
27

Reasoning with Recursive Loops Under the
PLP Framework

YI-DONG SHEN

Chinese Academy of Sciences

Recursive loops in a logic program present a challenging problem to the PLP (Probabilistic Logic

Programming) framework. On the one hand, they loop forever so that the PLP backward-chaining

inferences would never stop. On the other hand, they may generate cyclic influences, which are

disallowed in Bayesian networks. Therefore, in existing PLP approaches, logic programs with recur-

sive loops are considered to be problematic and thus are excluded. In this article, we propose a novel

solution to this problem by making use of recursive loops to build a stationary dynamic Bayesian

network. We introduce a new PLP formalism, called a Bayesian knowledge base. It allows recursive

loops and contains logic clauses of the form A ← A1, . . . , Al , true, Context, Types, which naturally

formulate the knowledge that the Ais have direct influences on A in the context Context under

the type constraints Types. We use the well-founded model of a logic program to define the direct

influence relation and apply SLG-resolution to compute the space of random variables together

with their parental connections. This establishes a clear declarative semantics for a Bayesian

knowledge base. We view a logic program with recursive loops as a special temporal model, where

backward-chaining cycles of the form A ← · · · A ← · · · are interpreted as feedbacks. This extends

existing PLP approaches, which mainly aim at (nontemporal) relational models.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;

F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Logic and con-
straint programming; G.3 [Probability and Statistics]—Probabilistic algorithms (including
Monte Carlo)

General Terms: Languages, Theory

Additional Key Words and Phrases: Logic programming, Bayesian networks, recursive loops, cyclic

influences, the well-founded model

ACM Reference Format:
Shen, Y.-D. 2008. Reasoning with recursive loops under the PLP framework. ACM Trans. Comput.

Logic 9, 4, Article 27 (August 2008), 31 pages. DOI = 10.1145/1380572.1380576 http://doi.acm.org/

10.1145/1380572.1380576

A preliminary version of this article appeared in Proceedings of the 15th International Conference
on Inductive Logic Programming (Bonn, Germany).

This work is supported in part by the National Natural Science Foundation of China (grants

60721016, 60673103, 60421001, and 60373052).

Author’s address: State Key Laboratory of Computer Science, Institute of Software, Chinese

Academy of Sciences, Beijing 100080, China; email: ydshen@ios.ac.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1529-3785/2008/08-ART27 $5.00 DOI 10.1145/1380572.1380576 http://doi.acm.org/

10.1145/1380572.1380576

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:2 • Y.-D. Shen

1. INTRODUCTION

Since Pearl’s [1988] pioneering work, Bayesian networks have become a stan-
dard probability model and have been widely used in many applications [CACM
1995]. However, it is well recognized that due to their attribute-based nature,
Bayesian networks are limited in the power of expressiveness and applicabil-
ity. Using first-order logic to extend the expressive power of Bayesian networks
has received particular attention, especially since the notion of the knowledge-
based model construction (KBMC) was introduced [Breese 1992; Wellman et al.
1992]. The basic idea of the KBMC approach is to encode general knowledge in
an expressive language such as first-order logic, then dynamically construct a
Bayesian network for each specific situation or problem instance. In particular,
logic clauses are used to represent general causal knowledge or direct influ-
ences. In this case, a knowledge base is a logic program whose clauses are each
associated with a probability parameter expressing the degree of uncertainty
about the direct influences. Due to its enhancement of a logic program with
probability, such a framework is also called probabilistic logic programming
(PLP) [Haddawy 1994; Ngo and Haddawy 1997; Poole 1993].1

The core of the PLP framework is a backward-chaining procedure, which
generates a Bayesian network graphic structure from a logic program in a way
that when a ground atom A is placed in the network (as a node), each of the
atoms in the body of a ground clause whose head is A is added to the network
as a parent node of A. This is quite like the process of query evaluation in logic
programming. Therefore, existing PLP methods use a slightly adapted SLD- or
SLDNF-resolution [Lloyd 1987] as the backward-chaining procedure.

Recursive loops in a logic program are SLD-derivations of the form

A1 ← · · · ← A2 · · · ← A3 · · · , (1)

where, for any i ≥ 1, Ai is the same as Ai+1 up to variable renaming, which are
generated from a set of recursive clauses like

p1(X 1) : − . . . , p2(X 2), . . .

p2(X 2) : − . . . , p3(X 3), . . .
...

pn(X n) : − . . . , p1(X 1), . . .

Such loops present a challenging problem to the PLP framework. On the one
hand, they loop forever so that the PLP backward-chaining inferences will never
stop. On the other hand, they may generate cyclic influences, which are disal-
lowed in Bayesian networks. Therefore, exploiting methods for reasoning with
recursive loops is of particular importance in PLP research.

Two representative approaches have been proposed to avoid recursive loops.
The first one is by Ngo and Haddawy [1997] and Kersting and De Raedt [2000],
who restricted themselves to considering only acyclic logic programs [Apt and
Bezem 1991]. One major issue with this restriction is that not only is the

1This term was first introduced by Ng and Subrahmanian [1992] for a purpose different from the

KBMC approach. It was used for a probabilistic characterization of logic programming semantics.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:3

expressive power limited, it is also quite difficult to write acyclic logic pro-
grams without sacrificing the completeness of problem description, especially
for most unskilled users [Bol et al. 1991, Shen et al. 2001, 2003]. The second
approach, proposed by Glesner and Koller [1995], uses explicit time param-
eters to avoid occurrence of recursive loops. It enforces acyclicity using time
parameters in the way that every predicate has a time argument such that
the time argument in the clause head is at least one time step later than the
time arguments of the predicates in the clause body. In this way, each predicate
p(X) is changed to p(X , T) and each clause p(X) ← q(X) is rewritten into
p(X , T1) ← T2 = T1 − 1, q(X , T2), where T , T1, and T2 are time parame-
ters. As we will show in Section 6.3, enforcing acyclicity of a logic program by
introducing time parameters suffers from important drawbacks and thus is not
an effective way to handle recursive loops.

In this article, we propose a novel solution to the problem of recursive
loops under the PLP framework. Major characteristics and significance of our
method are as follows. First, we do not avoid recursive loops by either restrict-
ing to acyclic logic programs or relying on explicit time parameters. Instead,
we make use of recursive loops to build a stationary dynamic Bayesian net-
work. Second, we introduce a new PLP formalism, called a Bayesian knowl-
edge base. It allows recursive loops and contains logic clauses of the form
A ← A1, . . . , Al , true, Context, Types, which naturally formulates the knowl-
edge that the Ais have direct influences on A in the context Context under the
type constraints Types. Third, we introduce the well-founded semantics [Van
Gelder et al. 1991] of logic programs to the PLP framework; in particular, we use
the well-founded model of a logic program to define the direct influence relation
and apply SLG-resolution [Chen and Warren 1996] (or SLTNF-resolution [Shen
et al. 2004]) to make the backward-chaining inferences. This establishes a
clear declarative semantics for a Bayesian knowledge base. Fourth, we ob-
serve that under the PLP framework cyclic influences caused by recursive
loops define feedbacks, thus implying a time sequence. For instance, the clause
aids(X) ← aids(Y), contact(X , Y) introduces recursive loops

aids(X) ← aids(Y) · · · ← aids(Y 1) · · · .

Together with some other clauses in a logic program, these recursive loops may
generate cyclic influences of the form

aids(p1) ← · · · ← aids(p1) · · · ← aids(p1) · · · .

Such cyclic influences represent feedback connections, that is, that p1 is infected
with aids (in the current time slice t) depends on whether p1 was infected with
aids earlier (in the last time slice t − 1). Therefore, recursive loops of form (1)
potentially imply a time sequence of the form

A← · · · ←︸ ︷︷ ︸
t

A · · · ←︸ ︷︷ ︸
t−1

A · · · ←︸ ︷︷ ︸
t−2

A · · · , (2)

where A is a ground instance of A1. It is this observation that leads us to
viewing a logic program with recursive loops as a special temporal model. Such
a temporal model corresponds to a stationary dynamic Bayesian network. This

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:4 • Y.-D. Shen

extends existing PLP approaches, such as those in Goldman and Charniak
[1993], Haddawy [1994], [Kersting and Raedt 2000; Ngo and Haddawy 1997;
Poole 1993], which aim at (non-temporal) relational models.

The article is structured as follows. In Section 2, we review some concepts
concerning Bayesian networks and logic programs. In Section 3, we introduce
Bayesian knowledge bases. A Bayesian knowledge base consists mainly of a
logic program that defines a direct influence relation over a space of random
variables. In Section 4, we establish a declarative semantics for a Bayesian
knowledge base based on a key notion of influence clauses. Influence clauses
contain only ground atoms from the space of random variables and define the
same direct influence relation as the original Bayesian knowledge base does.
In Section 5, we present algorithms for building a Bayesian network from a
Bayesian knowledge base. We describe related work in Section 6 and summarize
our work in Section 7.

2. PRELIMINARIES AND NOTATION

We assume the reader is familiar with basic ideas of Bayesian networks [Pearl
1988] and logic programming [Lloyd 1987]. In particular, we assume the reader
is familiar with the well-founded semantics [Van Gelder et al. 1991] as well as
SLG-resolution [Chen et al. 1995]. A Bayesian network is a directed acyclic
graph whose nodes represent random variables and whose edges express direct
influences. A conditional probability table, P(A|B1, . . . , Bn), is attached to each
node/random variable A, which describes the probabilistic relation between A
and the set Bis of its parent nodes. When no confusion would occur, we will refer
to nodes and random variables exchangeably. A node without parent nodes is
referred to as an input node.

We now review some basic concepts concerning dynamic Bayesian networks
(DBNs). DBNs are introduced to model the evolution of the state of the environ-
ment over time [Kanazawa et al. 1995]. Briefly, a DBN is a Bayesian network
whose random variables are subscripted with time steps (basic units of time)
or time slices (i.e., intervals). In this article, we use time slices. For instance,
Weathert−1, Weathert , and Weathert+1 are random variables representing the
weather situations in time slices t − 1, t, and t + 1, respectively. We can then
use a DBN to depict how Weathert−1 influences Weathert .

A DBN is represented by describing the intraprobabilistic relations between
random variables in each individual time slice t (t > 0) and the interprob-
abilistic relations between the random variables of each two consecutive time
slices t −1 and t.2 If both the intra- and interprobabilistic relations (conditional
probability tables) are the same for all time slices (in this case, the DBN is a
repetition of a Bayesian network over time; see Figure 1 where all conditional
probability tables are omitted), the DBN is called a stationary DBN [Russell
and Norvig 1995]. As far as we know, most existing DBN systems reported in
the literature are stationary DBNs.

2We consider first-order Morkov models by assuming that each state only depends on the immedi-

ately preceding state.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:5

Fig. 1. A stationary DBN structure.

Fig. 2. A two-slice DBN structure (a feedback system).

In a stationary DBN as shown in Figure 1, the state evolution is determined
by random variables like C, B, and A, as they appear periodically and influ-
ence one another over time (i.e., they produce cycles of direct influences). Such
random variables are called state random variables. Note that D is not a state
random variable. Each state random variable A in a stationary DBN is assumed
to have an initial/prior probability distribution P(A0) at time zero. A stationary
DBN will make use of such prior probability distributions (together with the
probability distributions of nonstate random variables, which are the same for
all time slices) to compute a posterior probability distribution P(A1| · · ·) for A
in time slice t = 1.

A stationary DBN is often compactly represented as a two-slice DBN together
with a prior probability distribution P(A0) for each state random variable A at
time zero.

Definition 2.1. A two-slice DBN for a stationary DBN consists of two con-
secutive time slices, t − 1 and t, which describes (1) the intraprobabilistic
relations between the random variables in slice t and (2) the interprobabilistic
relations between the random variables in slice t − 1 and the random variables
in slice t.

A two-slice DBN models a feedback system, where a cycle of direct influences
establishes a feedback connection. For convenience, we depict feedback connec-
tions using dashed edges. Moreover, we refer to nodes coming from slice t − 1
as state input nodes (or state input random variables).

Example 2.1. The stationary DBN of Figure 1 can be represented by a
two-slice DBN as shown in Figure 2, where A, C, and B form a cycle of direct
influences and thus establish a feedback connection. This stationary DBN can
also be represented by a two-slice DBN starting from a different state input
node such as Ct−1 or Bt−1. These two-slice DBN structures are equivalent in
the sense that they model the same cycle of direct influences and can be unrolled
into the same stationary DBN (Figure 1).

Observe that in a two-slice DBN, all random variables except state input
nodes have the same subscript t. When no confusion would arise, the subscript

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:6 • Y.-D. Shen

Fig. 3. A simplified two-slice DBN structure.

t is omitted for simplification of the structure. For instance, the two-slice DBN
of Figure 2 is simplified to that of Figure 3.

In the rest of this section, we introduce some necessary notation for logic
programs. Variables begin with a capital letter, and predicate, function and
constant symbols with a lower-case letter. We use p(.) to refer to any predi-

cate/atom whose predicate symbol is p and use p(
−→
X) to refer to p(X 1, . . . , X n)

where all X is are variables. There is one special predicate, true, which is always

logically true. A predicate p(
−→
X) is typed if its arguments

−→
X are typed so that

each argument takes on values in a well-defined finite domain. A (general) logic
program P is a finite set of clauses of the form

A ← B1, . . . , Bm, ¬C1, . . . , ¬Cn, (3)

where A, the Bis, and the Cj s are atoms. We use HU(P) and HB(P) to denote
the Herbrand universe and Herbrand base of P , respectively, and use WF(P) =
〈It , I f 〉 to denote the well-founded model of P , where It , I f ⊆ HB(P), and every
A in It is true and every A in I f is false in WF(P). By a (Herbrand) ground
instance of a clause/atom C, we refer to a ground instance of C that is obtained
by replacing all variables in C with some terms in HU(P).

A logic program P is a positive logic program if no negative literal occurs
in the body of any clause. P is a Datalog program if no clause in P contains
function symbols. P is an acyclic logic program if there is a mapping map from
the set of ground instances of atoms in P into the set of natural numbers such
that for any ground instance A ← B1, . . . , Bk , ¬Bk+1, . . . , ¬Bn of any clause in
P , map(A) > map(Bi) (1 ≤ i ≤ n) [Apt and Bezem 1991]. P is said to have the
bounded-term-size property with respect to a set of predicates {p1(.), . . . , pt(.)}
if there is a function f (n) such that for any 1 ≤ i ≤ t whenever a top goal
G0 =← pi(.) has no argument whose term size exceeds n, no atoms in any
SLDNF- (or SLG-) derivations for G0 have an argument whose term size exceeds
f (n) (this definition is adapted from Van Gelder [1989]). Obviously, all Datalog
programs have the bounded-term-size property.

A dependency graph of a logic program P , denoted DG(P), consists of all
predicate symbols appearing in P (as its nodes) such that for any p and q,
there is an edge p → q in the graph if P has a clause with p in the head
and q in the body. p is a recursive predicate symbol if DG(P) contains a cycle
involving p.

3. DEFINITION OF A BAYESIAN KNOWLEDGE BASE

In this section, we introduce a new PLP formalism, called Bayesian knowledge
bases. Bayesian knowledge bases accommodate recursive loops and define the
direct influence relation in terms of the well-founded semantics.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:7

Definition 3.1. A Bayesian knowledge base is a triple 〈PB ∪ CB, Tx , CR〉,
where

—PB ∪ CB is a logic program, each clause in PB being of the form

p(.) ← p1(.), . . . , pl (.)︸ ︷︷ ︸
direct influences

, true, B1, . . . , Bm, ¬C1, . . . , ¬Cn︸ ︷︷ ︸
context

,

member(X 1, DOM1), . . . , member(X s, DOMs)︸ ︷︷ ︸
type constraints

, (4)

where (i) the predicate symbols p, p1, . . . , pl only occur in PB and (ii) p(.) is
typed so that for each variable X i in it with a finite domain DOMi (a list of
constants) there is an atom member(X i, DOMi) in the clause body;

—Tx is a set of conditional probability tables (CPTs) of the form P(p(.)|p1(.), . . . ,
pl (.)), each being attached to a clause (4) in PB, together with a probability

distribution P(p(
−→
X)0) attached to each recursive predicate symbol p in PB;

—CR is a combination rule such as noisy-or, min or max [Kersting and Raedt
2000; Ngo and Haddawy 1997; Russell and Norvig 1995].

A Bayesian knowledge base contains a logic program that can be divided into
two parts, PB and CB. PB defines a direct influence relation, each clause (4)
saying that the atoms p1(.), . . . , pl (.) have direct influences on p(.) in the context
that B1, . . . , Bm, ¬C1, . . . , ¬Cn, member(X 1, DOM1), . . . , member(X s, DOMs) is
true in PB∪CB under the well-founded semantics. Note that the special literal
true is used in clause (4) to mark the beginning of the context; it is always true
in the well-founded model WF(PB ∪ CB). For each variable X i in the head p(.),
member(X i, DOMi) is used to enforce the type constraint on X i, that is, the
value of X i comes from its domain DOMi. CB assists PB in defining the direct
influence relation by introducing some auxiliary predicates (such as member(.))
to describe contexts.3 Clauses in CB do not describe direct influences.

Recursive clauses are allowed in PB and CB. In particular, when some pi(.)
in clause (4) is the same as the head p(.), a cyclic direct influence occurs. Such
a cyclic influence models a feedback connection and is interpreted as p(.) at
present depending on itself in the past.

In this article, we focus on Datalog programs, although the proposed ap-
proach applies to logic programs with the bounded-term-size property (with
respect to the set of predicates appearing in the heads of clauses in PB) as well.
Datalog programs are widely used in database and knowledge base systems
[Ullman 1988] and have a polynomial time data complexity in computing their
well-founded models [Van Gelder et al. 1991]. We assume that except for the
predicate member(.), PB ∪ CB is a Datalog program.

For each clause (4) in PB, there is a unique CPT, P(p(.)|p1(.), . . . , pl (.)), in
Tx specifying the degree of the direct influences. Such a CPT is shared by all
instances of clause (4). For each recursive predicate symbol p in PB, there is a

unique P(p(
−→
X)0) in Tx specifying a prior probability distribution (at time zero)

for any instance of p(
−→
X).

3The predicate true can be defined in CB using a unit clause.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:8 • Y.-D. Shen

A Bayesian knowledge base has the following important property.

THEOREM 3.1. (1) All unit clauses in PB are ground. (2) Let G0 =← p(.) be
a goal with p being a predicate symbol occurring in the head of a clause in PB.
Then all answers of G0 derived from PB∪CB∪{G0} by applying SLG-resolution
are ground.

PROOF. (1) If the head of a clause in PB contains variables, there must be
atoms of the form member(X i, DOMi) in its body. This means that clauses whose
head contains variables are not unit clauses. Therefore, all unit clauses in PB
are ground.

(2) Let A be an answer of G0 obtained by applying SLG-resolution to PB ∪
CB∪{G0}. Then A must be produced by applying a clause in PB of form (4) with
a most general unifier (mgu) θ such that A = p(.)θ and the body (p1(.), . . . , pl (.),
true, B1, . . . , Bm, ¬C1, . . . , ¬Cn, member(X 1, DOM1), . . . , member(X s, DOMs))θ
is evaluated true in the well-founded model WF(PB∪CB). Note that the type con-
straints (member(X 1, DOM1), . . . , member(X s, DOMs))θ being evaluated true
by SLG-resolution guarantees that all variables X is in the head p(.) are in-
stantiated by θ into constants in their domains DOMis. This means that A is
ground.

For the sake of simplicity, in the sequel for each clause (4) in PB, we omit its
type constraints member(X i, DOMi) (1 ≤ i ≤ s). Therefore, when we say that
the context B1, . . . , Bm, ¬C1, . . . , ¬Cn is true, we assume that the related type
constraints are true as well.

Example 3.1. We borrow the well-known AIDS program from Glesner and
Koller [1995] (a simplified version) as a running example to illustrate our
PLP approach. It is formulated by a Bayesian knowledge base BKB1 with the
following logic program4:

PB1 : 1. aids(p1).
2. aids(p3).
3. aids(X) ← aids(X).
4. aids(X) ← aids(Y), contact(X , Y).
5. contact(p1, p2).
6. contact(p2, p1).

Note that both the third and the fourth clauses produce recursive loops. The
third clause also has a cyclic direct influence. Conceptually, the two clauses
model the fact that the direct influences on aids(X) come from whether X was
infected with AIDS earlier (the feedback connection induced from the third
clause) or whether X has contact with someone Y who is infected with AIDS
(the fourth clause).

4This Bayesian knowledge base BKB1 = 〈PB1 ∪ CB1, Tx1
, CR1〉 may well contain contexts that

describe a person’s background information. The contexts together with CB1, Tx1
, and CR1 are

omitted here for the sake of simplicity.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:9

4. DECLARATIVE SEMANTICS

In this section, we formally describe the space of random variables and the
direct influence relation defined by a Bayesian knowledge base BKB. We then
define probability distributions induced by BKB.

4.1 Space of Random Variables and Influence Clauses

Recall that a node/random variable in a Bayesian network is either an input
node, which has no parent node, or a node whose parent nodes are determined
by a direct influence relation. A Bayesian knowledge base BKB defines a
Bayesian network whose random variables are a subset of HB(PB), by taking
atoms of all unit clauses in PB as input nodes and deducing the other nodes
iteratively based on the direct influence relation defined by PB. Formally, we
have

Definition 4.1. The space of random variables of BKB, denoted S(BKB), is
recursively defined as follows:

(1) Atoms of all unit clauses in PB are random variables in S(BKB).

(2) Let A ← A1, . . . , Al , true, B1, . . . , Bm, ¬C1, . . . , ¬Cn be a ground instance of
a clause in PB. If the context B1, . . . , Bm, ¬C1, . . . , ¬Cn is true in the well-
founded model WF(PB∪CB) and {A1, . . . , Al } ⊆ S(BKB), then A is a random
variable in S(BKB). In this case, each Ai is said to have a direct influence
on A.

(3) S(BKB) contains only those ground atoms satisfying the above two condi-
tions.

Definition 4.2. For any random variables A, B in S(BKB), we say A is in-
fluenced by B if B has a direct influence on A, or for some C in S(BKB) A
is influenced by C and C is influenced by B. A cyclic influence occurs if A is
influenced by itself.

Example 4.1 (Example 3.1 Continued). The clauses 1, 2, 5, and 6 are unit
clauses; thus their atoms are random variables. aids(p2) is then derived by
applying the fourth clause. Consequently,

S(BKB1) = {aids(p1), aids(p2), aids(p3), contact(p1, p2), contact(p2, p1)}.
aids(p1) and aids(p2) have a direct influence on each other. There are three
cyclic influences: aids(pi) is influenced by itself for each i = 1, 2, 3.

Let WF(PB ∪ CB) = 〈It , I f 〉 be the well-founded model of PB ∪ CB and let
IPB = {p(.) ∈ It |p occurs in the head of some clause in PB}. The following
result shows that the space of random variables is uniquely determined by the
well-founded model.

THEOREM 4.1. S(BKB) = IPB.

PROOF. First note that atoms of all unit clauses in PB are both in S(BKB)
and in IPB. We prove this theorem by induction on the maximum depth d ≥ 0
of backward derivations of a random variable A.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:10 • Y.-D. Shen

(=⇒) Let A ∈ S(BKB). When d = 0, A is a unit clause in PB, so A ∈ IPB.
For the induction step, assume B ∈ IPB for any B ∈ S(BKB) whose maximum
depth d of backward derivations is below k. Let d = k for A. There must be
a ground instance A ← A1, . . . , Al , true, B1, . . . , Bm, ¬C1, . . . , ¬Cn of a clause
in PB such that the Ais are already in S(BKB) and B1, . . . , Bm, ¬C1, . . . , ¬Cn

is true in the well-founded model WF(PB ∪ CB). Since the head A is derived
from the Ais in the body, the maximum depth for each Ai must be below
the depth k for the head A. By the induction hypothesis, the Ais are in IPB.
By definition of the well-founded model, A is true in WF(PB ∪ CB) and thus
A ∈ IPB.

(⇐=) Let A ∈ IPB. When d = 0, A is a unit clause in PB, so A ∈ S(BKB).
For the induction step, assume B ∈ S(BKB) for any B ∈ IPB whose maximum
depth d of backward derivations is below k. Let d = k for A. There must be a
ground instance A ← A1, . . . , Al , true, . . . of a clause in PB such that the body
is true in WF(PB ∪ CB). Note that the predicate symbol of each Ai occurs in the
head of a clause in PB. Since the head A is derived from the literals in the body,
the maximum depth of backward derivations for each Ai in the body must be
below the depth k for the head A. By the induction hypothesis, the Ais are in
S(BKB). By Definition 4.1, A ∈ S(BKB).

Theorem 4.1 suggests that the space of random variables can be computed
by applying an existing procedure for the well-founded model such as SLG-
resolution or SLTNF-resolution. Since SLG-resolution has been implemented as
the well-known XSB system [Sagonas et al. 1998], in this article we apply it for
the PLP backward-chaining inferences. SLG-resolution is a tabling mechanism
for top-down computation of the well-founded model. For any atom A, during
the process of evaluating a goal ← A, SLG-resolution stores all answers of A
in a space called table, denoted TA.

Let {p1, . . . , pt} be the set of predicate symbols occurring in the heads of
clauses in PB, and let GS0 = {← p1(

−→X 1), . . . , ← pt(
−→X t)}.

Algorithm 1. Computing random variables

(1) S ′(BKB) = ∅.

(2) For each ← pi(
−→
X i) in GS0

(a) Compute the goal ← pi(
−→
X i) by applying SLG-resolution to PB∪CB∪{← pi(

−→
X i)}.

(b) S ′(BKB) = S ′(BKB) ∪ Tpi (
−→
Xi).

(3) Return S ′(BKB).

THEOREM 4.2. Algorithm 1 terminates, yielding a finite set S ′(BKB) = S
(BKB).

PROOF. Since GS0 is finite, Algorithm 1 terminates if SLG-resolution
terminates for each ← pi(

−→X i) in GS0. Let WF(PB ∪ CB) = 〈It , I f 〉 be the
well-founded model of PB ∪ CB. Since SLG-resolution is sound and complete
for the well-founded semantics and terminates for any logic programs with

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:11

the bounded-term-size property [Chen and Warren 1996], Algorithm 1 will
terminate with a finite output S ′(BKB) that consists of all answers of pi(

−→X i)
(1 ≤ i ≤ t). By Theorem 3.1, all answers in S ′(BKB) are ground. This means
S ′(BKB) = IPB. Hence, by Theorem 4.1 S ′(BKB) = S(BKB).

We introduce the following principal concept.

Definition 4.3. Let A ← A1, . . . , Al , true, B1, . . . , Bm, ¬C1, . . . , ¬Cn be a
ground instance of the kth clause in PB such that its body is true in the well-
founded model WF(PB ∪ CB). We call

k. A ← A1, . . . , Al (5)

an influence clause.5 All influence clauses derived from all clauses in PB con-
stitute the set of influence clauses of BKB, denoted Iclause(BKB).

The following result is immediate from Definition 4.1 and Theorem 4.1.

THEOREM 4.3. For any influence clause (5), A and all Ais are random vari-
ables in S(BKB).

Influence clauses have the following principal property.

THEOREM 4.4. For any Ai and A in HB(PB), Ai has a direct influence on A,
which is derived from the kth clause in PB, if and only if there is an influence
clause in Iclause(BKB) of the form k. A ← A1, . . . , Ai, . . . , Al .

PROOF. (=⇒) Assume Ai has a direct influence on A, which is derived
from the kth clause in PB. By Definition 4.1, the kth clause has a ground in-
stance of the form A ← A1, . . . , Ai, . . . , Al , true, B1, . . . , Bm, ¬C1, . . . , ¬Cn such
that B1, . . . , Bm, ¬C1, . . . , ¬Cn is true in WF(PB ∪ CB) and {A1, . . . , Ai, . . . , Al }
⊆ S(BKB). By Theorem 4.1, A1, . . . , Ai, . . . , Al is true in WF(PB ∪ CB). Thus,
k. A ← A1, . . . , Ai, . . . , Al is an influence clause in Iclause(BKB).

(⇐=) Assume that Iclause(BKB) contains an influence clause k. A ← A1, . . . ,
Ai, . . . , Al . Then the kth clause in PB has a ground instance of the form
A ← A1, . . . , Ai, . . . , Al , true, B1, . . . , Bm, ¬C1, . . . , ¬Cn such that its body is
true in WF(PB ∪ CB) and (by Theorem 4.3) {A1, . . . , Ai, . . . , Al } ⊆ S(BKB). By
Definition 4.1, A ∈ S(BKB) and Ai has a direct influence on A.

The following result is immediate from Theorem 4.4.

COROLLARY 4.5. For any atom A, A is in S(BKB) if and only if there is an
influence clause in Iclause(BKB) whose head is A.

Theorem 4.4 shows the significance of influence clauses: they define the
same direct influence relation over the same space of random variables as
the original Bayesian knowledge base BKB does. Therefore, a Bayesian net-
work can be built directly from Iclause(BKB) provided the influence clauses are
available.

5The prefix “k.” will be omitted sometimes for the sake of simplicity.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:12 • Y.-D. Shen

Observe that to compute the space of random variables (see Algorithm 1),
SLG-resolution will construct a proof tree rooted at the goal ← pi(

−→X i) for each
1 ≤ i ≤ t [Chen et al. 1995]. For each answer A of pi(

−→X i) in S(BKB) there
must be a success branch (i.e., a branch starting at the root node and ending
at a node marked success) in the tree that generates the answer. Let pi(.) ←
A1, . . . , Al , true, . . . be the kth clause in PB that is applied to expand the root
goal ← pi(

−→X i) in the success branch and let θ be the composition of all mgus
along the branch. Then A = pi(.)θ and the clause body A1, . . . , Al , true, . . . is
evaluated true with the mgu θ in WF(PB ∪ CB) by SLG-resolution. This means
that, for each 1 ≤ j ≤ l , Aj θ is an answer of Aj that is derived by applying
SLG-resolution to PB∪CB∪{← A′

j } where A′
j is Aj or some instance of Aj . By

Theorem 3.1, all Aj θs are ground atoms. Therefore, k. pi(.)θ ← A1θ , . . . , Alθ is
an influence clause. Hence we have the following result.

THEOREM 4.6. Let Br be a success branch in a proof tree of SLG-resolution,
pi(.) ← A1, . . . , Al , true, . . . be the kth clause in PB that expands the root goal
in Br, and θ be the composition of all mgus along Br. Br produces an influence
clause k. pi(.)θ ← A1θ , . . . , Alθ .

Every success branch in a proof tree for a goal in GS0 produces an influence
clause. The set of influence clauses can then be obtained by collecting all influ-
ence clauses from all such proof trees in SLG-resolution.

Algorithm 2. Computing influence clauses.

(1) I ′
clause(BKB) = ∅.

(2) For each goal ← pi(
−→X i) in GS0, compute all answers of pi(

−→X i) by applying SLG-

resolution to PB ∪ CB ∪ {← pi(
−→X i)} while for each success branch starting at the

root goal ← pi(
−→X i), collecting an influence clause from the branch and adding it into

I ′
clause(BKB).

(3) Return I ′
clause(BKB).

THEOREM 4.7. Algorithm 2 terminates, yielding a finite set I ′
clause(BKB) =

Iclause(BKB).

PROOF. That Algorithm 2 terminates is immediate from Theorem 4.2, as
except for collecting influence clauses, Algorithm 2 makes the same derivations
as Algorithm 1. The termination of Algorithm 2 then implies I ′

clause(BKB) is
finite.

By Theorem 4.6, any clause in I ′
clause(BKB) is an influence clause in

Iclause(BKB). We now prove the converse. Let k. A ← A1, . . . , Al be an influence
clause in Iclause(BKB). Then the kth clause in PB A′ ← A′

1, . . . , A′
l , true,

has a ground instance of the form A ← A1, . . . , Al , true, . . . whose body is
true in WF(PB ∪ CB). By the completeness of SLG-resolution, there must be
a success branch in the proof tree rooted at a goal ← pi(

−→X i) in GS0 where
(1) the root goal is expanded by the kth clause, (2) the composition of all
mgus along the branch is θ , and (3) A ← A1, . . . , Al , true, . . . is an instance
of (A′ ← A′

1, . . . , A′
l , true, . . .)θ . By Theorem 4.6, k. A′θ ← A′

1θ , . . . , A′
lθ is an

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:13

Fig. 4. The proof tree for ← aids(X).

Fig. 5. The proof tree for ← contact(Y , Z).

influence clause. Since any influence clause is ground, k. A′θ ← A′
1θ , . . . , A′

lθ

is the same as k. A ← A1, . . . , Al . This influence clause from the success
branch will be collected into I ′

clause(BKB) by Algorithm 2. Thus, any clause in
Iclause(BKB) is in I ′

clause(BKB).

Example 4.2 (Example 4.1 Continued). There are only two predicate sym-
bols, aids and contact, in the heads of clauses in PB1. Let GS0 = {← aids(X), ←
contact(Y , Z)}. Algorithm 2 will generate two proof trees rooted at ← aids(X)
and ← contact(Y , Z), respectively, as shown in Figures 4 and 5. In the proof
trees, a label Ci on an edge indicates that the ith clause in PB is applied, and
the other labels like X = p1 on an edge show that an answer from a table is ap-
plied. Each success branch yields an influence clause. For instance, expanding
the root goal ← aids(X) by the third clause produces a child node ← aids(X)
(Figure 4). Then applying to this node the answers of aids(X) in the table Taids(X)

leads to three success branches. Then, by applying the mgu θ on each success
branch to instantiate the third clause, we obtain three influence clauses of the
form

3. aids(pi) ← aids(pi) (i = 1, 2, 3).

As a result, we obtain the following set of influence clauses:

Iclause(BKB1) : 1. aids(p1).
2. aids(p3).
3. aids(p1) ← aids(p1).
3. aids(p2) ← aids(p2).
3. aids(p3) ← aids(p3).
4. aids(p2) ← aids(p1), contact(p2, p1).
4. aids(p1) ← aids(p2), contact(p1, p2).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:14 • Y.-D. Shen

5. contact(p1, p2).
6. contact(p2, p1).

For the computational complexity, we observe that the cost of Algorithm 2
is dominated by applying SLG-resolution to evaluate the goals in GS0. It has
been shown that for a Datalog program P , the time data complexity, as defined
by Vardi [1982], of computing the well-founded model WF(P) is polynomial in
the number of ground unit clauses in P [Van Gelder et al. 1991]. This applies
to SLG-resolution as well [Chen and Warren 1996].

P = PB ∪ CB is a Datalog program except for the member(X i, DOMi)
predicates used in PB (see Definition 3.1). So if the cost of handling all
member(X i, DOMi) predicates is polynomial, it is polynomial applying SLG-
resolution to compute the well-founded model WF(PB ∪ CB).

Since each domain DOMi is a finite list of constants, checking if X i is in
DOMi takes time linear in the size of DOMi. Let K1 be the maximum number
of member(X i, DOMi) predicates used in a clause in P and K2 be the maxi-
mum size of a domain DOMi. Then the time of handling all member(X i, DOMi)
predicates in a clause is bounded by K1 ∗ K2. Note that each clause in P is
applied at most N times in SLG-resolution, where N is the number of atoms of
predicates (except member(X i, DOMi)) in P that are not variants of each other.
N is a polynomial in the number of ground unit clauses in P [Chen and Warren
1996]. So the time of handling all member(X i, DOMi)s in all clauses of P is
bounded by |P | ∗ N ∗ K1 ∗ K2, where |P | is the number of clauses in P . Clearly,
this is a polynomial. Therefore, we have the following result.

THEOREM 4.8. The time data complexity of Algorithm 2 is polynomial in the
number of ground unit clauses in PB ∪ CB.

4.2 Probability Distributions Induced by BKB

For any random variable A, we use pa(A) to denote the set of random variables
that have direct influences on A; namely, pa(A) consists of random variables in
the body of all influence clauses whose head is A. Assume that the probability
distribution P(A|pa(A)) is available (see Section 5.2). Furthermore, we make
the following independence assumption.

Assumption 1. For any random variable A, we assume that given pa(A),
A is probabilistically independent of all random variables in S(BKB) that are
not influenced by A.

We define probability distributions induced by BKB in terms of whether there
are cyclic influences.

Definition 4.4. When no cyclic influence occurs, the probability distribution
induced by BKB is P(S(BKB)).

THEOREM 4.9. P(S(BKB)) = ∏
Ai∈S(BKB) P(Ai|pa(Ai)) under the indepen-

dence assumption.

PROOF. When no cyclic influence occurs, the random variables in S(BKB)
can be arranged in a partial order such that if Ai is influenced by Aj then j > i.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:15

By the independence assumption, we have P(S(BKB)) = P(
∧

Ai∈S(BKB) Ai) =
P(A1|

∧
i=2 Ai) ∗ P(

∧
i=2 Ai) = P(A1|pa(A1)) ∗ P(A2|

∧
i=3 Ai) ∗ P(

∧
i=3 Ai) = . . .

= ∏
Ai∈S(BKB) P(Ai|pa(Ai)).

When there are cyclic influences, we cannot have a partial order on S(BKB).
Consider a cyclic influence: A1 is influenced by itself. By Definition 4.2, this
cyclic influence must come from a chain (cycle) of direct influences

A1 ← A2 ← A3 ← · · · ← An ← A1. (6)

By Theorem 4.4, this chain of direct influences must be generated from a set of
influence clauses in Iclause(BKB) of the form

A1 ← . . . , A2, . . . ,

A2 ← . . . , A3, . . . ,

. (7)

An ← . . . , A1,

Note that the cycle of direct influences (6) defines a feedback connection
and thus the set of influence clauses (7) constitutes a feedback system. Since a
feedback system can be modeled by a two-slice DBN (see Section 2), influence
clauses (7) represent the same knowledge as the following ones do:

A1 ← . . . , A2, . . . ,

A2 ← . . . , A3, . . . ,

. (8)

An ← . . . , A1t−1
,

Here the Ais are each a state random variable and A1t−1
is a state input random

variable. As a result, A1 being influenced by itself becomes A1 being influenced
by A1t−1

. By applying this transformation (from influence clauses (7) to (8))
for every cycle of direct influences, we can get rid of all cyclic influences and
obtain a generalized set Iclause(BKB)g of influence clauses from Iclause(BKB).
(The algorithm for detecting influence cycles will be discussed in detail in the
next section.)

Example 4.3 (Example 4.2 Continued). Iclause(BKB1) can be transformed to
the following generalized set of influence clauses by introducing three state
input random variables aids(p1)t−1, aids(p2)t−1 and aids(p3)t−1.

Iclause(BKB1)g : 1. aids(p1).
2. aids(p3).
3. aids(p1) ← aids(p1)t−1.

3. aids(p2) ← aids(p2)t−1.

3. aids(p3) ← aids(p3)t−1.

4. aids(p2) ← aids(p1)t−1, contact(p2, p1). ♣
4. aids(p1) ← aids(p2), contact(p1, p2).
5. contact(p1, p2).
6. contact(p2, p1).

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:16 • Y.-D. Shen

For instance, the clause marked ♣ results from the following cycle of direct
influences:

aids(p1) ← aids(p2) ← aids(p1),

which is generated from the following two influence clauses in Iclause(BKB1):

4. aids(p2) ← aids(p1), contact(p2, p1).
4. aids(p1) ← aids(p2), contact(p1, p2).

When there is no cyclic influence, BKB is a nontemporal model, represented
by Iclause(BKB). When cyclic influences occur, however, BKB becomes a temporal
model, represented by Iclause(BKB)g . LetS(BKB)g beS(BKB) plus all state input
random variables introduced in Iclause(BKB)g .

Definition 4.5. When there are cyclic influences, the probability distribu-
tion induced by BKB is P(S(BKB)g).

By extending the independence assumption from S(BKB) to S(BKB)g , we
obtain the following result.

THEOREM 4.10. P(S(BKB)g) = ∏
Ai∈S(BKB)g

P(Ai|pa(Ai)) under the indepen-
dence assumption.

PROOF. First recall that in a two-slice DBN, only the subscript t − 1 for
each state input random variable is explicitly written; the subscript t for the
remaining random variables is omitted for the sake of simplicity (see Section 2).
Therefore, in the proof of this theorem, each random variable Aj in Iclause(BKB)g

is assumed to have either a subscript t or t − 1.
Due to the introduction of state input random variables, Iclause(BKB)g pro-

duces no cycles; thus the random variables in S(BKB)g can be arranged in a
partial order such that if Ai is influenced by Aj then j > i. The proof can
then proceed in the same way as that of Theorem 4.9 provided that, for any
time slice t > 0, a probability distribution P(Ajt−1

) is available for each state
input random variable Ajt−1

in S(BKB)g . The latter can be proved by a simple
induction on t. For the induction base, when t = 1, P(Aj0

) is available as an
initial/prior probability distribution for each state random variable Aj at time
zero in a DBN. As the induction hypothesis, assume that P(Ajt−1

) is available
for any 0 < t ≤ k. We now prove that P(Ajk) is available. When t = k, each
state input random variable in Iclause(BKB)g is subscripted with k−1 and all the
remaining random variables subscripted with k. Then, by the independence as-
sumption we have P(S(BKB)g) = P(

∧
Ai∈S(BKB)g

Ai) = P(A1|
∧

i=2 Ai)∗P(
∧

i=2 Ai)

= P(A1|pa(A1)) ∗ P(A2|
∧

i=3 Ai) ∗ P(
∧

i=3 Ai) = . . . = ∏
Ai∈S(BKB)g

P(Ai|pa(Ai)),

where by the induction hypothesis each state input random variable Ajk−1
has

a probability distribution P(Ajk−1
) availabe. As Ajk is in S(BKB)g , P(Ajk) is

derivable from P(S(BKB)g). This concludes the proof.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:17

5. BUILDING A BAYESIAN NETWORK FROM A BAYESIAN
KNOWLEDGE BASE

5.1 Building a Two-Slice DBN Structure

From a Bayesian knowledge base BKB, we can derive a set of influence clauses
Iclause(BKB), which defines the same direct influence relation over the same
space S(BKB) of random variables as PB ∪ CB does (see Theorem 4.4). There-
fore, given a probabilistic query together with some evidences, we can depict a
network structure from Iclause(BKB), which covers the random variables in the
query and evidences, by backward-chaining the related random variables via
the direct influence relation.

Let Q be a probabilistic query and E a set of evidences, where all random
variables come from S(BKB) (i.e., each random variable in Q and E is a head
of some influence clause in Iclause(BKB)). Let

TOP = {A|A is a random variable in Q or E}.
An influence network of Q and E,6 denoted Inet(BKB)Q ,E , is constructed from
Iclause(BKB) using the following algorithm.

Algorithm 3. Building an influence network

(1) Initially, Inet(BKB)Q ,E has all random variables in TOP as nodes.

(2) Remove the first random variable A from TOP. For each influence clause in
Iclause(BKB) of the form k. A ← A1, . . . , Al , if l = 0 then add to Inet(BKB)Q ,E an

edge A
k←; else for each Ai in the body

(a) If Ai is not in Inet(BKB)Q ,E then add Ai to Inet(BKB)Q ,E as a new node and add
it to the end of TOP.

(b) Add to Inet(BKB)Q ,E an edge A
k← Ai .

(3) Repeat step 2 until TOP becomes empty.

(4) Return Inet(BKB)Q ,E .

Example 5.1 (Example 4.2 Continued). To build an influence network from
Iclause(BKB1) that covers aids(p1), aids(p2), and aids(p3), we apply Algorithm 3
with TOP = {aids(p1), aids(p2), aids(p3)}. The resulting influence network
Inet(BKB1)Q ,E is depicted in Figure 6. As an illustration, consider the case that
the first random variable aids(p1) is removed from TOP. There are three influ-
ence clauses for aids(p1) in Iclause(BKB1):

1. aids(p1).

3. aids(p1) ← aids(p1).

4. aids(p1) ← aids(p2), contact(p1, p2).

6Note the differences between influence networks and influence diagrams. Influence diagrams (also

known as decision networks) are a formalism introduced in decision theory that extends Bayesian

networks by incorporating actions and utilities [Russell and Norvig 1995].

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:18 • Y.-D. Shen

Fig. 6. An influence network built from the AIDS program BKB1.

The first clause has no body, so an edge aids(p1)
1← is added to the network.

Applying the second clause gives an edge aids(p1)
3← aids(p1), which forms

a cycle. The third clause has two atoms in its body, so two edges, aids(p1)
4←

aids(p2) and aids(p1)
4← contact(p1, p2), are added respectively.

An influence network is a graphical representation for influence clauses. This
claim is supported by the following properties of influence networks.

THEOREM 5.1. For any Ai, Aj in Inet(BKB)Q ,E, Aj is a parent node of Ai,
connected via an edge Ai

k← Aj , if and only if there is an influence clause of the
form k. Ai ← A1, . . . , Aj , . . . , Al in Iclause(BKB).

PROOF. First note that termination of Algorithm 3 is guaranteed by the fact
that any random variable in S(BKB) will be added to TOP no more than one
time (line 2a). Let Ai, Aj be nodes in Inet(BKB)Q ,E . If Aj is a parent node of Ai,

connected via an edge Ai
k← Aj , this edge must be added at line 2b, due to ap-

plying an influence clause in Iclause(BKB) of the form k. Ai ← A1, . . . , Aj , . . . , Al

(line 2). Conversely, if Iclause(BKB) contains such an influence clause, it must
be applied at line 2, with edges of the form Ai

k← Aj added to the network at
line 2b.

THEOREM 5.2. For any Ai, Aj in Inet(BKB)Q ,E, Ai is a descendant node of Aj

if and only if Ai is influenced by Aj .

PROOF. Assume Ai is a descendant node of Aj , with a path

Ai
k← B1

k1← . . . Bm
km← Aj . (9)

By Theorem 5.1, Iclause(BKB) must contain the following influence clauses:

k. Ai ← . . . , B1, . . . ,

k1. B1 ← . . . , B2, . . . ,

. (10)

km. Bm ← . . . , Aj ,

By Theorem 4.4 and Definition 4.2, Ai is influenced by Aj . Conversely, if Ai

is influenced by Aj , there must be a chain of influence clauses of the form as

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:19

above. Since Ai, Aj are in Inet(BKB)Q ,E , by Theorem 5.1 there must be a path
of form (9) in the network.

THEOREM 5.3. Let V be the set of nodes in Inet(BKB)Q ,E and let W = {Aj ∈
S(BKB)| for some Ai ∈ TOP, Ai is influenced by Aj }. V = TOP ∪ W.7

PROOF. That Inet(BKB)Q ,E covers all random variables in TOP follows from
line 1 of Algorithm 3. We first prove that if Aj ∈ W then Aj ∈ V . Assume
Aj ∈ W . There must be a chain of influence clauses of form (10) with Ai ∈ TOP.
In this case, B1, B2, . . . , Bm, Aj will be recursively added to the network (line 2).
Thus Aj ∈ V . We then prove that if Aj ∈ V and Aj �∈ TOP then Aj ∈ W . Assume
Aj ∈ V and Aj �∈ TOP. Aj must not be added to V at line 1. Instead, it is added
to V at line 2a. This means that for some Ai ∈ TOP, Ai is a descendant of Aj .
By Theorem 5.2, Ai is influenced by Aj . Hence Aj ∈ W .

Remark 5.1. Theorem 5.3 shows that to build an influence network
Inet(BKB)Q ,E , only those influence clauses relevant to Q and E will be used.
An influence clause with head A is relevant to Q and E if A is in TOP or for
some B ∈ TOP, B is influenced by A. One way of computing the relevant set of
influnce clauses for Q and E is to apply SLG-resolution to evaluate all atoms in
TOP, while collecting all influence clauses from all proof trees rooted at a goal
← p(.) where p is a predicate symbol in the head of a clause in PB. Another

way is to directly apply Algorithm 2 by letting GS0 contain only goals ← p(
−→
X)

where (i) p is a predicate symbol in the head of a clause in PB, and (ii) p occurs
in TOP or for some q in TOP there is a path q → · · · → p in the depndency
graph DG(PB).

Theorem 4.9 shows that the probability distribution induced by BKB can be
computed over Iclause(BKB). Let Inet(BKB)S(BKB) denote an influence network
that covers all random variables in S(BKB). We show that the same distribu-
tion can be computed over Inet(BKB)S(BKB). For any node Ai in Inet(BKB)S(BKB),
let parents(Ai) denote the set of parent nodes of Ai in the network. Observe
the following facts: first, by Theorem 5.1, parents(Ai) = pa(Ai). Second, by
Theorem 5.2, Ai is a descendant node of Aj in Inet(BKB)S(BKB) if and only if Ai

is influenced by Aj in Iclause(BKB). This means that the independence assump-
tion (Assumption 1) applies to Inet(BKB)S(BKB) as well, and that Iclause(BKB)
produces a cycle of direct influences if and only if Inet(BKB)S(BKB) contains the
same (direct) loop. Combining these facts leads to the following immediate re-
sult.

THEOREM 5.4. When no cyclic influence occurs, the probability distribution
induced by BKB can be computed over Inet(BKB)S(BKB). That is, P(S(BKB)) =∏

Ai∈S(BKB) P(Ai|pa(Ai)) = ∏
Ai∈S(BKB) P(Ai|parents(Ai)) under the independence

assumption.

Theorem 5.4 implies that an influence network without loops is a Bayesian
network structure. Let us consider influence networks with loops. By

7This result suggests that an influence network is similar to a supporting network introduced in

Ngo and Haddawy [1997].

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:20 • Y.-D. Shen

Theorem 5.2, loops in an influence network are generated from recursive in-
fluence clauses of form (7) and thus they depict feedback connections of form
(6). This means that an influence network with loops can be converted into a
two-slice DBN, simply by converting each loop of the form

into a two-slice DBN path

A1
k1←− A2

k2←− · · · kn−1←− An
kn←− A1t−1

by introducing a state input node A1t−1
.

As illustrated in Section 2, a two-slice DBN is a snapshot of a stationary
DBN across any two time slices, which can be obtained by traversing the sta-
tionary DBN from a set of state random variables backward to the same set
of state random variables (i.e., state input nodes). This process corresponds to
generating an influence network Inet(BKB)Q ,E from Iclause(BKB) incrementally
(adding nodes and edges one at a time) while wrapping up loop nodes with
state input nodes. This leads to the following algorithm for building a two-slice
DBN structure, 2Snet(BKB)Q ,E , directly from Iclause(BKB) (or from a subset of
Iclause(BKB) that are relevant to Q and E; see Remark 5.1), where Q , E, and
TOP are the same as defined in Algorithm 3.

Algorithm 4. Building a two-slice DBN structure

(1) Initially, 2Snet(BKB)Q ,E has all random variables in TOP as nodes.

(2) Remove the first random variable A from TOP. For each influence clause in
Iclause(BKB) of the form k. A ← A1, . . . , Al , if l = 0 then add to 2Snet(BKB)Q ,E

an edge A
k←; else for each Ai in the body

(a) If Ai is not in 2Snet(BKB)Q ,E then add Ai to 2Snet(BKB)Q ,E as a new node and
add it to the end of TOP.

(b) If adding A
k← Ai to 2Snet(BKB)Q ,E would produce a loop, then add to

2Snet(BKB)Q ,E a node Ait−1
and an edge A

k← Ait−1
; else add an edge A

k← Ai to
2Snet(BKB)Q ,E .

(3) Repeat step 2 until TOP becomes empty.

(4) Return 2Snet(BKB)Q ,E .

Example 5.2 (Example 5.1 Continued). To build a two-slice DBN structure
from BKB1 that covers aids(p1), aids(p2) and aids(p3), we apply Algorithm 4
to Iclause(BKB1) with TOP = {aids(p1), aids(p2), aids(p3)}. 2Snet(BKB1)Q ,E is
shown in Figure 7. Note that loops are cut by introducing three state input
nodes aids(p1)t−1, aids(p2)t−1, and aids(p3)t−1. The two-slice DBN structure
concisely depicts a feedback system where the feedback connections are shown
in Figure 8.

Algorithm 4 is Algorithm 3 enhanced with a mechanism for cutting loops

(item 2b); that is, when adding the current edge A
k← Ai to the network

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:21

Fig. 7. A two-slice DBN structure built from the AIDS program BKB1.

Fig. 8. The feedback connections created by the AIDS program BKB1.

forms a loop, we replace the edge with A
k← Ait−1

, where Ait−1
is a state input

node. This is a process of transforming influence clauses (7) to (8). Therefore,
2Snet(BKB)Q ,E can be viewed as an influence network built from a generalized
set Iclause(BKB)g of influence clauses. Let S(BKB)g be the set of random vari-
ables in Iclause(BKB)g , as defined in Theorem 4.10. Let 2Snet(BKB)S(BKB)

denote
a two-slice DBN structure (produced by applying Algorithm 4) that covers all
random variables in S(BKB)g . We then have the following immediate result
from Theorem 5.4.

THEOREM 5.5. When Iclause(BKB) produces cyclic influences, the probability
distribution induced by BKB can be computed over 2Snet(BKB)S(BKB). That is,
P(S(BKB)g) = ∏

Ai∈S(BKB)g
P(Ai |pa(Ai)) = ∏

Ai∈S(BKB)g
P(Ai|parents (Ai)) under

the independence assumption.

Remark 5.2. Note that Algorithm 4 produces a DBN structure without us-
ing any explicit time parameters. It only requires the user to specify, via the
query and evidences, what random variables are necessarily included in the
network. Algorithm 4 builds a two-slice DBN structure for any given query
and evidences whose random variables are heads of some influence clauses in
Iclause(BKB).

Also note that, when there is no cyclic influence, Algorithm 4 becomes
Algorithm 3 and thus it builds a regular Bayesian network structure.

5.2 Building CPTs

After a Bayesian network structure 2Snet(BKB)Q ,E has been constructed from
a Bayesian knowledge base BKB, we associate each non-state-input node A in
the network with a CPT. Recall that each clause in PB is attached with a CPT
in Tx and that each edge in 2Snet(BKB)Q ,E is labeled with a number referring

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:22 • Y.-D. Shen

to a clause in PB that produces this edge. We distinguish between two cases:

(1) A has no parent node in 2Snet(BKB)Q ,E . This means that A (as a head) only
has unit clauses in Iclause(BKB). The CPT for A, denoted P(A), is then built
from the CPTs attached to the unit clauses. (Recall that an influence clause
prefixed with a number k shares the CPT attached to the kth clause in PB.)
P(A) represents the prior probability distribution of A, thus being referred
to as a prior CPT.

(2) Otherwise, the CPT for A, denoted P(A|B1, . . . , Bm), is built from the CPTs
attached to all of its nonunit clauses (with A as a head) in Iclause(BKB),
where the Bis are the parent nodes of A. P(A|B1, . . . , Bm) represents a
probability distribution of A conditioned on its parent nodes, thus being
referred to as a posterior CPT.

The construction of a CPT from a set of CPTs is done by combining
these CPTs in terms of the combination rule CR specified in BKB (see
Definition 3.1).

Example 5.3 (Example 5.2 Continued). Let CPTi denote the CPT attached
to the ith clause in PB1. We build a CPT for each non-state-input node in
2Snet(BKB1)Q ,E (Figure 7).

—aids(p1) has three parent nodes, derived from the third and fourth clause
in PB1, respectively, so a posterior CPT for aids(p1), P(aids(p1)|aids(p1)t−1,
aids(p2), contact(p1, p2)), is built by combining CPT3 and CPT4. For the
same reason, a posterior CPT for aids(p2), P(aids(p2)|aids(p1)t−1, aids
(p2)t−1, contact(p2, p1)), is computed by combining CPT3 and CPT4.

—aids(p3) has only one parent node, derived from the third clause in PB1, so
the posterior CPT for aids(p3), P(aids(p3)|aids(p3)t−1), is CPT3.

—contact(p1, p2) has no parent node and has only one edge labeled 5, so it
has a prior CPT, P(contact(p1, p2)), which is CPT5. For the same reason,
contact(p2, p1) has a prior CPT, P(contact(p2, p1)), which is CPT6.

Note that state input nodes, aids(p1)t−1, aids(p2)t−1, and aids(p3)t−1, do not
need to have a CPT; they will be expanded, during the process of unrolling the
two-slice DBN into a stationary DBN, to cover the time slices involved in the
given query and evidence nodes.

We have presented ways to build a two-slice DBN (its network structure
as well as associated CPTs) from a Bayesian knowledge base BKB = 〈PB ∪
CB, Tx , CR〉. Recall that a stationary DBN consists of a two-slice DBN together
with a prior probability distribution P(A0) at time zero for each state random
variable A. Let p be the predicate symbol of A. It is easy to prove that p is

a recursive predicate symbol in PB. Therefore, P(A0) is defined by P(p(
−→
X)0) in

Tx . As a result, BKB defines a stationary DBN.

6. RELATED WORK

As far as we can determine, the Bayesian knowledge base proposed in this
article is the first PLP formalism that allows logic programs with recursive

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:23

loops, interprets cyclic influences caused by recursive loops as feedback connec-
tions, and makes use of recursive loops to build a stationary dynamic Bayesian
network. Another distinct feature is that its declarative semantics is built on
the well-founded semantics of a logic program, so that the space of random
variables and the direct influence relation is uniquely determined by the well-
founded model.

A recent overview of existing representational frameworks that combine
probabilistic reasoning with logic (i.e., logic-based approaches) or with rela-
tional representations (i.e., non-logic-based approaches) is given by Raedt and
Kersting [2003] (also see the additional bibliography in Getoor and Grant [2006]
and Richardson and Domingos [2006]). Typical non-logic-based approaches in-
clude probabilistic relational models (PRM), which are based on the entity-
relationship (or object-oriented) model [Getoor 2001; Jaeger 1997; Koller and
Pfeffer 1998; Pfeffer and Koller 2000], and relational Markov networks, which
combine Markov networks and SQL-like queries [Taskar et al. 2002]. Rep-
resentative logic-based approaches include frameworks based on the KBMC
idea [Bacchus 1994; Breese 1992; Fabian and Lambert 1998; Glesner and
Koller 1995; Goldman and Charniak 1993; Kersting and Raedt 2000; Ngo and
Haddawy 1997; Poole 1993], stochastic logic programs (SLP) based on stochastic
context-free grammars [Cussens 2000; Muggleton 1996], parameterized logic
programs based on distribution semantics (PRISM) [Sato and Kameya 2005],
CLP(BN) based on constraint logic programming [Costa et al. 2003], and more.
Most recently, a unifying framework, called Markov logic networks, has been
proposed by Richardson and Domingos [2006]. Markov logic networks subsume
first-order logic and Markov networks. Since our work follows the KBMC idea
focusing on how to build a Bayesian network directly from a general logic pro-
gram, it is closely related to three representative existing PLP approaches: the
context-sensitive PLP developed by Haddawy and Ngo [1997], Bayesian logic
programming proposed by Kersting and Raedt [2000], and the time parameter-
based approach presented by Glesner and Koller [1995]. In this section, we
make a detailed comparison of our work with the three closely related ap-
proaches. We also briefly discuss another recent related work, relational dy-
namic Bayesian networks introduced by Sanghai, Domingos and Weld [Sanghai
et al. 2005].

6.1 Comparison with the Context-Sensitive PLP Approach

The core of the context-sensitive PLP is a probabilistic knowledge base (PKB).
In order to see the main differences from our Bayesian knowledge base (BKB),
we reformulate its definition here.

Definition 6.1. A probabilistic knowledge base is a four tuple 〈PD, PB,
CB, CR〉, where

—PD defines a set of probabilistic predicates (p-predicates) of the form p(T1, . . . ,
Tm, V) where all arguments Tis are typed with a finite domain and the last
argument V takes on values from a probabilistic domain DOMp.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:24 • Y.-D. Shen

—PB consists of probabilistic rules of the form

P (A0|A1, . . . , Al) = α ← B1, . . . , Bm, ¬C1, . . . , ¬Cn, (11)

where 0 ≤ α ≤ 1, the Ais are p-predicates, and the Bj s and Cks are context
predicates (c-predicates) defined in CB.

—CB is a logic program, and both PB and CB are acyclic.

—CR is a combination rule.

In a probabilistic rule (11), each p-predicate Ai is of the form q(t1, . . . , tm, v),
which simulates an equation q(t1, . . . , tm) = v with v being a value from the
probabilistic domain of q(t1, . . . , tm). For instance, let Dcolor = {red, green, blue}
be the probabilistic domain of color(X); then the p-predicate color(X , red)
simulates color(X) = red, meaning that the color of X is red . The left-hand
side P (A0|A1, . . . , Al) = α expresses that the probability of A0 conditioned on
A1, . . . , Al is α. The right-hand side B1, . . . , Bm, ¬C1, . . . , ¬Cn is the context of
the rule where the Bj s and Cks are c-predicates. Note that the sets of p-predicate
and c-predicate symbols are disjoint. A separate logic program CB is used to
evaluate the context of a probabilistic rule. As a whole, the above probabilistic
rule states that for each of its (Herbrand) ground instances

P (A′
0|A′

1, . . . , A′
l) = α ← B′

1, . . . , B′
m, ¬C′

1, . . . , ¬C′
n

if the context B′
1, . . . , B′

m, ¬C′
1, . . . , ¬C′

n is true in CB under the program com-
pletion semantics, the probability of A′

0 conditioned on A′
1, . . . , A′

l is α.
PKB and BKB have the following important differences.
First, probabilistic rules of form (11) in PKB contain both logic representa-

tion (right-hand side) and probabilistic representation (left-hand side) and thus
are not logic clauses. The logic part and the probabilistic part of a rule are sep-
arately computed against CB and PB, respectively. In contrast, BKB uses logic
clauses of form (4), which naturally integrate the direct influence information,
the context, and the type constraints. These logic clauses are evaluated against
a single logic program PB ∪ CB, while the probabilistic information is collected
separately in Tx .

Second, logic reasoning in PKB relies on the program completion semantics
[Clark 1978] and is carried out by applying SLDNF-resolution. But in BKB,
logic inferences are based on the well-founded semantics and are performed
by applying SLG-resolution. The well-founded semantics resolves the problem
of inconsistency with the program completion semantics, while SLG-resolution
eliminates the problem of infinite loops with SLDNF-resolution. Note that the
key significance of BKB using the well-founded semantics lies in the fact that
a unique set of influence clauses can be derived, which lays a basis on which
both the declarative and procedural semantics for BKB are developed.

Third, most importantly PKB has no mechanism for handling cyclic influ-
ences. In PKB, cyclic influences are defined to be inconsistent (see Definition 9
of Ngo and Haddawy [1997]) and thus are excluded (PKB excludes cyclic influ-
ences by requiring its programs be acyclic). In BKB, however, cyclic influences
are interpreted as feedbacks, thus implying a time sequence. This allows us to
derive a stationary DBN from a logic program with recursive loops.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:25

Recently, Fierens et al. [2004, 2005] introduced logical Bayesian networks
(LBN). LBN is similar to PKB except that it uses a special predicate random(.)
to define random variables and separates logical and probabilistic information
by converting rules of form (11) into the form

A0|A1, . . . , Al ← B1, . . . , Bm, ¬C1, . . . , ¬Cn,

where the Ais are p-predicates with the last argument V removed, and the Bj s
and Cks are c-predicates defined in CB. LBN differs from BKB in the following:
First, it defines (declares) random variables using special clauses of the form

random(A) ← B1, . . . , Bm, ¬C1, . . . , ¬Cn,

where A is a p-predicate and the Bj s and Cks are c-predicates. Note that such
clauses contain no information about direct influences. In other words, random
variables in LBN are defined independently of the direct influence relation.
This does not quite seem to be appropriate; in many situations, the user may
like to define random variables recursively in terms of the direct influence rela-
tion. Take the AIDS program (see Example 3.1) as an example. We should allow
the user to deduce the random variable aids(p2) from aids(p1) by making use
of the direct influence of aids(p1) on aids(p2), as was done in Example 4.1. Sec-
ond, LBN has no mechanism for handling cyclic influences. In fact, it assumes
acyclic logic programs (see Section 2.3 of the article [Fierens et al. 2005]).
Finally, although the well-founded model is also used for the logic contexts,
only a declarative semantics for LBN is briefly described and no procedural
semantics for LBN has been developed.

Most recently, Getoor and Grant [2006] introduced a probabilistic relational
language (PRL). PRL is a recasting of the major ideas introduced in PRM [Koller
and Pfeffer 1998] into a logic programming framework. It is very similar in
spirit to LBN except that a general notion of aggregates is introduced based on
PRM.

6.2 Comparison with Bayesian Logic Programming

Building on Ngo and Haddawy’s [1997] work, Kersting and De Raedt [2000]
introduced the framework of Bayesian logic programs. A Bayesian logic pro-
gram (BLP) is a triple 〈P, Tx , CR〉 where P is a well-defined logic program,
Tx consists of CPTs associated with each clause in P , and CR is a combi-
nation rule. A distinct feature of BLP over PKB is its separation of prob-
abilistic information (Tx) from logic clauses (P). According to Kersting and
Raedt [2000], we understand that a well-defined logic program is a positive
logic program satisfying the range restriction together with other restrictions
that guarantee acyclicity.8 For instance, a logic program containing clauses
like r(X) ← r(X) (cyclic) or r(X) ← s(Y) (not range-restricted) is not well-
defined. The AIDS program PB1 (see Example 3.1) is not well-defined, even if the
third clause aids(X) ← aids(X) is removed. BLP relies on the least Herbrand

8A logic program is said to be range-restricted if all variables appearing in the head of a clause

appear in the body of the clause.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:26 • Y.-D. Shen

model semantics and applies SLD-resolution to make backward-chaining
inferences.

BLP has two important differences from BKB. First, it applies only to posi-
tive logic programs. Due to this, it cannot handle contexts with negated atoms.
(In fact, no contexts are considered in BLP.) Second, it has no mechanism for
handling cyclic influences (BLP excludes cyclic influences by requiring its pro-
grams be well-defined). Due to choosing SLD-resolution for backward-chaining
inferences, it does not allow recursive loops (otherwise, the procedure would
not terminate). BKB can be viewed as an extension of BLP with mechanisms
for handling contexts, recursive loops, and cyclic influences. Such an extension
is substantial and clearly nontrivial.

6.3 Comparison with the Time Parameter-Based Approach

The time parameter-based framework (TPF) proposed by Glesner and Koller
[1995] is also a triple 〈P, Tx , CR〉, where CR is a combination rule, Tx is a set
of CPTs that are represented as decision trees, and P is a logic program with
the property that each predicate contains a time parameter and that in each
clause the time argument in the head is at least one time step later than the
time arguments in the body.9 This framework is implemented in Prolog, that
is, clauses are represented as Prolog rules and goals are evaluated applying
SLDNF-resolution. Glesner and Koller [1995, p. 221] stated: “In principle, this
free variable Y can be instantiated with every domain element. (This is the
approach taken in our implementation.)” By this we understand that they con-
sider typed logic programs with finite domains.

We observe the following significant differences between TPF and BKB. First,
TPF is a temporal model and its logic programs contain a time argument for
every predicate. It always builds a DBN from a logic program even if there is
no cyclic influence. In contrast, logic programs in BKB contain no time parame-
ters. When there is no cyclic influence, BKB builds a regular Bayesian network
from a logic program (in this case, BKB serves as a nontemporal model); when
cyclic influences occur, it builds a stationary DBN, represented by a two-slice
DBN (in this case, BKB serves as a special temporal model). Second, TPF uses
time steps to describe direct influences (in the way that for any A and B such
that B has a direct influence on A, the time argument T2 in B is at least one
time step earlier than T1 in A), while BKB uses time slices (implied by re-
cursive loops of form (1)) to model cycles of direct influences (feedbacks). TPF
fully relies on the user to detect the temporal nature of the domain and to en-
code concrete time steps (T1 in the head and T2 in the body of each clause),
whereas BKB detects time slices (feedbacks) automatically. Third, most impor-
tantly TPF avoids recursive loops by introducing time parameters to enforce
acyclicity of a logic program. A serious problem with this method is that it
may lose and/or produce wrong answers to some queries. To explain this, let P
be a logic program and Pt be P with additional time arguments added to each

9The idea of including a time parameter in each predicate is also mentioned in BLP [Kersting and

Raedt 2000] and CLP(BN) [Costa et al. 2003].

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:27

predicate (as in TPF). If the transformation from P to Pt is correct, it must hold
that for any query p(.) over P , an appropriate time argument N = 0, 1, 2, . . .

can be determined such that the query p(., N) over Pt has the same set of an-
swers as p(.) over P when the time arguments in the answers are ignored. It
turns out, however, that this condition does not hold in general cases. Note
that finding an appropriate N for a query p(.) such that evaluating p(., N) over
Pt (applying SLDNF-resolution) yields the same set of answers as evaluating
p(.) over P corresponds to finding an appropriate depth-bound M such that
cutting all SLDNF-derivations for the query p(.) at depth M does not lose any
answers to p(.). The latter is the well-known loop problem in logic program-
ming [Bol et al. 1991]. Since the loop problem is undecidable in general, it is
very hard, if not impossible, to automatically determine such a depth-bound
M (respectively a time argument N) for an arbitrary query p(.) [Bol et al.
1991; Shen et al. 2001, 2003]. We further illustrate this claim using a concrete
example.

Example 6.1. The following logic program defines a path relation; that is,
there is a path from X to Y if either there is an edge from X to Y or, for some
Z , there is a path from X to Z and an edge from Z to Y .

P : 1. e(s, b1).
2. e(b1, b2).

.

99. e(b98, b99).
100. e(b99, g).
101. path(X , Y) ← e(X , Y).
102. path(X , Y) ← path(X , Z), e(Z , Y).

To avoid recursive loops, TPF may transform P into the following program.

Pt : 1. e(s, b1, 0).
2. e(b1, b2, 0).

.

99. e(b98, b99, 0).
100. e(b99, g , 0).
101. e(X , Y , T1) ← T2 = T1 − 1, e(X , Y , T2).
102. path(X , Y , T1) ← T2 = T1 − 1, e(X , Y , T2).
103. path(X , Y , T1) ← T2 = T1 − 1, path(X , Z , T2), e(Z , Y , T2).

Pt looks more complicated than P . In addition to having time arguments and
time formulas, it has a new clause, the 101st clause, formulating that e(X , Y)
being true at present implies it is true in the future.

Let us see how to check if there is a path from s to g . In the original pro-
gram P , we simply pose a query ? − path(s, g). In the transformed program Pt ,
however, we have to determine a specific time parameter N and then pose a
query ? − path(s, g , N), such that evaluating path(s, g) over P yields the same
answer as evaluating path(s, g , N) over Pt . Interested readers can practice this
query evaluation using different values for N . The answer to path(s, g) over P

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:28 • Y.-D. Shen

is yes. However, we would get an answer no to the query path(s, g , N) over Pt

if we choose any N < 100.

Finally, note that BKB focuses only on stationary DBNs and thus it is re-
stricted to first-order Morkov models. However, TPF has no such a restriction.

Recently, Sanghai et al. [2003, 2005] introduced a relational dynamic
Bayesian network (RDBN). RDBN is a pair of networks (M0, M→), where M0

is a relational Bayesian network representing the probability distribution over
the state of the relational domain at time zero and M→ is a two-time-slice rela-
tional dynamic Bayesian network representing the transition probability dis-
tribution. RDBN is an extension of a dynamic Bayesian network to first-order
logic, where nodes of the network are logic predicates (atoms). It models a
stationary DBN (first-order Markov plus stationary transition).

RDBN is essentially different from BKB. First, it is not a PLP approach. In
RDBN, the direct influences on each node R are defined by directly specifying a
set of parent nodes Pa(R) for R. In BKB, however, direct influences are defined
using logic program clauses of form (4). Second, no contexts are considered in
RDBN. Third, cyclic influences are excluded in RDBN by assuming a complete
ordering ≺ on the predicate symbols and the constants in the relational domain.
Finally, as a temporal model RDBN fully relies on the user to detect the temporal
nature of the domain and explicitly specifies the inter-probabilistic relations,
M→, between the random variables of time slices t − 1 and t. In contrast,
BKB can serve either as a nontemporal model or a temporal model, where the
interprobabilistic relations (feedbacks) are detected automatically.

7. CONCLUSIONS AND DISCUSSION

We have developed a novel method for reasoning with recursive loops under the
PLP framework. We observed that recursive loops in a logic program potentially
imply a time sequence and thus can be used to model a stationary DBN with-
out using explicit time parameters. We introduced a new PLP formalism—a
Bayesian knowledge base. It allows recursive loops and contains logic clauses
of form (4). These logic clauses naturally integrate the direct influence infor-
mation, the context, and the type constraints, and are evaluated under the
well-founded semantics. We established a declarative semantics for a Bayesian
knowledge base and developed algorithms for building a two-slice DBN from a
Bayesian knowledge base.

Our work provides a solution to the problem of recursive loops. To
further highlight its significance, we summarize the following important
observations.

(1) Recursive loops and recursion through negation are unavoidable in model-
ing real-world domains, so the well-founded semantics together with its top-
down inference procedures is well suitable for the PLP backward-chaining
inferences.

(2) Cyclic influences caused by recursive loops define feedbacks, thus implying
a time sequence. This allows us to derive a two-slice DBN from a logic
program containing no time parameters. We point out, however, that the

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:29

user is never required to provide any time parameters during the process
of constructing such a two-slice DBN. A Bayesian knowledge base defines
a unique space of random variables and a unique set of influence clauses,
whether it contains recursive loops or not. From the viewpoint of logic,
these random variables are ground atoms in the Herbrand base; their truth
values are determined by the well-founded model and will never change
over time.10 Therefore, a Bayesian network is built over these random vari-
ables, independently of any time factors (if any). Once a two-slice DBN has
been built, the time intervals over it would become clearly specified, and
thus the user can present queries and evidences over the DBN using time
parameters at his/her convenience.

(3) Enforcing acyclicity of a logic program by introducing time parameters is not
an effective way to handle recursive loops. First, such a method transforms
the original nontemporal logic program into a more complicated temporal
program and builds a dynamic Bayesian network from the transformed
program even if there exist no cyclic influences (in this case, there is no
state random variable and the original program defines a regular Bayesian
network). Second, it relies on time steps to define (individual) direct influ-
ences, but time slices (intervals) are needed to model cycles of direct influ-
ences (feedbacks) caused by recursive loops. Finally, to pose a query over
the transformed program, an appropriate time parameter must be specified.
As illustrated in Example 6.1, it is hard to automatically determine such a
time parameter for an arbitrary query.

A Bayesian knowledge base has its limitations. It is restricted to logic pro-
grams with the bounded-term-size property and only induces a first-order
Morkov and stationary DBN.

Promising future work includes (1) developing algorithms for learning
Bayesian knowledge bases from data and (2) using Bayesian knowledge bases to
model large real-world problems. We are considering building a large Bayesian
knowledge base for traditional Chinese medicine, where we have already
collected a large volume of diagnostic rules.

ACKNOWLEDGMENTS

We are grateful to all anonymous referees for their constructive comments and
valuable suggestions, which greatly helped improve the article. We would also
like to thank Jia-Huai You, Li-Yan Yuan and Qiang Yang for their interesting
discussions on the early version of this article.

REFERENCES

APT, K. R. AND BEZEM, M. 1991. Acyclic programs. New Gen. Comput. 29, 3, 335–363.

BACCHUS, F. 1994. Using first-order probability logic for the construction of bayesian networks.

In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence. 219–226.

BOL, R. N., APT, K. R., AND KLOP, J. W. 1991. An analysis of loop checking mechanisms for logic

programs. Theoret. Comput. Sci. 86, 1, 35–79.

10However, from the viewpoint of Bayesian networks the probabilistic values of these random

variables (i.e., values from their probabilistic domains) may change over time.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

27:30 • Y.-D. Shen

BREESE, J. S. 1992. Construction of belief and decision networks. Computat. Intell. 8, 4, 624–647.

CACM. 1995. Real-world applications of Bayesian networks. Commun. ACM 38, 3, 24–57.

CHEN, W. D., SWIFT, T., AND WARREN, D. S. 1995. Efficient top-down computation of queries under

the well-founded semantics. J. Log. Program. 24, 3, 161–199.

CHEN, W. D. AND WARREN, D. S. 1996. Tabled evaluation with delaying for general logic programs.

J. ACM 43, 1, 20–74.

CLARK, K. L. 1978. Negation as failure. In Logic and Databases. Plenum, New York, NY, 293–322.

COSTA, V. S., PAGE, D., QAZI, M., AND CUSSENS, J. 2003. CLP(BN): Constraint logic programming for

probabilistic knowledge. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence. 517–524.

CUSSENS, J. 2000. Stochastic logic programs: sampling, inference and applications. In Proceedings
of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence. 115–122.

FABIAN, I. AND LAMBERT, D. A. 1998. First-order Bayesian reasoning. In Proceedings of the 11th
Australian Joint Conference on Artificial Intelligence. Springer, Berlin, Germany, 131–142.

FIERENS, D., BLOCKEEL, H., BRUYNOOGHE, M., AND RAMON, J. 2005. Logical Bayesian networks and

their relation to other probabilistic logical models. In Proceedings of the Fifteenth International
Conference on Inductive Logic Programming. Springer, Bonn, Germany.

FIERENS, D., BLOCKEEL, H., RAMON, J., AND BRUYNOOGHE, M. 2004. Logical bayesian networks. In

Proceedings of the 3rd Workshop on Multi-Relational Data Mining (Seattle, WA).

GETOOR, L. 2001. Learning Statistical Models from Relational Data. Stanford University, Ph.D.

dissertation. Stanford, CA.

GETOOR, L. AND GRANT, J. 2006. PRL: A probabilistic relational language. Mach. Learn. 62, 1/2,

7–31.

GLESNER, S. AND KOLLER, D. 1995. Constructing flexible dynamic belief networks from first-order

probabilistic knowledge bases. In Proceedings of the European Conference on Symbolic and Quan-
titative Approaches to Reasoning under Uncertainty (Fribourg, Switzerland). 217–226.

GOLDMAN, R. AND CHARNIAK, E. 1993. A language for construction of belief networks. IEEE Trans.
Patt. Anal. Mach. Intell. 15, 3, 196–208.

HADDAWY, P. 1994. Generating Bayesian networks from probabilistic logic knowledge bases. In

Proceedings of the Tenth Annual Conference on Uncertainty in Artificail Intelligence.

JAEGER, M. 1997. Relational Bayesian networks. In Proceedings of the Thirteenth Annual Con-
ference on Uncertainty in Artificial Intelligence. 266–273.

KANAZAWA, K., KOLLER, D., AND RUSSELL, S. 1995. Stochastic simulation algorithms for dynamic

probabilistic networks. In Proceedings of the Eleventh Annual Conference on Uncertainty in Ar-
tificial Intelligence.

KERSTING, K. AND RAEDT, L. D. 2000. Bayesian logic programs. In Work-in-Progress Reports of the
Tenth International Conference on Inductive Logic Programming. (A full version: Tech. Rep. 151,

Institute for Computer Science, University of Freiburg, Freiburg, Germany, April 2001).

KOLLER, D. AND PFEFFER, A. 1998. Probabilistic frame-based systems. In Proceedings of the Six-
teenth National Conference on Artificial Intelligence. AAAI Press, Menlo Park, CA, 580–587.

LLOYD, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin, Germany.

MUGGLETON, S. 1996. Stochastic logic programs. In Advances in Inductive Logic Programming.

IOS Press, Amsterdam, The Netherlands.

NG, R. AND SUBRAHMANIAN, V. 1992. Probabilistic logic programming. Inform. Computat. 101, 150–

201.

NGO, L. AND HADDAWY, P. 1997. Answering queries from context-sensitive probabilistic knowledge

bases. Theoret. Comput. Sci. 171, 147–177.

PEARL, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Francisco, CA.

PFEFFER, A. AND KOLLER, D. 2000. Semantics and inference for recursive probability models. In

Proceedings of the Seventeenth National Conference on Artificial Intelligence. AAAI Press, Menlo

Park, CA, 538–544.

POOLE, D. 1993. Probabilistic Horn abduction and Bayesian networks. Artific. Intell. 64, 1, 81–

129.

RAEDT, L. D. AND KERSTING, K. 2003. Probabilistic logic learning. SIGKDD Explor. 5, 1, 31–48.

RICHARDSON, M. AND DOMINGOS, P. 2006. Markov logic networks. Mach. Learn. 62, 1/2, 107–136.

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

Reasoning with Recursive Loops Under the PLP Framework • 27:31

RUSSELL, S. AND NORVIG, P. 1995. Artificial Intelligence: A Modern Approach. Prentice-Hall, En-

glewood Cliffs, NJ.

SAGONAS, K., SWIFT, T., AND WARREN, D. 1998. The XSB Programmer’s Manual (Version 1.8). De-

partment of Computer Science, SUNY at Stony Brook, Stony Brook, NY. Available online at

http://www.cs.sunysb.edu/sbprolog/xsb-page.html.

SANGHAI, S., DOMINGOS, P., AND WELD, D. 2003. Dynamic probabilistic relational models. In Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence (Acapulco,

Mexico).

SANGHAI, S., DOMINGOS, P., AND WELD, D. 2005. Relational dynamic bayesian networks. J. Artific.
Intell. Res. 24, 759–797.

SATO, T. AND KAMEYA, Y. 2005. Parameter learning of logic programs for symbolic-statistical mod-

eling. J. Artific. Intell. Res. 15, 391–454.

SHEN, Y. D., YOU, J. H., AND YUAN, L. Y. 2004. Enhancing global SLS-resolution with loop cutting

and tabling mechanisms. Theoret. Comput. Sci. 328, 3, 271–287.

SHEN, Y. D., YOU, J. H., YUAN, L. Y., SHEN, S. P., AND YANG, Q. 2003. A dynamic approach to char-

acterizing termination of general logic programs. ACM Trans. Computat. Log. 4, 4, 417–430.

SHEN, Y. D., YUAN, L. Y., AND YOU, J. H. 2001. Loop checks for logic programs with functions.

Theoret. Comput. Sci. 266, 1/2, 441–461.

TASKAR, B., ABEEL, P., AND KOLLER, D. 2002. Discriminative probabilistic models for relational

data. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (Ed-

monton, Canada). 485–492.

ULLMAN, J. D. 1988. Database and Knowledge-Base Systems. Computer Science Press, New York.

VAN GELDER, A. 1989. Negation as failure using tight derivations for general logic programs. J.
Log. Program. 6, 1/2, 109–133.

VAN GELDER, A., ROSS, K., AND SCHLIPF, J. 1991. The well-founded semantics for general logic

programs. J. ACM 38, 3, 620–650.

VARDI, M. 1982. The complexity of relational query languages. In Proceedings of the ACM Sym-
posium on Theory of Computing. 137–146.

WELLMAN, M. P., BREESE, J. S., AND GOLDMAN, R. P. 1992. From knowledge bases to decision models.

Knowl. Eng. Rev. 7, 1, 35–53.

Received June 2005; revised September 2006; accepted March 2007

ACM Transactions on Computational Logic, Vol. 9, No. 4, Article 27, Publication date: August 2008.

