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Abstract—In this paper, we consider the problem of feature
selection in unsupervised learning scenario. Recently, spectral
feature selection methods, which leverage both the graph
Laplacian and the learning mechanism, have received consid-
erable attention. However, when there are lots of irrelevant
or noisy features, such graphs may not be reliable and then
mislead the selection of features. In this paper, we propose
the Local and Global Discriminative learning for unsupervised
Feature Selection (LGDFS), which integrates a global and a
set of locally linear regression model with weighted �2-norm
regularization into a unified learning framework. By exploring
the discriminative and geometrical information in the weighted
feature space, which alleviates the effects of the irrelevant
features, our approach can find the most representative features
to well respect the cluster structure of the data. Experimental
results on several benchmark data sets are provided to validate
the effectiveness of the proposed approach.

I. INTRODUCTION

In many applications of machine learning and data min-

ing, one is often confronted with very high dimensional

data. Therefore, feature selection has become increasingly

important since it can speed up the learning process, alleviate

the curse of dimensionality, and even provide significant

insights into the nature of the problem [1], [2].

In recent years, a lot of methods have been proposed

to address the problem of unsupervised feature selection

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. These

methods usually use the graph Laplacian to characterize the

structure of high dimensional data. The selection of features

is performed according to either some specified criterion or

sparse spectral regression model.

Though many spectral feature selection algorithms have

been proposed, there are still two problems at least not

properly addressed. One problem is on the exploited graph,

which is used to characterize the desired structure of the

data, e.g., discriminative and geometrical information. It

has been pointed out [10] that the performance of these

feature selection algorithms is largely determined by the

effectiveness of graph construction. However, these methods

use all features with the same importance to compute the

graph. Since the importance of features are different, it

is natural to construct graph using weighted features. Yet

it is still difficult to choose appropriate weight for each

feature [5]. The other problem is on the exploited spectral

regression model, which selects the most representative fea-

tures through sparsity regularization to preserve the cluster

structure detected from the graph Laplacian. Though the

nonlinear geometric structure has been characterized by var-

ious graphs, they are only used to detect the cluster structure.

The subsequent sparsity regularized linear regression models

mainly select the relevant features to preserve the most

linearly separable clusters and fail to preserve the nonlinear

separable clusters.

In this paper, we propose the Local and Global Discrimi-

native Learning for unsupervised Feature Selection (LGDFS)

to select the most representative features which consistently

respect both the local and global cluster structure of the

data. Particularly, we introduce the Discriminative Feature

Selection (DFS) cost function, a weighted �2 norm regular-

ized linear regression model by attaching a weight to each

feature under the discriminative clustering framework [13],

[14], [15], to evaluate the relevance for features. Our goal

is to select these features that well respect the most linearly

separable clusters. Moreover, due to the non-linearly sepa-

rable nature of many high-dimensional data, we also split

the whole data set into multiple overlapped local regions

and employ the DFS model on each local region to select

informative features for separating local data points. Thus,

to select the most discriminative features which consistently

respect the cluster structure across all local regions and

the whole data set, we estimate the sparse weights for

features by aggregating all local and global models into a

unified framework. The induced optimization problem can

be solved by iterating the learning of graph embedding

and the estimation of feature weight until convergence.

Experimental results on benchmark data sets demonstrate

the effectiveness of the proposed approach.

Compared with previous work such as [10], [9], the

main advantages of the proposed algorithm are as follows.

On one hand, to detect cluster structure in the data, our

method iteratively constructs the graph Laplacian through

local learning in the weighted feature space, which alleviates

the side effects of irrelevant features. Thus, it is expected

to better characterize the intrinsic structure of the data and

improve the estimation of cluster structure. On the other

hand, to evaluate the relevance of features, we aggregate

all local and global regression models with weighted �2-
norm regularization into a unified framework. In this way,

our method selects the most representative features to best
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respect both the linearly and nonlinearly separable clusters.

The reminder of the paper is organized as follows. In

Section 2, we provide a brief review of the related work. In

Section 3, we present the proposed LGDFS method and the

optimization scheme in detail. In Section 4, we discuss the

relations between LGDFS and other methods. In Section 5,

extensive experiments are conducted to show the effective-

ness of the proposed method. Finally, the conclusions and

future works are discussed in Section 6.

II. RELATED WORK

Feature selection has been extensively studied in last

decades. Based on whether the label information is available,

feature selection algorithms can be roughly classified into

two categories, i.e., supervised and unsupervised methods.

Based on whether to optimize the performance of the

learning algorithm, feature selection methods can also be

classified into filter and wrapper methods.

Supervised filter methods usually evaluate the feature

importance by the correlation between feature and class

label. The typical methods include Fisher score, information

gain, and relief [16]. Supervised wrapper methods select the

most relevant features by optimizing the performance of the

learning algorithm. The typical methods include Lasso [17],

LARs [18], SVM-RFE [19], and RFS [20].

Due to the absence of class label, unsupervised feature

selection is a much harder problem. Unsupervised filter

methods usually select features to best preserve the struc-

ture of the data according to certain criteria. The typical

algorithms in this category include Maximum Variance,

Laplacian Score [3], SPEC [4], EVSC [5]. Laplacian Score

selects features which can best preserve the manifold struc-

ture of the data. EVSC aims at seeking these features with

high impact on graph Laplacian’s eigenvalues. A limitation

of these approaches is that the correlation among features

is neglected [6], [10]. For unsupervised wrapper methods,

clustering is a commonly used learning algorithm to measure

the quality of features. The typical ones include Q-a [21],

MCFS [6], MRSF [7], FSSL [8], UDFS [9], and JELSR [10].

These algorithms apply the following two steps separately

[6], [7], [8] or jointly [9], [10]: 1)estimating the cluster

structure via spectral embedding of graph Laplacian, and

2)estimating the weights for features along the embedding

using sparsity regularization models, i.e., �1-norm [6] and

�2,1-norm [7]–[10] regularized spectral regression.

III. THE PROPOSED METHOD

The generic problem of feature selection is as follows.

Given a data matrix X = {x1, . . . ,xn} ∈ R
d×n, whose

columns xi ∈ Rd correspond to data instances and rows to

features, feature selection aims to find a feature subset with

size m, which contains the most representative features. As

a result, the data points represented by the selected features

can well preserve the discriminative and geometrical struc-

ture as the data represented by the original d-dimensional
features.

A. Discriminative Feature Selection

Since label information is unavailable for unsupervised

feature selection, we resort to the discriminative clustering

framework [13], which is designed for seeking the most

linearly separated clusters P ∈ {0, 1}n×c through a multi-

output regularized linear regression model, to detect the

cluster structure. In order to select the most discriminative

features so that the separability between these clusters is

maxmized, we introduce an indicator variable z to represent
whether a feature is selected or not, where z = (z1, . . . , zd)

T

and zi ∈ {0, 1}, i = 1, . . . , d. The induced regression

problem can be formulated as follows:

min
P,W,b,z

||P −XTdiag(
√
z)W − 1nb||2 + λ||W ||2 (1)

s.t. P ∈ {0, 1}n×c, P1c = 1n, z ∈ {0, 1}d,1T
d z = m,

where W is the transform matrix, b is the bias term, and

diag(z) is a diagonal matrix with its diagonal elements

being z.

Due to the combination nature of the cluster indicator

matrix P and the feature indicator variable z, the optimiza-
tion problem in Eq. (1) is NP-hard. As in [22], instead of

computing the partition matrix P directly, we first substitute

it with a scaled partition matrix Y = P (PTP )
1
2 . It is

easy to verify that Y TY = I . We also relax the integer

constraint on zj and allow zj to take real nonnegative values

zj ≥ 0, j = 1, . . . , d. Then, we substitute diag(
√
z)W

with W . Moreover, for feature selection, it is desired that

zj would be sufficiently sparse and many of them should

be zeros. Though the sparseness of z can be controlled

through minimizing the �1 norm of z, i.e., ||z||1, it will
introduce additional regularization parameter. To obtain a

sparse solution on z without introducing additional free

parameter, we further impose a simplex constraint on z, that
is,
∑d

j zj = 1. Finally, we get the following weighted �2-
norm regularized regression problem:

min
Y,W,b,z

||Y −XTW − 1nb||2 + λtr(WTdiag(z−1)W )

s.t. Y TY = I, z ≥ 0,
d∑
j

zj = 1. (2)

The main advantage of the cost function in Eq. (2) with

weighted �2-norm regularization is that it is suitable for

the task of feature selection. In other words, the value of

zj indicates how significantly the j-feature contributes to
the minimization in Eq. (2). A small value of zj , which is

expected to associated with an irrelevant feature, will result

in a large penalization on {Wjc′}c
c′=1.
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Similar to �2-norm regularized regression, the close form

solution of W and b can be obtained as follows:

W = (XHXT + λdiag(z−1))−1XHY, (3)

b =
1

n
1T

n (Y −XTW ). (4)

where H = I − 1
d1d1

T
d is the centering matrix. Substituting

the optimal values of W and b into Eq. (2), the discrim-
inative feature selection (DFS) can be formulated as the

following optimization problem:

min
Y,z

tr(Y TH(I +
1

λ
HXTdiag(z)XH)−1HY ) (5)

s.t. Y TY = I, z ≥ 0,
d∑
j

zj = 1.

As can be seen, the objective function in Eq. (5), parameter-

ized by Y and z, jointly evaluates the relevance of features
and the separability of clusters. In other words, when the

data is represented by these weighted features z, we aim
to find most linear separable clusters by minimizing the

cost function of discriminative clustering. When the cluster

structure Y is identified, we are looking for those features

that can well preserve the cluster structure.

B. Local Discriminative Feature Selection

One disadvantage of the objective function in Eq. (5)

is that, it can only be used to estimate the relevance of

features to preserve the cluster structure that are linearly

separable. It may not be easy to evaluate the importance

of features to separate the data sampled from nonlinear

manifold of the ambient Euclidean space into correct clusters

[14]. That is to say, the intrinsic manifold structure should

be considered while measuring the goodness of the clus-

ters [23]. Recently, in order to characterize the underlying

manifold structure, many manifold learning algorithms have

been proposed, such as Local Linear Embedding (LLE) [24]

and ISOMAP [25]. Many unsupervised feature selection

algorithms [3], [6], [10] use various graphs to capture the

manifold structure. However, most existing works construct

graphs to approximate the manifold structure in the uniform

weighted Euclidean space (the ambient space). When there

are lots of irrelevant or noisy features, the neighborhood

relationship defined in the original space can be completely

different from the true relationship. Which means the quality

of these graphs to characterize the intrinsic manifold struc-

ture cannot be guaranteed and it will mislead the results

of clustering and feature selection [5]. Actually, for the

task of feature selection, it is assumed that features are

weighted differently (either binary or continuous weights),

and formed a weighted feature space. Therefore, to evaluate

the importance of features and detect the cluster structure

of data, it may be more appropriate to construct a graph

to capture the manifold structure which is embedded in the

weighted ambient Euclidean space. The main problem to

construct such graph, however, is that it is still difficult to

choose the proper weights and the neighborhood relationship

is unknown before learning. To handle this dilemma, we

approximate the true feature weights by zold, estimated
from previous iteration. More clearly, we aim to evaluate

the relevance of features z to respect the intrinsic manifold

structure embedded in the ambient space weighted by zold.
To achieve this goal, we consider the linear approximation

of the local manifold structure throught local learning [22].

Concretely, we first split the whole data set into n overlapped
local regions {Xi, Yi}n

i=1, where the local region data matrix

Xi = [xi,xi1 , . . . ,xik−1 ] is consist of xi and its k − 1
nearest neighbors whose neighborhood is determined by

zold, and Yi = [yi,yi1 , . . . ,yik−1 ]
T is the local scaled

partition matrix for the i-th region. Then we employ a

linear discriminative feature selection model in Eq. (5) on

each local region to evaluate the relevance of features for

separating these local data points, and have

Ji(Yi, z) = tr(Y
T
i Hi(I +

1

λi
HiX

T
i diag(z)XiHi)

−1HiYi)

= tr(Y T
i LiYi), (6)

where Li = Hi(I+
1
λi

HiX
T
i diag(z)XiHi)

−1Hi. Similar to

Eq. (5), Eq. (6) also selects the most discriminative features

to best separate samples within the local region. Since we

expect that the selected features can best preserve the cluster

structure in all the local regions, we ensemble all these local

models by summing Eq. (6) over all regions, and get:

Jlocal(Y,z) =
n∑

i=1

tr(Y T
i LiYi)

=
n∑

i=1

tr(Y TSiLiS
T
i Y ) = tr(Y TLlY ), (7)

where Ll =
∑n

i=1 SiLiS
T
i and Si ∈ {0, 1}n×k is the

selection matrix for i-th region with its element (Si)jk′ = 1
if xj is selected as the k′ neighbor of xi; (Si)jk′ = 0,
otherwise. It can be shown that the matrix Ll defined in Eq.

(6) is a Laplacian matrix [14].

The objective function in Eq. (7) is also parameterized

by Y and z. In other words, when Y and {Xi, Yi}n
i=1,

determined by the previous estimated weights, are given, we

aim to evaluates the relevance of features to separate the data

points for all local regions and respect the intrinsic manifold

structure embedded in weighted ambient space. On the other

hand, when the feature weights is given, we re-estimate the

cluster structure based on the reconstructed graph Laplacian.

C. The Objective Function of LGDFS

Compared with the aggregated local cost function Jlocal

in Eq. (7), we denote the cost function defined on the whole

data set in Eq. (5) as Jglobal. By incorporating the local and

global discriminative feature selection models in Eq. (7) and
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Eq. (5) into a joint framework, our proposed Local and

Global Discriminative Learning for unsupervised Feature

Selection (LGDFS) method then can be formulated as the

following optimization problem:

min
Y,z

Jlocal(Y, z) + αJglobal(Y, z) (8)

= Y T

(
n∑

i=1

Si[Hi(I +
1

λi
HiX

T
i diag(z

−1)XiHi)
−1Hi]Si

)
Y

+ αY T [H(I +
1

λ
HXTdiag(z−1)XH)−1H]Y

s.t. Y TY = I, z ≥ 0,
d∑
j

zj = 1,

where α is a regularization parameter to trade off Jlocal

and Jglobal. Clearly, the first term Jlocal explores the local

discriminative information to select those features that can

best separate the data points in local regions, and the second

term Jlocal selects the most representative features which

best repeat the global cluster structure captured by Y . In
this way, the proposed LGDFS explicitly exploits both local

and global discriminative information to perform feature

selection and clustering simultaneously.
Similar to discriminative feature selection, LGDFS also

has a weighted �2-norm regularized least squares regression

interpretation.

Theorem 1. local and global discriminative learning for
unsupervised feature selection is equivalent to

min J (Y,W, b, {Wi, bi}n
i=1, z) (9)

=
n∑

i=1

(||Yi −XT
i Wi + 1nib

T
i ||2 + λitr(W

T
i diag(z

−1)Wi)
)

+ α
(||Y −XTW + 1nb

T ||2 + λtr(WTdiag(z−1)W )
)

s.t. Y TY = I,

n∑
j=1

zj = 1, zj ≥ 0, j = 1, . . . , d.

The proof is similar to that of discriminative feature

selection in Section 3.1 and hence we omit it here. From

Theorem 1, we can find that LGDFS selects the most

representative features across all local tasks defined on local

regions and the global task in the whole input space.

D. Algorithm to Solve LGDFS
In this subsection, we introduce an alternating iterative

algorithm to estimate the feature weight z and the clustering
result Y .
1) Solving Y when z is fixed: For a given z, we need to

re-compute the nearest neighbors N (xi) for each point xi

according to the weighted Euclidean distance:

Distz(x,x
′) =

√
xTdiag(z)x′ =

√√√√ d∑
j=1

zj(xj − x
′
j)

2.

(10)

With the fixed feature weight z, the local graph Laplacian
Li for each data point and their global integration Ll can be

computed using Eq. (6) and Eq. (7). The global graph Lapla-

cian Lg can also be computed using Eq. (5). Therefore, the

optimal Y is obtained by solving the following optimization

problem:

min
Y

tr(Y T (Ll + αLg)Y ), s.t. Y TY = I. (11)

It is clear that Ll+αLg is also a Laplacian matrix, and so the

problem in Eq. (11) is just one variant of spectral clustering.

Thus, the global optimal solution is top eigenvectors of the

combined Laplacian matrix.
2) Solving z when Y is fixed: With the fixed Y , it is

still difficult to solve the remained non-convex optimiza-

tion problem in Eq. (8) due to the involvement of the

estimation of neighborhood structure and multiple matrix

inversion operations. To obtain a local optimum, we fix

the neighborhood structure determined by the estimated z
in previous iteration. Due to the multiple matrix inversion

operations, the sequential or the convex SDP solver [15],

[26] designed for single matrix inversion cannot be easily

adapted. In this paper, we resort to the equivalent multi-task

regression formulation in Eq. (9).
When Y is given, the optimal value of {Wi}n

i=1 and W
can be computed using Eq. (3), and the computation cost

of the matrix inversion is O(d3). Following the Woodbury-
Morrison formula, Eq. (3) for the computation of Wi can be

simplified as

Wi =
1

λi
diag(z)XiHi

[Ii − (λiIi +HiX
T
i diag(z)XiHi)

−1HiX
T
i diag(z)XiHi]Yi

=
1

λi
diag(z)XiHi[Ii − (λiIi +Kz

i )
−1Kz

i ]Yi, (12)

in which the complexity of the matrix inversion is only

O(n3i ). For high-dimensional data, we often have ni � d
and even n � d; so it is much faster to calculate {Wi}n

i=1

and W in Eq. (12) in comparison to Eq. (3).
When {Wi}n

i=1 and W is computed, the estimation of z
reduces to minimize the following objective function:

O(z) =
n∑

i=1

λitr(W
T
i diag(z

−1)Wi)+αλtr(WTdiag(z−1)W ),

with the constraint
∑d

j=1 zj = 1, zj ≥ 0, ∀j. Let η and νj

be the Lagrange multiplier for constraints
∑d

j=1 zj = 1 and
zj ≥ 0, respectively. Then the Lagrange L is

L(z, η, ν) = O(z) + η(
d∑

j=1

zj − 1)−
d∑

j=1

νjzj . (13)

To find the optimal solution of z, we set the derivative of
L with respect to zj to zero, that is:

∂L
∂zj

= −
∑n

i λi

∑c
c′=1(Wi)

2
jc′ + αλ

∑c
c′=1 W

2
jc′

z2j
+ η − νj = 0.
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Combining the KKT conditions νjzj = 0, ∀j and the

constraint
∑

j zj = 1, the analytical solution of z can be

computed as follows:

zj =

√∑n
i=1 λi

∑c
c′=1(Wi)2jc′ + αλ

∑c
c′=1 W

2
jc′∑d

j′=1

√∑n
i=1 λi

∑c
c′=1(Wi)2jc′ + αλ

∑c
c′=1 W

2
jc′

.

(14)

The Complete algorithm is described in Algorithm 1.

Algorithm 1 Algorithm to Solve LGDFS

Input: Data set {xi}n
i=1, number of selected features m,

number of clusters C, size of the neighborhood k, local
regularization parameters {λi}n

i=1, global regularization

parameter λ, and trade-off parameter α.
Output: m selected features

1: Initialize z = [ 1d , . . . ,
1
d ]

T

2: repeat
3: Construct the k-nearest neighborhoods for each point

using Eq. (10);

4: Construct the local Laplacian Ll using Eq. (7);

5: Compute the global Laplacian Lg using Eq. (5);

6: Solve the eigenvalue decomposition problem in Eq.

(11) to obtain the optimal Y ;
7: Compute the local and global discriminative models

{Wi}n
i=1 and W using Eq. (12);

8: Update z using Eq. (14);

9: until Converges
10: Sort each feature according to the optimal z in descend-

ing order and select the top-m ranked ones.

3) Complexity Analysis: We now analyze the computa-

tional complexity of the proposed algorithm in each iter-

ation. In each iteration, we first need O(n2d) to construct
the k-nearest neighbor. Then we need O(k3) to compute the
matrix Li for each data point. Thus, the total complexity to

compute Ll is O(nk
3). Then we need O(n3) to compute the

matrix Lg . The complexity of the eigenvalue decomposition

is O(n3). The complexity of n local and global regression

problems is O(nk3+n3), The complexity for updating z is
O(ndC). Hence, the overall complexity for each iteration is
O(n3).

IV. RELATIONSHIP TO OTHER METHODS

Our work is related to several existing approaches in the

literature of machine learning and data mining. The first

class of them is unsupervised feature selection methods,

such as MCFS [6], JELSR [10] and UDFS [9]. These

methods estimate cluster structure via spectral embedding

of graph Laplacian defined in uniform feature space and

perform feature selection using sparse spectral regression. To

better capture the intrinsic structure of the data and alleviate

the effects of irrelevant features, our method constructs

the graph Laplacian through local learning in the weighted

ambient space. In this way, the most representative features

are naturally defined as those features that can best respect

both the local and global cluster structure of the data. Com-

pared with previous spectral feature selection approaches,

our method can jointly improve the estimation of cluster

structure and the weights for features.

Another set of related approaches are spectral clustering,

such as the local learning based clustering, e.g. [14], [22],

and clustering with local and global mixed Laplacian, e.g.

[27], [28]. Obviously, these methods also construct various

Laplacian matrices on uniform feature space. Our approach

estimates the cluster structure in a non-uniform weighted

feature space, which alleviates the side effects of the irrele-

vant or noisy features.

Finally, LGDFS draws the connections to multi-task fea-

ture learning, e.g., [29], [30]. In fact, The estimation of

feature weight in Eq. (9) can be regarded as n + 1 (n

local and 1 global) regression tasks with weighted �2-norm
regularization associated with the simplex constraint. In the

following, we show that such regularization is the upper

bound of the square of the �1 norm regularization on the

feature level. Thus, it is expected that such regularization

will produce at least as sparse as that of the squared �1
norm regularization.

Lemma 1. The following inequality always holds in the
input feature space:

n∑
i=1

λitr(W
T
i diag(z)

−1Wi) + αλtr(WTdiag(z)−1W )

=

d∑
j=1

||W̄j ||2
zj

≥
⎛
⎝ d∑

j=1

||W̄j ||
⎞
⎠

2

(15)

where ||W̄j || =
√∑n

i=1 λi

∑c
c′=1(Wi)2jc′ + αλ

∑c
c′=1 W

2
jc′

and
∑

j zj = 1, zj ≥ 0.
Proof: This is the corollary of Theorem 1 in [31].

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our pro-

posed algorithm LGDFS. Following [6], [10], we perform K-

means clustering by using the selected features and compare

the results of different algorithms.

A. Data Sets

Five data sets are used in our experiments. These data

sets include one UCI data set ECOLI, two preprocessed

microarray data sets from [1], i.e., CARCINOMAS and

LUNG, and two face image diastases, i.e., UMIST and ORL.

Table I summarizes the statistics of the data sets.
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Table I: Summary of data sets

Dataset Size Dimensions Classes
ECOLI 336 343 8

CARCINOMAS 174 9182 11
LUNG 203 3312 5
UMIST 575 10304 20
ORL 400 10304 40

B. Evaluation Metrics

To evaluate their performance, we compare the generated

clusters with the ground truth by computing the following

two performance measures.

Clustering accuracy (ACC). The first performance mea-
sure is the clustering accuracy, which discovers the one-to-

one relationship between clusters and classes. Given a point

xi, let pi and qi be the clustering result and the ground truth

label, respectively. The ACC is defined as follows:

ACC =
1

n

n∑
i=1

δ(qi,map(pi)), (16)

where n is the total number of samples and δ(x, y) is the
delta function that equals 1 if x = y and equals 0 otherwise,
and map(·) is the permutation mapping function that maps
each cluster index to a true class label. The best mapping

can be found by using the Kuhn-Munkres algorithm [32].

The greater clustering accuracy means the better clustering

performance.

Normalized mutual information (NMI). Another eval-
uation metric that we adopt here is the normalized mutu-

al information, which is widely used for determining the

quality of clustering. Let C be the set of clusters from the

ground truth and C′ obtained from a clustering algorithm.

Their mutual information MI(C, C′) is defined as follows:

MI(C, C′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j) log

p(ci, c
′
j)

p(ci)p(c′j)
, (17)

where p(ci) and p(c′j) are the probabilities that a data point
arbitrarily selected from the data set belongs to the cluster

ci and c′j , respectively, and p(ci, c
′
j) is the joint probability

that the arbitrarily selected data point belongs to the cluster

ci as well as c′j at the same time. In our experiments, we

use the normalized mutual information as follows:

NMI(C, C′) = MI(C, C′)
max(H(C), H(C′)) , (18)

whereH(C) andH(C′) are the entropies of C and C′, respec-
tively. Again, a larger NMI indicates a better performance.

C. Comparisons and Parameter Settings

We evaluate and compare the following five unsupervised

feature selection approaches:

• Laplacian Score [3]1, which selects those features

that can best preserve the local manifold struc-

ture. The neighborhood size is set to 5. The

width of the Gaussian kernel is searched from

the grid {4−3σ0, 4−2σ0, 4−1σ0, σ0, 41σ0, 42σ0, 43σ0},
where σ0 is the mean distance between any two samples
in the data set.

• EVSC [5], which selects those features with high

impact on graph Laplacian’s eigenvalues. The width

of the Gaussian kernel is searched from the grid

{4−3σ0, 4−2σ0, 4−1σ0, σ0, 41σ0, 42σ0, 43σ0}.
• MCFS [6]2, which selects the features using spectral

regression with �1-norm regularization. The neighbor-

hood size is set to 5. The dimensionality of em-

bedding is set to the number of clusters. The width

of the Gaussian kernel is searched from the grid

{4−3σ0, 4−2σ0, 4−1σ0, σ0, 41σ0, 42σ0, 43σ0}.
• JELSR [10], which selects the features using joint

embedding learning and sparse regression with �2,1-

norm regularization. The neighborhood size is set to 5.

The dimensionality of embedding is set to the number

of clusters. Both the trade off parameter and the �2,1-

norm regularization parameter are searched from the

grid {0.01, 0.1, 1, 10, 100}.
• Our proposed LGDFS algorithm. The neighborhood

size is set to 5. The dimensionality of embedding is set

to the number of clusters. The trade off parameter α, the
weighted �2-norm regularization parameter λ, and the
local regularization parameters ({λi} are set to be the
same value) are searched from {0.01, 0.1, 1, 10, 100}.

LapScore and EVSC perform feature selection by computing

specified evaluation criteria. MCFS, JELSR, and LGDFS

are wrapper methods using sparse regression. For these

compared unsupervised feature selection algorithms, it is

difficult to select the optimal parameters since there is

no label information available. Therefore, we search the

parameters over the grid and report the best result it can

achieve. Though such strategy could be biased, it is still

a fair comparison since we did this for all the methods as

long as they have parameters to tune. Besides, how to decide

the optimal number of selected features is data dependent

and still an open problem, here we report the results over a

relative large range of features.

D. Clustering Results

We first evaluate the clustering performance on the entire

data sets. In this experiment, the K-means algorithm is

applied 10 times with random initialization and the average

result is reported. Figure 1 shows the plots of clustering

1The MATLAB source code: http://www.zjucadcg.cn/dengcai/Data/code/
LaplacianScore.m

2The MATLAB source code: http://www.zjucadcg.cn/dengcai/Data/code/
MCFS p.m
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(f) LUNG

Figure 1: Clustering accuracy and normalized mutual information versus the number of selected features
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Figure 2: Clustering accuracy and normalized mutual information versus the number of selected features on the UMIST and

ORL data sets

performance, in terms of accuracy and normalized mutual

information, versus the number of selected features.

In order to obtain stable results, similar to [6], we also

report the clustering performance on the subsets of UMist

and ORL with 5 clusters. For each data set, 20 tests are

conducted on different randomly selected clusters, and the

average performance over these 20 tests is reported. In each

test, the K-means algorithm is applied 10 times with random

initialization and the best result in terms of the objective

function of K-means was recorded. Figure 2 shows the plots

of clustering performance versus the number of selected

features.

It can be seen that our LGDFS algorithm consistently

outperforms the other four algorithms, and JELSR performs

the second best in most of the cases. For example, when

100 features are selected, Compared with the second best

algorithm, our method achieves 6.0% (3.3%), 6.8% (7.1%),

13.6% (17.9%), 2.7% (4.1%), and 2.8% (3.4%) relative

improvement in clustering accuracy (normalized mutual

information) on the ECOLI, CARCINOMAS, LUNG, x,

UMIST and ORL data sets, respectively. This indicates

that the joint embedding learning and sparse regression

framework is generally capable of enhancing both clustering

and feature selection. More importantly, the re-estimation

of local structure in non-uniform weighted feature space

and the exploration of local discriminative information can

further improve the performance significantly. Although

our algorithm performs the best in the entire scope, it is

worthwhile to note that it performs especially well when

there is limited number of features. Further, we observe that
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(a)

(b)

Figure 3: Clustering accuracy w.r.t. different parameters on CARCINOMAS (a) and LUNG (b).

the results of LapScore, EVSC, and MCFS on some high-

dimensional data sets (e.g., UMIST) are less comparable.

A plausible reason is that the gaussian kernel used in these

algorithms did not capture the similarity well for very high-

dimensional data (around 10K). This in turn means that

it is necessary to remove the irrelevant or noisy features

in the construction of graph Laplacian, which is one key

contribution of our work.

E. Sensitivity to the Selection of Parameters

Compared with other spectral feature selection algorithms,

Our algorithm have three additional parameters, that are,

the regularization parameters (λ and λi) and the trade-

off parameter (α). In this section, we evaluate how the

performance of LGDFS varies with different values of the

parameters. The data set used for this test is CARCINOMAS

and LUNG. Figure 3 shows the average clustering accuracy

over selected features as a function of each of these three

parameters. As we can see, the performance is not very

sensitive to these parameters on different number of selected

features.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel unsupervised feature selection

algorithm, called LGDFS. It integrates a global linear regres-

sion model with weighted �2-norm regularization and a set

of locally linear ones through local learning into a unified

learning framework. LGDFS characterizes the discriminative

and geometrical information in a weighted Euclidean space,

which alleviates the effects of irrelevant features. Thus, it

can better estimate the cluster structure of the data. LGDFS

evaluates the relevance of features through integrating both

local and global learning. As a result, it can select the

most representative features to best respect both the local

and global cluster structure. Compared with state-of-the-art

methods, namely LapScore, EVSC, MCFS, and JELSR, the

experimental results validate that the new method achieves

significantly higher performance for clustering.

In the future, we plan to continue this work on several

issues as follows. First, as the computational complexity of

the proposed method scales with the number of data points,

we want to investigate the sampling techniques to speed up

the computation. We may apply clustering techniques such

as K-means to group the data points into clusters and select

some representative points from each cluster. Our method

is then applied only to the representative points. Second,

we will try to derive a good and stable automatic param-

eter selection procedure for the regularization and trade-

off parameters. Third, instead of using k-nearest neighbors
measured on weighted feature space, we plan to determine

it on the projection space.
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