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Abstract

Global SLS-resolution is a well-known procedural semantics for top-down compu-

tation of queries under the well-founded model. It inherits from SLDNF-resolution the

linearity property of derivations, which makes it easy and efficient to implement using a

simple stack-based memory structure. However, like SLDNF-resolution it suffers from

the problem of infinite loops and redundant computations. To resolve this problem,

in this paper we develop a new procedural semantics, called SLTNF-resolution, by

enhancing Global SLS-resolution with loop cutting and tabling mechanisms. SLTNF-

resolution is sound and complete w.r.t. the well-founded semantics for logic programs

with the bounded-term-size property, and is superior to existing linear tabling proce-

dural semantics such as SLT-resolution.

Keywords: Logic programming, the well-founded semantics, Global SLS-resolution,

loop cutting, tabling.

1 Introduction

There are two types of semantics for a logic program: a declarative semantics and a procedu-

ral semantics. The declarative semantics formally defines the meaning of a logic program by

specifying an intended model among all models of the logic program, whereas the procedu-

ral semantics implements/computes the declarative semantics by providing an algorithm for
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evaluating queries against the logic program. Most existing procedural semantics are built

upon the well-known resolution rule created by Robinson [20].

Prolog is the first yet the most popular logic programming language [13]. It adopts

SLDNF-resolution as its procedural semantics [9]. One of the best-known properties of

SLDNF-resolution is its linearity of derivations, i.e., its query evaluation (i.e., SLDNF-

derivations) constitutes a search tree, called an SLDNF-tree, which can be implemented

easily and efficiently using a simple stack-based memory structure [33, 35]. However, SLDNF-

resolution suffers from two serious problems. First, its corresponding declarative semantics,

i.e. the predicate completion semantics [9], is based on two truth values (either true or false)

and thus incurs inconsistency for some logic programs like P = {p(a) ← ¬p(a)} [14, 27].

Second, it may generate infinite loops and a large amount of redundant sub-derivations

[2, 10, 24].

To overcome the first problem with SLDNF-resolution, the well-founded semantics [32]

is introduced as an alternative to the predicate completion semantics. A well-founded model

accommodates three truth values: true, false and undefined, so that inconsistency is avoided

by letting atoms that are recursively connected through negation undefined. Several proce-

dural semantics have been developed as an alternative to SLDNF-resolution to compute the

well-founded semantics, among the most representative of which are Global SLS-resolution

[17, 21] and SLG-resolution [7, 8, 3].

Global SLS-resolution is a direct extension of SLDNF-resolution. It evaluates queries

under the well-founded semantics by generating a search tree, called an SLS-tree, in the

same way as SLDNF-resolution does except that infinite derivations are treated as failed

and infinite recursions through negation as undefined. Global SLS-resolution retains the

linearity property of SLDNF-resolution, but it also inherits the problem of infinite loops and

redundant computations. Moreover, Global SLS-resolution handles negation as follows: A

ground atom A is false when all branches of the SLS-tree for A are either infinite or end at

a failure leaf. Infinite branches make Global SLS-resolution not effective in general [21].

To resolve infinite loops and redundant computations, the tabling technique is intro-

duced [29, 34]. The main idea of tabling is to store intermediate answers of subgoals and

then apply them to solve variants of the subgoals. With tabling no variant subgoals will

be recomputed by applying the same set of clauses, so infinite loops can be avoided and re-

dundant computations be substantially reduced. There are two typical ways to make use of

tabling to compute the well-founded semantics. One is to directly enhance SLDNF-resolution

or Global SLS-resolution with tabling while the other is to create a new tabling mechanism

with a different derivation structure. SLG-resolution results from the second way [3, 8].

Due to the use of tabling, SLG-resolution gets rid of infinite loops and reduces redundant

computations. However, it does not have the linearity property since its query evaluation

constitutes a search forest instead of a search tree. As a result, it cannot be implemented in

the same way as SLDNF-resolution using a simple stack-based memory structure [22, 23, 28].
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In [26] an attempt is made to directly enhance SLDNF-resolution with tabling to com-

pute the well-founded semantics, which leads to a tabling mechanism, called SLT-resolution.

SLT-resolution retains the linearity property, thus is referred to as a linear tabling mechanism.

Due to the use of tabling, it is free of infinite loops and has fewer redundant computations

than SLDNF-resolution. However, SLT-resolution has the following two major drawbacks:

(1) It defines positive loops and negative loops based on the same ancestor-descendant rela-

tion, which makes loop detection and handling quite costly since a loop may go across several

(subsidiary) SLT-trees. (2) It makes use of answer iteration to derive all answers of loop-

ing subgoals, but provides no answer completion criteria for pruning redundant derivations.

Note that answer completion is the key to an efficient tabling mechanism.

In this paper, we develop a new procedural semantics, called SLTNF-resolution, for the

well-founded semantics by enhancing Global SLS-resolution with tabling and loop cutting

mechanisms. SLTNF-resolution retains the linearity property and makes use of tabling to get

rid of all loops and reduce redundant computations. It defines positive and negative loops

in terms of two different ancestor-descendant relations, one on subgoals within an SLS-tree

and the other on SLS-trees, so that positive and negative loops can be efficiently detected

and handled. It employs two effective criteria for answer completion of tabled subgoals so

that redundant derivations can be pruned as early as possible. All these mechanisms are

integrated into an algorithm quite like that for generating SLS-trees.

The paper is organized as follows. Section 2 reviews Global SLS-resolution. Section 3

defines ancestor-descendant relations for identifying positive and negative loops, develops an

algorithm for generating SLTNF-trees, establishes criteria for determining answer completion

of tabled subgoals, and proves the correctness of SLTNF-resolution. Section 4 mentions some

related work, and Section 5 concludes.

2 Preliminaries and Global SLS-Resolution

In this section, we review some standard terminology of logic programs [14] and recall the

definition of Global SLS-Resolution. We do not repeat the definition of the well-founded

model here; it can be found in [32, 17, 19] and many other papers.

Variables begin with a capital letter, and predicate, function and constant symbols with

a lower case letter. By a variant of a literal L we mean a literal L′ that is identical to L up

to variable renaming.

Definition 2.1 A general logic program (logic program for short) is a finite set of clauses of

the form

A← L1, ..., Ln

where A is an atom and Lis are literals. A is called the head and L1, ..., Ln is called the body

of the clause. When n = 0, the “←” symbol is omitted. If a logic program has no clause
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with negative literals in its body, it is called a positive logic program.

Definition 2.2 A goal G is a headless clause ← L1, ..., Ln where each Li is called a subgoal.

A goal is also written as G =← Q where Q = L1, ..., Ln is called a query. A computation

rule (or selection rule) is a rule for selecting one subgoal from a goal.

Let Gi =← L1, ..., Lj , ..., Ln be a goal with Lj a positive subgoal. Let C = L← F1, ..., Fm

be a clause such that L and Lj are unifiable, i.e. Lθ = Ljθ where θ is an mgu (most general

unifier). The resolvent of Gi and C on Lj is a goal Gk =← (L1, ..., Lj−1, F1, ..., Fm, Lj+1, ..., Ln)θ.

In this case, we say that the proof of Gi is reduced to the proof of Gk.

The initial goal, G0 =← L1, ..., Ln, is called a top goal. Without loss of generality, we

shall assume throughout the paper that a top goal consists only of one atom (i.e. n = 1 and

L1 is a positive literal).

Trees are used to depict the search space of a top-down query evaluation procedure. For

convenience, a node in such a tree is represented by Ni : Gi where Ni is the node name and

Gi is a goal labeling the node. Assume no two nodes have the same name, so we can refer

to nodes by their names.

Let P be a logic program and G0 =← Q a top goal. Global SLS-resolution is the process

of constructing SLS-derivations from P ∪{G0} via a computation rule R. An SLS-derivation

is a partial branch beginning at the root N0 : G0 of an SLS-tree. Every leaf of an SLS-

tree is either a success leaf or a failure leaf or a flounder leaf or an undefined leaf.1 Q is a

non-floundering query if no SLS-tree for evaluating Q under R contains a flounder leaf.

An SLS-tree is successful if it has a success leaf. It is failed if all of its branches are

either infinite or end at a failure leaf. It is floundered if it contains a floundered leaf and is

not successful. An SLS-tree is undefined if it is neither successful nor failed nor floundered.

There are two slightly different definitions of an SLS-tree: Przymusinski’s definition

[17, 18] and Ross’ definition [21]. Przymusinski’s definition requires a level mapping (called

strata) to be associated with literals and goals, while Ross’ definition requires the compu-

tation rule to be preferential, i.e. positive subgoals are selected ahead of negative ones and

negative subgoals are selected in parallel. Both of the two definitions allow infinite branches

and infinite recursion through negation. The following definition of an SLS-tree is obtained

by combining the two definitions.

Definition 2.3 (SLS-trees [17, 18, 21]) Let P be a logic program, G0 a top goal, and R

a computation rule. The SLS-tree TN0:G0
for P ∪{G0} via R is a tree rooted at N0 : G0 such

that for any node Ni : Gi in the tree with Gi =← L1, ..., Ln:

1. If n = 0 then Ni is a success leaf, marked by �t.

1In [18], an undefined leaf is called a non-labeled leaf.
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2. If Lj is a positive literal selected by R, then for each clause C in P whose head is

unifiable with Lj , Ni has a child Nk : Gk where Gk is the resolvent of C and Gi on Lj .

If no such a clause exists in P , then Ni is a failure leaf, marked by �f .

3. Let Lj = ¬A be a negative literal selected by R. If A is not ground then Ni is a flounder

leaf, marked by �fl, else let TNi+1:←A be an (subsidiary) SLS-tree for P ∪ {← A} via

R. We consider four cases:

(a) If TNi+1:←A is failed then Ni has only one child that is labeled by the goal ←

L1, ..., Lj−1, Lj+1, ..., Ln.

(b) If TNi+1:←A is successful then Ni is a failure leaf, marked by �f .

(c) If TNi+1:←A is floundered then Ni is a flounder leaf, marked by �fl.

(d) Otherwise (i.e. TNi+1:←A is undefined), we mark Lj in Gi as skipped and use the

computation rule R to select a new literal Lk from Gi and apply the resolution

steps 2 and 3 to the goal Gi. If all literals in Gi were already marked as skipped

then Ni is an undefined leaf, marked by �u.

We make two remarks. First, the level mapping/strata used in Przymusinski’s definition

is implicit in Definition 2.3. That is, in case 3 the level/stratum of A is less than the

level/stratum of Gi if and only if either case 3a or case 3b or case 3c holds. Second, the

preferential restriction of Ross’ definition to the computation rule is relaxed by marking

undefined subgoals as skipped and then continuing to select new subgoals from the remaining

subgoals in Gi for evaluation (see case 3d). A leaf is undefined if and only if all its subgoals

are marked as skipped.

Definition 2.4 A successful (resp. failed or undefined) derivation for a goal G is a branch

beginning at the root of the SLS-tree for G and ending at a success (resp. failure or undefined)

leaf. A correct answer substitution for G is the substitution θ = θ1...θn, where θis are the

most general unifiers used at each step along the derivation, restricted to the variables in G.

It has been shown that Global SLS-resolution is sound and complete with respect to the

well-founded semantics for non-floundering queries.

Theorem 2.1 ([17, 18, 21]) Let P be a logic program, R a computation rule, and G0 ← Q

be a top goal with Q a non-floundering query under R. Let WF (P ) be the well-founded model

of P .

1. WF (P ) |= ∃(Q) if and only if the SLS-tree for P ∪ {G0} via R is successful.

2. WF (P ) |= ∀(Qθ) if and only if there exists a correct answer substitution for G0 more

general than the substitution θ.
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3. WF (P ) |= ¬∃(Q) if and only if the SLS-tree for P ∪ {G0} is failed.

Definition 2.5 Let Ni : Gi be a node in an SLS-tree TNr :Gr
where A is the selected positive

subgoal in Gi. The partial branches of TNr :Gr
beginning at Ni that are used to evaluate A

constitute sub-derivations for A. All such sub-derivations form a sub-SLS-tree for A at Ni.

By Theorem 2.1, for any correct answer substitution θ built from a successful sub-

derivation for A, WF (P ) |= ∀(Aθ).

Since Global SLS-resolution allows infinite derivations as well as infinite recursion through

negation, we may need infinite time to generate an SLS-tree. This is not feasible in practice.

In the next section, we resolve this problem by enhancing Global SLS-resolution with both

loop cutting and tabling mechanisms.

3 SLTNF-Resolution

We first define an ancestor-descendant relation on selected subgoals in an SLS-tree. Infor-

mally, A is an ancestor subgoal of B if the proof of A depends on (or in other words goes

via) the proof of B. For example, let M :← A, A1, ..., Am be a node in an SLS-tree, and

N :← B1θ, ..., Bnθ, A1θ, ..., Amθ be a child node of M that is generated by resolving M on

the subgoal A with a clause A′ ← B1, ..., Bn where Aθ = A′θ. Then A at M is an ancestor

subgoal of all Biθs at N . However, such relationship does not exist between A at M and

any Ajθ at N . It is easily seen that all Biθs at N inherit the ancestor subgoals of A at M ,

and that each Ajθ at N inherits the ancestor subgoals of Aj at M . Note that subgoals at

the root of an SLS-tree have no ancestor subgoals.

Let Ni : Gi and Nk : Gk be two nodes and A and B be the selected subgoals in Gi and

Gk, respectively. When A is an ancestor subgoal of B, we refer to B as a descendant subgoal

of A, Ni as an ancestor node of Nk, and Nk as a descendant node of Ni. Particularly, if A

is both an ancestor subgoal and a variant, i.e. an ancestor variant subgoal, of B, we say the

derivation goes into a loop, where Ni and Nk are respectively called an ancestor loop node

and a descendant loop node, and A (at Ni) and B (at Nk) are respectively called an ancestor

loop subgoal and a descendant loop subgoal.

The above ancestor-descendant relation is defined over subgoals and will be applied to

detect positive loops, i.e. loops within an SLS-tree. In order to handle negative loops (i.e.

loops through negation like A← ¬B and B ← ¬A) which occur across SLS-trees, we define

an ancestor-descendant relation on SLS-trees. Let Ni :← ¬A, ... be a node in TNr :Gr
, with

¬A the selected subgoal, and let TNi+1:←A be an (subsidiary) SLS-tree for P ∪ {← A} via

R. TNr:Gr
is called an ancestor SLS-tree of TNi+1:←A, while TNi+1:←A is called a descendant

SLS-tree of TNr :Gr
. Of course, the ancestor-descendant relation is transitive.

A negative loop occurs if an SLS-tree has a descendant SLS-tree, with the same goal at

their roots. For convenience, we use dotted edges to connect parent and child SLS-trees, so

6



that negative loops can be clearly identified. Let G0 be a top goal. We call TN0:G0
together

with all of its descendant SLS-trees a generalized SLS-tree, denoted GTP,G0
(or simply GTG0

when no confusion would arise). Therefore, a branch of a generalized SLS-tree may come

across several SLS-trees through dotted edges. A generalized SLS-derivation is a partial

branch beginning at the root of a generalized SLS-tree.

Assume that all loops are detected and cut based on the ancestor-descendant relations.

This helps Global SLS-resolution get rid of infinite derivations and infinite recursion through

negation. However, applying such loop cutting mechanism alone is not effective since some

answers would be lost. In order to guarantee the completeness of Global SLS-resolution with

the loop cutting mechanism, we introduce a tabling mechanism into SLS-derivations, leading

to a tabulated SLS-resolution.

In tabulated resolutions, the set of predicate symbols in a logic program is partitioned

into two groups: tabled predicate symbols and non-tabled predicate symbols. Subgoals with

tabled predicate symbols are then called tabled subgoals. A dependency graph [1] is used to

make such classification. Informally, for any predicate symbols p and q, there is an edge

p → q in the dependency graph GP of a logic program P if and only if P contains a clause

whose head contains p and whose body contains q. p is a tabled predicate symbol if GP

contains a cycle involving p. It is trivial to show that subgoals involved in any loops in

SLS-trees must be tabled subgoals.

Intermediate answers of tabled subgoals will be stored in tables once they are produced

at some derivation stages. Such answers are called tabled answers. For convenience of

presentation, we organize a table into a compound structure like struct in pseudo C++

language. That is, the table of an atom A, denoted TBA, is internally an instance of the

data type TABLE defined as follows:

typedef struct {

string atom; //for TBA, atom = A.

int comp; //status of atom indicating if all answers have been tabled.

set ans; //tabled answers of atom.

} TABLE;

Answers of a tabled subgoal A are stored in TBA → ans. We say TBA is complete if

TBA → ans contains all answers of A. We use TBA → comp = 1 to mark the completeness

of tabled answers. Clearly, the case TBA → comp = 1 and TBA → ans = ∅ indicates that

A is false.

We introduce a special subgoal, u∗, which is assumed to occur neither in logic programs

nor in top goals. u∗ will be used to substitute for some ground negative subgoals whose truth

values are temporarily undefined (i.e., whether they are true or false cannot be determined

at the current stage of derivation). We assume such a special subgoal will not be selected

by a computation rule.
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We also use a special subgoal, LOOP , to mark occurrence of a loop.

Augmenting SLS-trees with the loop cutting and tabling mechanisms leads to the fol-

lowing definition of SLTNF-trees. Here “SLTNF” stands for “Linear Tabulated resolution

using a Selection/computation rule with Negation as Finite Failure.”

Definition 3.1 (SLTNF-trees) Let P be a logic program, G0 a top goal, and R a compu-

tation rule. Let TP be a set of tables each of which contains a finite set of tabled answers.

The SLTNF-tree TN0:G0
for (P ∪ {G0}, TP) via R is a tree rooted at N0 : G0 such that for

any node Ni : Gi in the tree with Gi =← L1, ..., Ln:

1. If n = 0 then Ni is a success leaf, marked by �t, else if L1 = u∗ then Ni is a temporarily

undefined leaf, marked by �u∗ , else if L1 = LOOP then Ni is a loop leaf, marked by

�loop.

2. If Lj = p(.) is a positive literal selected by R, we consider two cases:

(a) If TBLj
∈ TP with TBLj

→ comp = 1, then for each tabled answer A in TBLj
→

ans, Ni has a child node Nk : Gk where Gk is the resolvent of A and Gi on Lj . In

case that TBLj
→ ans = ∅, Ni is a failure leaf, marked by �f .

(b) Otherwise, for each tabled answer A in TBLj
→ ans Ni has a child node Nk : Gk

where Gk is the resolvent of A and Gi on Lj , and

i. If Ni is a descendant loop node then it has a child node Nl :← LOOP .

ii. Otherwise, for each clause C in P whose head is unifiable with Lj Ni has a

child node Nl : Gl where Gl is the resolvent of C and Gi on Lj . If there are

neither tabled answers nor clauses applicable to Ni then Ni is a failure leaf,

marked by �f .

3. Let Lj = ¬A be a negative literal selected by R. If A is not ground then Ni is a

flounder leaf, marked by �fl, else we consider the following cases:

(a) If TBA ∈ TP with TBA → comp = 1 and TBA → ans = ∅, then Ni has only one

child node Nk : Gk with Gk =← L1, ..., Lj−1, Lj+1, ..., Ln.

(b) If TBA ∈ TP with TBA → comp = 1 and TBA → ans = {A}, then Ni is a failure

leaf, marked by �f .

(c) Otherwise, if the current SLTNF-tree or one of its ancestor SLTNF-trees is with

a goal← A at the root, Ni has only one child node Nk : Gk where if Ln 6= u∗ then

Gk =← L1, ..., Lj−1, Lj+1, ..., Ln, u
∗ else Gk =← L1, ..., Lj−1, Lj+1, ..., Ln.

(d) Otherwise, let TNr :←A be an (subsidiary) SLTNF-tree for (P ∪ {← A}, TP) via R.

We have the following cases:
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i. If TNr :←A has a success leaf then Ni is a failure leaf, marked by �f .

ii. If TNr :←A has no success leaf but a flounder leaf then Ni is a flounder leaf,

marked by �fl.

iii. (Negation As Finite Failure) If all branches of TNr :←A end at either a failure or

a loop leaf where for each loop leaf generated from a descendant loop subgoal

V , no successful sub-derivation for its ancestor loop subgoal has a correct

answer substitution θ such that V θ is not in TP , then Ni has only one child

node Nk : Gk with Gk =← L1, ..., Lj−1, Lj+1, ..., Ln.

iv. Otherwise, Ni has only one child node Nk : Gk where if Ln 6= u∗ Gk =←

L1, ..., Lj−1, Lj+1, ..., Ln, u∗ else Gk =← L1, ..., Lj−1, Lj+1, ..., Ln.

Note that some commonly used concepts, such as derivations (for goals), sub-derivations

(for subgoals), sub-trees (for subgoals), generalized trees, and correct answer substitutions,

have the same meanings as in SLS-trees (see Section 2).

Positive loops are broken simply by disallowing descendant loop nodes to apply clauses

in P for expansion (see case 2b), while negative loops are broken by substituting u∗ for

looping negative subgoals (see case 3c). This guarantees that SLTNF-trees are finite for

logic programs with the bounded-term-size property (see Definition 3.2 and Theorem 3.1).

Note that u∗ is only introduced to signify existence of subgoals whose truth values are

temporarily non-determined because of occurrence of positive or negative loops. So keeping

only one u∗ in a goal is enough for such a purpose. From case 1 of Definition 3.1 we see

that goals with u∗ cannot lead to a success leaf. However, u∗ may well appear in a failure

leaf since one of the other subgoals may fail regardless of what truth values the temporarily

undefined subgoals would take. This achieves the effect of what a preferential computation

rule [21] is supposed to achieve, although our computation rule is not necessarily preferential.

Observe that SLTNF-trees implement an Negation As Finite Failure (NAF) rule (see

case 3(d)iii): A ground subgoal ¬A fails if A succeeds, and succeeds if A finitely fails after

exhausting all answers of the loop subgoals involved in evaluating A. This NAF rule is the

same as that used in SLDNF-resolution [9] except that loop leaves are considered.

The following example illustrates the process of constructing SLTNF-trees.

Example 3.1 Consider the following program and let G0 =← p(a, Y ) be the top goal.

P1: p(X, Y )← p(X, Z), e(Z, Y ). Cp1

p(X, Y )← e(X, Y ),¬r. Cp2

e(a, b). Ce1

e(b, c) Ce2

r ← s, r. Cr

s← ¬s. Cs
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Let TP1 = ∅, and for convenience, let us choose the widely-used left-most computation

rule (i.e. we always select the left-most subgoal from a goal). The generalized SLTNF-tree

GT←p(a,Y ) for (P1 ∪ {← p(a, Y )}, ∅) is shown in Figure 1,2 which consists of three finite

SLTNF-trees that are rooted at N0, N5 and N8, respectively. Note that two positive loops

are cut at N1 and N11, respectively, and one negative loop is cut at N9.

TN5:←r has only one branch, which ends at a loop leaf N12. There is no successful sub-

derivation for the ancestor loop subgoal r at N5, so the NAF rule is applicable. Thus, ¬r at

N4 succeeds, leading to a successful sub-derivation for p(a, Y ) at N0 with a correct answer

substitution {Y/b}.

�
���

H
HHj

?

�

.
.

.
.

.
.

?

?

�

.
.

.
.

.
. ?

H
HHj

�
���

�
��� ?

?

Cp2
Cp1

N0 : p(a, Y )

N3 : e(a, Y ),¬r

Ce1

N4 : ¬r

N5 : r

N6 : s, r

N7 : ¬s, r

(Y = b)

N13 :
Cr

Cs

�t

N1 : p(a,Z), e(Z, Y )

N8 : s N11 : r, u∗

�loop

�loop

N2 : LOOP

N12 : LOOP
N9 : ¬s

Cs

�u∗

N10 : u∗

Figure 1: The generalized SLTNF-tree GT←p(a,Y ) for (P1 ∪ {← p(a, Y )}, ∅).

Definition 3.2 ([30]) A logic program has the bounded-term-size property if there is a

function f(n) such that whenever a top goal G0 has no argument whose term size exceeds n,

then no subgoals and tabled answers in any generalized SLTNF-tree GTG0
have an argument

whose term size exceeds f(n).

The following result shows that the construction of SLTNF-trees is always terminating

for logic programs with the bounded-term-size property.

Theorem 3.1 Let P be a logic program with the bounded-term-size property, G0 a top goal

and R a computation rule. The generalized SLTNF-tree GTG0
for (P ∪ {G0}, TP) via R is

finite.
2For simplicity, in depicting SLTNF-trees we omit the “←” symbol in goals.
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Proof: First note that GTG0
contains no negative loops (see case 3c). The bounded-term-size

property guarantees that no term occurring on any path of GTG0
can have size greater than

f(n), where n is a bound on the size of terms in the top goal G0. Assume, on the contrary,

that GTG0
is infinite. Since the branching factor of GTG0

(i.e. the average number of children

of all nodes in the tree) is bounded by the finite number of clauses in P , GTG0
either contains

an infinite number of SLTNF-trees or has an infinite derivation within some SLTNF-tree.

Note that P has only a finite number of predicate, function and constant symbols. If GTG0

contains an infinite number of SLTNF-trees, there must exist negative loops in GTG0
, a

contradiction. If GTG0
has an infinite derivation within some SLTNF-tree, some positive

subgoal A0 selected by R must have infinitely many variant descendants A1, A2, ..., Ai, ... on

the path such that the proof of A0 needs the proof of A1 that needs the proof of A2, and so

on. That is, Ai is an ancestor loop subgoal of Aj for any 0 ≤ i < j. This contradicts the

fact that any descendant loop subgoal in GTG0
has only one ancestor loop subgoal because a

descendant loop subgoal cannot generate descendant loop subgoals since no clauses will be

applied to it for expansion (see case 2b of Definition 3.1). �

Consider Figure 1 again. Observe that if we continued expanding N1 (like Global SLS-

resolution) by applying Cp1
and Cp2

, we would generate another correct answer substitution

{Y/c} for G0. This indicates that applying loop cutting alone would result in incompleteness.

We use answer iteration [25] to derive all answers of loop subgoals. Here is the basic idea:

We first build a generalized SLTNF-tree for (P ∪{G0}, TP
0) with TP

0 = ∅ while collecting all

new tabled answers (for all tabled subgoals) into NEW 0. Then we build a new generalized

SLTNF-tree for (P ∪ {G0}, TP
1) with TP

1 = TP
0 ∪ NEW 0 while collecting all new tabled

answers into NEW 1. Such an iterative process continues until no new tabled answers are

available.

The key issue with answer iteration is answer completion, i.e, how to determine if the

table of a subgoal is complete at some derivation stages. Careful reader may have noticed

that we have already used a completion criterion for ground subgoals in defining the NAF

rule (see case 3d of Definition 3.1). We now generalize this criterion to all subgoals.

Theorem 3.2 Let GTG0
be the generalized SLTNF-tree for (P ∪ {G0}, TP) and NEW con-

tain all new tabled answers in GTG0
. The following completion criteria hold.

1. For a ground tabled positive subgoal A, TBA ∈ TP ∪NEW is complete for A if TBA →

ans = {A}.

2. For any tabled positive subgoal A, TBA ∈ TP ∪ NEW is complete for A if there is a

node Ni : Gi in GTG0
, where A is the selected subgoal in Gi and let TA be the sub-

SLTNF-tree for A at Ni, such that (1) TA has no temporarily undefined leaf, and (2)

for each loop leaf in TA, the sub-SLTNF-tree for its ancestor loop subgoal V has neither
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temporarily undefined leaf nor success leaf with a correct answer substitution θ such

that V θ is not in TP .

Proof: The first criterion is straightforward since A is ground. We now prove the second.

Note that there are only two cases in which a tabled subgoal A may get new answers via

iteration. The first is due to that some temporarily undefined subgoals in the current round

would become successful or failed in the future rounds of iteration. This case is excluded

by conditions (1) and (2). The second case is due to that some loop subgoals in TA in

the current round would produce new answers in the future rounds of iteration. Such new

answers are generated in an iterative way, i.e., in the current round descendant loop subgoals

in TA consume only existing tabled answers in TP and help generate new answers (which are

not in TP) for their ancestor loop subgoals. These new answers are then tabled (in NEW )

for the descendant loop subgoals to consume in the next round. In this case, TA must contain

at least one descendant loop subgoal V ′ such that the sub-SLTNF-tree for its ancestor loop

subgoal V has a success leaf with a new correct answer substitution not included in TP (this

new answer is not consumed by V ′ in the current round but will be consumed in the next

round). Obviously, this case is excluded by condition (2). As a result, conditions (1) and

(2) together imply that further iteration would generate no new answers for A. Therefore,

TBA is complete for A after merging TP with the new tabled answers NEW in GTG0
. �

Example 3.2 Consider Figure 1. We cannot apply Theorem 3.2 to determine the complete-

ness of TBp(a,Y ) since the ancestor loop subgoal p(a, Y ) at N0 has a successful sub-derivation

with an answer p(a, b) not in TP1. As we can see, applying this new answer to the descen-

dant loop subgoal at N1 would generate another new answer p(a, c). The completeness of

TBs is not determinable either, since both the two sub-SLTNF-trees for s (rooted at N6 and

N8, respectively) contain a temporarily undefined leaf. However, by Theorem 3.2, TBr is

complete.

Definition 3.3 (SLTNF-resolution) Let P be a logic program, G0 =← A a top goal with

A an atom, and R a computation rule. Let TP
0 = ∅. SLTNF-resolution evaluates G0 by

calling the function SLTNF (P, G0, R, TP
0), defined as follows.

function SLTNF (P, G0, R, TP
i) returns a table TBA

{

Build a generalized SLTNF-tree GT i
G0

for (P ∪ {G0}, TP
i) while collecting

all new tabled answers into NEW i;

TP
i+1 = TP

i ∪NEW i;

Check completeness of all tables in TP
i+1 and update their status;

if NEW i = ∅ or TBA → comp = 1 then return TBA;

return SLTNF (P, G0, R, TP
i+1);

}

12



Example 3.3 (Cont. of Example 3.1) First execute SLTNF (P1, G0, R, TP
0
1) where TP

0
1 =

∅, G0 =← p(a, Y ) and R is the left-most computation rule. The procedure builds a general-

ized SLTNF-tree for (P1∪{← p(a, Y )}, ∅) as shown in Figure 1. It also collects the following

new tabled answer into NEW 0: p(a, b) for TBp(a,Y ). Moreover, it has TBr completed by

setting TBr → comp to 1 (note that TBr → ans = ∅).

Next execute SLTNF (P1, G0, R, TP
1
1) where TP

1
1 = TP

0
1∪NEW 0. It builds a generalized

SLTNF-tree GT 1
←p(a,Y ) for (P1 ∪ {← p(a, Y )}, TP

1
1) as shown in Figure 2, and collects the

following new tabled answer into NEW 1: p(a, c) for TBp(a,Y ).

Finally execute SLTNF (P1, G0, R, TP
2
1) where TP

2
1 = TP

1
1 ∪ NEW 1. The procedure

builds a generalized SLTNF-tree GT 2
←p(a,Y ) for (P1 ∪ {← p(a, Y )}, TP

2
1) in which no new

tabled answer is produced. Therefore, it returns with two tabled answers, p(a, b) and p(a, c),

to the top goal G0.

H
HHj

?

?

�
���

?
�

���

?

H
HHj

N6 : e(a, Y ),¬r

�t

N5 :

�loop

�t

Cp2Cp1

N3 : LOOP
N4 : e(b, Y )

Ce2

N0 : p(a, Y )

N2 : p(a,Z), e(Z, Y )
N1 :

Ce1

N8 :
�t

N7 : ¬r

(Y = c)

(Z = b)

(Y = b)

(Y = b)

Figure 2: The generalized SLTNF-tree GT 1
←p(a,Y ) for (P1 ∪ {← p(a, Y )}, TP

1
1).

Theorem 3.3 Let P be a logic program with the bounded-term-size property, G0 a top goal

and R a computation rule. SLTNF (P, G0, R, ∅) terminates in finite time.

Proof: Let n be the maximum size of arguments in any top goal. Since P has the bounded-

term-size property, neither subgoals nor tabled answers have arguments whose size exceeds

f(n) for some function f . Let s = f(n). Since P has a finite number of predicate symbols,

the number of distinct subgoals (up to variable renaming) occurring in all GT i
G0

s is bounded

by a finite number N(s). Therefore, SLTNF-resolution performs at most N(s) iterations

(i.e. generates at most N(s) generalized SLTNF-trees). By Theorem 3.1, each iteration

terminates in finite time, hence SLTNF-resolution terminates in finite time. �

Theorem 3.4 Let P be a logic program with the bounded-term-size property, A an atom,

and G0 =← A a top goal with A a non-floundering query. Let TBA be the tabled answers

returned from SLTNF (P, G0, R, ∅), and let TN0:G0
be the SLS-tree for P ∪ {G0} via R.

1. Aθ is in TBA if and only if there is a correct answer substitution θ for G0 in TN0:G0
.
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2. TBA → comp = 1 and TBA → ans = ∅ if and only if TN0:G0
is failed.

Proof: We first prove that SLS-trees with negative loops can be transformed into equivalent

SLS-trees without negative loops. Let TNi:←B be an SLS-tree with a descendant SLS-tree

TNj :←B. Obviously, this is a negative loop. Observe that B at Ni being successful or failed

must be independent of the loop SLS-tree TNj :←B, for otherwise the truth value of B would

depend on ¬B so that B is undefined. This strongly suggests that using a temporarily

undefined value u∗ as the truth value of TNj :←B does not change the answer of B at Ni. In

other words, any SLS-trees with negative loops can be transformed into equivalent SLS-trees

where all descendant loop SLS-trees are assumed to return a temporarily undefined value

u∗.

Let T i
N0:G0

and GT i
G0

be respectively the SLTNF-tree and the generalized SLTNF-tree

for (P ∪ {G0}, TP
i), where TP

0 = ∅ and for each i ≥ 0, TP
i+1 = TP

i ∪ NEW i where NEW i

contains all new tabled answers collected from GT i
G0

. We prove this theorem by showing

that answers over SLS-derivations can be extracted in an iterative way and such iterations

are the same as those of SLTNF-resolution. Therefore, both resolutions extract the same set

of answers to G0. We distinguish between three cases:

1. For any answer Aθ that is generated without going through any loops, we must have

the same successful derivations for A in T 0
N0:G0

as in TN0:G0
.

2. Let us consider answers to G0 that are generated without going through any negative

loops. Without loss of generality, assume the SLS-derivations for the answers involve

positive loops as shown in Figure 3, where for any j > k ≥ 0, Bk is an ancestor loop

subgoal of Bj and each T k together with the branch leading to Nik+1 is a sub-SLS-tree

for Bk at Nik . Obviously, all T ks are identical up to variable renaming and thus they

have the same set SB0 of correct answer substitutions for Bk (up to variable renaming).

Observe that besides SB0 , the other possible correct answer substitutions for Bk must

be generated via the infinite loops in an iterative way: For any l > 0, the correct answer

substitutions for Bl, El
1, ..., E

l
n at Nil combined with δl, when restricted to the variables

in Bl−1, are also correct answer substitutions for Bl−1 at Nil−1 . These substitutions

are obtained by applying each correct answer substitution θl for Bl to El
1, ..., E

l
n and

then evaluating (El
1, ..., E

l
n)θ

l. Since P has the bounded-term-size property, no correct

answer substitution requires performing an infinite number of such iterations. That is,

there must exist a depth bound d such that any correct answer substitution θ for B0

is in the following closure (fixpoint):

• The initial set of correct answer substitutions is Sd = SB0 .

• For each 0 < l ≤ d, the set of correct answer substitutions for Bl−1 at Nil−1 is

Sl−1 = Sl ∪ {θ|θ
l ∈ Sl and θ = δlθlα where α is a correct answer substitution for

(El
1, ..., E

l
n)θl}.
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1δ2, ..., Dmδ1δ2

T 0

T 1

Figure 3: SLS-derivations with positive loops.

Apparently, SLTNF-resolution performs the same iterations by making use of the loop

cutting and tabling mechanisms: In the beginning, TBB0 is empty. The loop is cut at

Ni1 , so TBB0 = Sd = SB0 after T 0
N0:G0

is generated (note B0 and Bk (resp., T 0 and

T k) are variants). Then for the l-th iteration (0 < l ≤ d) TBB0 obtains new answers

by applying the already tabled answers to B1 at Ni1 in T l
N0:G0

; i.e., TBB0 = Sl−1. As

a result, SLS-resolution and SLTNF-resolution derive the same set of correct answer

substitutions for all subgoals involving no negative loops.

3. Let us now consider answers to G0 that are generated involving negative loops. As we

discussed earlier, loop descendant SLS-trees TNi:←B can be removed by assuming they

return a temporarily undefined value u∗. Then we get equivalent SLS-trees without

any negative loops. By point 2 above, we can exhaust all answers to G0 from these

(negative loop free) SLS-trees in an iterative way, as SLTNF-resolution does. If no

single answer to A in G0 is generated after the iteration, we have two cases. The first

is that no SLS-derivation for A at N0 ends at a leaf with u∗. This means that the

truth value of A does not depend on any negative loop subgoal, so TN0:G0
is failed

and thus TBA → comp = 1 and TBA → ans = ∅. The second case is that some

SLS-derivation for A at N0 ends at a leaf with u∗. This means that the truth value of

A recursively depends on some negative loop subgoal, so A is undefined. In this case,

SLTNF-resolution stops with TBA → comp = 0 and TBA → ans = ∅. �

Since Global SLS-resolution is sound and complete w.r.t. the well-founded semantics

(see Theorem 2.1), we have the following immediate corollary.

Corollary 3.5 Let P be a logic program, R a computation rule, and G0 ← Q be a top goal
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with Q a non-floundering query under R. SLTNF-resolution is sound and complete w.r.t.

the well-founded semantics.

4 Related Work

Existing procedural semantics for the well-founded model can be divided into two groups in

terms of the way they make derivations: (1) bottom-up approaches, such as the alternating

fixpoint approach [31, 15], the magic sets approach [12, 16] and the transformation-based

bottom-up approach [4, 5, 6], and (2) top-down approaches. Our method belongs to the

second group. Existing top-down methods can be further divided into two groups: (1) non-

tabling methods, such as Global SLS-resolution, and (2) tabling methods. Our method is

one with tabling. Several tabling methods for positive logic programs have been proposed,

such as OLDT-resolution [29], TP-resolution [25, 36] and the DRA tabling mechanism [11].

However, to the best of our knowledge, only SLG-resolution and SLT-resolution use tabling

to compute the well-founded semantics for general logic programs.

SLG-resolution is the state-of-the-art tabling mechanism. It is based on program trans-

formations, instead of on standard tree-based formulations like SLDNF- or Global SLS-

resolution. Starting from the predicates of the top goal, it transforms (instantiates) a set of

clauses, called a system, into another system based on six basic transformation rules. Such a

system corresponds to a forest of trees with each tree rooted at a tabled subgoal. A special

class of literals, called delaying literals, is used to represent and handle temporarily unde-

fined negative literals. Negative loops are identified by maintaining an additional dependency

graph of subgoals [7, 8]. In contrast, SLTNF-resolution generates an SLTNF-tree for the top

goal in which the flow of the query evaluation is naturally depicted by the ordered expansions

of tree nodes. Such a tree-style formulation is quite easy for users to understand and keep

track of the computation. It can also be implemented efficiently using a simple stack-based

memory structure. The disadvantage of SLTNF-resolution is that it is a little more costly

in time than SLG-resolution due to the use of answer iteration in exchange for the linearity

of derivations.

SLT-resolution is a tabling mechanism with the linearity property. Like SLTNF-resolution,

it expands tree nodes by first applying tabled answers and then applying clauses. It also uses

answer iteration to derive missing answers caused by loop cuttings. However, it is different

from SLTNF-resolution both in loop handling and in answer completion (note that loop

handling and answer completion are two key components of a tabling system).

Recall that SLT-resolution defines positive and negative loops based on the same ancestor-

descendant relation: Let A be a selected positive subgoal and B be a subgoal produced by

applying a clause to A, then B is a descendant subgoal of A and inherits all ancester sub-

goals of A; let ¬A be a selected ground subgoal with TNr :←A being its subsidiary SLT-tree,

then the subgoal A at Nr inherits all ancester subgoals of ¬A. A (positive or negative) loop
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occurs when a selected subgoal has an ancestor loop subgoal. Observe that the ancestor and

descendant subgoals may be in different SLT-trees.

When a positive loop occurs, SLTNF-resolution will apply no clauses to the descendant

loop subgoal for node expansion, which guarantees that any ancestor loop subgoal has just

one descendant loop subgoal. However, SLT-resolution will continue expanding the descen-

dant loop subgoal by applying those clauses that have not yet been applied by any of its

ancestor loop subgoals. As an illustration, in Figure 1, SLT-resolution will apply Cp2
to

expand N1, leading to a child node N ′1 with a goal ← e(a, Z),¬r, e(Z, Y ). Observe that if

the subgoal e(a, Z) at N ′1 were p(a, Z), another loop would occur between N0 and N ′1. This

suggests that in SLT-resolution, an ancestor loop subgoal may have several descendant loop

subgoals. Due to this, SLT-resolution is more complicated and costly than SLTNF-resolution

in handling positive loops.

SLT-resolution is also more costly than SLTNF-resolution in handling negative loops. It

checks negative loops in the same way as positive loops by comparing a selected subgoal with

all of its ancester subgoals across all of its ancestor SLT-trees. However, in SLTNF-resolution

a negative loop is checked simply by comparing a selected ground negative subgoal with the

root goals of its ancestor SLTNF-trees. Recall that a negative loop occurs if a negative

ground subgoal ¬A is selected such that the root of the current SLTNF-tree or one of its

ancestor SLTNF-trees is with a goal ← A.

SLT-resolution provides no mechanism for answer completion except that when a gener-

alized SLT-tree GT i
G0

is generated which contains no new tabled answers, it evaluates each

negative ground subgoal ¬A in GT i
G0

in a way such that (1) ¬A fails if A is a tabled answer,

and (2) ¬A succeeds if (i) all branches of its subsidiary SLT-tree TNr :←A end with a failure

leaf and (ii) for each loop subgoal in TNr:←A, all branches of the sub-SLT-trees for its ancestor

loop subgoals end with a failure leaf. Not only is this process complicated, it is also quite

inefficient since the evaluation of ¬A may involve several ancestor SLT-trees. In contrast,

SLTNF-resolution provides two criteria for completing answers of both negative and positive

subgoals. On the one hand, the criteria are applied during the construction of generalized

SLT-trees so that redundant derivations can be pruned as early as possible. On the other

hand, checking the completion of a subgoal involves only one SLTNF-tree.

5 Conclusions and Further Work

Global SLS-resolution and SLG-resolution represent two typical styles in top-down com-

puting the well-founded semantics; the former emphasizes the linearity of derivations as

SLDNF-resolution does while the latter focuses on making full use of tabling to resolve loops

and redundant computations. SLTNF-resolution obtains the advantages of the two methods

by enhancing Global SLS-resolution with loop cutting and tabling mechanisms. It seems that

the existing linear tabling mechanism SLT-resolution has similar advantages, but SLTNF-
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resolution is simpler and more efficient due to its distinct mechanisms for loop handling and

answer completion.

Due to its SLDNF-tree like structure, SLTNF-resolution can be implemented over a Pro-

log abstract machine such as WAM [33] or ATOAM [35]. In particular, it can be implemented

over existing linear tabling systems for positive logic programs such as [36, 37, 38], simply by

adding two more mechanisms, one for identifying negative loops and the other for checking

answer completion of tabled subgoals. We are currently working on the implementation.

Experimental analysis of SLTNF-resolution will then be reported in the near future.
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