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Integration in the Semantic Web

Ontologies describe terminological knowledge.

Rules model constraints and exceptions over the

ontologies.

They provide complementary descriptions of the same
problem domain, so a unifying logic is used to

» integrate the two components, and

» study the semantic properties of the integrated knowledge base



Three Forms of Integration

e Loose Integration

» Ontologies and rules share no predicate symbols (Eiter et al.
2008, AlJ).

o Tight (or Hybrid) integration

» Ontologies and rules share some predicate symbols (Rosati
2006, KR; Lukasiewicz 2010, TKDE).

o Full integration

» Ontologies and rules share the same vocabulary (de Bruijn et
al. 2008, KR; Motik and Rosati 2010, JACM).



DL-Programs

o We consider a loose integration, called Description logic
programs (or DL-programs) (Eiter et al. 2008, AlJ)
e ADL-programis KB = (L, R)
» L. a DL knowledge base (ontologies).

» R: an extended logic program under the answer set semantics.



Semantic Issues with DL-Programs

e Weak answer set semantics (Eiter et al. 2008, AlJ)

» The authors noted that an obvious disadvantage of the
semantics is that it may produce counterintuitive answer sets

with circular justifications by self-supporting loops.

e Strong answer set semantics (Eiter et al. 2008, AlJ)

» We observed that the problem of circular justifications persists

in this semantics.

e FLP answer set semantics (Eiter et al. 2005, 1JCAI)

» We observed that the problem of circular justifications persists

in this semantics.



Semantic Issues with DL-Programs

o Therefore, it presents an interesting yet challenging
open problem to develop a new semantics for DL-
programs, which produces answer sets free of

circular justifications.



Circular Justifications

A model I of a logic program R is circularly justified if

the truth of some a € I Is supported by itself in 1.

Examples

Consider a logic program R = {a < b. b < a} and let I = {a, b}.
a € I is circularly justified by a self-supporting loop: a & b < a
Consider a DL-program KB = (L, R) from (Eiter et al. 2008, AlJ),
where L =@ and R = {p(a) « DL[c U p;c](a)}. Let] = {p(a)}.
p(a) € I is circularly justified by a self-supporting loop:

p(a) < DL[c ¥ p;c](a) = p(a)



Fages’ Well-Supportedness Condition

e For normal logic programs, the problem of circular
justifications is elegantly handled by Fages’ well-

supportedness condition (Fages 1994, JMLCS).

o It defines a level mapping, which prevents well-supported

models from circular justifications.

e Itis akey property to characterize the standard answer
set semantics (Gelfond and Lifschitz 1991, NJC) :

» A model of a normal logic program is an answer set under the standard

answer set semantics iff it is well-supported (Fages 1994, JMLCS).



Fages’ Well-Supportedness Condition

e Can we extend Fages’ well-supportedness condition from
normal logic programs to DL-programs to overcome

circular justifications?

e Our answer iIs Yes.
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Our Contributions

o We solve the semantic problem of circular justifications
with DL-programs by

» extending Fages’ well-supportedness condition from normal

logic programs to DL-programs, and

» defining a well-supported semantics for DL-programs, which

produces answer sets free of circular justifications.
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Notation

A DL-program is KB = (L, R)

L: a DL knowledge base built over 2, = (AUR,I)

» A, R, I: atomic concepts, atomic roles, and individuals.

R: a rule base built over £, = (P, C)

» P, C: predicate symbols, and constants
>» PN(AUR) =0, andCc 1

» HBy: Herbrand base of R built over X,

ground(R): ground instances (relative to HB,) of all rules in R
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Notation

e R consists of rules of the form
H< A, ,Am,not B,,---,not B,

where H is an atom, and each A; and B, are atoms or dl-atoms
o Adl-atom is an interface between L and R:

DL[S; 0p1 p1, ") S OPm Pm; Q](T)
» each S, is a concept or role built from AUR, eachp, € P is a

predicate symbol, Q(t) is a dl-query and op; € { W, &, A}



Satisfaction Relation

Definition (Eiter et al. 2008, AlJ) Let KB = (L,R) and I be an

Interpretation. Define satisfaction under L, denoted &, , as follows:
1. Foraground atoma € HBy, I £, aifa € 1.

2. For a ground dl-atom A = DL[S; op1 p1, ***» Sm OPm Pm; Q](0),
I =, Aif LUUL, A; E Q(t), where

{Si(e) | pi(e) eI}, ifop;= W;
- { {=S;(e) | pi(e) € I}, ifop; = U;
{=S;(e) | pi(e) & I}, ifop; = A.

*** Any I € HBR is an interpretation of KB = (L,R).Let I~ = HB,\I and

=~ ={~ala €17}

16



Program Transformation Reducts

Given an interpretation I, FLP reduct fR} is obtained from

ground(R) by
deleting every rule r with I#,body(r).
o Weak transformation reduct wR! is obtained from fR} by

deleting all negative literals and all dl-atoms.

Strong transformation reduct sR! is obtained from fR: by

deleting all negative literals and all nonmonotonic dl-atoms.

*** A ground dl-atom A is monotonic

ifforany I € ] € HB,, I £, Aimplies ] =, A.

17



Three Semantics of DL-Programs

o Weak/strong/FLP answer set semantics
A model I of KB = (L,R)is a weak (resp. strong and FLP)
answer set if I is a minimal model of wR] (resp. sR} and fR})
(Eiter et al. 2008, AlJ; Eiter et al. 2005, IJCAI).

o FLP answer sets are minimal models, but weak/strong

answer sets may not.

18



Circular Justification Problem

e The three answer set semantics suffer from the

problem of circular justifications.

e Example Consider a DL-program KB = (L,R), where L = ¢ and

R: p(@) < q(@)
q(a) <~ DL|c&p,bRAg;cll=b|(a)
I = {p(a),q(b)} is the only model of KB. Itis also a weak, a strong,
and an FLP answer set. p(a) € I is circularly justified by a self-
supporting loop:

p(a) € q(a) €« DLicWp,bAg,c ) =bl(a) € pla)V—q(a) < pla)

19
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Fages’ Well-Supportedness

o Fages’ well-supportedness condition (Fages 1994, JMLCS):

A model | of a normal logic program is well-supported if there is a

level mapping on | such that for every a € I, there is a rule
a< A, Am,not B,---,not Bn

where | satisfies the rule body and the level of each A4, is below the

level of a.

e This well-supportedness condition does not apply to

DL-programs, due to occurrences of dl-atoms.



up to Satisfaction (E,I) =, 4

To handle dl-atoms, we introduce up to satisfaction.
Informally, for E € I € HBp,
(E,I) £ aifforevery FwithE €S F € I, F E; a.

(E,I) £; a implies that the truth of « depends only on E

and I, and is independent of I\E.
For instance, if E = {a}, ] = {a,b,c}and a = a A —d,
then forevery Fwith E € F € I, F ; a. Therefore,

(E,I) F; a.



up to Satisfaction (E,I) =, 4

Definition Let KB = (L,R) and E €1 € HBg. For any
ground literal A4, define E up to I satisfies A under L,

denoted (E,I) E; A, as follows:

1. For a ground atom a € HB,,

(E,]) 5, aifa€E; (E,]I) E,notaifa ¢ I.

2. For a ground dl-atom A,
(E,I) £, Aifforevery FwithE € F C I, F =] A;

(E,I) £, not Aifforno FwithE €S F C I, F E; A.



Monotonicity of (£,1) =,4

e Proposition Let A be a ground atom or dl-atom. For any
E,CcE,Cl,

» andif (E,, I) &, not Athen (E,, I) &, not A.

o We use this up to satisfaction to extend Fages’ well-
supportedness condition and define well-supported

models for DL-programs.



Well-Supported Models

Informally, a model | of a DL-program is strongly well-supported
If there is a level mapping on | such that for every a € I, there is
E c Il and arule a « body(r), where (E,I) E; body(r) and the

level of each element in E is below the level of a.
Put another way,
» a € I is supported by body(r),

» while the truth of body(r) is determined by E and I~

» where no b € E is circularly dependent on a.

This guarantees that strongly well-supported models are free of

circular justifications.
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Well-Supported Models

Definition A model | of a DL-program KB = (L,R) IS
strongly well-supported if there exists a strict well-founded
partial order < on | such that for everya € I, there ISE c |

and a rule a < body(r) in ground(R) such that

(E,I) &; body(r) and forevery b € E, b < a.



Well-Supported Models

Example Consider a DL-program KB = (L, R), where
L =@ and
R: p(a) < q(a)
¢(a) < DL[cWp,bAg cl-b](a)
I ={p(a),q(b)}is the only model of KB. It is also a weak,
a strong, and an FLP answer set. However, I is not a
strongly well-supported model, since for p(a) € I there is

no E c I satisfying the well-supportedness condition.



Well-Supported Models

e Theorem Let KB = (L,R) be a DL-program, where
L = @ and R is a normal logic program. Amodel I Is a
strongly well-supported model of KB iff I is a well-

supported model of R under Fages’ definition.

e As aresult, Fages’ well-supportedness condition is

extended to DL-programs.
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Consequence Operator T,,(E,I)

e Definition Let KB = (L,R) and E € I € HBp. Define

Ts(E, 1) ={ala « body(r) € ground(R) and (E,I) &, body(r)}

e Monotonicity property of T, 5(E, )
Theorem_Let I be a model of KB. Forany E, € E, € I,

Tys(E,, 1) S Typ(E,, I) S 1.

30



Fixpoint 7% (@, 1)

o T¢g(®,1): afixpoint from the monotone sequence
i=

(Tis(@,D),  with T3 (8,1) = @ and TEE (9, 1) =

Tis (Tig(@,D),1)

e Theorem Let] be a model of KB = (L,R). If I =

T¢g(@,1) then I is a minimal model of KB.



Well-Supported Semantics

e Definition Let I be a model of a DL-program KB = (L, R).

I'is an answer set of KB if I = T (0,1).

e Answer sets are exactly strongly well-supported models

Theorem [is an answer set of KB iff I is a strongly well-

supported model of KB.

e Therefore, we call such answer sets well-supported

answer sets, which are free of circular justifications.
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Well-Supported Semantics

Theorem If I Is a well-supported answer set of KB, then
1. Iis a minimal model of KB.

2. 11s a strong answer set of KB that is also a weak

answer set of KB.

3. I1s an FLP answer set of KB.
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Related Work

Weak answer set semantics (Eiter et al. 2008, AlJ)

» There are circular justifications by self-supporting loops.
Strong answer set semantics (Eiter et al. 2008, AlJ)

» The problem of circular justifications persists.

FLP answer set semantics (Eiter et al. 2005, 1JCAI)

» Weak/strong answer sets may not be minimal models.
» FLP answer sets are minimal models.

» The problem of circular justifications persists.

Loop formula based semantics (Wang et al. 2010, TPLP)

» The problem of circular justifications persists.
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Related Work

FLP answer set semantics is based on FLP-reduct, a concept
introduced in (Faber et al. 2004, JELIA) to define answer set

semantics for logic programs with aggregates.

Our up to satisfaction relation is inspired by conditional
satisfaction, a concept introduced in (Son et al. 2007, JAIR) to
define answer set semantics for logic programs with

aggregates.

DL-programs and logic programs with aggregates are closely
related. Exploiting the deep connection presents an interesting

future work.
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Summary and Future Work

e SUummary:

To resolve the semantic problem of circular justifications

with DL-programs, we
» extended Fages’ well-supportedness condition from

normal logic programs to DL-programs, and

» presented a well-supported semantics for DL-
programs, which produces answer sets free of

circular justifications.



Summary and Future Work

e Future work:

» Extend the work to DL-programs with disjunctive rule

heads.
» Study the complexity properties.

» Exploit the connection between DL-programs and

logic programs with aggregates.
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