
Well-Supported Semantics for Description 

Logic Programs 

IJCAI 2011, Barcelona, Spain 

Yi-Dong Shen 

Institute of Software, Chinese Academy of Sciences, Beijing, China 

http://lcs.ios.ac.cn/~ydshen 



Outline 

I. Background and Motivation 

II. DL-Programs 

III. Well-Supported Models 

IV. Well-Supported Answer Set Semantics 

V. Related Work 

VI. Summary and Future Work 

2 



Semantic Web Stack 
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Integration in the Semantic Web 

 Ontologies describe terminological knowledge. 

 Rules model constraints and exceptions over the 

ontologies. 

 They provide complementary descriptions of the same 

problem domain, so a unifying logic is used to 

 integrate the two components, and 

 study the semantic properties of the integrated knowledge base  
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Three Forms of Integration 

 Loose integration  

 Ontologies and rules share no predicate symbols (Eiter et al. 

2008, AIJ). 

 Tight (or Hybrid) integration 

 Ontologies and rules share some predicate symbols (Rosati 

2006, KR; Lukasiewicz 2010, TKDE). 

 Full integration 

 Ontologies and rules share the same vocabulary (de Bruijn et 

al. 2008, KR; Motik and Rosati 2010, JACM). 
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DL-Programs 

 We consider a loose integration, called Description logic 

programs (or DL-programs)  (Eiter et al. 2008, AIJ) 

 A DL-program is 𝐾𝐵 = (𝐿, 𝑅)  

 𝐿:  a DL knowledge base (ontologies).  

 𝑅:  an extended logic program under the answer set semantics. 
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Semantic Issues with DL-Programs 

 Weak answer set semantics (Eiter et al. 2008, AIJ) 

 The authors noted that an obvious disadvantage of the 

semantics is that it may produce counterintuitive answer sets 

with circular justifications by self-supporting loops. 

 Strong answer set semantics (Eiter et al. 2008, AIJ) 

 We observed that the problem of circular justifications persists 

in this semantics. 

 FLP answer set semantics (Eiter et al. 2005, IJCAI) 

 We observed that the problem of circular justifications persists 

in this semantics. 
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Semantic Issues with DL-Programs 

 Therefore, it presents an interesting yet challenging 

open problem to develop a new semantics for DL-

programs, which produces answer sets free of 

circular justifications. 
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Circular Justifications 

 A model 𝐼 of a logic program 𝑅 is circularly justified if 

the truth of some 𝑎 ∈ 𝐼 is supported by itself in 𝐼. 

 Examples 

1. Consider a logic program 𝑅 = *𝑎 ← 𝑏.  𝑏 ← 𝑎+ and let 𝐼 = 𝑎, 𝑏 . 

𝑎 ∈ 𝐼 is circularly justified by a self-supporting loop: 𝒂 ⇐ 𝒃 ⇐ 𝒂  

2. Consider a DL-program 𝐾𝐵 = (𝐿, 𝑅) from (Eiter et al. 2008, AIJ), 

where 𝐿 = ∅ and 𝑅 = 𝑝 𝑎 ← 𝐷𝐿,𝑐 ⊎ 𝑝; 𝑐-(𝑎) . Let 𝐼 = 𝑝(𝑎) . 

𝑝(𝑎) ∈ 𝐼 is circularly justified by a self-supporting loop: 

𝒑 𝒂 ⇐ 𝑫𝑳,𝒄 ⊎ 𝒑; 𝒄-(𝒂) ⇐ 𝒑(𝒂) 

 

9 



Fages’ Well-Supportedness Condition 

 For normal logic programs, the problem of circular 

justifications is elegantly handled by Fages’ well-

supportedness condition (Fages 1994, JMLCS). 

 It defines a level mapping, which prevents well-supported 

models from circular justifications. 

 It is a key property to characterize the standard answer 

set semantics (Gelfond and Lifschitz 1991, NJC) :  

 A model of a normal logic program is an answer set under the standard 

answer set semantics iff it is well-supported (Fages 1994, JMLCS). 
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Fages’ Well-Supportedness Condition 

 Can we extend Fages’ well-supportedness condition from 

normal logic programs to DL-programs to overcome 

circular justifications? 

 Our answer is Yes. 
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Our Contributions 

 We solve the semantic problem of circular justifications 

with DL-programs by 

 extending Fages’ well-supportedness condition from normal 

logic programs to DL-programs, and 

 defining a well-supported semantics for DL-programs, which 

produces answer sets free of circular justifications.  
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Notation 

 A DL-program is 𝐾𝐵 = (𝐿, 𝑅) 

 𝐿: a DL knowledge base built over Σ𝐿 = 𝐀 ∪ 𝐑, 𝐈  

 A, R, I: atomic concepts, atomic roles, and individuals. 

 𝑅: a rule base built over Σ𝑅 = 𝑷, 𝑪  

 P, C: predicate symbols, and constants 

 𝐏 ∩ 𝐀 ∪ 𝐑 = ∅,  and 𝐂 ⊆ 𝐈 

 𝐻𝐵𝑅: Herbrand base of 𝑅 built over Σ𝑅 

 ground(𝑅): ground instances (relative to 𝐻𝐵𝑅) of all rules in 𝑅 
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Notation 

 𝑅 consists of rules of the form  

𝐻 ← 𝐴1, ⋯ , 𝐴𝑚, 𝑛𝑜𝑡 𝐵1, ⋯ , 𝑛𝑜𝑡 𝐵𝑛  

where 𝐻 is an atom, and each 𝐴𝑖 and 𝐵𝑖 are atoms or dl-atoms 

 A dl-atom is an interface between 𝐿 and 𝑅:  

               𝐷𝐿,𝑆1 𝑜𝑝1 𝑝1, ⋯ , 𝑆𝑚 𝑜𝑝𝑚 𝑝𝑚; 𝑄-(𝒕)  

 each Si is a concept or role built from 𝐀 ∪ 𝐑, each p𝑖 ∈ 𝑷  is a 

predicate symbol, 𝑄(𝒕) is a dl-query and   
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Satisfaction Relation ⊨𝐿   

Definition (Eiter et al. 2008, AIJ)  Let 𝐾𝐵 =  (𝐿, 𝑅) and 𝐼 be an 

interpretation. Define satisfaction under 𝐿, denoted ⊨𝐿, as follows: 

1. For a ground atom a ∈ 𝐻𝐵𝑅, 𝐼 ⊨𝐿 𝑎 if 𝑎 ∈ 𝐼. 

2. For a ground dl-atom 𝐴 = 𝐷𝐿,𝑆1 𝑜𝑝1 𝑝1, ⋯ , 𝑆𝑚 𝑜𝑝𝑚 𝑝𝑚; 𝑄- 𝒕 , 

𝐼 ⊨𝐿 𝐴 if 𝐿 ∪∪𝑖=1
𝑚 𝐴𝑖 ⊨ 𝑄 𝒕 ,  where 

 

 

  

*** Any 𝐼 ⊆ 𝐻𝐵𝑅 is an interpretation of 𝐾𝐵 =  (𝐿, 𝑅). Let 𝐼− = 𝐻𝐵𝑅 \𝐼 and 

¬𝐼− = *¬𝑎|𝑎 ∈ 𝐼−} 
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Program Transformation Reducts 

 Given an interpretation 𝐼, FLP reduct 𝒇𝑹𝑳
𝑰  is obtained from 

ground(𝑅) by 

deleting every rule r with 𝐼⊭𝐿𝑏𝑜𝑑𝑦 𝑟 . 

 Weak transformation reduct 𝒘𝑹𝑳
𝑰  is obtained from 𝒇𝑹𝑳

𝑰  by 

deleting all negative literals and all dl-atoms. 

 Strong transformation reduct 𝒔𝑹𝑳
𝑰  is obtained from 𝒇𝑹𝑳

𝑰  by 

deleting all negative literals and all nonmonotonic dl-atoms. 
 

 *** A ground dl-atom 𝐴  is monotonic  

           if for any 𝐼 ⊆ 𝐽 ⊆ 𝐻𝐵𝑅 , 𝐼 ⊨𝐿 𝐴 implies 𝐽 ⊨𝐿 𝐴.  
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Three Semantics of DL-Programs 

 Weak/strong/FLP answer set semantics  

        A model 𝐼 of 𝐾𝐵 =  (𝐿, 𝑅) is a weak (resp. strong and FLP)  

       answer set if 𝐼 is a minimal model of 𝒘𝑹𝑳
𝑰  (resp. 𝒔𝑹𝑳

𝑰   and 𝒇𝑹𝑳
𝑰 )  

       (Eiter et al. 2008, AIJ; Eiter et al. 2005, IJCAI). 

 FLP answer sets are minimal models, but weak/strong 

answer sets may not. 
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Circular Justification Problem 

 The three answer set semantics suffer from the 

problem of circular justifications. 
 

 Example  Consider a DL-program 𝐾𝐵 = 𝐿, 𝑅 , where 𝐿 = ∅ and 

         𝑅:     𝑝 𝑎 ← 𝑞 𝑎  

 

𝐼 = *𝑝 𝑎 , 𝑞 𝑏 + is the only model of 𝐾𝐵. It is also a weak, a strong, 

and  an FLP answer set. 𝑝 𝑎 ∈ 𝐼 is circularly justified by a self-

supporting loop:  

𝑝 𝑎 ⇐ 𝑞 𝑎 ⇐                                                          ⇐ 𝑝 𝑎 ∨ ¬𝑞 𝑎 ⇐ 𝑝(𝑎) 
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Fages’ Well-Supportedness  

 Fages’ well-supportedness condition (Fages 1994, JMLCS): 

A model I of a normal logic program is well-supported if there is a 

level mapping on I such that for every 𝑎 ∈ 𝐼, there is a rule  

                     𝑎 ← 𝐴1, ⋯ , 𝐴𝑚, 𝑛𝑜𝑡 𝐵1, ⋯ , 𝑛𝑜𝑡 𝐵𝑛  

where I satisfies the rule body and the level of each 𝐴𝑖 is below the 

level of 𝑎. 
 

 This well-supportedness condition does not apply to 

DL-programs, due to occurrences of dl-atoms. 
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up to Satisfaction (𝐸, 𝐼) ⊨𝐿𝐴 

 To handle dl-atoms, we introduce up to satisfaction.  

 Informally, for 𝐸 ⊆ 𝐼 ⊆ 𝐻𝐵𝑅,    

          𝐸, 𝐼 ⊨𝐿 𝛼 if for every 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝛼. 

 𝐸, 𝐼 ⊨𝐿 𝛼 implies that the truth of 𝛼 depends only on 𝐸 

and 𝐼−, and is independent of 𝐼\E.  

 For instance, if 𝐸 = *𝑎+, 𝐼 = *𝑎, 𝑏, 𝑐+ and 𝛼 = 𝑎 ∧ ¬𝑑,  

    then for every 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝛼. Therefore,  

    𝐸, 𝐼 ⊨𝐿 𝛼. 
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up to Satisfaction (𝐸, 𝐼) ⊨𝐿𝐴 

Definition  Let 𝐾𝐵 = 𝐿, 𝑅   and 𝐸 ⊆ 𝐼 ⊆ 𝐻𝐵𝑅. For any 

ground literal 𝐴, define 𝐸 𝑢𝑝 𝑡𝑜 𝐼 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝐴 𝑢𝑛𝑑𝑒𝑟 𝐿,

denoted 𝐸, 𝐼 ⊨𝐿 𝐴, as follows:  

1. For a ground atom a ∈ 𝐻𝐵𝑅,   

                𝐸, 𝐼 ⊨𝐿 𝑎 if 𝑎 ∈ 𝐸; 𝐸, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝑎 if 𝑎 ∉ 𝐼. 

2. For a ground dl-atom 𝐴,   

                𝐸, 𝐼 ⊨𝐿 𝐴 if for every 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝐴; 

                𝐸, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝐴 if for no 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝐴. 
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Monotonicity of (𝐸, 𝐼) ⊨𝐿𝐴 

 Proposition  Let 𝐴 be a ground atom or dl-atom. For any 

𝐸1 ⊆ 𝐸2 ⊆ 𝐼,  

 if 𝐸1, 𝐼 ⊨𝐿 𝐴 then 𝐸2, 𝐼 ⊨𝐿 𝐴; 

 and if 𝐸1, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝐴 then 𝐸2, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝐴. 

 

 We use this up to satisfaction to extend Fages’ well-

supportedness condition and define well-supported 

models for DL-programs. 
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Well-Supported Models 

 Informally, a model I of a DL-program is strongly well-supported 

if there is a level mapping on I such that for every 𝑎 ∈ 𝐼, there is 

𝐸 ⊂ 𝐼 and a rule 𝑎 ← 𝑏𝑜𝑑𝑦(𝑟), where 𝐸, 𝐼 ⊨𝐿 𝑏𝑜𝑑𝑦 𝑟  and the 

level of each element in 𝐸 is below the level of 𝑎. 

 Put another way,  

 𝑎 ∈ 𝐼 is supported by 𝑏𝑜𝑑𝑦(𝑟),  

 while the truth of 𝑏𝑜𝑑𝑦(𝑟) is determined by 𝐸 and 𝐼−,  

 where no 𝑏 ∈ 𝐸 is circularly dependent on a.  

 This guarantees that strongly well-supported models are free of 

circular justifications. 
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Well-Supported Models 

Definition  A model I of a DL-program 𝐾𝐵 = (𝐿, 𝑅) is 

strongly well-supported if there exists a strict well-founded 

partial order ≺ on I such that for every 𝑎 ∈ 𝐼, there is 𝐸 ⊂ 𝐼 

and a rule 𝑎 ← 𝑏𝑜𝑑𝑦(𝑟) in 𝑔𝑟𝑜𝑢𝑛𝑑 𝑅  such that  

        𝐸, 𝐼 ⊨𝐿 𝑏𝑜𝑑𝑦 𝑟  and  for every 𝑏 ∈ 𝐸, 𝑏 ≺ 𝑎.  
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Well-Supported Models 

Example  Consider a DL-program 𝐾𝐵 = 𝐿, 𝑅 , where 

𝐿 = ∅ and 

         𝑅:     𝑝 𝑎 ← 𝑞 𝑎  

 

𝐼 = *𝑝 𝑎 , 𝑞 𝑏 + is the only model of 𝐾𝐵. It is also a weak, 

a strong, and an FLP answer set. However, 𝐼 is not a 

strongly well-supported model, since for 𝑝 𝑎 ∈ 𝐼 there is 

no 𝐸 ⊂ 𝐼 satisfying the well-supportedness condition.  
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Well-Supported Models 

 Theorem  Let 𝐾𝐵 = 𝐿, 𝑅  be a DL-program, where 

𝐿 = ∅ and 𝑅 is a normal logic program. A model 𝐼 is a 

strongly well-supported model of 𝐾𝐵 iff 𝐼 is a well-

supported model of 𝑅 under Fages’ definition. 

 

 As a result, Fages’ well-supportedness condition is 

extended to DL-programs. 
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Consequence Operator 𝑇𝐾𝐵 𝐸, 𝐼  

 Definition  Let 𝐾𝐵 = (𝐿, 𝑅) and 𝐸 ⊆ 𝐼 ⊆ 𝐻𝐵𝑅. Define 

𝑇𝐾𝐵 𝐸, 𝐼 = *𝑎|𝑎 ← 𝑏𝑜𝑑𝑦 𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑅  and 𝐸, 𝐼 ⊨𝐿 𝑏𝑜𝑑𝑦 𝑟 } 
 

 Monotonicity property of 𝑇𝐾𝐵 𝐸, 𝐼  

Theorem  Let 𝐼 be a model of 𝐾𝐵. For any 𝐸1 ⊆ 𝐸2 ⊆ 𝐼,  

𝑇𝐾𝐵 𝐸1, 𝐼 ⊆ 𝑇𝐾𝐵 𝐸2, 𝐼 ⊆ 𝐼.  
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Fixpoint 𝑇𝐾𝐵
𝛼 ∅, 𝐼  

 𝑇𝐾𝐵
𝛼 ∅, 𝐼 : a fixpoint from the monotone sequence 

𝑇𝐾𝐵
𝑖 ∅, 𝐼

𝑖=0

∞
 with 𝑇𝐾𝐵

0 ∅, 𝐼 = ∅ and 𝑇𝐾𝐵
𝑖+1 ∅, 𝐼 =

𝑇𝐾𝐵 𝑇𝐾𝐵
𝑖 ∅, 𝐼 , 𝐼  

 

 Theorem  Let 𝐼 be a model of 𝐾𝐵 = (𝐿, 𝑅). If 𝐼 =

𝑇𝐾𝐵
𝛼 ∅, 𝐼  then 𝐼 is a minimal model of 𝐾𝐵.  
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Well-Supported Semantics 

 Definition  Let 𝐼 be a model of a DL-program 𝐾𝐵 = (𝐿, 𝑅). 

𝐼 is an answer set of 𝐾𝐵 if 𝐼 = 𝑇𝐾𝐵
𝛼 ∅, 𝐼 . 

 

 Answer sets are exactly strongly well-supported models 

Theorem  𝐼 is an answer set of 𝐾𝐵 iff 𝐼 is a strongly well-

supported model of 𝐾𝐵.  

 

 Therefore, we call such answer sets well-supported 

answer sets, which are free of circular justifications. 

 

 

32 



Well-Supported Semantics 

Theorem  If 𝐼 is a well-supported answer set of 𝐾𝐵, then  

1. 𝐼 is a minimal model of 𝐾𝐵. 

2. 𝐼 is a strong answer set of 𝐾𝐵 that is also a weak 

answer set of 𝐾𝐵. 

3. 𝐼 is an FLP answer set of 𝐾𝐵. 
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Related Work 

1. Weak answer set semantics (Eiter et al. 2008, AIJ) 

 There are circular justifications by self-supporting loops. 

2. Strong answer set semantics (Eiter et al. 2008, AIJ) 

 The problem of circular justifications persists. 

3. FLP answer set semantics (Eiter et al. 2005, IJCAI) 

 Weak/strong answer sets may not be minimal models. 

 FLP answer sets are minimal models. 

 The problem of circular justifications persists. 

4. Loop formula based semantics (Wang et al. 2010, TPLP) 

 The problem of circular justifications persists. 
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Related Work 

 FLP answer set semantics is based on FLP-reduct, a concept 

introduced in (Faber et al. 2004, JELIA) to define answer set 

semantics for logic programs with aggregates. 

 Our up to satisfaction relation is inspired by conditional 

satisfaction, a concept introduced in (Son et al. 2007, JAIR) to 

define answer set semantics for logic programs with 

aggregates. 

 DL-programs and logic programs with aggregates are closely 

related. Exploiting the deep connection presents an interesting 

future work. 
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Summary and Future Work  

 Summary: 

To resolve the semantic problem of circular justifications 

with DL-programs, we 

extended Fages’ well-supportedness condition from 

normal logic programs to DL-programs, and 

presented a well-supported semantics for DL-

programs, which produces answer sets free of 

circular justifications.  
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Summary and Future Work  

 Future work:  

Extend the work to DL-programs with disjunctive rule 

heads. 

Study the complexity properties. 

Exploit the connection between DL-programs and 

logic programs with aggregates. 
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