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Abstract. Global SLS-resolution and SLG-resolution are two represen-
tative mechanisms for top-down evaluation of the well-founded semantics
of general logic programs. Global SLS-resolution is linear but suffers from
infinite loops and redundant computations. In contrast, SLG-resolution
resolves infinite loops and redundant computations by means of tabling,
but it is not linear. The distinctive advantage of a linear approach is
that it can be implemented using a simple, efficient stack-based memory
structure like that in Prolog. In this paper we present a linear tabulated
resolution for the well-founded semantics, which resolves the problems of
infinite loops and redundant computations while preserving the linearity.
For non-floundering queries, the proposed method is sound and complete
for general logic programs with the bounded-term-size property.

1 Introduction

Two representative methods have been presented in literature for top-down eva-
luation of the well-founded semantics of general logic programs: Global SLS-
resolution [5,6] and SLG-resolution [2,3]. Global SLS-resolution is a direct ex-
tension to SLDNF-resolution [4], which treats infinite derivations as failed and
infinite recursions through negation as undefined. Like SLDNF-resolution, it is
linear in the sense that for any derivation G0 ⇒C1,θ1

G1 ⇒ ...⇒Ci,θi
Gi with Gi

the latest generated goal, it makes the next derivation step either by expanding
Gi by resolving a subgoal in Gi with a program clause, i.e. Gi ⇒Ci+1,θi+1

Gi+1,
or by expanding Gi−1 via backtracking. The distinctive advantage of a linear
approach is that it can be implemented using a simple, efficient stack-based me-
mory structure (like that in Prolog). However, Global SLS-resolution inherits
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from SLDNF-resolution the two serious problems: infinite loops and redundant
computations.

SLG-resolution (similarly, Tabulated SLS-resolution [1]) is a tabling mecha-
nism for top-down evaluation of the well-founded semantics. The main idea of
tabling is to store intermediate results of relevant subgoals and then use them
to solve variants of the subgoals whenever needed. Since no variant subgoals will
be recomputed by applying the same set of program clauses, infinite loops can
be avoided and redundant computations be substantially reduced. Like other
existing tabling mechanisms, SLG-resolution adopts the solution-lookup mode.
That is, all nodes in a search tree/forest are partitioned into two subsets, solu-
tion nodes and lookup nodes. Solution nodes produce child nodes using program
clauses, whereas lookup nodes produce child nodes using answers in the tables.
As an illustration, consider the derivation p(X) ⇒Cp1

,θ1
q(X) ⇒Cq1

,θ2
p(Y ).

Assume that no answers of p(X) have been derived. Since p(Y ) is a variant
of p(X) and thus a lookup node, the next derivation step is to expand p(X)
against a program clause, instead of expanding the latest generated goal p(Y ).
Apparently, such a derivation is not linear. Because of such non-linearity, SLG-
resolution can neither be implemented using an efficient stack-based memory
structure nor utilize those useful strictly sequential operators such as cuts in
Prolog. This has been evidenced by the fact that a well-known tabling system,
XSB, which is an implementation of SLG-resolution [7,8,9], disallows clauses like
p(.)← ..., t(.), !, ... where t(.) is a tabled subgoal, because the tabled predicate t
occurs in the scope of a cut [9].

The objective of our research is to develop a linear tabling method for top-
down evaluation of the well-founded semantics of general logic programs, which
resolves infinite loops and redundant computations, without sacrificing the linea-
rity of SLDNF-resolution. In an earlier paper [11], we presented a linear tabling
mechanism called TP-resolution for positive logic programs (“TP” for “Tabu-
lated Prolog”). In TP-resolution, each node in a search tree can act both as a
solution node and as a lookup node, regardless of when and where it is gene-
rated. This represents an essential difference from existing tabling approaches.
The main idea is as follows: For any selected subgoal A at a node Ni labeled
with a goal Gi, we first try to use an answer I in the table of A to generate a
child node Ni+1, which is labeled by the resolvant of Gi and I. If such answers
are not available in the table, we then resolve A against program clauses in a
top-down order, except for the case where the derivation has stepped into a
loop at Ni. In such a case, the subgoal A will skip the clause that is being used
by its ancestor subgoal that is a variant of A. For example, for the derivation
p(X) ⇒Cp1

,θ1
q(X) ⇒Cq1

,θ2
p(Y ), we will expand p(Y ) by resolving it against

the program clause next to Cp1
. Thanks to its linearity, TP-resolution can be

implemented by an extension to any existing Prolog abstract machines such as
WAM [14] or ATOAM [15].

In this paper, we extend TP-resolution to TPWF-resolution, which computes
the well-founded semantics of general logic programs. The extension is non-
trivial because of possible infinite recursions through negation. In addition to
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the strategy for clause selection adopted by TP-resolution, TPWF-resolution
uses two critical mechanisms to deal with infinite recursions through negation.
One is making assumptions for negative loop subgoals whose truth values are
currently undecided, and the other is doing answer iteration to derive complete
answers of loop subgoals. For non-floundered queries, TPWF-resolution is sound
and complete for general logic programs with the bounded-term-size property.

Section 2 will give an illustrative example to outline these main ideas, and
Section 3 defines TPWF-trees based on these strategies. Section 4 presents the
definition of TPWF-resolution and discusses its properties.

1.1 Notation and Terminology

Variables begin with a capital letter, and predicates, functions and constants
with a lower case letter. By E we denote a list/tuple (E1, ..., Em) of elements.
Let X = (X1, ..., Xm) be a tuple of variables and I = (I1, ..., Im) a tuple of terms.
By X/I we denote an mgu {X1/I1, ..., Xm/Im}. By p(.) we refer to any atom
with the predicate p and p(X) to an atom p(.) that contains the list X of distinct
variables. For instance, if p(X) = p(W, a, f(Y, W ), Z), then X = (W, Y, Z).

By a variant of an atom (resp. subgoal or term) A we mean an atom (resp.
subgoal or term) A′ that is the same as A up to variable renaming.1 A set of
atoms (resp. subgoals or terms) that are variants of each other are called variant
atoms (resp. variant subgoals or variant terms). Moreover, for any element E by
E being in a set S we understand a variant of E is in S.

For convenience of describing our method, we use the four truth values: t
(true), f (false), u (undefined), and u∗ (temporarily undefined), with ¬t = f ,
¬f = t, ¬u = u, and ¬u∗ = u∗. As its name suggests, u∗ will be used as a
temporary truth value when the truth value (t, f or u) of a subgoal is currently
undecided (due to the occurrence of loops). In addition to f∧V = f and t∧V = V
for any V ∈ {t, f, u, u∗}, we have u∧u∗ = u∗. Let A be an atom. By A∗ we refer
to an answer A with truth value u∗.

Finally, clauses in a program with the same head predicate p are numbered
sequentially, with Cpi

referring to its i-th clause (i > 0).

2 Main Ideas

In this section, we outline the main ideas of TPWF-resolution through an illu-
strative example.

Example 1. Consider the following program:

P1: p(X)← q(X). Cp1

p(a). Cp2

q(X)← ¬r. Cq1

q(X)← w. Cq2

1 By this definition, A is a variant of itself.
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q(X)← p(X). Cq3

r ← ¬s. Cr1

s← ¬r. Cs1

w ← ¬w, v. Cw1

Let G0 =← p(X) be the query (top goal). Reasoning in the same way as Prolog,2

we successively generate the nodes N0−N7 as shown in Fig. 1. Obviously Prolog
will repeat the loop between N3 and N7 infinitely. However, we break the loop by
disallowing N7 to select the clause Cr1

, which is being used by N3. This makes
N7 have no clause to unify with, which leads to backtracking. Since the loop is
negative in the sense that it goes through negation, N7 should not be failed by
falsifying r at this moment. Instead, r is assumed to be temporarily undefined
(i.e. r = u∗). By definition r = u∗ (at N7) means ¬r = u∗ (at N6), so that
s = u∗ (at N5) is derived. For the same reason, r = u∗ (at N3) is derived.
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N2 : ¬r N8 : w N12 : p(X)

Cq2

Cq3

Cp1
Cp1

Cq1

N1 : q(X) N13 : q(X)

Cq3

N14 : p(X)

N3 : r U

Cw1

N9 : ¬w, v

Cp2

N11 : vN10 : w

Cr1

N4 : ¬s

N5 : s

Cs1

N6 : ¬r

N7 : r

N0 : p(X)

T

Fig. 1. TPWF-derivations.

We use two data structures, UA and UD, to keep atoms that are assumed and
derived to be temporarily undefined, respectively. Therefore, after these steps,
UA = {r} and UD = {s, r}. We are then back to N3.

Since N3 is the top node of the loop, before failing it via backtracking we
need to be sure that r has got its complete set of answers (r = t or r = u or
r = f). This is achieved by performing answer iteration via the loop. That is,
we regenerate the loop to see if any new answers can be derived until we reach

2 That is, we use the following control strategy: Depth-first (for goal selection) +
Left-most (for subgoal selection) + Top-down (for clause selection) + Last-first

(for backtracking).
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a fixpoint. We use a flag variable NEW , with NEW = 0 initially. Whenever a
new answer with truth value t or u for any subgoal is derived, NEW is set to 1.
Before starting an iterate, we set NEW = 0 and UA = UD = {}. The answer
iteration stops by the end of some iterate, where NEW = 0 and (UA ⊆ UD
or UD = {}). The fact that NEW = 0 and UA ⊆ UD indicates that the truth
values of all atoms in UA totally depend on how they are assumed in the negative
loop, which, under the well-founded semantics [12], amounts to saying that these
truth values are undefined.

Since up to now no answer with truth value t or u has been derived (i.e.
NEW = 0) and UA = {r} ⊂ UD = {s, r}, the termination condition of answer
iteration is satisfied. Therefore, we change the truth values of all atoms in UD
from temporarily undefined to undefined (i.e. r = s = u) and memorize the new
answers in respective tables. After the completion of answer iteration, we set
UA = UD = {}.

By definition, r = u (at N3) means ¬r = u (at N2), which leads to an answer
node U for the top goal (see Fig. 1). That is, we have q(X) = u and p(X) = u,
which are memorized in their tables.

Now we backtrack q(X) at N1. Applying Cq2
and Cw1

leads to N8 − N10,
which forms another negative loop. In the same way as above, we assume w = u∗

and put w into UA. So ¬w = u∗, which leads to the node N11. Since v is false,
we backtrack to N9 and then to N8, with NEW = 0, UA = {w} and UD = {}.
Again, before leaving N8 via backtracking, we need to complete the answers
of w by means of answer iteration via the loop. Obviously, the termination
condition of answer iteration is satisfied. Here NEW = 0, w ∈ UA and w 6∈ UD
suggests that w can not be inferred from the program whatever truth values we
assign to the temporarily undecided subgoals in UA. This, under the well-founded
semantics, implies that w is false. So we set w = f and come back to N1 again.

Applying Cq3
leads to N12. We see that there is a loop between N0 and N12.

Instead of selecting Cp1
which is being used by N0, we use Cp2

to unify against
p(X), which leads to an answer node T with mgu X/a. That is, p(a) = t and
q(a) = t, which are added to the tables of p(X) and q(X), respectively (NEW
is then set to 1).

Since the loop N0 → N1 → N12 is positive, we backtrack to N1 and then
to N0, making no assumption. This time, we have NEW = 1, UA = {} and
UD = {}. Since N0 is the top loop node and NEW = 1, we do answer iteration
by regenerating the loop, which leads to N0 → N13 → N14. Since Cp1

is being
used by N0 and Cp2

has already been used before (by N12, with the answer
stored in the table of p(X)), p(X) at N14 has no clause to unify with. So we
backtrack to N13 and then to N0. Now, NEW = 0 and UA = UD = {}, so we
end the iteration.

Since N0 is the root, the evaluation of G0 terminates. The derived answers
are: p(a) = q(a) = t, p(b) = q(b) = u for any b 6= a, r = s = u, and w = v = f .
We see that these answers constitute the well-founded model for P1. ut
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The tabulated resolution shown in Example 1 is obviously linear. Meanwhile,
we see that it resolves infinite loops and redundant computations without losing
any answers. Main points are summarized as follows:

1. Tabling. Tables are used to store intermediate results, which is the basis of
all tabulated resolutions.

2. Clause selection. Without loops, clauses are selected in the same way as in
Prolog except that clauses that have been used before will not be reapplied
because the complete set of answers derived via those clauses has already
been memorized in related tables. For example, N14 skips Cp2

because the
clause has already been used by N12. This avoids redundant computations.
When a loop occurs, however, clauses that are being used by ancestor loop
subgoals will be skipped. For example, Cr1

, Cw1
and Cp1

are skipped by N7,
N10 and N12, respectively. This breaks infinite loops.

3. Assumption. For a positive loop subgoal, backtracking proceeds in the same
way as in Prolog (see N12 and N14). A negative loop subgoal whose truth
value is currently undecided, however, will be assumed temporarily undefined
before being failed (see N7 and N10). Temporarily undefined values will
be removed (from tables) when their t or u counterparts are derived. This
guarantees the correctness of answers.

4. Answer iteration. Before leaving a loop by failing its top loop node (e.g. N3,
N8 and N0), iteration will be carried out to derive complete answers of loop
subgoals. Without iteration, we would miss answers because some clauses
have been skipped to break infinite loops. The process of answer iteration
is briefly described as follows. Let Nt be the top loop node. We first check
if the termination condition is satisfied (i.e. NEW = 0 and (UA ⊆ UD or
UD = {})). If not, we start an iterate by setting NEW = 0 and UA =
UD = {}. The iterate will regenerate the loop (e.g. N0 → N13 → N14 in Fig.
1). During the iterate, NEW , UA and UD will be updated accordingly. By
the end of the iterate, i.e. when we come back to the top loop node Nt again
and try to fail it via backtracking, we distinguish among the following cases:

– NEW = 1, which means at least one new answer, with truth value t or
u, has been derived (and added to the related table) during the iterate.
So we start a new iterate to seek more answers.

– NEW = 0 and (UA ⊆ UD or UD = {}). Stop the iteration with all
temporarily undefined answers replaced by undefined ones. After this,
the answers of all subgoals involved in the loop are completed (i.e. the
tables of these subgoals contain all of their answers). We attach a flag
COMP to each table with COMP = 1 standing for being completed.
For any subgoal A whose table flag COMP is 1, its instance A′ is true
if A′ = t is in the table of A, undefined if A′ = u is in the table but
A′ = t is not, and false if neither is in the table. For instance, in the
above example, p(a) = t and p(X) = u being in the table of p(X) shows
that p(a) is true and p(b) is undefined for any b 6= a.

– Otherwise. Let UC = UA−UD. Since NEW = 0, for all subgoals in UC
we can not infer any new answers for them from the program whatever



198 Y.-D. Shen et al.

truth valus we assign to the temporarily undecided subgoals in UA. This
implies that the answers of these subgoals have been completed, so we
set the flag COMP of their tables to 1. Since the subgoals in UD−UC
are still temporarilly undecided, we start next iterate. The iteration will
terminate provided that the program has the bounded-term-size property
[13].

3 TPWF-Trees

In this section we define TPWF-trees, which is the basis of TPWF-resolution.
We begin by defining tables.

3.1 Tables

Let P be a logic program and p(X) an atom. Let P contain exactly Np clau-
ses with a head p(.). A table for p(X), denoted TB(p(X)), is a four-tuple
(p(X), T, C, COMP ), where

1. T = {T1, T2}, with T1 and T2 storing answers of p(X) with truth values t
and u, respectively.

2. C is a vector of Np elements, keeping the status of Cpi
s w.r.t. p(X). C[i] = 0

(resp. = 1) represents that the clause Cpi
is no longer available (resp. still

available) to p(X).
3. COMP ∈ {0, 1}, with COMP = 1 indicating that the answers of p(X) have

been completed.

For convenience, we use TB(p(X))→ t answer[i] and TB(p(X))→u answer[i]
to refer to the i-th answer in T1 and T2, respectively, TB(p(X))→clause status[i]
to refer to the status of Cpi

w.r.t. p(X), and TB(p(X)) → COMP to refer to
the flag COMP .

When a table TB(p(X)) is created, T1 = T2 = {}, the status of all clauses
is initialized to 1, and COMP = 0. Answers in a table will be read sequentially
from T1 followed by T2. When T1 = T2 = {} and COMP = 1, p(X) = f .

Example 2. Consider again the program P1 in Example 1. After node N14 is
generated (see Fig. 1), we have the following tables:

TB(p(X)) : (p(X), {{p(a)}, {p(X)}}, {1, 0}, 0),
TB(q(X)) : (q(X), {{q(a)}, {q(X)}}, {0, 0, 1}, 0),
TB(r) : (r, {{}, {r}}, {0}, 1),
TB(s) : (s, {{}, {s}}, {0}, 1),
TB(w) : (w, {{}, {}}, {0}, 1). ut

From Fig. 1 we observe that each node in the tree has a unique name (index)
Ni that is labeled by a goal Gi, so that the left-most subgoal A1 = A (or
A1 = ¬A) of Gi is uniquely determined by Ni. In order to keep track of A1

that resolves against both program clauses and tabled answers, we attach to Ni
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three pointers. Ni → t answer ptr and Ni → u answer ptr point to an answer
in TB(A) → t answer and TB(A) → u answer, respectively. Ni → clause ptr
points to a clause whose head is unifiable with A. This leads to the following.

Definition 1. Let Gi be a goal ← A1, ..., Am (m ≥ 1). By “register a node
Ni with Gi” we do the following: (1) label Ni with Gi; (2) create the above three
pointers for Ni, which unless otherwise specified are initialized to null.

We assume two table functions: memo(.) and lookup(.). Let Ni be a node with
the left-most subgoal A. Let I be an answer of A with truth type S ∈ {t, u, u∗}.
When TB(A) contains no answer with truth value t that is a variant of or more
general than I, memo(Ni, I, S) adds I to TB(A) in the following way. When
S = t, add I to the end of TB(A) → t answer, set TB(A) → COMP = 1 if
I is a variant of A, and remove from TB(A) → u answer all J/J∗ with J an
instance/variant of I. Otherwise, if S = u (resp. S = u∗), add I (resp. I∗) to the
end of TB(A)→ u answer provided that it contains no answer that is a variant
of or more general than I (resp. I∗).

Let Ni and A be as above, and I and S be variables that are used for caching
an answer and its truth type. lookup(Ni, I, S) fetches from TB(A) an answer
with its truth type into I and S, respectively. If no answer is available in TB(A),
I = null.

3.2 Resolvants

We now discuss how to resolve subgoals against program clauses as well as tabled
answers. Let Ni be a node labeled by a goal Gi =← A1, ..., Am (m ≥ 1) with
A1 = p(X). Consider evaluating A1 using a program clause C = A← B1, ..., Bn

(n ≥ 0), where A1θ = Aθ.3 In Prolog, we will generate a new node labeled
with the goal Gi+1 = (B1, ..., Bn, A2, ..., Am)θ, where we see that the mgu θ
is consumed by all Ajs (j > 1), although the proof of A1θ has not yet been
completed (produced). In our tabulated resolution, however, we apply the PMF
(for Prove-Memorize-Fetch) mode to resolve subgoals against clauses and tabled
answers [11]. That is, we first prove (B1, ..., Bn)θ. If it is true with some mgu θ1,
which means A1θθ1 is true, we memorize the answer in the table TB(A1) if it is
new. We then fetch an answer p(I) with truth type S from TB(A1) and apply
it to the remaining subgoals of Gi. The process can be depicted more clearly in
Fig. 2.

Obviously the PMF mode preserves the original set of answers of A1. Moreo-
ver, since only new answers of A1 are added to the table, all repeated answers
of A1 will be precluded to apply to the remaining subgoals of Gi.

The PMF mode can readily be realized by using the two table procedures
memo(.) and lookup(.). That is, after resolving the subgoal A1 with the clause
C, Ni gives a child node Ni+1 labeled with the goal Gi+1 =← (B1, ..., Bn)θ,
memo(Ni, p(X)θ, t), lookup(Ni, Ii, Si), A2, ..., Am. Note that the propagation of

3 Here and throughout, we assume that C has been standardized apart to share no
variables with Gi.
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⇓

TB(A1)
(I, S)

Apply (X/I, S) to A2, ..., Am Fetch an answer p(I)⇐

Resolve A1 against C
A1θ = Aθ

Prove (B1, ..., Bn)θ
A1θθ1 is true

Memorize A1θθ1

Fig. 2. The PMF mode for resolving subgoals.

θ is blocked by the subgoal lookup(Ni, Ii, Si) because the consumption (fetch)
must be after the production (prove and memorize).

Observe that after the proof of A1 is reduced to the proof of (B1, ..., Bn)θ,
memo(Ni, p(X)θ, t), lookup(Ni, Ii, Si) by applying a program clause C, the
truth value of an answer of A1 to be memorized must be the logical AND
of the truth values of the answers of all Bjθs. Such an AND computation is
carried out incrementally. Initially we have memo(Ni, p(X)θ, S′) with S′ = t.
Then from j = 1 to j = n if Bjθ gets an answer Bjθθ

′with truth type S, the
memo(.) subgoal is updated to memo(Ni, p(X)θθ′, S′ ∧ S). This leads to the
following definition.

Definition 2. Let G1 =← A1, ..., Am be a goal, θ an mgu, and S ∈ {t, u, u∗}.
The resultant of applying (θ, S) to G1 is the goal G2 =← (A1, ..., Ak−1)θ, A

′
kθ,

Ak+1, ..., Am, where Ak is the left-most subgoal of the form memo(.) (if G1

contains no memo(.), k = m) and A′
k is Ak with its answer type S′ ∈ {t, u, u∗}

changed to S′ ∧ S.

The concept of resolvants of TPWF-resolution is then defined based on the
PMF mode.

Definition 3. Let Ni be a node labeled by a goal Gi =← A1, ..., Am (m ≥ 1).

1. If A1 = p(X), let C be a clause A← B1, ..., Bn with Aθ = A1θ, then

a) The resolvant of Gi and C is the goal Gi+1 =← (B1, ..., Bn)θ, memo(Ni,
p(X)θ, t), lookup(Ni, Ii, Si), A2, ..., Am.

b) Let p(I) be an answer of A1 with truth type S, then the resolvant of Gi

and p(I) with S is the resultant of applying (X/I, S) to ← A2, ..., Am.

2. If A1 = ¬B with B a ground atom, let B be the answer with truth type
S ∈ {f, u, u∗}, then the resolvant of Gi and B with S is the resultant of
applying ({},¬S) to ← A2, ..., Am.

3. If A1 is memo(Nh, q(I), S) and A2 is lookup(Nh, Ih, Sh), let q(X) be the left-
most subgoal at node Nh, then (after executing the two functions) the resol-
vant of Gi and Ih with truth type Sh is the resultant of applying (X/Ih, Sh)
to ← A3, ..., Am.
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3.3 Ancestor Lists and Loops

Loop checking is a principal feature of TPWF-resolution (see Example 1). Posi-
tive and negative loops are determined based on ancestor lists that are associated
with subgoals.

Definition 4. ([10] with slight modification) An ancestor list ALA is associa-
ted with each subgoal A in a tree (see the TPWF-tree below), which is defined
recursively as follows.

1. If A is at the root, then ALA = {}.

2. Let A be at node Ni+1. If A inherits a subgoal A′ (by copying or instantiation)
from its parent node Ni, then ALA = ALA′ ; else if A is in the resolvant of
a subgoal B at node Ni and a clause B′ ← A1, ..., An with Bθ = B′θ (i.e.
A = Aiθ for some 1 ≤ i ≤ n), ALA = {(Ni, B)} ∪ALB.

3. Let Gi =← ¬A, ... be the goal at Ni, which has a child node Ni+1 labeled by
the goal Gi+1 =← A (the edge from Ni to Ni+1 is dotted; see Fig. 1). Then
ALA = {¬} ∪AL¬A.

Let Gi at node Ni and Gk at node Nk be two goals in a derivation and A and
A′ be the left-most subgoals of Gi and Gk, respectively. If A is in the ancestor
list of A′, i.e. (Ni, A) ∈ ALA′ , the proof of A needs the proof of A′. In such
a case, we call A (resp. Ni) an ancestor subgoal of A′ (resp. ancestor node of
Nk). Particularly, if A is both an ancestor subgoal and a variant, i.e. an ancestor
variant subgoal, of A′, we say the derivation goes into a loop. The loop is negative
if there is a ¬ ahead of (Ni, A) in ALA′ ; otherwise, it is positive.

For example, the ancestor list of the subgoal r at N7 in Fig. 1 is

ALr = {¬, (N5, s),¬, (N3, r),¬, (N1, q(X)), (N0, p(X))}

and the ancestor list of the subgoal p(X) at N12 is

ALp(X) = {(N1, q(X)), (N0, p(X))}.

There is a negative loop between N3 and N7, and a positive loop between N0

and N12.

3.4 Control Strategy

Although in principle the tabulated approach presented in this paper is effective
for any fixed control strategy, we choose to use the so called TP-strategy, which
is the Prolog control strategy enhanced with mechanisms for selecting tabled
answers.

Definition 5 ([11]). By TP-strategy we mean: Depth-first (for goal selection)
+ Left-most (for subgoal selection) + Table-first (for program and table selection)
+ Top-down (for the selection of tabled answers and program clauses) + Last-
first (for backtracking).
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3.5 Algorithm for Building TPWF-Trees

In order to simplify the presentation, we assume every subgoal has a table and
that the flag variables COMP (in tables) and NEW are updated automati-
cally. Moreover, we assume that whenever an atom A is assumed undefined (i.e.
A = u∗ is assumed), A is added to UA, and that whenever A = u∗ is derived
(memorized), A is added to UD (automatically). We assume that when selecting
clauses to resolve with subgoals, all clauses whose status is “no longer available”
are automatically skipped. Finally we assume a function return(A, S), which re-
turns an answer A with truth type S. The truth type of return(A, S) is updated
in the same way as memo( , , S).

TPWF-trees are constructed based on TP-strategy using the following algo-
rithm.

Definition 6 (TPWF-Algorithm). Let P be a logic program, A an atom, and
G0 =← A, return(A, t). Let ALA = {} be the ancestor list of A. The TPWF-
tree TFG0

of P ∪ {G0} is constructed by applying the following algorithm until
the answer NO or FLOUND is returned.

tpwf(G0, ALA) :

1. Root Node: Register the root N0 with G0 and goto 2.
2. Node Expansion: Let Ni be the latest registered node labeled by Gi =←

A1, ..., Am (m > 0). Register Ni+1 as a child of Ni with Gi+1 if Gi+1 can be
obtained as follows.

Case 2.1: A1 is return(A′, S). Return (A′, S) if S 6= u∗. When S = t or S = u,
set Gi+1 = T and Gi+1 = U , respectively. Goto 3 with N = Ni.

Case 2.2: A1 is memo(Nh, I, S) and A2 is lookup(Nh, Ih, Sh). Execute the two
table functions. If Ih = null, then goto 3 with N = Ni; else set Gi+1 to
the resolvant of Gi and Ih with truth type Sh and goto 2.

Case 2.3: A1 = ¬B. If B is non-ground, set Gi+1 = FD and return FLOUND.
Get an answer from TB(B). Let I be the answer with truth type S.

Case 2.3.1: I 6= null. If S = t, then goto 3 with N = Ni; else set Gi+1 to
the resolvant of Gi and I with S and goto 2.

Case 2.3.2: I = null. When TB(B)→ COMP = 1, if TB(B)→ u answer
6= {}, then goto 3 with N = Ni; else set Gi+1 =← A2, ..., Am

and goto 2. Otherwise, let G′
0 =← B, return(B, t) and ALB =

{¬} ∪ ALA1
. Call tpwf(G′

0, ALB) until NO or FLOUND is re-
turned. If FLOUND is returned, then set Gi+1 = FD and return
FLOUND; else apply the answers in TB(B) to A1 (repeat Case 2.3)
and then goto 3 with N = Ni.

Case 2.4: A1 = p(X). Get an answer I with truth type S from TB(A1). If
I 6= null, then set Gi+1 to the resolvant of Gi and I with S and goto 2;
else

Case 2.4.1: TB(A1)→ COMP = 1. Goto 3 with N = Ni.
Case 2.4.2: Ni is a top loop node. Do answer iteration and then goto 3

with N = Ni.
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Case 2.4.3: A1 ∈ UA. if A∗
1 is in TB(A1) → u answer, then goto 3 with

N = Ni; else set Gi+1 to the resolvant of Gi and A1 with truth type
u∗, and goto 2.4

Case 2.4.4: Otherwise. If no loop occurs (i.e. A1 has no ancestor variant
subgoal), then resolve A1 with the first clause available; else resolve
A1 with the first clause below the one that is being used by its closest
ancestor variant subgoal. If such a clause Cpj

exists, then set Gi+1

to the resolvant of Gi and Cpj
and goto 2; else goto 3 with N = Ni

while assuming A1 = u∗ if the loop is negative.

3. Backtracking: If N is the root, return NO. Let Nf be the parent node of
N with the left-most subgoal Af . If Af is a function, goto 3 with N = Nf .
Otherwise, if N was generated from Nf by resolving Af with a clause Cj,
then if Af is not involved in any loop, set TB(Af ) → clause status[j] = 0.
Goto 2 with Nf as the latest registered node.

The input of TPWF-Algorithm includes a top goal G0 =← A, return(A, t)
and an ancestor list ALA. Its output is either FLOUND, indicating that G0

is floundered, or NO, showing that there is no more answer for A, or (A′, S),
meaning that A′ is an answer of A with truth type S ∈ {t, u}.

Observe that like SLDNF-resolution [4], when A1 = ¬B we may build a new
tree for B (Case 2.3.2). In SLDNF-resolution, the two SLDNF-trees are totally
independent. This leads to possible infinite negative loops. TPWF-resolution,
however, connects the two TPWF-trees via the ancestor list {¬}∪ALA1

, so that
negative loops can be detected effectively (see Fig. 1).

4 TPWF-Resolution

Definition 7. Let TFG0
be a TPWF-tree of P∪{G0}. All leaves of TFG0

labeled
by T , U or FD are success, undefined and flounder leaves, respectively, and
all other leaves are failure leaves. A TPWF-derivation is a partial branch
in TFG0

starting at the root, which is successful, floundered, undefined or
failed if it ends respectively with a success leaf, a flounder leaf, an undefined
leaf and a failure leaf. The process of constructing TPWF-derivations is called
TPWF-resolution.

A goal G0 is floundered if it has a floundered TPWF-derivation. Let G0 be
a non-floundered goal and I ′ be a variant of or more general than I. Then G0

is true with an answer I if there is a successful TPWF-derivation with (I ′, t)
returned; undefined with I if it is not true with any instance of I but there is
an undefined TPWF-derivation with (I ′, u) returned; false with I if it is neither
true nor undefined with any instance of I.

The following theorem follows from the basic fact: For any logic program with
the bounded-term-size property, (1) the set of answers in any table is finite, (2)
every TPWF-derivation is finite, and (3) answer iteration must reach a fixpoint.

4 For this case, no further backtracking will be allowed at this node.
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Theorem 1 (Termination of TPWF-resolution). Let P be a logic program
with the bounded-term-size property and G0 =← A, return(A, t) a top goal.
TPWF-Algorithm terminates with a finite TPWF-tree.

TPWF-resolution cuts infinite loops and infinite recursions through negation
by means of assumption and answer iteration. Positive loops are cut simply by
backtracking, whereas negative loop subgoals whose truth values are currently
undecided will be assumed temporarily undefined before being failed via back-
tracking. Temporarily undefined values will be removed (from tables) after their
t or u counterparts are derived. This guarantees the correctness of loop cutting.
Meanwhile, before leaving a loop by failing its top loop node, iteration will be
carried out to derive complete answers of loop subgoals. For logic programs with
the bounded-term-size property, the iteration must terminate with a fixpoint of
answers. This leads to the following.

Theorem 2 (Soundness and Completeness of TPWF-resolution). Let P
be a logic program with the bounded-term-size property and G0 =← A, return(A, t)
a non-floundered goal. Let WF (P ) be the well-founded model of P . Then

1. WF (P ) |= ∃(A) iff G0 is true with an instance of A;
2. WF (P ) |= ¬∃(A) iff G0 is false with A;
3. WF (P ) |= ∀(Aθ) iff G0 is true with Aθ;
4. WF (P ) 6|= ∃(A) and WF (P ) 6|= ¬∃(A) iff G0 is undefined with A.
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