Well-Supported Semantics for Description Logic Programs

Yi-Dong Shen

Institute of Software, Chinese Academy of Sciences, Beijing, China

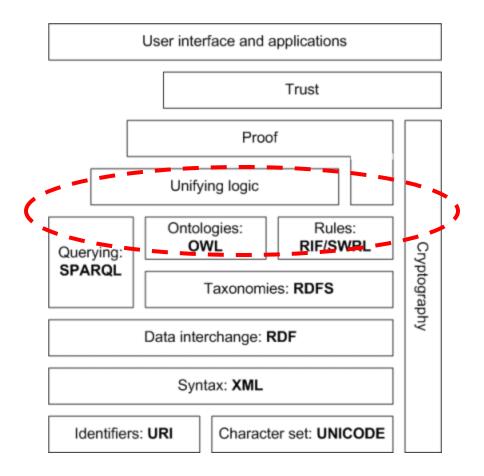
http://lcs.ios.ac.cn/~ydshen

IJCAI 2011, Barcelona, Spain

Outline

- I. Background and Motivation
 - II. DL-Programs
 - III. Well-Supported Models
 - IV. Well-Supported Answer Set Semantics
 - V. Related Work
 - VI. Summary and Future Work

Semantic Web Stack



Integration in the Semantic Web

- **Ontologies** describe terminological knowledge.
- Rules model constraints and exceptions over the ontologies.
- They provide complementary descriptions of the same problem domain, so a unifying logic is used to
 - integrate the two components, and
 - study the semantic properties of the integrated knowledge base

Three Forms of Integration

- Loose integration
 - Ontologies and rules share no predicate symbols (Eiter et al. 2008, AIJ).
- Tight (or Hybrid) integration
 - Ontologies and rules share some predicate symbols (Rosati 2006, KR; Lukasiewicz 2010, TKDE).
- Full integration
 - Ontologies and rules share the same vocabulary (de Bruijn et al. 2008, KR; Motik and Rosati 2010, JACM).

DL-Programs

- We consider a loose integration, called Description logic programs (or DL-programs) (Eiter et al. 2008, AIJ)
- A DL-program is KB = (L, R)
 - \succ L: a DL knowledge base (ontologies).
 - > R: an extended logic program under the answer set semantics.

Semantic Issues with DL-Programs

- Weak answer set semantics (Eiter et al. 2008, AIJ)
 - The authors noted that an obvious disadvantage of the semantics is that it may produce counterintuitive answer sets with circular justifications by self-supporting loops.
- Strong answer set semantics (Eiter et al. 2008, AIJ)
 - We observed that the problem of circular justifications persists in this semantics.
- FLP answer set semantics (Eiter et al. 2005, IJCAI)
 - We observed that the problem of circular justifications persists in this semantics.

Semantic Issues with DL-Programs

 Therefore, it presents an interesting yet challenging open problem to develop a new semantics for DLprograms, which produces answer sets free of circular justifications.

Circular Justifications

 A model *I* of a logic program *R* is circularly justified if the truth of some *a* ∈ *I* is supported by itself in *I*.

Examples

- 1. Consider a logic program $R = \{a \leftarrow b, b \leftarrow a\}$ and let $I = \{a, b\}$. $a \in I$ is circularly justified by a self-supporting loop: $a \leftarrow b \leftarrow a$
- 2. Consider a DL-program KB = (L, R) from (Eiter et al. 2008, AIJ), where $L = \emptyset$ and $R = \{p(a) \leftarrow DL[c \uplus p; c](a)\}$. Let $I = \{p(a)\}$. $p(a) \in I$ is circularly justified by a self-supporting loop:

 $p(a) \leftarrow DL[c \uplus p; c](a) \leftarrow p(a)$

Fages' Well-Supportedness Condition

- For normal logic programs, the problem of circular justifications is elegantly handled by Fages' well-supportedness condition (Fages 1994, JMLCS).
- It defines a level mapping, which prevents well-supported models from circular justifications.
- It is a key property to characterize the standard answer set semantics (Gelfond and Lifschitz 1991, NJC) :
 - A model of a normal logic program is an answer set under the standard answer set semantics iff it is well-supported (Fages 1994, JMLCS).

Fages' Well-Supportedness Condition

- Can we extend Fages' well-supportedness condition from normal logic programs to DL-programs to overcome circular justifications?
- Our answer is Yes.

Our Contributions

- We solve the semantic problem of circular justifications with DL-programs by
 - Extending Fages' well-supportedness condition from normal logic programs to DL-programs, and
 - defining a well-supported semantics for DL-programs, which produces answer sets free of circular justifications.

Outline

- I. Background and Motivation
- DII. DL-Programs
 - III. Well-Supported Models
 - IV. Well-Supported Answer Set Semantics
 - V. Related Work
 - VI. Summary and Future Work

Notation

- A DL-program is KB = (L, R)
- L: a DL knowledge base built over $\Sigma_L = (\mathbf{A} \cup \mathbf{R}, \mathbf{I})$

> A, R, I: atomic concepts, atomic roles, and individuals.

- *R*: a rule base built over $\Sigma_R = (P, C)$
 - > P, C: predicate symbols, and constants
 - > $P \cap (A \cup R) = \emptyset$, and $C \subseteq I$
 - > HB_R : Herbrand base of R built over Σ_R
- **ground**(*R*): ground instances (relative to HB_R) of all rules in *R*

Notation

• *R* consists of rules of the form

 $H \leftarrow A_1, \cdots, Am, not B_1, \cdots, not B_n$

where *H* is an atom, and each A_i and B_i are atoms or dl-atoms

• A dl-atom is an interface between L and R:

 $DL[S_1 op_1 p_1, \cdots, S_m op_m p_m; Q](\boldsymbol{t})$

➤ each S_i is a concept or role built from A ∪ R, each p_i ∈ P is a predicate symbol, Q(t) is a dl-query and $op_i \in \{ ⊎, ⊍, ∩ \}$

Satisfaction Relation \vDash_L

Definition (Eiter et al. 2008, AIJ) Let KB = (L, R) and *I* be an interpretation. Define *satisfaction under L*, denoted \models_L , as follows:

- 1. For a ground atom $a \in HB_R$, $I \models_L a$ if $a \in I$.
- 2. For a ground dl-atom $A = DL[S_1 op_1 p_1, \dots, S_m op_m p_m; Q](t)$, $I \models_L A \text{ if } L \cup \bigcup_{i=1}^m A_i \models Q(t)$, where

$$A_i = \begin{cases} \{S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I\}, & \text{if } op_i = \uplus; \\ \{\neg S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \in I\}, & \text{if } op_i = \uplus; \\ \{\neg S_i(\mathbf{e}) \mid p_i(\mathbf{e}) \notin I\}, & \text{if } op_i = \varTheta. \end{cases}$$

*** Any $I \subseteq HBR$ is an interpretation of KB = (L, R). Let $I^- = HB_R \setminus I$ and $\neg I^- = \{\neg a \mid a \in I^-\}$

Program Transformation Reducts

Given an interpretation *I*, FLP reduct *f R^I_L* is obtained from ground(*R*) by

deleting every rule *r* with $I \neq_L body(r)$.

- Weak transformation reduct wR_L^I is obtained from fR_L^I by deleting all negative literals and all dl-atoms.
- Strong transformation reduct sR_L^I is obtained from fR_L^I by deleting all negative literals and all nonmonotonic dl-atoms.
- *** A ground dl-atom *A* is monotonic

if for any $I \subseteq J \subseteq HB_R$, $I \models_L A$ implies $J \models_L A$.

Three Semantics of DL-Programs

• Weak/strong/FLP answer set semantics

A model I of KB = (L, R) is a weak (resp. strong and FLP)

answer set if *I* is a minimal model of wR_L^I (resp. sR_L^I and fR_L^I)

(Eiter et al. 2008, AIJ; Eiter et al. 2005, IJCAI).

 FLP answer sets are minimal models, but weak/strong answer sets may not.

Circular Justification Problem

- The three answer set semantics suffer from the problem of **circular justifications**.
- **Example** Consider a DL-program KB = (L, R), where $L = \emptyset$ and

$$R: \quad p(a) \leftarrow q(a)$$
$$q(a) \leftarrow DL[c \uplus p, b \cap q; c \sqcup \neg b](a)$$

 $I = \{p(a), q(b)\}$ is the only model of *KB*. It is also a weak, a strong, and an FLP answer set. $p(a) \in I$ is circularly justified by a selfsupporting loop:

 $p(a) \leftarrow q(a) \leftarrow DL[c \uplus p, b \cap q; c \sqcup \neg b](a) \leftarrow p(a) \lor \neg q(a) \leftarrow p(a)$

Outline

- I. Background and Motivation
- II. DL-Programs
- ▶ III. Well-Supported Models
 - IV. Well-Supported Answer Set Semantics
 - V. Related Work
 - VI. Summary and Future Work

Fages' Well-Supportedness

Fages' well-supportedness condition (Fages 1994, JMLCS):
 A model / of a normal logic program is well-supported if there is a level mapping on / such that for every *a* ∈ *I*, there is a rule

 $a \leftarrow A_1, \cdots, Am, not B_1, \cdots, not Bn$

where *I* satisfies the rule body and the level of each A_i is below the level of *a*.

• This well-supportedness condition does not apply to DL-programs, due to occurrences of dl-atoms.

up to Satisfaction $(E, I) \vDash_L A$

- To handle dl-atoms, we introduce up to satisfaction.
- Informally, for $E \subseteq I \subseteq HB_R$,

 $(E, I) \vDash_L \alpha$ if for every *F* with $E \subseteq F \subseteq I, F \vDash_L \alpha$.

- $(E, I) \vDash_L \alpha$ implies that the truth of α depends only on *E* and *I*⁻, and is independent of *I*\E.
- For instance, if $E = \{a\}$, $I = \{a, b, c\}$ and $\alpha = a \land \neg d$, then for every *F* with $E \subseteq F \subseteq I$, $F \models_L \alpha$. Therefore,

$$(E,I) \vDash_L \alpha.$$

up to Satisfaction $(E, I) \vDash_L A$

Definition Let KB = (L, R) and $E \subseteq I \subseteq HB_R$. For any ground literal A, define E up to I satisfies A under L, denoted $(E, I) \models_L A$, as follows:

1. For a ground atom $a \in HB_R$,

 $(E, I) \vDash_L a \text{ if } a \in E; (E, I) \vDash_L not a \text{ if } a \notin I.$

2. For a ground dl-atom *A*,

 $(E, I) \vDash_L A$ if for every *F* with $E \subseteq F \subseteq I, F \vDash_L A$;

 $(E, I) \vDash_L not A$ if for no F with $E \subseteq F \subseteq I$, $F \vDash_L A$.

Monotonicity of $(E, I) \vDash_L A$

- **Proposition**_ Let *A* be a ground atom or dl-atom. For any
 - $E_1 \subseteq E_2 \subseteq I,$
 - ▶ if $(E_1, I) \vDash_L A$ then $(E_2, I) \vDash_L A$;
 - > and if $(E_1, I) \models_L not A$ then $(E_2, I) \models_L not A$.
- We use this up to satisfaction to extend Fages' wellsupportedness condition and define well-supported models for DL-programs.

- Informally, a model *I* of a DL-program is strongly well-supported if there is a level mapping on *I* such that for every $a \in I$, there is $E \subset I$ and a rule $a \leftarrow body(r)$, where $(E,I) \models_L body(r)$ and the level of each element in *E* is below the level of *a*.
- Put another way,
 - > $a \in I$ is supported by body(r),
 - > while the truth of body(r) is determined by E and I^- ,
 - > where no $b \in E$ is circularly dependent on a.
- This guarantees that strongly well-supported models are free of circular justifications.

Definition A model *I* of a DL-program KB = (L, R) is strongly well-supported if there exists a strict well-founded partial order < on *I* such that for every $a \in I$, there is $E \subset I$ and a rule $a \leftarrow body(r)$ in ground(R) such that $(E, I) \models_L body(r)$ and for every $b \in E, b < a$.

- **Example** Consider a DL-program KB = (L, R), where
- $L = \emptyset$ and

 $\begin{array}{ll} R: & p(a) \leftarrow q(a) \\ & q(a) \leftarrow DL[c \uplus p, b \cap q; c \sqcup \neg b](a) \end{array}$

 $I = \{p(a), q(b)\}$ is the only model of *KB*. It is also a weak, a strong, and an FLP answer set. However, *I* is not a strongly well-supported model, since for $p(a) \in I$ there is no $E \subset I$ satisfying the well-supportedness condition.

• **Theorem** Let KB = (L, R) be a DL-program, where

 $L = \emptyset$ and R is a normal logic program. A model I is a strongly well-supported model of KB iff I is a wellsupported model of R under Fages' definition.

 As a result, Fages' well-supportedness condition is extended to DL-programs.

Outline

- I. Background and Motivation
- II. DL-Programs
- III. Well-Supported Models
- ▷ IV. Well-Supported Answer Set Semantics
 - V. Related Work
 - VI. Summary and Future Work

Consequence Operator $T_{KB}(E, I)$

• **Definition** Let KB = (L, R) and $E \subseteq I \subseteq HB_R$. Define

 $T_{KB}(E,I) = \{a | a \leftarrow body(r) \in ground(R) \text{ and } (E,I) \vDash_L body(r) \}$

• Monotonicity property of $T_{KB}(E, I)$

Theorem Let *I* be a model of *KB*. For any $E_1 \subseteq E_2 \subseteq I$,

 $T_{KB}(E_1, I) \subseteq T_{KB}(E_2, I) \subseteq I.$

Fixpoint $T_{KB}^{\alpha}(\emptyset, I)$

- $T_{KB}^{\alpha}(\emptyset, I)$: a fixpoint from the monotone sequence $\langle T_{KB}^{i}(\emptyset, I) \rangle_{i=0}^{\infty}$ with $T_{KB}^{0}(\emptyset, I) = \emptyset$ and $T_{KB}^{i+1}(\emptyset, I) = T_{KB}(T_{KB}^{i}(\emptyset, I), I)$
- **Theorem**_ Let *I* be a model of KB = (L, R). If $I = T_{KB}^{\alpha}(\emptyset, I)$ then *I* is a minimal model of *KB*.

Well-Supported Semantics

- **Definition** Let *I* be a model of a DL-program KB = (L, R). *I* is an answer set of *KB* if $I = T_{KB}^{\alpha}(\emptyset, I)$.
- Answer sets are exactly strongly well-supported models
 Theorem *I* is an answer set of *KB* iff *I* is a strongly well-supported model of *KB*.
- Therefore, we call such answer sets well-supported answer sets, which are free of circular justifications.

Well-Supported Semantics

Theorem If *I* is a well-supported answer set of *KB*, then

- *1. I* is a minimal model of *KB*.
- *2. I* is a strong answer set of *KB* that is also a weak answer set of *KB*.
- *3. I* is an FLP answer set of *KB*.

Outline

- I. Background and Motivation
- II. DL-Programs
- III. Well-Supported Models
- IV. Well-Supported Answer Set Semantics
- ▷ V. Related Work
 - VI. Summary and Future Work

Related Work

- 1. Weak answer set semantics (Eiter et al. 2008, AIJ)
 - > There are circular justifications by self-supporting loops.
- 2. Strong answer set semantics (Eiter et al. 2008, AIJ)
 - > The problem of circular justifications persists.
- 3. FLP answer set semantics (Eiter et al. 2005, IJCAI)
 - > Weak/strong answer sets may not be minimal models.
 - > FLP answer sets are minimal models.
 - > The problem of circular justifications persists.
- 4. Loop formula based semantics (Wang et al. 2010, TPLP)
 - > The problem of circular justifications persists.

Related Work

- FLP answer set semantics is based on FLP-reduct, a concept introduced in (Faber et al. 2004, JELIA) to define answer set semantics for logic programs with aggregates.
- Our up to satisfaction relation is inspired by conditional satisfaction, a concept introduced in (Son et al. 2007, JAIR) to define answer set semantics for logic programs with aggregates.
- DL-programs and logic programs with aggregates are closely related. Exploiting the deep connection presents an interesting future work.

Outline

- I. Background and Motivation
- II. DL-Programs
- III. Well-Supported Models
- IV. Well-Supported Answer Set Semantics
- V. Related Work
- ▷ VI. Summary and Future Work

Summary and Future Work

• Summary:

To resolve the semantic problem of circular justifications with DL-programs, we

- Extended Fages' well-supportedness condition from normal logic programs to DL-programs, and
- presented a well-supported semantics for DLprograms, which produces answer sets free of circular justifications.

Summary and Future Work

• Future work:

Extend the work to DL-programs with disjunctive rule heads.

> Study the complexity properties.

Exploit the connection between DL-programs and logic programs with aggregates.

Yi-Dong Shen

ydshen@ios.ac.cn

http://lcs.ios.ac.cn/~ydshen