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Abstract

We present a generalized Gelfond-Lifschitz transformation in
order to define stable models for a logic program with arbi-
trary abstract constraints on sets (c-atoms). The generaliza-
tion is based on a formal semantics and a novel abstract repre-
sentation of c-atoms, as opposed to the commonly used power
set form representation. In many cases, the abstract represen-
tation of a c-atom results in a substantial reduction of size
from its power set form representation. We show that any
c-atom A = (Ad, Ac) in the body of a clause can be charac-
terized using its satisfiable sets, so that given an interpretation
I the c-atom can be handled simply by introducing a special
atom θA together with a new clause θA ← A1, ..., An for
each satisfiable set {A1, ..., An} ofA. We also prove that the
latest fixpoint approach presented by Son et al. and our ap-
proach using the generalized Gelfond-Lifschitz transforma-
tion are semantically equivalent in the sense that they define
the same set of stable models.

Introduction
Answer set programming (ASP) has been demonstrated
to be an effective knowledge representation formalism for
solving combinatorial search problems arising in many ap-
plication areas such as planning, reasoning about actions,
diagnosis, abduction, and so on (Baral 2003). In recent
years, researchers have paid a particular attention to exten-
sions of ASP with means to model aggregate constraints like
COUNT{X|p(X)} = 1 in particular, and abstract con-
straints on sets like ({p(a), p(b)}, {{p(a)}, {p(b)}}) in gen-
eral (Calimeri et al. 2005; Dell’Armi et al. 2003; Denecker,
Pelov, & Bruynooghe 2001; Elkabani, Pontelli, & Son 2004;
2005; Faber, Leone, & Pfeifer 2004; Ferraris 2005; Liu &
Truszczynski 2005; Marek & Truszczynski 2004; Pelov, De-
necker, & Bruynooghe 2003; Pelov & Truszczynski 2004;
Son & Pontelli 2007; Son, Pontelli, & Tu 2006). Due to the
presence of such constraints, the original ASP semantics, i.e.
the stable model semantics (Gelfond & Lifschitz 1988) for
normal logic programs, is no longer applicable. It has then
become an active research subject to develop an appropriate
semantics for logic programs with abstract constraints.

Under the stable model semantics, an intended model of a
normal logic program is a stable model (or answer set used
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exchangeably in this paper), which is declaratively defined
using a simple Gelfond-Lifschitz transformation (Gelfond
& Lifschitz 1988). It turns out, however, that directly apply-
ing this transformation to logic programs with abstract con-
straints may produce unintuitive results. Therefore, differ-
ent approaches have been proposed to handle abstract con-
straints in the last few years, each giving a different defini-
tion of stable models for such programs. These approaches
can be roughly classified into three types. Let P be a logic
program with abstract constraints and I an interpretation. (1)
The unfolding (or translation) approach (Pelov, Denecker,
& Bruynooghe 2003; Son & Pontelli 2007) finds all so-
lutions w.r.t. I of each abstract constraint in P and then
uses the solutions to transform P to a normal logic program
P ′. I is defined to be a stable model of P if it is a stable
model of P ′. (2) The fixpoint (or operator-based) approach
(Marek & Truszczynski 2004; Pelov & Truszczynski 2004;
Son, Pontelli, & Tu 2006) constructs a fixed point lfp(P )
w.r.t. I by applying some specific immediate consequence
operator over P and defines I as a stable model of P if
I = lfp(P ). (3) The minimal model approach (Faber,
Leone, & Pfeifer 2004) defines I as a stable model of P
if it is a minimal model of P .

In this paper, we first establish a formal semantics for ab-
stract constraint atoms (or c-atoms), as it is the basis for
defining the semantics of logic programs with abstract con-
straints. We then address an interesting yet critical issue in
the representation of c-atoms. In the current literature as
mentioned above, a c-atom is expressed as a pair (D,C)
where D is a finite set of ground atoms and C is a collection
of sets of atoms inD. We call this a power set form represen-
tation (w.r.t. D) of c-atoms, as C may enumerate the whole
power set 2D ofD (e.g., such a case occurs for all monotone
c-atoms with the property that for any S ⊂ D, if S ∈ C
then all of its supersets in 2D are in C). For instance, we
may have a c-atom A = {Ad, Ac} where Ad = {a, b, c, d}
and Ac = {∅, {b}, {c}, {a, c}, {b, c}, {a, b, c}}. We may
also have a c-atom B = {Bd, Bc} with Bd = {b1, ..., bn}
for some large n and Bc containing all items of 2Bd ex-
cept ∅. We observe that it is this power set form represen-
tation that makes the existing approaches rather inefficient
in unfolding c-atoms. Therefore, the second contribution
of our work is the introduction of a succinct abstract rep-
resentation of c-atoms in which a c-atom is coded with a
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substantially smaller size. The abstract form of a c-atom
{Ad, Ac} is a pair (Ad, A

∗
c) where each item of A∗c is an

abstract W -prefixed power set of the form W ] V , which
covers all items W ∪ S of Ac with S ∈ 2V . For exam-
ple, the above example c-atom A has an abstract represen-
tation with A∗c = {∅ ] {b, c}, {c} ] {a, b}}. Note that
∅ ] {b, c} covers the power set of {b, c} and {c} ] {a, b}
covers all sets {c} ∪ S with S being in the power set of
{a, b}. Similarly, the abstract representation of the c-atom
B is B∗c = {{b1} ] {b2, ..., bn}, ..., {bn} ] {b1, ..., bn−1}}.
We see a huge reduction in size from the power set form rep-
resentation to the abstract representation, e.g., 6 for Ac v.s.
2 for A∗c , and (2n − 1) for Bc v.s. n for B∗c .

Our third contribution is the introduction of a generalized
Gelfond-Lifschitz transformation for logic programs with c-
atoms. The key idea is to characterize c-atoms using their
satisfiable sets, a notion defined directly over the proposed
abstract representation of c-atoms. Informally, given an in-
terpretation I , W is a satisfiable set of a c-atom (Ad, A

∗
c) if

A∗c contains an abstractW -prefixed power setW ]V cover-
ing I ∩ Ad. The generalized Gelfond-Lifschitz transforma-
tion is defined declaratively in the same way as the standard
Gelfond-Lifschitz transformation, where each c-atom A in
the body of a clause is handled simply by introducing a spe-
cial atom θA together with a new clause θA ← A1, ..., An

for each satisfiable set {A1, ..., An} ofA. We will prove that
the latest fixpoint approach (Son, Pontelli, & Tu 2006) and
our approach using the generalized Gelfond-Lifschitz trans-
formation are semantically equivalent in the sense that they
define the same set of stable models.

Preliminaries
We consider propositional (ground) logic programs and as-
sume a fixed propositional language with a countable set Σ
of propositional atoms (atoms for short). Any subset I of
Σ is called an interpretation. A literal is an atom A (a pos-
itive literal) or its negation not A (a negative literal). For
a set S = {A1, ..., Am} of atoms, we use not S to denote
{not A1, ..., not Am} and |S| to denote the size of S.

An abstract constraint atom (or c-atom) A is a pair
(D,C) where D is a finite set of atoms in Σ and C is
a collection of sets of atoms in D, i.e., C ⊆ 2D. For
convenience, we use Ad and Ac to refer to the compo-
nents D and C of A, respectively. In practical situations,
a c-atom A expresses a constraint on the set Ad of atoms
with Ac being its admissible solutions. For instance, a c-
atom ({p(a), p(b)}, {{p(a)}, {p(b)}}) expresses the aggre-
gate constraint COUNT{X|p(X)} = 1, where X takes
on values in {a, b}. Since aggregate constraints can be
equivalently represented by abstract constraints (Marek &
Truszczynski 2004), for convenience of presentation we use
aggregate constraints and c-atoms exchangeably.

A logic program P is a finite set of clauses of the form

A← A1, ..., Am, not B1, ..., not Bn

where A and each Ai and Bj are either an atom or a c-atom
(“←” is omitted when m = n = 0). Let r be a clause.
We use head(r) and body(r) to refer to its head and body,
respectively. When P contains no c-atoms, it is called a

normal logic program. P is a positive logic program if it is
a normal logic program without negative literals.

An interpretation I satisfies (1) a positive literal A if A ∈
I , (2) a negative literal not A if A 6∈ I , (3) a c-atom A if
Ad ∩ I ∈ Ac, and (4) the negation not A of a c-atom A
if Ad ∩ I 6∈ Ac. I satisfies a set of literals if it satisfies
each literal in the set. I satisfies the body of a clause r if
it satisfies all items in body(r). I satisfies a clause r if it
satisfies head(r) or it does not satisfy body(r). I is a model
of a logic program P if it satisfies all clauses of P . I is a
minimal model of P if it is a model of P and there is no
proper subset of I which is also a model of P . For any
expression F , we use I |= F to denote that I satisfies F .

By definition, for any c-atom A = (Ad, Ac) its negation
not A is also a c-atom (Ad, A

−
c ) with A−c being the com-

plement of Ac, i.e., A−c = 2D\Ac. So a logic program with
negated c-atoms can be transformed to a logic program free
of negated c-atoms by replacing all occurrences of negated
c-atoms with their respective complement c-atoms. Due to
this, in the sequel we only consider logic programs without
negated c-atoms in clause bodies.

Given a normal logic program P and an interpretation I ,
the standard Gelfond-Lifschitz transformation of P w.r.t. I ,
written as P I , is obtained from P by performing two opera-
tions: (1) remove from P all clauses whose bodies contain a
negative literal not A such that I 6|= not A, and (2) remove
from the remaining clauses all negative literals. Since P I is
a positive logic program, it has a unique minimal model M .
I is defined to be a stable model of P if I = M .

A Formal Definition of the Semantics of
C-Atoms

In the current literature, (the meaning of) a c-atom A is in-
terpreted by means of propositional interpretations (truth as-
signments) (Marek & Truszczynski 2004); i.e., an interpre-
tation I satisfies A if Ad ∩ I ∈ Ac, and I satisfies the nega-
tion not A if Ad ∩ I 6∈ Ac. We find that such an interpre-
tation of c-atoms can be concisely formalized using a logic
formula, thus leading to a formal definition of the semantics
of c-atoms.
Definition 1 Let A be a c-atom with Ac = {S1, ..., Sm}.
The semantics of the c-atom A is defined by

A ≡ C1 ∨ ... ∨ Cm

where each Ci is a conjunction Si ∧ not (Ad\Si).
It is easy to prove that I satisfies A if and only if C1 ∨

... ∨ Cm is true in I and that I satisfies not A if and only if
not (C1 ∨ ... ∨ Cm) is true in I .

With this semantics, we can apply standard mathematic
logic rules to simplify c-atoms in order to understand the
characteristics of a c-atom more clearly. For example, when
A = ({a, b, c}, {{a, b}, {a, b, c}}), its semantics is A ≡
(a∧b∧not c)∨(a∧b∧c), which can be logically simplified
to A ≡ a ∧ b.

An Abstract Representation of C-Atoms
In this section, we present a data structure for an abstract
representation of c-atoms. We begin by introducing a notion
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of prefixed power sets.

Definition 2 Let I = {a1, ..., am} and J = {b1, ..., bn}
(m,n ≥ 0) be two sets of atoms.

1. The I-prefixed power set of J is a collection {I ∪
Jsub|Jsub ∈ 2J}; i.e., each set in the collection consists of
all ais in I plus zero or more bis in J . We use I ] J as an
abstract form to compactly represent the I-prefixed power
set of J and for any set S of atoms, we say S is covered
by I ] J (or I ] J covers S) if I ⊆ S and S\I ⊆ J .

2. For any two abstract prefixed power sets I]J and I1]J1,
I ] J is included in I1 ] J1 if any set covered by I ] J is
covered by I1 ] J1.

Theorem 1 When I ] J is included in I1 ] J1, we have
I1 ⊆ I and I ∪ J ⊆ I1 ∪ J1. If I ] J is included in I1 ] J1

and I1 ] J1 is included in I2 ] J2, then I ] J is included in
I2 ] J2.

Definition 3 Let A be a c-atom and S ∈ Ac. The collection
of abstract S-prefixed power sets ofA is {S]S1, ..., S]Sm}
such that for any Si ⊆ Ad\S, S ] Si is in the collection if
and only if all sets covered by S ] Si are in Ac and there is
no atom a ∈ Ad\(S ∪ Si) such that S ] Si ∪ {a} has this
property.

For instance, consider a c-atom A with Ad =
{a, b, c, d} and Ac = {∅, {b}, {c}, {a, c}, {b, c}, {c, d},
{a, b, c}, {b, c, d}}. For ∅ ∈ Ac, the collection of abstract
∅-prefixed power sets of A is {∅ ] {b, c}}. For {b} ∈ Ac,
the collection is {{b}]{c}}. For {c} ∈ Ac, the collection is
{{c}]{a, b}, {c}]{b, d}}. Note that {b}]{c} is included
in ∅ ] {b, c}. It is easy to check that all abstract prefixed
power sets for {a, c}, {b, c}, {a, b, c} ∈ Ac are included in
{c} ] {a, b} and all those for {b, c}, {c, d}, {b, c, d} ∈ Ac

are included in {c} ] {b, d}.
Definition 4 The abstract representation of a c-atom A is a
pair (Ad, A

∗
c) where A∗c is the collection

⋃
S∈Ac

CS , where
CS is the collection of abstract S-prefixed power sets of A,
with all such abstract prefixed power sets removed that are
included in some other ones.

Consider the above example c-atom A again. Its abstract
representation is (Ad, A

∗
c) with A∗c = {∅ ] {b, c}, {c} ]

{a, b}, {c} ] {b, d}}.
Note that the purpose of our development of an abstract

representation is to substantially reduce the coding size of c-
atoms by compactly compressing all power set items in Ac.
We say that A∗c is power set free if for no non-empty subset
V of Ad, for some J1, J2 ⊂ Ad A

∗
c contains either (i) all

abstract prefixed power sets of the form J1 ∪ S ] J2 or (ii)
all of the form J1 ]S, where S ∈ 2V , or (iii) all of the form
J1 ∪ S1 ] S2 where S1 ∪ S2 ∈ 2V .

Theorem 2 Let A = (Ad, Ac) be a c-atom. (1) A has a
unique abstract form (Ad, A

∗
c). (2) For any interpretation I ,

I |= A if and only if A∗c has an abstract prefixed power set
W ] V covering I ∩Ad. (3) A∗c is power set free.

The proof of (1) and (2) is routine. To prove (3), assume,
on the contrary, that for some J1, J2 ⊂ Ad there is a non-
empty subset V ofAd such thatA∗c satisfies one of the above

three conditions, (i), (ii) or (iii). We show that each of the
three cases introduces a contradiction. Assume that case (i)
holds. Then all sets covered by J1 ] J2 ∪ V must be in Ac.
We distinguish between two cases. (a) J1 ] J2 ∪V is in A∗c .
By Definition 4, for no S ∈ 2V J1 ∪ S ] J2 would be in
A∗c (since it is included in J1 ] J2 ∪ V ), a contradiction. (b)
J1 ] J2 ∪ V is not in A∗c . By Definition 3, there must be
a subset W of Ad with W ⊃ V such that J1 ] J2 ∪W is
in A∗c . Again, for no S ∈ 2V J1 ∪ S ] J2 would be in A∗c
(since it is included in J1 ] J2 ∪W ), a contradiction. Now
assume that either case (ii) or case (iii) holds. Since V is not
empty, in either case A∗c must contain two abstract prefixed
power sets with one included in the other, a contradiction to
the condition of Definition 4. Therefore, we conclude that
A∗c is power set free.

By Theorem 2, to check I |= A it suffices to search A∗c ,
instead of Ac, for an abstract power set W ] V covering
I ∩ Ad. The time for this search is linear in the size of A∗c ,
which in many cases would be substantially smaller thanAc.
(In the most extreme case where Ac = 2Ad , A∗c consists of
only one item, ∅ ]Ad).

A Generalization of the Gelfond-Lifschitz
Transformation

Based on the formal semantics and the proposed abstract
representation of c-atoms, in this section we introduce a
novel generalization of the Gelfond-Lifschitz transformation
for logic programs with abstract constraints. In the sequel,
given an interpretation I , for any c-atom A we use TA to
denote I ∩Ad and FA to denote Ad\TA.

Definition 5 Let A be a c-atom and I an interpretation with
I |= A. S ⊆ TA is a satisfiable set of A w.r.t. TA if A∗c
contains an S-prefixed power set S ] S1 covering TA.

Satisfiable sets have the following property.

Theorem 3 Let A be a c-atom and I an interpretation. If S
is a satisfiable set, then for every S′ with S ⊆ S′ ⊆ TA, we
have S′ ∈ Ac.

Applying this theorem to the semantics of c-atoms (see
Definition 1) leads to the following principal result.

Theorem 4 Let A be a c-atom and I an interpretation. As-
sume that A has in total N satisfiable sets J1, ..., JN . Then,
given I , A can be characterized by the set of satisfiable sets;
i.e., when assuming not FA, we have A ≡ J1 ∨ ... ∨ JN .

Theorem 4 lays a solid basis on which the standard
Gelfond-Lifschitz transformation can be generalized to logic
programs with c-atoms. In the following, we will use a spe-
cial atom ⊥ and two special atoms, θA and βA, for each c-
atom A. Unless otherwise stated, we assume that such spe-
cial atoms will not occur in any given logic programs and
interpretations.

Definition 6 Given a logic program P and an interpreta-
tion I , the generalized Gelfond-Lifschitz transformation of
P w.r.t. I , written as P I , is obtained from P by performing
the following four operations:
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1. Remove from P all clauses whose bodies contain either a
negative literal not A such that I 6|= not A or a c-atom A
such that I 6|= A.

2. Remove from the remaining clauses all negative literals,
and then

3. Replace each c-atom A in the body of a clause with
a special atom θA and introduce a new clause θA ←
A1, ..., Am for each satisfiable set {A1, ..., Am} of A
w.r.t. TA.

4. Replace each c-atom A in the head of a clause with ⊥ if
I 6|= A, or replace it with a special atom βA and introduce
a new clause B ← βA for each B ∈ TA and a new clause
⊥ ← B, βA for each B ∈ FA.

In the first operation, we remove all clauses whose bodies
are not satisfied in I because of the presence of a negative
literal or a c-atom that is not satisfied in I . In the second
operation, we remove all negative literals because they are
satisfied in I . The last two operations transform c-atoms
in the body and head of each clause, respectively. Each c-
atom A in the body of a clause is substituted by a special
atom θA, which is defined by the satisfiable sets of A (based
on Theorem 4). Note that each c-atom A in the head of a
clause represents a conclusion that every B ∈ TA is true
and every B ∈ FA is false. Therefore, when I |= A, we
substitute A with a special atom βA and define βA using a
clause B ← βA for each B ∈ TA and a clause ⊥ ← B, βA

for eachB ∈ FA. ⊥ is a special atom meaning false. When
I 6|= A, we replace A with ⊥.

Apparently, the generalized Gelfond-Lifschitz transfor-
mation coincides with the standard Gelfond-Lifschitz trans-
formation when P is a normal logic program.

Since the generalized transformationP I is a positive logic
program, we define the stable model semantics of a logic
program with c-atoms in the same way as that of a normal
logic program.

Definition 7 For any logic program P , an interpretation I
is a stable model of P if I = M\{θX , βX} where M is the
minimal model of the generalized Gelfond-Lifschitz trans-
formation P I .

Again, stable models of P under the generalized Gelfond-
Lifschitz transformation coincides with stable models under
the standard Gelfond-Lifschitz transformation (Gelfond &
Lifschitz 1988) when P is a normal logic program. In the
following, unless otherwise stated, by stable models we re-
fer to stable models under the generalized Gelfond-Lifschitz
transformation.

Theorem 5 Any stable model M of P is a model of P .

A stable model may not be a minimal model for some
logic programs. Assume that P consists of one single clause
({a}, {∅]{a}}). The c-atom in the clause head expresses a
constraint that is true if a is true or a is false. As a result, P
has two stable models, I = ∅ and I1 = {a}. We see that I1
is not minimal.

Theorem 6 Let P be a logic program with n different c-
atoms and I an interpretation. Let A be a c-atom such that
I |= A.

1. The time complexity of computing all satisfiable sets of A
w.r.t. TA is linear in the size of A∗c .

2. The time complexity of the generalized Gelfond-Lifschitz
transformation is bounded by O(|P | + n ∗ (2MA∗

c
+

MAd
)), where MA∗

c
and MAd

are the maximum sizes of
A∗c and Ad of a c-atom in P , respectively.

Theorem 7 The size of P I is bounded by O(|P | + n ∗
(MA∗

c
+MAd

)).

Example 1 Consider the following logic program:
P1 : p(a)← COUNT ({X|p(X)}) > 0.

p(b)← not q.
q ← not p(b).
COUNT ({X|p(X)}) = 1← p(b).

The aggregate constraint COUNT ({X|p(X)}) > 0 is a c-
atom A with Ad = {p(a), p(b)} and Ac = {{p(a)}, {p(b)},
{p(a), p(b)}}. Its abstract form is (Ad, A

∗
c) with A∗c =

{{p(a)} ] {p(b)}, {p(b)} ] {p(a)}}. The constraint
COUNT ({X|p(X)}) = 1 in the head of the last clause
is a c-atom A1 = ({p(a), p(b)}, {{p(a)}, {p(b)}}), whose
abstract form is ({p(a), p(b)}, {{p(a)} ] ∅, {p(b)} ] ∅}).
We use three different interpretations to illustrate the gener-
alized Gelfond-Lifschitz transformation.
1. Let I1 = {p(a), q}. In the first operation, the second

clause is removed. In the second operation, not p(b) is
removed from the third clause. In the third operation, we
see I1 |= A with TA = I1 ∩ Ad = {p(a)}. TA is cov-
ered by {p(a)} ] {p(b)}, so {p(a)} is the only satisfi-
able set of A. We replace A (i.e., the aggregate constraint
COUNT ({X|p(X)}) > 0 in the first clause of P1) with
a special atom θA and introduce a new clause θA ← p(a).
Since I1 |= A1 with TA1 = I1 ∩ A1d

= {p(a)}, in
the fourth operation, we replace A1 in the head of the
last clause with a special atom βA1 and introduce two
new clauses p(a) ← βA1 and ⊥ ← p(b), βA1 . Con-
sequently, we obtain the following generalized Gelfond-
Lifschitz transformation

P I1
1 : p(a)← θA.

θA ← p(a).
q.
βA1 ← p(b).
p(a)← βA1 .
⊥ ← p(b), βA1 .

Obviously, I1 is not a stable model of P1, as the minimal
model of P I1

1 is {q}.
2. Let I2 = {p(a), p(b)}. In the first operation, the third

clause is removed. In the second operation, not q is re-
moved from the second clause. In the third operation,
since I2 |= A with TA = I2 ∩ Ad = {p(a), p(b)}, A
has two satisfiable sets w.r.t. TA: {p(a)} and {p(b)}. The
aggregate constraint in the first clause is then replaced by
a special atom θA and θA is defined by two new clauses
θA ← p(a) and θA ← p(b). Since I2 6|= A1, in the fourth
operation we replace the c-atom A1 in the head of the last
clause with ⊥. Consequently, we obtain

P I2
1 : p(a)← θA.

θA ← p(a).
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θA ← p(b).
p(b).
⊥ ← p(b).

The minimal model of P I2
1 is {p(a), p(b), θA,⊥}, which,

after θA is removed, is different from I2. Therefore, I2 is
not a stable model of P1.

3. Let I3 = {q}. I3 ∩Ad = ∅ is not covered by any member
of A∗c , so I3 does not satisfy the aggregate constraint in
the first clause. In the first operation, the first two clauses
are removed. In the second operation, not p(b) is removed
from the third clause. Since I3 6|= A1, in the fourth oper-
ation we replace A1 with ⊥. Thus, we have

P I3
1 : q.

⊥ ← p(b).

I3 coincides with the minimal model of P I3
1 and thus it is

a stable model.

Relationship to Conditional Satisfaction
Most recently, Son et al. (Son, Pontelli, & Tu 2006) propose
a fixpoint definition of stable models for logic programs with
c-atoms. They introduce a key concept termed conditional
satisfaction.

Definition 8 ((Son, Pontelli, & Tu 2006)) Let R and S be
two sets of atoms. The set R conditionally satisfies a c-atom
A w.r.t. S, denoted R |=S A, if R |= A and for every S′
such that R ∩Ad ⊆ S′ and S′ ⊆ S ∩Ad, we have S′ ∈ Ac.

For any atom A, it can be expressed as an elementary c-
atom A′ = ({A}, {{A}}) such that R |= A if and only
if R |= A′. Similarly, any negative literal not A can be
expressed as a c-atom A′ = ({A}, {∅}). Due to this, in the
sequel we devote ourselves to considering logic programs
whose clauses consist only of c-atoms.

Son et al. introduce an immediate consequence operator
TP (R,S) which evaluates each c-atom using the conditional
satisfaction |=S instead of the standard satisfaction |=. In
the following, by a positive basic logic program we mean
a logic program each r of whose clauses has the property
that head(r) is an elementary c-atom and body(r) consists
of c-atoms with no negation.

Definition 9 ((Son, Pontelli, & Tu 2006)) Let P be a posi-
tive basic logic program and R and S be two sets of atoms.
Define

TP (R,S) =
{
A

∣∣∣∣ ∃r ∈ P : R |=S body(r),
head(r) = ({A}, {{A}})

}
TP proves to be monotone and thus for any given in-

terpretation I , the sequence T i
P (∅, I) with T 0

P (∅, I) = ∅
and T i+1

P (∅, I) = TP (T i
P (∅, I), I), converges to a fixpoint

T∞P (∅, I). The interpretation I is defined to be a stable
model if it is the same as the fixpoint.

The following result reveals the relationship between con-
ditional satisfaction and satisfiable sets.

Theorem 8 Let A be a c-atom and R and I be two inter-
pretations. Let TA = I ∩ Ad. R |=I A if and only if
A∗c has an abstract prefixed power set W ] V such that

R ∩ Ad ] TA\(R ∩ Ad) is included in W ] V (thus W
is a satisfiable set of A w.r.t. TA and W ⊆ R ∩Ad).

Theorem 8 leads us to the conclusion that Son et al.’s fix-
point definition and our definition of stable models are se-
mantically equivalent, as stated formally by the following
theorem.

Theorem 9 Let P be a positive basic logic program and
I an interpretation. I is a stable model under Son et al.’s
fixpoint definition if and only if it is a stable model derived
from the generalized Gelfond-Lifschitz transformation.

For a positive basic logic program, any stable model under
Son et al.’s fixpoint definition proves to be minimal (Son,
Pontelli, & Tu 2006). The following result is then immediate
from Theorem 9.

Corollary 1 For a positive basic logic program P , any
stable model of P derived from the generalized Gelfond-
Lifschitz transformation is a minimal model of P .

When the head A of a clause r is not an elementary c-
atom, (Son, Pontelli, & Tu 2006) transform r into the fol-
lowing set of clauses given an interpretation I:

B ← body(r), for each B ∈ TA

⊥ ← B, body(r), for each B ∈ FA

Note that in our generalized Gelfond-Lifschitz transforma-
tion, r is transformed into the following set of clauses:

βA ← body(r),
B ← βA, for each B ∈ TA

⊥ ← B, βA, for each B ∈ FA

It is easy to see that the two transformations are semantically
equivalent, although ours would be simpler when body(r)
consists of more than one item or when A appears in the
heads of more than one clause.

It is worth pointing out that our approach to handling c-
atoms can easily be extended to disjunctive logic programs
with c-atoms. Let I be an interpretation and r a disjunctive
clause of the form

A1 ∨ ... ∨An ← body(r)

where each Ai is a c-atom. Assume that there are totally
k > 0 Ais satisfied in I . We then introduce a special atom
βAi for each Ai such that I |= Ai and transform r into the
following clauses:

βA1 ∨ ... ∨ βAk
← body(r).

B ← βAi , for each βAi and each B ∈ TAi

⊥ ← B, βAi
, for each βAi

and each B ∈ FAi

When none of the Ais is satisfied in I , we transform r into
the clause ⊥ ← body(r).

Related Work
The notion of c-atoms is introduced in (Marek & Truszczyn-
ski 2004) and further developed in (Liu & Truszczynski
2005; Marek, Niemela, & Truszczynski 2007; Son & Pon-
telli 2007; Son, Pontelli, & Tu 2006). In this paper, we estab-
lish a formal semantics for c-atoms. As far as we can deter-
mine, all existing approaches use a power set form (Ad, Ac),
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where Ac ⊆ 2Ad , to represent an arbitrary c-atom A. It is
quite infeasible, if not impossible, to practically store and
handle c-atoms of this form. We address this critical issue
by introducing a novel abstract structure (Ad, A

∗
c ), whereA∗c

would be substantially smaller than Ac because it is power
set free. We generalize the standard Gelfond-Lifschitz trans-
formation to logic programs with c-atoms based on the for-
mal semantics and this abstract representation.

Representative unfolding approaches to handling c-atoms
include (Pelov, Denecker, & Bruynooghe 2003; Son & Pon-
telli 2007), where a notion of aggregate solutions (or so-
lutions) is introduced. Informally, a solution of a c-atom
A = (Ad, Ac) is a pair 〈S1, S2〉 of disjoint sets of atoms
such that for every interpretation I , if S1 ⊆ I and S2∩I = ∅
then I |= A. Let I be an interpretation and r a clause of the
form B ← A1, ..., Am, where each Ai is a c-atom. Assume
that eachAi has ni solutions w.r.t. I . An unfolding approach
will transform r into n1 ∗ ... ∗ nm new clauses of the form
B ← A1, ..., Am, where each Ai is built from a solution of
Ai w.r.t. I . Our work significantly differs from this. We
show that each c-atom Ai in body(r) can be characterized
by its satisfiable sets, so that Ai can be handled simply by
introducing a special atom θAi

together with a new clause
θAi
← D1, ..., Dn for each satisfiable set {D1, ..., Dn} of

Ai w.r.t. TAi
. That is, our approach transforms r into

1 + n′1 + ... + n′m clauses where n′i is the number of sat-
isfiable sets of Ai w.r.t. TAi

. In general, for each i we have
ni � n′i.

Representative fixpoint approaches include (Marek &
Truszczynski 2004; Pelov & Truszczynski 2004; Marek,
Niemela, & Truszczynski 2007; Son, Pontelli, & Tu 2006).
(Son, Pontelli, & Tu 2006) can handle arbitrary c-atoms,
while the others apply only to monotone c-atoms. In Theo-
rem 9, we prove that Son et al.’s fixpoint definition and our
definition of stable models using the generalized Gelfond-
Lifschitz transformation are semantically equivalent.

(Faber, Leone, & Pfeifer 2004) propose a minimal model
approach. To check if an interpretation I is a stable model
of P , they first remove all clauses in P that have a negative
literal not A in their bodies such that A ∈ I , and then check
if I is a minimal model of the simplified program. They
consider disjunctive logic programs whose clause heads are
a disjunction of atoms. As we illustrated earlier, a logic pro-
gram whose clause heads are arbitrary c-atoms may have
non-minimal stable models under Son et al.’s fixpoint defi-
nition (or equivalently under our definition using the gener-
alized Gelfond-Lifschitz transformation).

Conclusions
We have presented a formal semantics and a novel ab-
stract representation of c-atoms and developed a generalized
Gelfond-Lifschitz transformation for logic programs with
arbitrary c-atoms. We transform a logic program with c-
atoms into a positive logic program in the same way as the
standard Gelfond-Lifschitz transformation for normal logic
programs, where each c-atom in clause bodies is character-
ized by its satisfiable sets. We also proved that the latest fix-
point approach (Son, Pontelli, & Tu 2006) and our approach

using the generalized Gelfond-Lifschitz transformation are
semantically equivalent.
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