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Semantic Web Stack 
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Integration in the Semantic Web 

 Ontologies describe terminological knowledge. 

 Rules model constraints and exceptions over the 

ontologies. 

 They provide complementary descriptions of the same 

problem domain, so a unifying logic is used to 

 integrate the two components, and 

 study the semantic properties of the integrated knowledge base  

4 



Three Forms of Integration 

 Loose integration  

 Ontologies and rules share no predicate symbols (Eiter et al. 

2008, AIJ). 

 Tight (or Hybrid) integration 

 Ontologies and rules share some predicate symbols (Rosati 

2006, KR; Lukasiewicz 2010, TKDE). 

 Full integration 

 Ontologies and rules share the same vocabulary (de Bruijn et 

al. 2008, KR; Motik and Rosati 2010, JACM). 
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DL-Programs 

 We consider a loose integration, called Description logic 

programs (or DL-programs)  (Eiter et al. 2008, AIJ) 

 A DL-program is 𝐾𝐵 = (𝐿, 𝑅)  

 𝐿:  a DL knowledge base (ontologies).  

 𝑅:  an extended logic program under the answer set semantics. 
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Semantic Issues with DL-Programs 

 Weak answer set semantics (Eiter et al. 2008, AIJ) 

 The authors noted that an obvious disadvantage of the 

semantics is that it may produce counterintuitive answer sets 

with circular justifications by self-supporting loops. 

 Strong answer set semantics (Eiter et al. 2008, AIJ) 

 We observed that the problem of circular justifications persists 

in this semantics. 

 FLP answer set semantics (Eiter et al. 2005, IJCAI) 

 We observed that the problem of circular justifications persists 

in this semantics. 
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Semantic Issues with DL-Programs 

 Therefore, it presents an interesting yet challenging 

open problem to develop a new semantics for DL-

programs, which produces answer sets free of 

circular justifications. 
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Circular Justifications 

 A model 𝐼 of a logic program 𝑅 is circularly justified if 

the truth of some 𝑎 ∈ 𝐼 is supported by itself in 𝐼. 

 Examples 

1. Consider a logic program 𝑅 = *𝑎 ← 𝑏.  𝑏 ← 𝑎+ and let 𝐼 = 𝑎, 𝑏 . 

𝑎 ∈ 𝐼 is circularly justified by a self-supporting loop: 𝒂 ⇐ 𝒃 ⇐ 𝒂  

2. Consider a DL-program 𝐾𝐵 = (𝐿, 𝑅) from (Eiter et al. 2008, AIJ), 

where 𝐿 = ∅ and 𝑅 = 𝑝 𝑎 ← 𝐷𝐿,𝑐 ⊎ 𝑝; 𝑐-(𝑎) . Let 𝐼 = 𝑝(𝑎) . 

𝑝(𝑎) ∈ 𝐼 is circularly justified by a self-supporting loop: 

𝒑 𝒂 ⇐ 𝑫𝑳,𝒄 ⊎ 𝒑; 𝒄-(𝒂) ⇐ 𝒑(𝒂) 
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Fages’ Well-Supportedness Condition 

 For normal logic programs, the problem of circular 

justifications is elegantly handled by Fages’ well-

supportedness condition (Fages 1994, JMLCS). 

 It defines a level mapping, which prevents well-supported 

models from circular justifications. 

 It is a key property to characterize the standard answer 

set semantics (Gelfond and Lifschitz 1991, NJC) :  

 A model of a normal logic program is an answer set under the standard 

answer set semantics iff it is well-supported (Fages 1994, JMLCS). 
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Fages’ Well-Supportedness Condition 

 Can we extend Fages’ well-supportedness condition from 

normal logic programs to DL-programs to overcome 

circular justifications? 

 Our answer is Yes. 
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Our Contributions 

 We solve the semantic problem of circular justifications 

with DL-programs by 

 extending Fages’ well-supportedness condition from normal 

logic programs to DL-programs, and 

 defining a well-supported semantics for DL-programs, which 

produces answer sets free of circular justifications.  
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Notation 

 A DL-program is 𝐾𝐵 = (𝐿, 𝑅) 

 𝐿: a DL knowledge base built over Σ𝐿 = 𝐀 ∪ 𝐑, 𝐈  

 A, R, I: atomic concepts, atomic roles, and individuals. 

 𝑅: a rule base built over Σ𝑅 = 𝑷, 𝑪  

 P, C: predicate symbols, and constants 

 𝐏 ∩ 𝐀 ∪ 𝐑 = ∅,  and 𝐂 ⊆ 𝐈 

 𝐻𝐵𝑅: Herbrand base of 𝑅 built over Σ𝑅 

 ground(𝑅): ground instances (relative to 𝐻𝐵𝑅) of all rules in 𝑅 
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Notation 

 𝑅 consists of rules of the form  

𝐻 ← 𝐴1, ⋯ , 𝐴𝑚, 𝑛𝑜𝑡 𝐵1, ⋯ , 𝑛𝑜𝑡 𝐵𝑛  

where 𝐻 is an atom, and each 𝐴𝑖 and 𝐵𝑖 are atoms or dl-atoms 

 A dl-atom is an interface between 𝐿 and 𝑅:  

               𝐷𝐿,𝑆1 𝑜𝑝1 𝑝1, ⋯ , 𝑆𝑚 𝑜𝑝𝑚 𝑝𝑚; 𝑄-(𝒕)  

 each Si is a concept or role built from 𝐀 ∪ 𝐑, each p𝑖 ∈ 𝑷  is a 

predicate symbol, 𝑄(𝒕) is a dl-query and   
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Satisfaction Relation ⊨𝐿   

Definition (Eiter et al. 2008, AIJ)  Let 𝐾𝐵 =  (𝐿, 𝑅) and 𝐼 be an 

interpretation. Define satisfaction under 𝐿, denoted ⊨𝐿, as follows: 

1. For a ground atom a ∈ 𝐻𝐵𝑅, 𝐼 ⊨𝐿 𝑎 if 𝑎 ∈ 𝐼. 

2. For a ground dl-atom 𝐴 = 𝐷𝐿,𝑆1 𝑜𝑝1 𝑝1, ⋯ , 𝑆𝑚 𝑜𝑝𝑚 𝑝𝑚; 𝑄- 𝒕 , 

𝐼 ⊨𝐿 𝐴 if 𝐿 ∪∪𝑖=1
𝑚 𝐴𝑖 ⊨ 𝑄 𝒕 ,  where 

 

 

  

*** Any 𝐼 ⊆ 𝐻𝐵𝑅 is an interpretation of 𝐾𝐵 =  (𝐿, 𝑅). Let 𝐼− = 𝐻𝐵𝑅 \𝐼 and 

¬𝐼− = *¬𝑎|𝑎 ∈ 𝐼−} 
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Program Transformation Reducts 

 Given an interpretation 𝐼, FLP reduct 𝒇𝑹𝑳
𝑰  is obtained from 

ground(𝑅) by 

deleting every rule r with 𝐼⊭𝐿𝑏𝑜𝑑𝑦 𝑟 . 

 Weak transformation reduct 𝒘𝑹𝑳
𝑰  is obtained from 𝒇𝑹𝑳

𝑰  by 

deleting all negative literals and all dl-atoms. 

 Strong transformation reduct 𝒔𝑹𝑳
𝑰  is obtained from 𝒇𝑹𝑳

𝑰  by 

deleting all negative literals and all nonmonotonic dl-atoms. 
 

 *** A ground dl-atom 𝐴  is monotonic  

           if for any 𝐼 ⊆ 𝐽 ⊆ 𝐻𝐵𝑅 , 𝐼 ⊨𝐿 𝐴 implies 𝐽 ⊨𝐿 𝐴.  
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Three Semantics of DL-Programs 

 Weak/strong/FLP answer set semantics  

        A model 𝐼 of 𝐾𝐵 =  (𝐿, 𝑅) is a weak (resp. strong and FLP)  

       answer set if 𝐼 is a minimal model of 𝒘𝑹𝑳
𝑰  (resp. 𝒔𝑹𝑳

𝑰   and 𝒇𝑹𝑳
𝑰 )  

       (Eiter et al. 2008, AIJ; Eiter et al. 2005, IJCAI). 

 FLP answer sets are minimal models, but weak/strong 

answer sets may not. 
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Circular Justification Problem 

 The three answer set semantics suffer from the 

problem of circular justifications. 
 

 Example  Consider a DL-program 𝐾𝐵 = 𝐿, 𝑅 , where 𝐿 = ∅ and 

         𝑅:     𝑝 𝑎 ← 𝑞 𝑎  

 

𝐼 = *𝑝 𝑎 , 𝑞 𝑏 + is the only model of 𝐾𝐵. It is also a weak, a strong, 

and  an FLP answer set. 𝑝 𝑎 ∈ 𝐼 is circularly justified by a self-

supporting loop:  

𝑝 𝑎 ⇐ 𝑞 𝑎 ⇐                                                          ⇐ 𝑝 𝑎 ∨ ¬𝑞 𝑎 ⇐ 𝑝(𝑎) 
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Fages’ Well-Supportedness  

 Fages’ well-supportedness condition (Fages 1994, JMLCS): 

A model I of a normal logic program is well-supported if there is a 

level mapping on I such that for every 𝑎 ∈ 𝐼, there is a rule  

                     𝑎 ← 𝐴1, ⋯ , 𝐴𝑚, 𝑛𝑜𝑡 𝐵1, ⋯ , 𝑛𝑜𝑡 𝐵𝑛  

where I satisfies the rule body and the level of each 𝐴𝑖 is below the 

level of 𝑎. 
 

 This well-supportedness condition does not apply to 

DL-programs, due to occurrences of dl-atoms. 
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up to Satisfaction (𝐸, 𝐼) ⊨𝐿𝐴 

 To handle dl-atoms, we introduce up to satisfaction.  

 Informally, for 𝐸 ⊆ 𝐼 ⊆ 𝐻𝐵𝑅,    

          𝐸, 𝐼 ⊨𝐿 𝛼 if for every 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝛼. 

 𝐸, 𝐼 ⊨𝐿 𝛼 implies that the truth of 𝛼 depends only on 𝐸 

and 𝐼−, and is independent of 𝐼\E.  

 For instance, if 𝐸 = *𝑎+, 𝐼 = *𝑎, 𝑏, 𝑐+ and 𝛼 = 𝑎 ∧ ¬𝑑,  

    then for every 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝛼. Therefore,  

    𝐸, 𝐼 ⊨𝐿 𝛼. 
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up to Satisfaction (𝐸, 𝐼) ⊨𝐿𝐴 

Definition  Let 𝐾𝐵 = 𝐿, 𝑅   and 𝐸 ⊆ 𝐼 ⊆ 𝐻𝐵𝑅. For any 

ground literal 𝐴, define 𝐸 𝑢𝑝 𝑡𝑜 𝐼 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝐴 𝑢𝑛𝑑𝑒𝑟 𝐿,

denoted 𝐸, 𝐼 ⊨𝐿 𝐴, as follows:  

1. For a ground atom a ∈ 𝐻𝐵𝑅,   

                𝐸, 𝐼 ⊨𝐿 𝑎 if 𝑎 ∈ 𝐸; 𝐸, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝑎 if 𝑎 ∉ 𝐼. 

2. For a ground dl-atom 𝐴,   

                𝐸, 𝐼 ⊨𝐿 𝐴 if for every 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝐴; 

                𝐸, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝐴 if for no 𝐹 with 𝐸 ⊆ 𝐹 ⊆ 𝐼, 𝐹 ⊨𝐿 𝐴. 
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Monotonicity of (𝐸, 𝐼) ⊨𝐿𝐴 

 Proposition  Let 𝐴 be a ground atom or dl-atom. For any 

𝐸1 ⊆ 𝐸2 ⊆ 𝐼,  

 if 𝐸1, 𝐼 ⊨𝐿 𝐴 then 𝐸2, 𝐼 ⊨𝐿 𝐴; 

 and if 𝐸1, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝐴 then 𝐸2, 𝐼 ⊨𝐿 𝑛𝑜𝑡 𝐴. 

 

 We use this up to satisfaction to extend Fages’ well-

supportedness condition and define well-supported 

models for DL-programs. 
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Well-Supported Models 

 Informally, a model I of a DL-program is strongly well-supported 

if there is a level mapping on I such that for every 𝑎 ∈ 𝐼, there is 

𝐸 ⊂ 𝐼 and a rule 𝑎 ← 𝑏𝑜𝑑𝑦(𝑟), where 𝐸, 𝐼 ⊨𝐿 𝑏𝑜𝑑𝑦 𝑟  and the 

level of each element in 𝐸 is below the level of 𝑎. 

 Put another way,  

 𝑎 ∈ 𝐼 is supported by 𝑏𝑜𝑑𝑦(𝑟),  

 while the truth of 𝑏𝑜𝑑𝑦(𝑟) is determined by 𝐸 and 𝐼−,  

 where no 𝑏 ∈ 𝐸 is circularly dependent on a.  

 This guarantees that strongly well-supported models are free of 

circular justifications. 
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Well-Supported Models 

Definition  A model I of a DL-program 𝐾𝐵 = (𝐿, 𝑅) is 

strongly well-supported if there exists a strict well-founded 

partial order ≺ on I such that for every 𝑎 ∈ 𝐼, there is 𝐸 ⊂ 𝐼 

and a rule 𝑎 ← 𝑏𝑜𝑑𝑦(𝑟) in 𝑔𝑟𝑜𝑢𝑛𝑑 𝑅  such that  

        𝐸, 𝐼 ⊨𝐿 𝑏𝑜𝑑𝑦 𝑟  and  for every 𝑏 ∈ 𝐸, 𝑏 ≺ 𝑎.  
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Well-Supported Models 

Example  Consider a DL-program 𝐾𝐵 = 𝐿, 𝑅 , where 

𝐿 = ∅ and 

         𝑅:     𝑝 𝑎 ← 𝑞 𝑎  

 

𝐼 = *𝑝 𝑎 , 𝑞 𝑏 + is the only model of 𝐾𝐵. It is also a weak, 

a strong, and an FLP answer set. However, 𝐼 is not a 

strongly well-supported model, since for 𝑝 𝑎 ∈ 𝐼 there is 

no 𝐸 ⊂ 𝐼 satisfying the well-supportedness condition.  
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Well-Supported Models 

 Theorem  Let 𝐾𝐵 = 𝐿, 𝑅  be a DL-program, where 

𝐿 = ∅ and 𝑅 is a normal logic program. A model 𝐼 is a 

strongly well-supported model of 𝐾𝐵 iff 𝐼 is a well-

supported model of 𝑅 under Fages’ definition. 

 

 As a result, Fages’ well-supportedness condition is 

extended to DL-programs. 
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Consequence Operator 𝑇𝐾𝐵 𝐸, 𝐼  

 Definition  Let 𝐾𝐵 = (𝐿, 𝑅) and 𝐸 ⊆ 𝐼 ⊆ 𝐻𝐵𝑅. Define 

𝑇𝐾𝐵 𝐸, 𝐼 = *𝑎|𝑎 ← 𝑏𝑜𝑑𝑦 𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑅  and 𝐸, 𝐼 ⊨𝐿 𝑏𝑜𝑑𝑦 𝑟 } 
 

 Monotonicity property of 𝑇𝐾𝐵 𝐸, 𝐼  

Theorem  Let 𝐼 be a model of 𝐾𝐵. For any 𝐸1 ⊆ 𝐸2 ⊆ 𝐼,  

𝑇𝐾𝐵 𝐸1, 𝐼 ⊆ 𝑇𝐾𝐵 𝐸2, 𝐼 ⊆ 𝐼.  
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Fixpoint 𝑇𝐾𝐵
𝛼 ∅, 𝐼  

 𝑇𝐾𝐵
𝛼 ∅, 𝐼 : a fixpoint from the monotone sequence 

𝑇𝐾𝐵
𝑖 ∅, 𝐼

𝑖=0

∞
 with 𝑇𝐾𝐵

0 ∅, 𝐼 = ∅ and 𝑇𝐾𝐵
𝑖+1 ∅, 𝐼 =

𝑇𝐾𝐵 𝑇𝐾𝐵
𝑖 ∅, 𝐼 , 𝐼  

 

 Theorem  Let 𝐼 be a model of 𝐾𝐵 = (𝐿, 𝑅). If 𝐼 =

𝑇𝐾𝐵
𝛼 ∅, 𝐼  then 𝐼 is a minimal model of 𝐾𝐵.  
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Well-Supported Semantics 

 Definition  Let 𝐼 be a model of a DL-program 𝐾𝐵 = (𝐿, 𝑅). 

𝐼 is an answer set of 𝐾𝐵 if 𝐼 = 𝑇𝐾𝐵
𝛼 ∅, 𝐼 . 

 

 Answer sets are exactly strongly well-supported models 

Theorem  𝐼 is an answer set of 𝐾𝐵 iff 𝐼 is a strongly well-

supported model of 𝐾𝐵.  

 

 Therefore, we call such answer sets well-supported 

answer sets, which are free of circular justifications. 
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Well-Supported Semantics 

Theorem  If 𝐼 is a well-supported answer set of 𝐾𝐵, then  

1. 𝐼 is a minimal model of 𝐾𝐵. 

2. 𝐼 is a strong answer set of 𝐾𝐵 that is also a weak 

answer set of 𝐾𝐵. 

3. 𝐼 is an FLP answer set of 𝐾𝐵. 
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Related Work 

1. Weak answer set semantics (Eiter et al. 2008, AIJ) 

 There are circular justifications by self-supporting loops. 

2. Strong answer set semantics (Eiter et al. 2008, AIJ) 

 The problem of circular justifications persists. 

3. FLP answer set semantics (Eiter et al. 2005, IJCAI) 

 Weak/strong answer sets may not be minimal models. 

 FLP answer sets are minimal models. 

 The problem of circular justifications persists. 

4. Loop formula based semantics (Wang et al. 2010, TPLP) 

 The problem of circular justifications persists. 
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Related Work 

 FLP answer set semantics is based on FLP-reduct, a concept 

introduced in (Faber et al. 2004, JELIA) to define answer set 

semantics for logic programs with aggregates. 

 Our up to satisfaction relation is inspired by conditional 

satisfaction, a concept introduced in (Son et al. 2007, JAIR) to 

define answer set semantics for logic programs with 

aggregates. 

 DL-programs and logic programs with aggregates are closely 

related. Exploiting the deep connection presents an interesting 

future work. 
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Summary and Future Work  

 Summary: 

To resolve the semantic problem of circular justifications 

with DL-programs, we 

extended Fages’ well-supportedness condition from 

normal logic programs to DL-programs, and 

presented a well-supported semantics for DL-

programs, which produces answer sets free of 

circular justifications.  
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Summary and Future Work  

 Future work:  

Extend the work to DL-programs with disjunctive rule 

heads. 

Study the complexity properties. 

Exploit the connection between DL-programs and 

logic programs with aggregates. 
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