
A Default Approach to Semantics of Logic

Programs with Constraint Atoms

Yi-Dong Shen1 and Jia-Huai You2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

ydshen@ios.ac.cn
2 Department of Computing Science, University of Alberta, Edmonton, Alberta,

Canada T6G 2E8
you@cs.ualberta.ca

Abstract. We define the semantics of logic programs with (abstract)
constraint atoms in a way closely tied to default logic. Like default logic,
formulas in rules are evaluated using the classical entailment relation, so
a constraint atom can be represented by an equivalent propositional for-
mula. Therefore, answer sets are defined in a way closely related to de-
fault extensions. The semantics defined this way enjoys two properties
generally considered desirable for answer set programming − minimal-
ity and derivability. The derivability property is very important because
it guarantees free of self-supporting loops in answer sets. We show that
when restricted to basic logic programs, this semantics agrees with the
conditional-satisfaction based semantics. Furthermore, answer sets by the
minimal-model based semantics can be recast in our approach. Conse-
quently, the default approach gives a unifying account of the major exist-
ing semantics for logic programs with constraint atoms. This also makes it
possible to characterize, in terms of the minimality and derivability prop-
erties, the precise relationship between them and contrast with others.

1 Introduction

In knowledge representation and reasoning, it is often desirable to embed into a
general inference process/structure special methods for solving/querying a pre-
defined relation. The goal is to make representation easier and reasoning more
effective. The technique has been explored, under the name of global constraints,
in constraint programming [1], and aggregates in logic programming [2].

More recently, a great deal of attention has been paid to incorporating con-
straint atoms (c-atoms for short, sometimes under the name of aggregates) into
answer set programming (ASP) [3,4,5,6,7,8,9,10,11,12,13,14,15]. The intensive
study on the subject is largely due to the unsettling question on the seman-
tics for these programs. All of the major semantics proposed so far agree on
logic programs with monotone c-atoms; when arbitrary c-atoms are allowed,
disagreements exist. Among the recent proposals beyond monotone constraints,
two approaches have attracted the most attention − the minimal-model based
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semantics [4] (with its extension [6]) and the conditional-satisfaction based se-
mantics [15] (with the equivalent one [12]). Although example programs have
been used to show their differences, since the ways in which they are defined are
quite different, to the best of our knowledge, no precise relationship has been
established.

In this paper, we propose a different approach to the semantics of logic pro-
grams with c-atoms, with a close tie to default logic [16]. We consider programs
consisting of rules of the form H ← G, where H is a propositional atom and G an
arbitrary formula built from atoms, c-atoms and standard connectives. Like de-
fault logic, formulas in rules are evaluated using the classical entailment relation,
so a constraint atom can be represented by an equivalent propositional formula.
Therefore, answer sets are defined in a way closely related to default extensions.
The semantics defined this way enjoys two properties generally considered desir-
able for answer set programming − minimality and derivability. The derivability
property is very important because it guarantees free of self-supporting loops in
answer sets. Several major existing semantics, such as [4,6,9], lack this property,
thus their answer sets may incur self-supporting loops.

We show that for basic logic programs, this semantics agrees with the
conditional-satisfaction based semantics. This reveals that the latter can be
viewed as a form of default reasoning without resorting to conditional satis-
faction. Furthermore, answer sets by the minimal-model based semantics can be
recast in our approach. This results in a generalization of the existing semantics
to arbitrary propositional formulas. This generalization differs from the one to
nested expressions [6] in their different underlying logics and the ways in which
c-atoms are encoded by formulas. Our approach is like default logic where for-
mulas are evaluated as in classical logic, while answer sets of nested expressions
are minimal total models in the logic here-and-there [17].

Our approach provides a unifying framework for evaluating/comparing the
major existing semantics. In particular, we can characterize their differences in
terms of the minimality and derivability properties. We show that an answer set
by the conditional-satisfaction based semantics is an answer set by the minimal-
model based semantics, with the additional condition that it is derivable in the
sense of default logic.

2 Preliminaries

We restrict attention to a propositional language, as we consider only Herbrand
interpretations so that the first-order case reduces to a propositional one via
grounding. We assume a propositional language determined by a fixed countable
set Σ of propositional atoms.

Any subset I of Σ is an interpretation. We call I+ = I the positive literals of
I, and I− = {¬a | a ∈ Σ \ I} the negative literals.

A c-atom A is a pair (D, C), where D is a finite set of atoms in Σ and C
is a collection of sets of atoms in D, i.e., C ⊆ 2D with 2D being the powerset
of D. For convenience, we use Ad and Ac to refer to the components D and C
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of A, respectively. As a general abstract framework, a c-atom A can be used
to represent any constraint with a finite set Ac of admissible solutions over a
finite domain Ad, including various aggregates [10,11]. Therefore, in the sequel
we use the aggregate notation and c-atoms exchangeably to express abstract
constraints.

The complement of a c-atom A is the c-atom A′ with A′
d = Ad and A′

c =
2Ad \Ac.

Formulas are built from atoms and c-atoms using connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), and ⊃ (implication), as in propositional logic.
A literal is an atom/c-atom or a negated atom/c-atom. A theory is a set of
formulas. When a theory mentions no c-atoms, it is called an ordinary theory.
An ordinary theory may be simply called a theory if it is clear from the context.

A (deductive) rule r is of the form H ← B, where H is an atom, B is a
formula, and ← is an if-then operator. The meaning of r is that “if the logic
property B holds then H holds.” We use head(r) and body(r) to refer to the
head H and body B of r, respectively.

A general logic program (or program) P is a set of rules. P is called a basic
program if the body of each rule is a conjunction of literals. A normal program
is a basic program without c-atoms. A positive program is a normal program
without negative literals.

Let I ⊆ Σ be an interpretation. I satisfies an atom A if A ∈ I; ¬A if A �∈ I.
I satisfies a c-atom A if Ad ∩ I ∈ Ac; ¬A if Ad ∩ I �∈ Ac. Therefore, it follows
that I satisfies ¬A if and only if I satisfies the complement of A.

The satisfaction of a formula F by an interpretation I is defined as in proposi-
tional logic. I satisfies a rule r if it satisfies head(r) or it does not satisfy body(r).
I is a model of a theory W if it satisfies all formulas of W . I is a model of a
program P if it satisfies all rules of P . A minimal model is a model none of whose
proper subset is also a model. A model I of P is supported if for each a ∈ I,
there is a rule in P of the form a← body(r) such that body(r) is satisfied by I.
For any expression E, we say E is true (resp. false) in I if and only if I satisfies
(resp. does not satisfy) E.

For an (ordinary) theory W , we say that W is consistent (or satisfiable) if
W has a model. We use Cn(W ) to denote the deductive closure of W as in
propositional logic.

The entailment relation |= is defined as a minor extension to the one in propo-
sitional logic. For any two formulas F and G (possibly containing c-atoms), F
entails G, denoted F |= G, if G is true in all models of F . We write F ≡ G if
F |= G and G |= F , in which case F and G are said to be logically equivalent.
Note that when F and G involve no c-atoms, the entailment relation is exactly
the classical one. The extension makes it convenient to talk about formulas in-
volving c-atoms being logically equivalent.

For a set S of atoms, when S appears in a formula, it expresses a conjunction∧
a∈S a. Similarly, ¬S expresses a conjunction

∧
a∈S ¬a.

In this paper, the standard ASP semantics refers to the stable model semantics
defined in [18].
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3 Answer Sets for Programs without C-Atoms

We start by recalling the rationality principle − the spirit of the standard ASP
semantics for normal programs, which says that one shall not believe anything
one is not forced to believe [19,18]. The rationality principle instructs us that in
the construction of an answer set I from a normal program P , we should make
as many negative beliefs as possible, provided that no contradiction is derived.
On the one hand, this means that the answer set I shall be a minimal model
of P . On the other hand, this means that given the set I− = {¬a1, ...,¬am} of
negative beliefs, all positive beliefs I+ in I shall be derivable by applying the
deductive rules H ← B in P in the way that if B holds, then derive H .

We apply the rationality principle to general logic programs. The derivability
property is formally defined by means of deductive sets.

Definition 1. Let P be a program without c-atoms and W an (ordinary) theory.
The deductive set Th(P, W ) of P and W is the smallest set of formulas satisfying
the following two conditions: (1) W ⊆ Th(P, W ); (2) for each rule r in P , if
Th(P, W ) |= body(r) then head(r) ∈ Th(P, W ).

We can alternatively use a fixpoint approach to define the deductive set. We first
introduce the following one-step provability operator:

TP (W ) = {H | P has a rule H ← B such that W |= B}

Since the entailment relation |= is defined as in propositional logic, W |= B
implies V |= B if W ⊆ V . Then, TP is monotone, i.e., for any theories W1, W2

such that W1 ⊆ W2, TP (W1) ⊆ TP (W2). Therefore, for any (ordinary) theory
W , the sequence T i

P (W ), where T 0
P (W ) = W and T i+1

P (W ) = W ∪ TP (T i
P (W )),

is monotonically increasing and has a fixpoint T δ
P (W ) (i.e., there exists the first

ordinal δ such that T δ
P (W ) = T δ+1

P (W )). We then have this fixpoint theory
T δ

P (W ) as the deductive set of P and W , i.e. Th(P, W ) = T δ
P (W ).1

The above fixpoint definition shows that all positive literals in a deductive set
are derived stratum by stratum via the fixpoint sequence. This means that the
derivability property guarantees free of self-supporting loops.

Our definition of answer sets for general logic programs adheres to the ratio-
nality principle and builds directly on the derivability property.

Definition 2. Let P be a program without c-atoms and I an interpretation.
I is an answer set of P if (1) Th(P, I−) is consistent; and (2) for each a ∈ I,
Th(P, I−) |= a.

Since the head of each rule is an atom, Th(P, I−) consists of I− plus a set of
atoms. In particular, we have

Theorem 1. Let P be a program without c-atoms and I an interpretation. I is
an answer set of P if and only if Th(P, I−) = I ∪ I−.
1 When P is a normal program and W is a set of negative literals, T δ

P (W ) coincides
with the fixpoint T δ

P ′(∅) introduced in [20], where P ′ = P ∪ W .
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Example 1. Consider the following program:
P1 : p(a)← (p(a) ∧ ¬p(b)) ∨ (p(b) ∧ ¬p(a)) ∨ (p(a) ∧ p(b)).

p(b)← ¬q. q ← ¬p(b).
Let Σ = {p(a), p(b), q} and I = {p(a), p(b)}. Then I− = {¬q}. T 0

P1
(I−) =

I− = {¬q}, T 1
P1

(I−) = I− ∪ TP1(T 0
P1

(I−)) = {¬q, p(b)}, T 2
P1

(I−) = I− ∪
TP1(T 1

P1
(I−)) = {¬q, p(b), p(a)}, and T 3

P1
(I−) = T 2

P1
(I−). Note that the body

of the second rule is entailed by {¬q}, and the body of the first rule is en-
tailed by {¬q, p(b)}. Therefore, Th(P1, I

−) = T 2
P1

(I−) = {¬q, p(b), p(a)}. Since
Th(P1, I

−) = I ∪ I−, I = {p(a), p(b)} is an answer set of P1.
It is easy to check I = {q} is also an answer set of P1. No other interpretations

are answer sets of P1. For instance, for I = {p(b)} we have the deductive set
Th(P1, I

−) = {¬q,¬p(a), p(b), p(a)}, which is inconsistent. �
Example 2. Consider another program:

P2 : c← ¬((a ∧ ¬b) ∨ (b ∧ ¬a)).
a← c. b← a.

Let Σ = {a, b, c} and I = {a, b, c}. Then I− = ∅. T 0
P2

(I−) = ∅ and T 1
P2

(I−) =
T 0

P2
(I−), where no rule body is entailed by ∅. Th(P2, I

−) = ∅ and thus I is not
an answer set of P2. No other interpretations are answer sets of P2. Therefore,
P2 has no answer set. �
The derivability property of the answer sets as defined by Definition 2 immedi-
ately follows from the definition. It is also easy to show that such answer sets
satisfy the minimality property.

Theorem 2. Answer sets by Definition 2 are supported, minimal models.

A supported, minimal model is not necessarily an answer set. For example, let
P consist of two rules: d ← ¬a and a ← a. I = {a} is a supported, minimal
model of P , but it is not an answer set.

For normal programs, answer sets defined above coincide with answer sets
under the standard ASP semantics.

Theorem 3. For a normal program P , an interpretation I is an answer set by
Definition 2 if and only if I is an answer set under the standard ASP semantics.

Our definition of answer sets is closely tied to Reiter’s default logic [16]. Recall
that a default theory is a pair � = (D, W ), where W is a theory, D is a set of de-
faults of the form α : β1,...,βm

γ , and α, β1, ..., βm, γ are formulas. For a theory E, let
Γ�(E) be the smallest deductively closed set of formulas satisfying the following
two conditions: (1) W ⊆ Γ�(E); (2) for each default r in D, if Γ�(E) |= α and
¬β1, ...,¬βm �∈ E, then γ ∈ Γ�(E). E is called an extension of � if E = Γ�(E).

Theorem 4. Let P be a program without c-atoms and I an interpretation. Let
D1 = { body(r):

a | a← body(r) ∈ P}, D2 = { : ¬a
¬a | a ∈ Σ}, and � = (D1 ∪D2, ∅).

Cn(Th(P, I−)) = Γ�(I ∪ I−).

By Theorem 1, I is an answer set of P if and only if I ∪ I− = Th(P, I−); then
by Theorem 4, if and only if Cn(I ∪I−) = Γ�(I ∪I−). Therefore, I is an answer
set of P if and only if Cn(I ∪ I−) is an extension of �.
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4 Answer Sets for Programs with C-Atoms

Since our semantics (Definition 2) is defined by deductive sets using the classical
entailment relation, it has an advantage that replacing the body of a rule by
a logically equivalent formula preserves answer sets. Therefore, to extend the
semantics to programs with c-atoms, it suffices to represent each c-atom as an
equivalent formula.

Recall that the satisfaction of a c-atom A is defined by means of propositional
interpretations [11]: for any interpretation I, I satisfies A if Ad ∩ I ∈ Ac, and
I satisfies ¬A if Ad ∩ I �∈ Ac. We want to have a suitable formula F with the
property that for any interpretation I, I satisfies A if and only if I satisfies
F . Such a formula has been introduced in [13], where it was used to justify an
abstract representation of c-atoms.

Definition 3 ([13]). Let A = (Ad, Ac) be a c-atom with Ac = {S1, ..., Sm}.
The DNF formula C1 ∨ ... ∨ Cm for A is defined as: each Ci is a conjunction
a1 ∧ ... ∧ ak ∧ ¬b1 ∧ ... ∧ ¬bl built from Si such that Si = {a1, ..., ak} and
(Ad \ Si) = {b1, ..., bl}.

Proposition 1. Let A be a c-atom and I an interpretation. Let C1 ∨ ... ∨ Cm

be the DNF formula for A. I satisfies A if and only if I satisfies C1 ∨ ... ∨ Cm.
I satisfies ¬A if and only if I satisfies ¬(C1 ∨ ... ∨ Cm).

Let body(r) be the body of a rule r, and body(r′) be body(r) with all c-atoms
replaced by their DNF formulas. By Proposition 1, an interpretation I satis-
fies body(r) if and only if I satisfies body(r′). We then have the following ASP
semantics for general logic programs.

Definition 4. Let P be a program and I an interpretation. I is an answer set
of P if I is an answer set of P ′ as defined in Definition 2, where P ′ is P with all
c-atoms replaced by their DNF formulas.

Since answer sets of P ′ satisfy both the minimality and the derivability property,
by Proposition 1 answer sets of P satisfy the two properties as well.

Example 3. Consider the following program (borrowed from [21]):

P3 : p(a)← COUNT ({X | p(X)}) > 0.
p(b)← ¬q. q ← ¬p(b).

The aggregate notation COUNT ({X | p(X)}) > 0 corresponds to a c-atom
A with Ad = {p(a), p(b)} and Ac = {{p(a)}, {p(b)}, {p(a), p(b)}}. The DNF
formula for A is (p(a) ∧ ¬p(b)) ∨ (p(b) ∧ ¬p(a)) ∨ (p(a) ∧ p(b)). By replacing A
with this DNF formula, we obtain P ′

3 which is the same as P1 in Example 1.
Since P ′

3 = P1 contains no c-atom, its answer sets can be computed applying
Definition 2. P1 has two answer sets: I1 = {p(a), p(b)} and I2 = {q}. Therefore,
by Definition 4 P3 has the two answer sets. �
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Example 4. Consider the following program with a negated constraint:

P4 : c← ¬1{a, b}1.
a← c. b← a.

The cardinality constraint 1{a, b}1 corresponds to a c-atom A with Ad = {a, b}
and Ac = {{a}, {b}}. The DNF formula for A is (a∧¬b)∨ (b∧¬a). By replacing
A with this DNF formula, we obtain P ′

4 which is the same as P2 in Example 2.
P2 has no answer set, thus P4 has no answer set. �

5 Relating to Other Approaches

Our approach provides a unifying framework for evaluating the major exist-
ing proposals for arbitrary c-atoms, including the conditional-satisfaction based
semantics [15], the minimal-model based semantics [4,5], and the computation-
based semantics [9]. In this section, we characterize the differences of these se-
mantics in terms of the minimality and derivability properties for basic programs.

5.1 Conditional-Satisfaction Based Semantics

We show that when restricted to basic programs, Definition 4 defines the same
answer sets as the ones by conditional-satisfaction [15].

To introduce the notion of conditional satisfaction, we need a simple program
transformation. Any atom a can be expressed as an elementary c-atom A =
({a}, {{a}}); any negated atom ¬a can be expressed as a c-atom A = ({a}, {∅});
and any negated c-atom ¬A can be replaced by the complement of A. Due to
this, in this section we assume all basic programs have been rewritten so that
their rules are of the form H ← A1 ∧ ... ∧Am, where each Ai is a c-atom.

Definition 5. Let R and S be two sets of atoms and A a c-atom. We say R
conditionally satisfies A w.r.t. S, denoted R |=S A, if R satisfies A and for every
S′ such that R ∩ Ad ⊆ S′ and S′ ⊆ S ∩ Ad, we have S′ ∈ Ac. For a rule r in a
basic program, R |=S body(r) if R |=S Ai for each Ai in body(r).

An immediate consequence operator TP (R, S) is defined in terms of the condi-
tional satisfaction.

Definition 6. Let P be a basic program and R and S be two sets of atoms.
Define

TP (R, S) = {a | a← body(r) ∈ P and R |=S body(r)}

It is proved that when the second argument is a model of P , TP is monotone
w.r.t. its first argument [15]. Therefore, for any model M the monotone sequence
T i

P (∅, M), where T 0
P (∅, M) = ∅ and T i+1

P (∅, M) = TP (T i
P (∅, M), M), converges

to a fixpoint T α
P (∅, M).

The conditional-satisfaction based ASP semantics says that a model M is an
answer set of P if M coincides with the fixpoint T α

P (∅, M) [15]. Denecker et al.
[22] and Shen and You [13] define the same semantics using different definitions.
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Example 5. Assume P4 of Example 4 has been rewritten to

P4 : c← ({a, b}, {∅, {a, b}}).
a← ({c}, {{c}}).
b← ({a}, {{a}}).

Note that the c-atom in the body of the first rule is the complement of the orig-
inal c-atom. This program has no answer set under the conditional-satisfaction
based semantics. Take M = {a, b, c} as an example, which is a model of P4. Let
T 0

P4
(∅, M) = ∅. Although the c-atom in the body of the first rule is satisfied by ∅,

it is not conditionally satisfied by ∅ w.r.t. M . As a result, we reach the fixpoint
T 1

P4
(∅, M) = TP4(T 0

P4
(∅, M), M) = ∅. M does not agree with the fixpoint ∅, thus

is not an answer set of P4. �
The conditional-satisfaction based fixpoint and the deductive set are closely
related.

Theorem 5. Let P be a basic program, P ′ be P with all c-atoms replaced by their
DNF formulas, and M be a model of P . We have T α

P (∅, M) = Th(P ′, M−)−M−.

The following corollary follows immediately, showing that the ASP semantics
of Definition 4 and the conditional-satisfaction based semantics agree on basic
programs.

Corollary 1. Let P be a basic program and M a model of P . M is an answer
set of P under the conditional-satisfaction based semantics if and only if M is
an answer set defined by Definition 4.

Since answer sets by Definition 4 respect the rationality principle, the conditional-
satisfaction based semantics also satisfies the two properties for basic programs.
Similar results have been established earlier [15], which shows that any answer set
under the conditional-satisfaction based semantics is a minimal model for which a
level mapping exists. The definition of a level mapping relies on identifying struc-
tural properties of a c-atom w.r.t. a given interpretation, in order to capture condi-
tional satisfaction. Thus, the derivability property can be seen as an independent
way to capture level mapping, without conditional satisfaction.

However, conditional satisfaction is not defined over disjunction of c-atoms.
In fact, a direct application could cause unintuitive behaviors.

Example 6 (borrowed from [23]). Let A be the aggregate SUM ({X | p(X)}) �=
−1. In standard mathematics, this is equivalent to SUM ({X | p(X)}) > −1 or
SUM ({X | p(X)}) < −1, because A ≡ B ∨C, where B and C denote the latter
two aggregates, respectively.

Now suppose S = {p(1)} and M = {p(1), p(2), p(−3)}. It can be verified that
while S |=M A, it is not the case that S |=M B or S |=M C. �
In our approach, c-atoms are represented by propositional formulas, which are
then evaluated as in propositional logic. As a result, logic equivalence guarantees
the preservation of answer sets. In fact, it is not difficult to verify that, for any
program P , replacing a formula in the body of a rule in P by a logically equivalent
one results in a program strongly equivalent to P . This is an advantage of our
approach, inherited from that of default logic.
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5.2 Minimal-Model Based Semantics

Let P be a basic program and I an interpretation. To check if I is an answer set,
this semantics first removes all rules whose body contains a literal that is not
satisfied by I, then defines I to be an answer set if I is a minimal model of the
simplified program P I [4,5]. Ferraris [6] defines an ASP semantics in a different
way, which agrees with the minimal-model based one on basic programs.

We now recast the minimal-model based semantics in our framework for gen-
eral logic programs, where c-atoms are represented by their DNF formulas. We
define the reduct P I of P w.r.t. I as the result of removing all rules r from P
such that body(r) is not satisfied by I.

Definition 7. Let P be a general logic program and P ′ be P with all c-atoms
replaced by their DNF formulas. An interpretation I is said to be a weak answer
set of P if I is a minimal model of P ′I .

Theorem 6. Weak answer sets of a program P are minimal models of P .

For basic programs, by Proposition 1 weak answer sets coincide with answer sets
under the minimal-model based semantics. Furthermore, we have

Theorem 7. Let P be a general logic program and P ′ be P with all c-atoms
replaced by their DNF formulas. An interpretation I is an answer set of P by
Definition 4 if and only if I is a weak answer set of P such that for any a ∈ I,
Th(P ′, I−) |= a.

It follows immediately that for basic programs, answer sets under the conditional-
satisfaction based semantics are such answer sets under the minimal-model based
semantics that are derivable via the deductive set.

The minimal-model based semantics does not satisfy the derivability property,
even for basic programs.

Example 7. Consider the following basic program:

P5 : p(1).
p(2)← p(−1).
p(−1)← SUM ({X | p(X)}) ≥ 1.

The aggregate SUM ({X | p(X)}) ≥ 1 corresponds to a c-atom A, where Ad =
{p(−1), p(1), p(2)} and Ac = {{p(1)}, {p(2)}, {p(−1), p(2)}, {p(1), p(2)}, {p(−1),
p(1), p(2)}}. The DNF formula for A is

(p(1) ∧ ¬p(−1) ∧ ¬p(2)) ∨ (¬p(1) ∧ ¬p(−1) ∧ p(2)) ∨ (¬p(1) ∧ p(−1) ∧ p(2))
∨(p(1) ∧ ¬p(−1) ∧ p(2)) ∨ (p(1) ∧ p(−1) ∧ p(2))

which as in propositional logic, can be simplified to (p(1) ∧ ¬p(−1)) ∨ p(2).
Let Σ = {p(1), p(−1), p(2)}. P5 has only one model, {p(1), p(−1), p(2)}. By

Definition 4 or equivalently under the conditional-satisfaction based semantics,
P5 has no answer set, since the model is not derivable via the deductive set.
However, I = {p(1), p(−1), p(2)} is an answer set of P5 under the minimal-
model based semantics. �
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It should be pointed out that due to lack of derivability, the minimal-model based
semantics ([4] and its extension [6]) may incur undesirable self-supporting loops
in its answer sets. For instance, in the above example I = {p(1), p(−1), p(2)} is
the answer set of P5, where p(2) and p(−1) can only be deduced via one of the
following self-supporting loops:

p(2)→ SUM ({X | p(X)}) ≥ 1→ p(−1)→ p(2).
p(−1)→ p(2)→ SUM ({X | p(X)}) ≥ 1→ p(−1).

That is, in order to derive p(2) and p(−1) from P5 we must assume either p(2)
or p(−1) is true in advance.

5.3 Computation-Based Semantics

Liu et al. [9] define an answer set I for a basic program P to be the fixpoint of
a computation 〈Ii〉∞i=0 with I0 = ∅ and Ii+1 = T nd

Qi
(Ii), where Qi is a subset of

the rules in P whose bodies are satisfied by Ii and T nd
Qi

(Ii) consists of all heads
of rules in Qi, such that for each i ≥ 0, Ii ⊆ Ii+1 and Qi ⊆ Qi+1.

Consider the following basic program:

P6 : p(1).
p(−1)← p(2).
p(2)← SUM ({X | p(X)}) ≥ 1.

As described in Example 7, the DNF formula for SUM ({X | p(X)}) ≥ 1 is
(p(1)∧¬p(−1))∨p(2). P6 has two models, {p(1), p(−1)} and {p(1), p(−1), p(2)}.

Let ri refer to the i-th rule. We have a computation for P6, where I0 = ∅,
I1 = {p(1)} with Q0 = {r1}, I2 = {p(1), p(2)} with Q1 = {r1, r3}, and I3 =
{p(1), p(−1), p(2)} with Q2 = {r1, r2, r3}. I3 is the fixpoint of the computation,
where I0 ⊆ ... ⊆ I3 and Q0 ⊆ Q1 ⊆ Q2. Thus I3 is an answer set of P6 under
the computation-based semantics.

Observe that I3 is not a minimal model of P6; neither is it derivable via
the deductive set Th(P6, I

−
3 ). This shows that the computation-based semantics

satisfies neither the minimality nor the derivability property.
Just like the minimal-model based semantics, due to lack of derivability the

computation-based semantics may incur undesirable self-supporting loops in its
answer sets. For instance, I3 = {p(1), p(−1), p(2)} is an answer set of P6, where
p(2) can only be deduced via a self-supporting loop

p(2)→ SUM ({X | p(X)}) ≥ 1→ p(2).

{p(1), p(−1), p(2)} is an answer set of P6 under the computation-based seman-
tics, but it is not under the minimal-model based one. On the contrary, {p(1),
p(−1), p(2)} is an answer set of P5 under the minimal-model based semantics,
but it is not under the computation-based one. This means that answer sets
under the minimal-model based semantics are not necessarily answer sets under
the computation-based semantics, and vice versa.
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To get more restricted computations (answer sets), Liu et al. [9] propose to
use a sub-satisfiability relation � to replace the standard satisfiability with the
property that for any interpretation I and c-atom A, I � A implies I satisfies
A. Then, different computations and answer sets can be obtained by embedding
different sub-satisfiability relations into the definition of computation.

6 Summary and Discussion

Incorporating constraints into a general knowledge representation and reasoning
(KR) system has proven to be a crucial step in gaining representation power
and reasoning efficiency. When logic programs with constraint atoms are taken
as the underlying KR language, the question on the semantics has raised great
interest, with competing views and definitions of answer sets.

For normal logic programs, the stable model semantics has roots in different
nonmonotonic formalisms, thus, as summarized by Lifschitz [24], leading to cur-
rent twelve different definitions. As pointed out by Lifschitz, “there are reasons
why each of them is valuable and interesting. A new characterization of stable
models can suggest an alternative picture of the intuitive meaning of logic pro-
grams; · · · or it can be interesting simply because it demonstrates a relationship
between seemingly unrelated ideas.”

In this paper, we developed an alternative new approach to the semantics of
logic programs with c-atoms, where formulas in rules are evaluated using the
classical entailment relation and c-atoms are represented by equivalent propo-
sitional formulas. The resulting framework can be seen as one with c-atoms
embedded into a fragment of default logic. It turns out that both the conditional-
satisfaction based semantics and the minimal-model based semantics have a root
in the default framework. The former can be viewed as a form of default reason-
ing without conditional satisfaction, while under exactly the same representation
of c-atoms, the latter can be recast in the same framework. As a result, we are
able to identify the precise relationship between the two major existing semantics
and contrast with others such as the computation-based semantics.

The semantics defined by the default approach has two important proper-
ties − minimality and derivability. The derivability property is very useful; it
guarantees free of self-supporting loops in answer sets. Our examples show that
several major existing semantics, such as [4,6,9], lack this property, thus their
answer sets may incur self-supporting loops.

Another advantage of the default approach is that replacing a constraint
by a logically equivalent one preserves strong equivalence. This is an impor-
tant feature, since constraint atoms are supposed to represent pre-defined/built-
in/global constraints in constraint solving, and special constraint propagation
rules for such a built-in constraint may need to be implemented or updated.
In this case, one only needs to verify the preservation of satisfaction. This fea-
ture also provides a methodology of representing a constraint by some (logically
equivalent) combination of constraints. For example, an aggregate SUM (..) �= k
can be substituted by SUM (..) > k ∨ SUM (..) < k, according to the standard
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mathematics while preserving strong equivalence. Since constraints are viewed
as propositional formulas, this feature is applicable in a more general context:
Given a program P , replacing a formula (possibly including constraint atoms)
of the body of a rule in P by a logically equivalent one results in a program P ′

which is strongly equivalent to P .
As remarked earlier, our approach is different from that of [6], due to the dif-

ferent underlying logics and methods of representing c-atoms. In [6] rule bodies
and c-atoms are nested expressions in the logic of here-and-there, while in our
approach they are classical propositional formulas. We would like to argue that
an intimate integration of classical formulas into logic programs, as done in our
approach which is inherited from default logic, facilitates knowledge represen-
tation. The same point has been argued for a more general context by [25] and
recent work on integrating ASP with ontologies and description logics for the
Semantic Web (where classical formulas in rule bodies are interpreted as queries
to a description logic knowledge base [26]).

Our language can be extended to accommodate c-atoms in rule heads like
A← G, where A is a c-atom and G an arbitrary formula. It can also be extended
to logic programs whose rule heads may be a disjunction of atoms. As a concrete
application, we are applying the default approach to characterizing the semantics
of description logic programs for the Semantic Web [26].
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