9, 2011.

[14] B. Shen, L. Si, R. Ji, and B. Liu, “Robust nonnegative ma-
trix factorization via l1 norm regularization,” Arxiv preprint
arXiv:1204.2311, 2012.

[15] W. Liu, P. P. Pokharel., and J. C. Principe, “Correntropy:
properties and applications in non-gaussian signal process-
ing,” IEEE Transactions on Signal Processing, vol. 55, no. 11,
pp. 5286–5298, 2007.

[16] D. Seung and L. Lee, “Algorithms for non-negative matrix
factorization,” NIPS, vol. 13, pp. 556–562, 2001.

[17] M. Nikolova and R. Chan, “The equivalence of half-quadratic
minimization and the gradient linearization iteration,” IEEE
Transactions on Image Processing, vol. 16, no. 6, pp. 1623–
1627, 2007.

[18] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge Univ Pr, 2004.

[19] M. Nikolova and M. Ng, “Analysis of half-quadratic min-
imization methods for signal and image recovery,” SIAM
Journal on Scientific computing, vol. 27, no. 3, pp. 937–966,
2006.

[20] D. Wang, T. Li, and C. Ding, “Weighted feature subset non-
negative matrix factorization and its applications to document
understanding,” in 2010 IEEE ICDM, 2010, pp. 541–550.

[21] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from
incomplete ratings using non-negative matrix factorization,”
SIAM SDM, 2006.

[22] Q. Gu, J. Zhou, and C. Ding, “Collaborative filtering:
Weighted nonnegative matrix factorization incorporating user
and item graphs,” in SIAM SDM, 2010, pp. 199–210.

[23] J. Principe, D. Xu, and J. Fisher, “Information theoretic
learning,” Unsupervised Adaptive Filtering, vol. 1, pp. 265–
319, 2000.

[24] X. Yuan and B. Hu, “Robust feature extraction via informa-
tion theoretic learning,” in ICML, 2009, pp. 1193–1200.

[25] R. He, W.-S. Zheng, and B.-G. Hu, “Maximum correntropy
criterion for robust face recognition,” PAMI, vol. 33, no. 8,
pp. 1561–1576, 2011.

[26] P. Huber, E. Ronchetti, and MyiLibrary, Robust statistics,
1981, vol. 1.

[27] Z. Zhang, “Parameter estimation techniques: A tutorial with
application to conic fitting,” Image and Vision Computing,
vol. 15, no. 1, pp. 59–76, 1997.

[28] C. Ding, D. Zhou, X. He, and H. Zha, “R1-pca: rotational
invariant l1-norm principal component analysis for robust
subspace factorization,” in ICML, 2006, pp. 281–288.

[29] D. Luo, C. Ding, F. Nie, and H. Huang, “Cauchy graph
embedding,” in ICML, 2011, pp. 553–560.

[30] E. CANDES, Y. MA, J. WRIGHT et al., “Robust principal
component analysis?” Journal of the Association for Comput-
ing Machinery, vol. 58, no. 3, 2011.

[31] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” NIPS, vol. 2, pp. 849–856, 2002.

[32] P. Perona and L. Zelnik-Manor, “Self-tuning spectral cluster-
ing,” NIPS, vol. 17, pp. 1601–1608, 2004.

[33] L. Lovász and M. Plummer, Matching theory, 1986, no. 121.

[34] D. Kuang, C. Ding, and H. Park, “Symmetric nonnegative
matrix factorization for graph clustering,” in SIAM SDM,
2012, pp. 106–117.

100210


