
Intelligent Data Analysis 14 (2010) 479–495 479
DOI 10.3233/IDA-2010-0433
IOS Press

Clustering with feature order preferences

Jun Suna,d,∗, Wenbo Zhaob, Jiangwei Xuec, Zhiyong Shena,d and Yidong Shena

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China
bDepartment of Computer Science and Engineering, University of California, San Diego, La Jolla, CA,
USA
cDepartment of Mathematics, The Pennsylvania State University, Pennsylvania, PA, USA
dGraduate University, Chinese Academy of Sciences, Beijing, China

Abstract. We propose a clustering algorithm that effectively utilizes feature order preferences, which have the form that feature
s is more important than feature t. Our clustering formulation aims to incorporate feature order preferences into prototype-based
clustering. The derived algorithm automatically learns distortion measures parameterized by feature weights which will respect
the feature order preferences as much as possible. Our method allows the use of a broad range of distortion measures such as
Bregman divergences. Moreover, even when generalized entropy is used in the regularization term, the subproblem of learning
the feature weights is still a convex programming problem. Empirical results on some datasets demonstrate the effectiveness
and potential of our method.
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1. Introduction

Data clustering (a.k.a. cluster analysis) is a fundamental technique of unsupervised learning that has
been extensively studied for several decades [13,14], and yet is still an active area in data mining and
machine learning research. Given a set of objects, usually in the form of data points in R

d, clustering
aims to partition them into several disjoint groups (called clusters) in a meaningful and natural way. The
clustering objective is often formulated to maximize intra-cluster cohesion and inter-cluster separability.
Many clustering techniques have emerged over the years and have been widely applied to many different
tasks, such as image segmentation [24], unsupervised document clustering [9,28], organizing online
news articles, grouping genes and proteins with similar functionality, music clustering, customer and
market segmentation, and so on.

In supervised learning, labeled data can be used to guide the learning procedure to obtain the most
accurate model. However, in an unsupervised learning setting, no expert-provided labels exist for the
clustering algorithm. Therefore, it is very difficult to define precisely which clustering of the data is the
best one [10]. To make things worse, there may be multiple meaningful and natural clusterings in the
same dataset. Thus, some clustering formulations aim to uncover disparate or alternative clusterings in

∗Corresponding author: Jun Sun, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences; P.O. Box 8718, 4# South Fourth Street, Zhong Guan Cun, Beijing 100190, China.

1088-467X/10/$27.50  2010 – IOS Press and the authors. All rights reserved



480 J. Sun et al. / Clustering with feature order preferences

a single dataset that provide multiple different views of the data [15]. However, the problem of selecting
the best clustering still remains unsolved.

Since no explicit label information exists in the standard clustering setting, heavy assumptions about
similarity or distance have to be made to measure the goodness of a clustering. In practice, false
assumptions that’re been made may lead to meaningless clusterings. However, when some extra domain
knowledge is available, this problem will be alleviated. Then it becomes much easier to find a reasonable
clustering for the task at hand. The problem of how to effectively incorporate domain knowledge into
a clustering system has been an active topic in machine learning and data mining research in recent
years. For example, the problem of clustering with instance-level knowledge in the form of pairwise
constraints, namely, must-link and cannot-link constraints, has received a significant amount of attention
in recent years. A lot of techniques [5,17,18,27] has been proposed about clustering with must-link and
cannot-link constraints, which is also known as semi-supervised clustering.

Previous work on clustering with domain knowledge generally utilizes instance-level knowledge such
as pairwise constraints. Instead, we consider feature-level domain knowledge. In particular, we consider
a new form of domain knowledge called feature order preferences. Feature order preferences have the
form that feature s is more important than feature t. Obviously, feature order preferences are much easier
to obtain than precise relative weights of the features. This work is inspired by the research on how to
utilize instance-level order preferences in ranking and regression problems [8,31].

In this paper, we propose a novel clustering algorithm which is able to take into account feature
order preferences effectively. Our proposed clustering formulation aims to incorporate distance learning
into prototype-based clustering, where the distortion measure is parameterized by the feature weights
which will respect the feature order preferences as much as possible. Our clustering objective function
allows the use of any Bregman divergence [3], which is a large family of distortion measures including
squared Euclidean distance and Kullback-Leibler divergence. For the regularization term, we use a
recently proposed definition of generalized entropy [19], which is very general that can lead to many
instantiations of our clustering formulation. An important component in our algorithm is the subproblem
of feature weight learning. Even when generalized entropy is used in the regularization term, this problem
is still a convex programming problem, so efficient and effective algorithms exist [7]. We discuss ways to
extend our clustering algorithm to accommodate other classes of distortion measures such as directional
similarity functions (cosine similarity and Pearson’s correlation) [5,16]. Besides, we also explain how to
extend our clustering framework to deal with discrete data with nominal attributes, with some discussion
about the relations to other previously proposed categorical clustering formulations. In our experimental
section, the clustering results on several real-world datasets demonstrate the effectiveness and potential
of our proposed clustering algorithm with feature order preferences.

The rest of the paper is organized as follows. In Section 2, we formulate the clustering objective
function in detail. The proposed clustering algorithm is derived in Section 3. In Section 4, several
extensions are explained and discussed. Then, we evaluate the proposed clustering method using several
datasets in Section 5. We conclude the paper and discuss some future works in Section 6.

2. Model formulation

Let F ⊆ R
d denote the input space from which n data points, x1, · · · ,xn, where xi = [xi1, . . . , xid]�,

are sampled. We use X = [x1,x2, · · · ,xn]� ∈ R
n×d to denote the input data matrix.

Given k and {xi}n
i=1 ⊆ F , the goal of clustering is to find a disjoint partitioning {πc}k

c=1 of the data
where πc is the c-th cluster. nc = |πc| is the number of points in the c-th cluster.
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We introduce some notational conventions first. Boldface lowercase letters, such as x and y, denote
column vectors. The superscript � is used to denote the transpose of a vector. 1 d ∈ R

d denotes the
d-dimensional column vector whose entries are all 1’s and Id ∈ R

d×d denotes the identity matrix. We use
log(·) to denote natural logarithm. R+ and R++ denote the set of nonnegative and positive real numbers
respectively. ∆d =

{
w ∈ R

d
+ |w�1d = 1

}
is the probability simplex. For any w = [w1, · · · , wd]� ∈

∆d, the elements {wj}d
j=1 of w are nonnegative and sum to one.

2.1. Clustering objective with feature order preferences

In practice, each feature (or dimension) of the data points may be of different importance with respect
to the current clustering task. We use w = [w1, . . . , wd]� ∈ ∆d to denote a feature weight vector so
that wj (1 � j � d) indicates the relative importance of feature j. For example, w = [ 1d , . . . , 1

d ]
� is the

uniform feature weighting where all the features are of equal importance.
In our clustering formulation, we assume that some domain knowledge in the form of feature order

preferences will be given. A feature order preference is defined as a tuple (s, t, δ), which is interpreted
as ws − wt � δ. Thus, δ > 0 means that feature s is more important than feature t. “Features s and t
are of approximately equal importance” can be interpreted as |ws − wt| � ε, hence can be encoded by
a combination of (s, t,−ε) and (t, s,−ε) where ε is a small positive real number. In practice, optimal
feature weights are often very difficult to obtain, but feature order preferences sometimes can be easy
to acquire even when a domain expert has just some vague idea about the relative importance of the
features. We assume that a set of m feature order preferences, denoted by P = {(s i, ti, δi)}m

i=1 where
|P| = m, will be given.

A key component in a typical clustering formulation is the dissimilarity (or similarity) between two
points measured by a distortion function. Traditionally, without any domain knowledge, each dimension
of the data points are often assumed to contribute equally to the distortion measure. Now that a set of
feature order preferences is given by domain experts, we want to learn a distortion measure parameterized
by the feature weight vector w ∈ ∆d. Furthermore, we want to incorporate the process of distortion
measure learning into prototype-based clustering to produce more accurate clusterings.

Our clustering objective function consists of three terms which will be explained in detail as follows.

– First, we want to minimize the intra-cluster distortion of the clusters {πc}k
c=1. Assume that there’s

a cluster representative µc ∈ F for each cluster πc. The distortion of cluster πc is measured by∑
xi∈πc

Dw(xi, µc)where Dw(·, ·) is the distortion measure between two data points parameterized
by the feature weight vector w ∈ ∆d. The quality of the entire clustering {πc}k

c=1 is measured by
the total distortion of all the k clusters, namely,

k∑
c=1

∑
xi∈πc

Dw(xi, µc). (1)

– Second, we want the weight vector w to respect the feature order preferences in P as much as
possible. Note that we treat the preferences as soft constraints rather than hard ones. A penalty
term will be added to the objective function so that more violations of the preferences will lead to
larger penalties. Besides, we don’t penalize those constraints that’re not violated. Thus, if all the
weights are consistent with all the preferences, then the penalty term will be zero. Therefore, we
use a shifted hinge function [31] in the penalty term: for p = (s, t, δ) ∈ P, the penalty term for p is
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max(δ − (ws − wt), 0). Using m auxiliary variables ξ = [ξp] ∈ R
m where p ∈ P, minimizing the

penalty term is equivalent to the following optimization problem:

min
w, ξ

∑
p∈P

ξp +Other terms.

subjectto w ∈ ∆d

ws − wt � δ − ξp forallp = (s, t, δ) ∈ P
ξp � 0 forallp ∈ P (2)

– Third, aside from the feature order preferences, we don’t want to make further unwarranted assump-
tions about the values of the weights. Therefore, another regularization term, −Ĥ(w), is added to
the objective function to ensure that the weights are as uniform as possible. If the regularization
term is missing and no feature order preferences are provided, the feature with the least intra-cluster
distortion will get all the weight (feature weight = 1), which is undesirable and should be avoided.
Ĥ(·) is the generalized entropy which will be defined and discussed in Section 4.2. A key property
of Ĥ(·) is that the more uniform the weights wj (1 � j � d) are, the larger the value of Ĥ(w)
becomes. For the algorithm derived in the next section, we’ll use Ĥ(w) = 1− w�w which will be
referred to as �2-entropy. Extensions will be discussed in Section 4.2.

By combining the three terms discussed above, we have the overall clustering goal, which is to
minimize the following clustering objective function:

k∑
c=1

∑
xi∈πc

Dw(xi, µc) + λ1

∑
(s,t,δ)∈P

max(δ − (ws − wt), 0)− λ2 Ĥ(w) (3)

where λ1, λ2 � 0 are pre-specified parameters. The ratio between λ1 and λ2 encodes how confident
we’re about the feature order preferences. If λ1 is very small and λ2 is very large, the clustering model
will degenerate to uniform weighting and all the feature order preferences will be ignored.

After simple transformations as done in Eq. (2) using m auxiliary variables ξ = [ξp] ∈ R
m where

p ∈ P, our overall clustering objective can be written as

min
{w,ξ},{πc}k

c=1,{µc}k
c=1

k∑
c=1

∑
xi∈πc

Dw(xi, µc) + λ1

∑
p∈P

ξp − λ2 Ĥ(w)

subjectto w ∈ ∆d

ws − wt � δ − ξp forallp = (s, t, δ) ∈ P
ξp � 0 forallp ∈ P (4)

2.2. Parameterized distortion measures

Various distortion measures can be chosen for the clustering objective. Different distortion measures
imply different assumptions about the underlying distribution of the data under consideration. Many
useful distortion measures, such as squared Euclidean distance and KL divergence, belong to a broad
class of distortion functions known as Bregman divergences [3] which is defined as follows.
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Definition 1. Suppose φ : S �→ R is a strictly convex function where S ⊆ R
d is a convex set and φ(·) is

differentiable on ri(S), namely, the relative interior ofS . Then Bregman divergenced φ : S×ri(S) �→ R+

can be defined as follows.

dφ(z1, z2) = φ(z1)− φ(z2)− 〈z1 − z2,∇φ(z2)〉 (5)

where ∇φ is the gradient of φ.
Different φ(·)will lead to diverse divergences. For example, if φ(z) = z2, then dφ(z1, z2) = (z1−z2)2

is the squared loss (square Euclidean distance). If φ(z) = z log(z)−z, then dφ(z1, z2) = z1 log(z1/z2)−
(z1 − z2) is generalized I-divergence. Other Bregman divergences include Itakura-Saito distance, KL-
divergence, logistic loss, hinge loss and Mahalanobis distance.

An key property of Bregman divergence is formally stated as follows [3].

Lemma 1. Suppose {zi}l
i=1 ⊂ S ⊆ R

d and 1
l

∑l
i=1 zi ∈ ri(S). For Bregman divergence dφ : S ×

ri(S) �→ R+, the following problem

min
s∈ri(S)

l∑
i=1

dφ(zi, s) (6)

has a unique solution: s† = 1
l

∑l
i=1 zi.

We use a parameterized version of Bregman divergences for Dw(·, ·) in Eq. (1), specifically,

Dw(xi, µc) =
d∑

j=1

wj

vj
dφ(xij , µcj) (7)

where v = [v1, . . . , vd]� ∈ R
d, which is used to scale the within-cluster distortion in each dimension to

[0, 1], is defined as follows.

vj = min
u

n∑
i=1

dφ(xij , u) (8)

According to Lemma 1, vj =
∑n

i=1 dφ(xij , µ̄j) where µ̄ = [µ̄1, . . . , µ̄d]� = 1
n

∑n
i=1 xi is the global

mean of the data points.

3. Algorithm derivation

In this section, we derive an efficient algorithm to optimize the clustering problem in Eq. (4). Combined
with Ĥ(w) = 1− w�w and Eq. (7), the clustering objective (4) is equivalent to the following one.

min
{w,ξ},{πc}k

c=1,{µc}k
c=1

k∑
c=1

∑
xi∈πc

d∑
j=1

wj

vj
dφ(xij , µcj) + λ1

∑
p∈P

ξp + λ2 w�w

subjectto w ∈ ∆d

ws − wt � δ − ξp forallp = (s, t, δ) ∈ P
ξp � 0 forallp ∈ P (9)
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This is the clustering objective we want to optimize in this section. Extensions will be discussed in
the next section. Note that the regularization term −Ĥ(w) is very important to our formulation. For
example, in the extreme case that no preferences are available (m = 0), if λ2 = 0, then the feature with
the smallest intra-cluster distortion will receive weight 1 and others get zero weight, which is obviously
undesirable in practice.

In Eq. (9), there’re 3 sets of unknown variables, namely, {w, ξ}, {πc}k
c=1 and {µc}k

c=1. When two of
them are fixed, the subproblem of computing the optimal values for the variables in the remaining set is
easy to solve. Hence, problem (9) can be solved by iteratively updating {w, ξ}, {π c}k

c=1 and {µc}k
c=1

so that the objective value gradually decreases. This approach can be thought of as a “block coordinate
descent” method [6].

3.1. The computation of {πc}k
c=1 for given {µc}k

c=1 and {w, ξ}
Given an existing set of cluster representatives {µc}k

c=1 and {w, ξ}, computing the optimal clustering
{πc}k

c=1 in problem (9) is equivalent to solving the following minimization problem

min
{πc}k

c=1

k∑
c=1

∑
xi∈πc

Dw(xi, µc) (10)

where Dw(xi, µc) =
∑d

j=1
wj

vj
dφ(xij , µcj). Therefore, each data point xi should be assigned to a cluster

πc so that Dw(xi, µc) is minimized (ties are resolved arbitrarily). After the cluster assignment, we obtain

πc = {x ∈ {xi}n
i=1 |Dw(x, µc) � Dw(x, µl)forall1 � l � k} . (11)

3.2. The computation of {µc}k
c=1 for given {πc}k

c=1 and {w, ξ}
Given an existing clustering {πc}k

c=1 and {w, ξ}, computing the optimal cluster representatives
{µc}k

c=1 in problem (9) is equivalent to solving the following minimization problem

min
{µc}k

c=1

k∑
c=1

∑
xi∈πc

d∑
j=1

wj

vj
dφ(xij , µcj) =

k∑
c=1

d∑
j=1

wj

vj
g(µcj) (12)

where g(µcj) =
∑

xi∈πc
dφ(xij , µcj). Since wj , vj � 0, problem (12) is equivalent to minimizing g(µcj)

for each µcj where 1 � c � k and 1 � j � d. According to Lemma 1, µcj = 1
nc

∑
xi∈πc

xij is the
minimizer of g(µcj). Therefore, the optimal value of problem (12) is achieved when µc = 1

nc

∑
xi∈πc

xi.

3.3. The computation of {w, ξ} for given {πc}k
c=1 and {µc}k

c=1

Given an existing clustering {πc}k
c=1 and cluster representatives {µc}k

c=1, computing the optimal
{w, ξ} in problem (9) is equivalent to solving the following minimization problem

min
w∈Rd, ξ∈Rm

w�b+ ξ�u+
1
2
w�w

subjectto w ∈ ∆d

Aw + ξ � δ

ξ � 0 (13)
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where u = λ1
2λ2

1m ∈ R
m, b = [b1, b2, · · · , bd]� ∈ R

d and

bj =
1
2λ2

k∑
c=1

∑
xi∈πc

1
vj

dφ(xij , µcj)

Besides, A = [aij ] ∈ R
m×d and

aij =



1 if si = j
−1 if ti = j
0 otherwise

where pi = (si, ti, δi) is the i-th feature order preference.
Problem (13) is a (convex) quadratic programming problem [7] with d+m variables, d + 2m linear

inequality constraints and 1 linear equality constraint.
The Lagrange dual problem [7] associated with problem (13) can be derived and simplified as follows.

min
α∈Rm, β∈Rd

1
2
· (α�, β�)

{(
A
Id

)(
A�, Id

)
−

(
0 0
0 1

d1d1�d

)}(
α
β

)

−
(

b� − 1
d
b�1d1

�
d − 1

d
1�d

)(
A�, Id

) (
α
β

)
− α�δ

subjectto 0 � α � u

0 � β (14)

Problem (14) is a bound-constrained quadratic optimization problem, which can be solved efficiently
using the gradient projection method [22]. In each iteration of the gradient projection method, a step size
has to be computed along a piecewise-linear path with O(m+ d) line segments. For each line segment,
the time complexity is dominated by calculating Agd and gmA where gd ∈ R

d and gm ∈ R
m are vectors

arising in the procedure. Since matrix A has only O(m) non-zero elements, searching each line segment
takes time O (m+ d) which makes the time complexity of each iteration O

(
(m+ d)2

)
.

When the optimal solution of the dual problem (14) is obtained, the optimal solution of the primal
problem (13) can be calculated as follows.

w = A�α+
(

β − 1
d
1d1

�
d β

)
−

(
b − 1

d
1d1

�
d b − 1

d
1d

)

This can be verified using the KKT condition [7].
In [20], the criterion for selecting the optimal feature weighting in clustering makes the feature weights

difficult to determine. In fact, they calculate the weights through an exhaustive search over a coarse grid
on∆d. In practice, their method can only determine the approximately optimal values of a few weights.
Instead, our problem formulation makes the subproblem of determining feature weights much easier to
solve. Furthermore, the incorporation of domain knowledge such as feature order preferences becomes
natural. Even with the generalized entropy discussed in Section 4.2, this subproblem for computing w
is still a convex programming problem in which any locally optimal solution is also globally optimal.
There’re very effective algorithms that can solve convex programs reliably and efficiently [7].
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Fig. 1. CFP algorithm.

3.4. The main algorithm

The outline of our algorithm for Clustering with Feature order Preferences (CFP) is presented in
Fig. 1. The “convergence” criterion is met when the change in the clustering objective value between
two successive iterations is less than some pre-specified threshold. In our experiments, our algorithm
typically converges within less than 50 iterations.

As discussed in the previous subsections, the iterative updating procedure of CFP decreases the
objective value in problem (9) after each iteration. Besides, the objective value is bounded below by
zero. Therefore, the algorithm CFP converges to a locally optimal solution in a finite number of steps.

3.5. Computational complexity

In this section, we analyze the computational complexity of the proposed algorithm. It can be easily
seen that the time complexity of E-step and M-step1 are O(nkd) and O(nd) respectively. For
M-step2 which is the feature weight learning algorithm, the time complexity is O

(
L2(m+ d)2

)
where L2 is the number of iterations in the gradient projection method. If L1 is the number of iterations
of the overall algorithm. The overall complexity is O

(
L1

(
nkd+ L2(m+ d)2

))
.

4. Extensions and discussion

4.1. Extension to other distortion measures

Our clustering framework can be extended to other types of distortion (or similarity) measures including
directional similarity functions such as cosine similarity and Pearson’s correlation [16,5]. We use cosine
similarity as an example to explain the extension. We define parameterized cosine distortion as follows.

Dw(x,y) = 1− 〈x,y〉w
‖x‖w ‖y‖w

(15)
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where 〈x,y〉w =
∑d

j=1 wjxjyj and ‖x‖w =
√〈x,x〉w . The updating procedure for µc in M-step1

of Fig. 1 becomes

µc =

∑
xi∈πc

xi∥∥∑
xi∈πc

xi

∥∥
w

(16)

Note that if other distortion measures are used, the subproblem of computing the feature weights given
{πc}k

c=1 and {µc}k
c=1 may not be a convex programming problem any more, so locally optimal solution

to the subproblem of feature weight learning may not be globally optimal.

4.2. Extension to generalized entropy

To formally give the definition of generalized entropy, we first briefly introduce the definition of
concave function as follows [23].

Definition 2. Suppose X ⊆ R
d is a convex set, f : X �→ R is concave if and only if for any x1, x2 ∈ X

and θ ∈ (0, 1),
f(θx1 + (1− θ)x2) � θf(x1) + (1− θ)f(x2).

Generalized entropy measures the degree of uncertainty or impurity within a probability distribution.
Here we only consider the discrete probability distribution represented by the probability simplex ∆d.
Each vector w ∈ ∆d corresponds to a probability distribution on a set of d elements, with wj interpreted
as the probability of the j-th element. A recently proposed definition of generalized entropy is formulated
as follows [19].

Definition 3. We define generalized entropy as a mapping

Ĥ : ∆d �→ R+

that satisfies the following two criteria (symmetry and concavity):

1. For any w1 ∈ ∆d, and any w2 ∈ ∆d whose elements are a permutation of the elements of w1,
Ĥ(w1) = Ĥ(w2).

2. Ĥ(·)isaconcavefunction.

A key intuition in this definition is that the more uniform the elements of w ∈ ∆d are, the larger
the value of generalized entropy becomes. The motivation and detailed derivation for this definition is
explained in [19]. Here we give some specific examples of generalized entropy as follows:

1. Ĥ(w) =
∑d

i=1 −wi log(wi), which is the celebrated Shannon entropy.
2. Suppose t > 0. Ĥ(w) = t(1 − ∑n

i=1 wβ
i ) when β > 1 and Ĥ(w) = t(

∑n
i=1 wβ

i − 1) when 0
< β < 1 are generalized entropies [25].

3. Ĥ(w) = 1 − w�w, which will be referred to as �2-entropy. This entropy is in essence a special
case of the previous definition when β = 2.

4. Ĥ(w) = 2− ∑d
i=1 |wi − 1

d |, which will be referred to as �1-entropy.

5. Ĥ(w) = 1− max
1�i�d

wi, which will be referred to as �∞-entropy.
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Many other entropies which are special cases of this definition have been proposed in the literature [19].
Since this definition of entropy is very general, our framework can lead to many instantiations. In our
proposed algorithm in Section 3, we use �2-entropy and so the optimization problem in M-step2 of
Fig. 1 is a quadratic programming problem. When �1-entropy is used, the optimization problem in
M-step2 can be formulated as a linear programming problem. With distortion measure (7), whichever
entropy is used, the optimization problem in M-step2 will always be a convex programming problem,
since Ĥ(·) is a concave function and all the constraints in the clustering problem (9) are linear.

4.3. Extension to multiple, heterogeneous feature spaces

Our framework can be directly extended to multiple, heterogeneous feature spaces [20]. Each object
is represented by a tuple of d component feature vectors, specifically, x = (x (1), · · · ,x(d)) where x(j)

comes from the j-th feature space, which is associated with a weight wj . Here, the order preference
(s, t, δ) with δ > 0 means that “feature space s is more important than feature space t”. The distortion
measure in Eq. (7) becomes

Dw(xi, µc) =
d∑

j=1

wj

vj
dφ(x

(j)
i , µ(j)

c ) (17)

The corresponding clustering algorithm can be easily derived.

4.4. Extensions to discrete data

In the clustering model proposed above, we assume that the data points are sampled from R
d, that

is, the attributes of the data points are numeric. Here, we’ll explain how the model can be modified to
deal with discrete data with nominal attributes, namely, categorical data where the category labels are
unordered.

Instead of minimizing distortion w.r.t. the cluster representative, we want the data in each cluster and
dimension (for each cluster-feature pair) to be as pure as possible. By using an entropy criterion for each
cluster-feature pair, we have the overall clustering goal, which is to minimize the following clustering
objective function:

1
k

k∑
c=1

|πc|
n

d∑
j=1

wj

vj
Ĥ(ycj) + λ1

∑
(s,t,δ)∈P

max(δ − (ws − wt), 0)− λ2 Ĥ(w) (18)

where ycj is the distribution of category labels for each cluster c and feature j. Specifically,

ycj =
(

gcj1

|πc| ,
gcj2

|πc| , · · · ,
gcjhj

|πc|
)�

(19)

where hj is the number of category labels in dimension j, and gcjl (1 � l � hj) is the number of the l-th
category label in the data w.r.t. the cluster-feature pair cj (see the example in the next paragraph). v j is
a value used to normalize the entropy value in dimension j. Note that different entropies can be used for
the first and second Ĥ(·) in Eq. (18).

For example, in a 1-dimensional data set {a, b, b, b, a} with 5 data points, there’re two category labels,
namely a and b. Thus, each ycj is 2-dimensional. If the data set is clustered into 2 clusters {a, b, b}
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Table 1
Summary of datasets

Dataset iris optdigits pgblocks pendigits vowel wdbc

n 150 5620 5473 10992 990 569
d 4 64 10 16 10 30
k 3 10 5 10 11 2

and {b, a}, we have y1,1 = (13 , 2
3)

� and y2,1 = (12 , 1
2)

�. If clustered into another 2 clusters {a, a} and
{b, b, b}, we have y1,1 = (1, 0)� and y2,1 = (0, 1)�. Clearly, the latter clustering has a lower value of
entropy, thus a better clustering.

A similar iterative algorithm can be derived for optimizing the clustering objective (18) as in Section 3.
If different generalized entropies are adopted for the term Ĥ(ycj) in Eq. (18), we can obtain different
categorical data clustering criteria. Here we briefly explain some of the variants and their relations with
previous works on categorical clustering in the literature.

If the �∞-entropy defined in Section 4.2 is used for the term Ĥ(ycj) in Eq. (18), λ1 = λ2 = 0, v = 1d

and the value of w is fixed and uniform, then objective function (18) is what the k-Modes [12] algorithm
aims to optimize. Besides, it is also the criterion function implicitly optimized by the Iterative Voting
Consensus (IVC) algorithm in [21].

If the �2-entropy defined in Section 4.2 is used for the term Ĥ(ycj) in Eq. (18), λ1 = λ2 = 0, v = 1d

and the value of w is fixed and uniform, then objective function (18) is essentially the definition of
category utility [11].

If the Shannon entropy is used for the term Ĥ(ycj) in Eq. (18), λ1 = λ2 = 0, v = 1d and the value of
w is fixed and uniform, then objective function (18) is the clustering criterion that’s been used in [1,4].

5. Experiments

In this section, we present an empirical evaluation of our clustering method with different number
of feature order preferences, parameter values and distortion measures on a number of datasets. First,
we briefly introduce the basic information of the datasets. We use six datasets from the UCI machine
learning repository [2]. Table 1 summarizes the basic properties of the datasets. These datasets provide
a good representation of different data distributional characteristics. Note that in all the experiments, the
“true” number of clusters k is provided to the clustering algorithms.

5.1. Experimental setting

In practice, feature order preferences would be provided by domain experts. However, for convenience,
we generate simulated feature order preferences by using the ground truth class information in our
experiments. We first calculate the within-class distortion for each dimension 1 � j � d, which is
defined as

Θj =
1
vj

k∑
c=1

∑
xi inclassc

dφ(xij , µcj) (20)

where µc is the centroid of class c. Then, for each dimension 1 � j � d, we calculate the inverse within-

class distortion Γj =
∑

l�=j
Θl

Θj
. After that, we estimate the optimal feature weights by w̃j =

Γj∑d

l=1
Γl

.
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The weight vector w̃ is generally not the optimal weighting for clustering the data at hand. Instead, it
is just a rough estimate of the optimal feature weighting. We randomly sample without replacement m
pairs (s, t) of features with the constraint that w̃s is among the � d

2� largest weights and w̃t is among the
�d

2� smallest weights. Then our simulated feature order preference is (s, t, w̃s − w̃t).
In our experiments, we use Ĥ(w) = 1 − w�w. Besides, by default, we set the parameters λ1 = d

m
and λ2 = d unless otherwise stated. The reason for this is that we want the three terms in Eq. (9) to
contribute equally to the objective value. Since the first term is scaled to [0,1] due to v, we want the other
terms to be around 1. As the average weight of each feature is 1

d , the second term is approximately less
than m

d and so λ1 is set to d
m . The minimum value of wT w is 1

d corresponding to the uniform weighting.
We want w to be as uniform as possible, so λ2 is set to d.

We compare the performance of our algorithm with Bregman hard clustering [3] which is referred to
as BClus. For the cluster initialization, we randomly select k points as the cluster representatives and
uniform weighting as the initial weighting w. We set φ(x) = x2 for BClus and CFP by default. For each
run of the considered algorithms (BClus, CFP with different number of feature order preferences), the
same 5 sets of initial seeds are used and the clustering result with the best value of objective function is
selected for each algorithm. Unless otherwise stated, each performance result is the average of 100 runs
of the considered algorithms. The algorithms are implemented in C++.

5.2. Evaluation criteria

Given class labels, we adopt two external validity measures, Normalized Mutual Information
(NMI) [26] and Clustering Accuracy (Acc) [29], as our criteria.

Given a clustering C and the “true” partitioning B (class labels). The number of clusters in C and
classes in B are both k. Suppose ni is the number of objects in the i-th cluster, n

′
j is the number of

objects in the j-th class and nij is the number of objects which are in both the i-th cluster and j-th class.
NMI between C and B is calculated as follows [26]:

NMI (C,B) =
∑k

i=1

∑k
j=1 nij log

n·nij

ni·n′
j√∑k

i=1 ni log ni
n

∑k
j=1 n

′
j log

n
′
j

n

. (21)

Clustering Accuracy (Acc) builds a one-to-one correspondence between the clusters and the classes.
Suppose the permutation function Map(·) : {i}k

i=1 �→ {j}k
j=1 maps each cluster index to a class index,

i.e., Map(i) is the class index that corresponds to the i-th cluster. Acc between C and B is calculated as
follows:

Acc (C,B) =
max

(∑k
i=1 ni,Map(i)

)
n

(22)

Larger values of NMI and Acc indicate better clustering performance.

5.3. Clustering performance

In this section, we compare the performance of the algorithms. We test our proposed clustering
algorithm with various numbers of feature order preferences.
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Table 2
Clustering results on the iris dataset. “C.M.” denotes confusion matrices. CFP(m) is our
proposed algorithm with m feature order preferences. This is the clustering result of only a
single run of the algorithms. Here φ(x) = x2. It can be observed that feature order preferences
do improve clustering result

Algo. BClus CFP(1) CFP(2) CFP(3) CFP(4)
50 0 0 50 0 0 50 0 0 50 0 0 50 0 0

C.M. 0 39 14 0 47 13 0 46 4 0 48 4 0 48 4
0 11 36 0 3 37 0 4 46 0 2 46 0 2 46

NMI 0.6595 ↗0.7496 ↗0.8308 ↗0.8642 →0.8642
Acc 0.8333 ↗0.8933 ↗0.9467 ↗0.9600 →0.9600

Table 3
Experimental results on all the datasets. Both NMI and Acc results are provided here. CFP(m)
is our proposed algorithm with m feature order preferences. The results produced by CFP when
m = � d

4
�, � d

2
�, d are shown

NMI Acc
BClus CFPd/4 CFPd/2 CFPd BClus CFPd/4 CFPd/2 CFPd

iris 0.6511 0.7381 0.8265 0.8642 0.8238 0.8913 0.9371 0.9600
optdigits 0.6414 0.6747 0.6897 0.7046 0.6422 0.6831 0.7014 0.7204
pendigits 0.6914 0.6974 0.6968 0.7024 0.6968 0.7079 0.7080 0.7188
pgblocks 0.1194 0.1379 0.1594 0.1820 0.4719 0.5403 0.6015 0.6691
vowel 0.3765 0.3972 0.4109 0.4241 0.3213 0.3362 0.3483 0.3588
wdbc 0.5410 0.6113 0.6182 0.6276 0.9071 0.9225 0.9237 0.9255

First, we consider a small dataset iris. Table 2 shows the confusion matrices, NMI and Acc values
obtained by BClus and CFP on the iris dataset. The arrows at the left side of NMI and Acc values indicate
whether the value increases (↗) or remains unchanged (→), compared with the algorithm in the previous
column. Note that this is the clustering result of only a single run of the algorithms. It can be observed
from Table 2 that feature order preferences do improve clustering result for the iris dataset. Besides,
CFP produces better clustering results as the number of feature order preferences increases. With only a
couple of feature order preferences, our algorithm almost recovers the original classes in the iris dataset.

The clustering results on all the datasets are shown in Table 3. As for CFP, results with m = � d
4�, �d

2�, d
are shown. As can be seen from Table 3, CFP generally produces better clustering results than BClus,
and more feature order preferences often lead to better performance. For each dataset, the best result
is often achieved by CFP(d). The results demonstrate that CFP effectively improves clustering quality
when some feature order preferences are available.

Then we compare the clustering results of the algorithms on datasets optdigits and wdbc with many
different values of m. The results in terms of NMI are shown in Fig. 2. It can be observed that our
algorithm CFP consistently outperforms BClus, even with a small number of feature order preferences.
With an increasing m, CFP generally produces increasing NMI values. Therefore, larger gains in
clustering performance can be obtained with more feature order preferences.

5.4. Different λ1 and λ2

We also examine the performance of the considered algorithms when different values of the parameters
λ1 and λ2 are used. For example, the clustering results for λ1 = d

m and λ2 = d
2 are summarized in Table 4

and the clustering results for λ1 = d
2m and λ2 = d

2 are summarized in Table 5. From the clustering
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Table 4
Experimental results on the datasets. Here, λ1 = d

m
and λ2 = d

2

NMI Acc
BClus CFPd/4 CFPd/2 CFPd BClus CFPd/4 CFPd/2 CFPd

iris 0.6521 0.7581 0.8233 0.8642 0.8251 0.9031 0.9341 0.9600
optdigits 0.6401 0.6749 0.6867 0.7000 0.6400 0.6815 0.6960 0.7143
pendigits 0.6915 0.7012 0.7004 0.7054 0.6974 0.7051 0.7059 0.7178
pgblocks 0.1180 0.1651 0.1720 0.1861 0.4708 0.5908 0.6331 0.6807
vowel 0.3794 0.3964 0.4106 0.4226 0.3263 0.3334 0.3471 0.3571
wdbc 0.5399 0.6108 0.6174 0.6278 0.9069 0.9218 0.9233 0.9254

Table 5
Experimental results on the datasets. Here, λ1 = d

2m
and λ2 = d

2

NMI Acc
BClus CFPd/4 CFPd/2 CFPd BClus CFPd/4 CFPd/2 CFPd

iris 0.6510 0.7587 0.8299 0.8642 0.8235 0.9033 0.9392 0.9600
optdigits 0.6497 0.6782 0.6936 0.7024 0.6535 0.6862 0.7071 0.7183
pendigits 0.6940 0.7009 0.7026 0.7067 0.7019 0.7082 0.7147 0.7262
pgblocks 0.1202 0.1648 0.1799 0.1896 0.4720 0.5943 0.6479 0.6852
vowel 0.3769 0.3968 0.4087 0.4222 0.3234 0.3327 0.3448 0.3558
wdbc 0.5396 0.6106 0.6168 0.6282 0.9068 0.9218 0.9233 0.9256

Fig. 2. The clustering performance (NMI) on datasets optdigits and wdbc.

results shown in the two tables, we can see that our algorithm is not very sensitive to the parameters λ 1

and λ2. As long as they are in a reasonable range, good results can be achieved.

5.5. Without expert-provided δ in preferences

In a typical real-world clustering task, an expert only has some vague idea about which features are
more important. Therefore, specifying the value of δi accurately in a feature order preference (si, ti, δi)
seems impractical. A more realistic setting is that there’re no values of δi in the expert-provided feature
order preferences. Then the set of feature order preferences becomes P = {(s i, ti)}m

i=1 instead of
{(si, ti, δi)}m

i=1. In this case, we assume that all the feature order preferences are equally important.
By introducing an extra parameter δ, the set of feature order preferences can be transformed into
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Table 6
Experimental results on the datasets. Here, δ = 1

d
for all the feature order preferences

NMI Acc
BClus CFPd/4 CFPd/2 CFPd BClus CFPd/4 CFPd/2 CFPd

iris 0.6525 0.7085 0.7421 0.7781 0.8251 0.8709 0.8863 0.9008
optdigits 0.6442 0.6858 0.7016 0.7150 0.6478 0.7015 0.7213 0.7441
pendigits 0.6924 0.6919 0.6880 0.6860 0.6968 0.7108 0.7051 0.7007
pgblocks 0.1177 0.1639 0.1905 0.2039 0.4693 0.6085 0.6800 0.7328
vowel 0.3751 0.3996 0.4138 0.4200 0.3210 0.3390 0.3511 0.3572
wdbc 0.5394 0.6059 0.6079 0.6065 0.9067 0.9206 0.9200 0.9183

Table 7
Clustering results on the iris dataset. Here, φ(x) = x log(x)−x. Note that this is the clustering
result of only a single run of the algorithms

Algo. BClus CFP(1) CFP(2) CFP(3) CFP(4)
50 0 0 50 0 0 50 0 0 50 0 0 50 0 0

C.M. 0 34 12 0 37 9 0 43 8 0 46 4 0 47 2
0 16 38 0 13 41 0 7 42 0 4 46 0 3 48

NMI 0.6413 ↗0.6818 ↗0.7437 ↗0.8308 ↗0.8801
Acc 0.8133 ↗0.8533 ↗0.9000 ↗0.9467 ↗0.9667

P = {(si, ti, δ)}m
i=1. Then our proposed clustering algorithm can be applied to the data. Here, only one

extra parameter δ has to be pre-specified.
We conduct some experiments on the datasets with feature order preferences without any expert-

provided δi values. We set the parameter δ to δ = 1
d for all the feature order preferences. The results

of the experiments are shown in Table 6. We can see from this Table 6 that even without expert-
provided values of δi, our algorithm can still benefit from feature order preferences for most datasets.
An interesting finding is that on the pgblocks dataset, the performance gains achieved by CFP without δ i

values are larger than those achieved by CFP with δi values. A possible explanation for this is that the
feature weights generated automatically are not optimal. It can also be observed that different clustering
performance measures can lead to different results. For example, on the pendigits dataset, CFP improves
over BClus in terms of Acc but has worse NMI values.

5.6. Clustering results when φ(x) = x log(x)− x

In this section, we investigate the clustering performance of the considered algorithms when φ(x) =
x log(x)− x. In this case, generalized I-divergence [3] is actually used in BClus and CFP. Specifically,

Dw(xi, µc) =
d∑

j=1

wj

vj

(
xij log

xij

µcj
− (xij − µcj)

)
(23)

First, we consider the dataset iris. Table 7 shows the confusion matrices, clustering performance in
terms of NMI and Acc obtained by BClus and CFP on the iris dataset. The notations are the same as
Table 2. Again, this is the clustering result of only a single run of the algorithms. As Table 7 shows,
feature order preferences will improve the clustering performance for the iris dataset. Additionally, CFP
produces better clustering results with more feature order preferences provided.

The clustering results with m = � d
4�, �d

2�, d are displayed in Table 8. Note that φ(x) = x log(x)− x
can only applied to non-negative data points, thus dataset vowel is omitted from the comparison since
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Table 8
Experimental results on the datasets. Here φ(x) = x log(x) − x

NMI Acc
BClus CFPd/4 CFPd/2 CFPd BClus CFPd/4 CFPd/2 CFPd

iris 0.6421 0.6921 0.7729 0.8751 0.8143 0.8607 0.9092 0.9647
optdigits 0.6284 0.6363 0.6469 0.6585 0.6236 0.6364 0.6473 0.6600
pendigits 0.6802 0.6875 0.6916 0.6953 0.6705 0.6734 0.6774 0.6828
pgblocks 0.1695 0.1713 0.1741 0.1778 0.4510 0.4965 0.4791 0.4590
wdbc 0.5666 0.5970 0.6127 0.6368 0.9156 0.9233 0.9270 0.9323

it has negative data values. Similar conclusions can be drawn from the comparison results in Table 8.
Generally, CFP produces better clustering results than BClus. With more feature order preferences,
better performance can be achieved. The clustering results in Table 8 have confirmed that performance
boost can be gained by effectively utilizing some feature order preferences. An exception is that in the
pgblocks dataset, the NMI values increase but the Acc values fluctuates. Thus, we adopt another clustering
performance measure called AE (Average Entropy) [30]. Lower values of AE indicate better clusterings.
The resultant AE values are 0.1980, 0.1981, 0.1964, 0.1943. Considering the three performance measures
together, we can still see that more feature order preferences generally lead to better performance.

6. Conclusions and future work

In this paper, we propose a clustering model that takes into account feature order preferences effectively.
Our clustering objective integrates feature weight learning into prototype-based clustering. We discuss
how to extend our model to deal with different distortion measures and discrete data. Experimental
results show that our proposed algorithm effectively improves clustering quality.

Many directions can be pursued for potential future work, some of which are listed as follows.

– First, it would be interesting to investigate automatic parameter selection method for λ1 and λ2

instead of using pre-specified values. It is reasonable that if more more feature order preferences
are present or the feature order preferences are very reliable, then λ2 can be set to have a relatively
lower value.

– Second, listwise feature order preferences can be used instead of pairwise ones. If directly trans-
formed into pairwise constraints, there’ll be a quadratic number of pairwise constraints which will
hurt the computational efficiency. Therefore, more efficient solutions have to be derived.

– Third, it might be fruitful to incorporate feature order preferences into the process of cluster initial-
ization. Prototype-based clustering algorithms such as kmeans are very sensitive to initial cluster
centroids. Therefore, utilizing feature order preferences can hopefully mitigate the problem of poor
initialization.

– Furthermore, it’s also interesting to investigate casting our model into a probabilistic framework,
and combine clustering with instance-level constraints and feature order preferences in this unifying
framework.
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