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Abstract

Two complete loop checking mechanisms have been presented in the literature
for logic programs with functions: OS-check and EVA-check. OS-check is compu-
tationally efficient but quite unreliable in that it often mis-identifies infinite loops,
whereas EVA-check is reliable for a majority of cases but quite expensive. In this
paper, we develop a series of new complete loop checking mechanisms, called VAF-
checks. The key technique we introduce is the notion of expanded variants, which
captures a key structural characteristic of infinite loops. We show that our approach
is superior to both OS-check and EVA-check in that it is as efficient as OS-check
and as reliable as EVA-check.
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1 Introduction

The recursive nature of logic programs leads to possibilities of running into
infinite loops with top-down query evaluation. By an infinite loop we refer to
any infinite SLD-derivation. An illustrative example is the evaluation of the
goal < p(a) against the logic program

P p(X) <+ p(X) Cn
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which leads to the infinite loop
— pla) =¢, < pla) = ... =c, pla) = ... Ly
Another very representative logic program is

Py p(X) < p(f(X)) Ca

against which evaluating the query <— p(g(a)) generates the infinite loop

< p(9(a)) =en < p(f9a))) = .. = < p(f(f(.fl9(a)))) = .. Lo

Loop checking is a long recognized problem in logic programming. * Although
many loop checking mechanisms have been proposed during the last decade
(e.g. [1,2,5,7,8,10,15,17,20,23,24,26,27]), a majority of them are suitable on-
ly for function-free logic programs because they determine infinite loops by
checking if there are wariant goals/subgoals in an SLD-derivation. Variant
goals/subgoals are the same goals/subgoals up to variable renaming. Hence,
an infinite loop like Ly cannot be detected because no variant goals/subgoals
occur in the derivation.

An important fact is that for function-free logic programs, infinite loops can
be completely avoided by appealing to tabling techniques [4,6,21,22,25,27,28].
However, infinite loops with functions remain unresolved even in tabling sys-
tems [16].

To our best knowledge, among all existing loop checking mechanisms only two
can deal with infinite loops like Ly. One is called OS-check (for OverSize loop
check) [17] and the other EVA-check (for Extended Variant Atoms loop check)
[20]. (Bruynooghe, De schreye and Martens [5,13,14] presents a framework for
partial deduction with finite unfolding that, when applied to loop checking, is
very similar to OS-check.)

OS-check, first introduced by Sahlin [17,18] and further formalized by Bol [3],
determines infinite loops based on two parameters: a depth bound d and a
size function size. Informally, OS-check says that an SLD-derivation may go
into an infinite loop if it generates an OverSized subgoal. A subgoal A is said
to be OuverSized if it has d ancestor subgoals in the SLD-derivation that have
the same predicate symbol as A and whose size is smaller than or equal to A.
For example, if we choose d = 1, then p(f(g(a))) in Ly is OverSized, so L, is
an infinite loop.

4 There are two different topics on termination of logic programs. One is termi-
nation analysis (see [9] for a detailed survey), and the other is loop checking (see
[1,27]). In this paper, we study loop checking.



It is proved that OS-check is complete in the sense that it cuts all infinite loops.
However, because it merely takes the number of repeated predicate symbols
and the size of subgoals as its decision parameters, without referring to the
informative internal structure of the subgoals, the underlying decision is fairly
unreliable; i.e. many non-loop derivations may be pruned unless the depth
bound d is set sufficiently large.

EVA-check, proposed by Shen [20], determines infinite loops based on a depth
bound d and generalized variants. Informally, EVA-check says that an SLD-
derivation may go into an infinite loop if it generates a subgoal A’ that is a
generalized variant of all its d ancestor subgoals. A subgoal A’ is said to be a
generalized variant of a subgoal A if it is the same as A up to variable renaming
except for some arguments whose size increases from A via a set of recursive
clauses. Recursive clauses are of the form like C5; in P,, one distinct property
of which is that repeatedly applying them may lead to recursive increase in
size of some subgoals.

Recursive increase in term size is a key feature of infinite loops with function-
s. That is, any infinite loops with infinitely large subgoals are generated by
repeatedly applying a set of recursive clauses. Due to this fact, EVA-check is
complete and much more reliable than OS-check in the sense that it is less
likely to mis-identify infinite loops [20].

OS-check has the obvious advantage of simplicity, but it is unreliable. In con-
trast, EVA-check is reliable in a majority of cases, but it is computationally
expensive. The main cost of EVA-check comes from the computation of re-
cursive clauses. On the one hand, given a logic program we need to determine
which clauses in it are recursive clauses. On the other hand, for any subgoals A
and A" in an SLD-derivation, in order to determine if A" is a generalized variant
of A, we need to check if A’ is derived from A by applying some set of recursive
clauses. Our observation shows that both processes are time-consuming.

In this paper, we continue to explore complete loop checking mechanisms,
which have proved quite useful as stopping criteria for partial deduction in
logic programming [12] (see [3] for the relation between stopping criteria for
partial deduction and loop checking). On the one hand, unlike OS-check, we
will fully employ the structural characteristics of infinite loops to design reli-
able loop checking mechanisms. On the other hand, instead of relying on the
expensive recursive clauses, we extract structural information on infinite loops
directly from individual subgoals. We will introduce a new concept — expanded
variants, which captures a key structural characteristic of certain subgoals in
an infinite loop. Informally, a subgoal A’ is an expanded variant of a subgoal
A if it is a variant of A except for some terms (i.e. variables or constants or
functions) in A each of which grows in A’ into a function containing the term.



The notion of expanded variants provides a very useful tool by which a series
of complete loop checking mechanisms can be defined. In this paper, we de-
velop four such VAF-checks (for Variant Atoms loop checks for logic programs
with Functions) — VAF,_4(d), where d is a depth bound. VAF(d) identifies
infinite loops based on expanded variants. V AF;(d) enhances V AF;(d) by tak-
ing into account one (infinitely) repeated clause. VAFj3(d) enhances VAF,(d)
with a constraint of a set of (infinitely) repeated clauses. And VAF,(d) en-
hances V AF5(d) with a constraint of recursive clauses. The reliability increas-
es from VAF|(d) to VAF,(d), but the computational overhead increases, too.
By balancing between the two key factors, we choose VAFy(d) as the best for
practical applications. VAF5(d) has the same complexity as OS-check, but is
far more reliable than OS-check. When d > 2, V AF;(d) is reliable for a vast
majority of logic programs. Moreover, while no less reliable than EVA-check,
VAF,(d) is much more efficient than EVA-check (because like OS-check it
does not compute recursive clauses).

The plan of this paper is as follows. In Section 2, we review basic concepts
concerning loop checking. In Section 3, we introduce expanded variants and
examine their properties. In Section 4, we define four VAF-checks and prove

their completeness. In Section 5, we make a comparison of the VAF-checks
with OS-check and EVA-check.

2 Preliminaries

In this section, we review some basic concepts concerning loop checking. We
assume familiarity with the basic concepts of logic programming, as presented
in [11]. Here and throughout, by a logic program we always mean a posi-
tive logic program. Variables begin with a capital letter, and predicate sym-
bols, function symbols and constants with a lower case letter. Let A be an
atom/function. The size of A, denoted |A|, is the count of function symbols,
variables and constants in A. We use rel(A) to refer to the predicate/function
symbol of A, and use A[i] to refer to the i-th argument of A, A[i][j] to refer
to the j-th argument of the i-th argument, and A[:]...[k] to refer to the k-th
argument of ... of the i-th argument. For example, let A = p(a, X, f(g, h(Y))),
then A[3] = f(g,h(Y)), A[3][2] = h(Y), and A[3][]2][1] =Y.

Definition 2.1 By a variant of an SLD-derivation (resp. a goal, subgoal, atom
or function) D we mean a derivation (resp. a goal, subgoal, atom or function)
D' that is the same as D up to variable renaming.

For example, p(X) is a variant of p(Y") since these two atoms become the same
after the variable Y is renamed by X.



Definition 2.2 ([1,3]) Let P be a logic program, Gy a top goal and S a
computation rule.

(i) Let L be a set of SLD-derivations of P U {G} under S. Define
RemSub(L) ={ D € L | no D' € L that is a proper subderivation
of D}.
L is subderivation free if L = RemSub(L).
(ii) A (simple) loop checkis a computable set L of finite SLD-derivations such
that L is closed under variants and is subderivation free.

Observe that a loop check L formally defines a certain type of infinite loops
generated from P U {Go} under S; i.e. an SLD-derivation Gy = ... =¢, 4,
G = ... is said to step into an infinite loop at Gy, if Gy = ... =¢, 9, G is
in L. Therefore, whenever such an infinite loop is detected, we should cut it
immediately below Gj. This leads to the following definition.

Definition 2.3 Let 7 be the SLD-tree of P U {Gy} under S and L a loop
check. Let CUT = {G' | the SLD-derivation from the top goal G to G’ is in
L}. By applying L to T we obtain a new SLD-tree T}, which consists of 7" with
all the nodes (goals) in CUT pruned. By pruning a node from an SLD-tree
we mean removing all its descendants.

In order to justify a loop check, Bol et al. introduced the following criteria.

Definition 2.4 ([1]) Let S be a computation rule. A loop check L is weakly
sound if the following condition holds: for every logic program P, top goal G
and SLD-tree T of PU{Gy} under S, if T contains a successful branch, then
T}, contains a successful branch. A loop check L is complete if every infinite
SLD-derivation is pruned by L. (Put another way, a loop check L is complete
if for any logic program P and top goal G¢ T, is finite.)

An ideal loop check would be both weakly sound and complete. Unfortunately,
since logic programs have the full power of the recursive theory, there is no
loop check that is both weakly sound and complete even for function-free
logic programs [1]. As mentioned in the Introduction, in this paper we explore
complete loop checking mechanisms. So in order to compare different complete
loop checks, we introduce the following concept.

Definition 2.5 A complete loop check L, is said to be more reliable® than
a complete loop check L, if for any logic program P and top goal Gy, the
successful SLD-derivations in 77, are not less than those in 77, and not vice
versa.

®1In [20], it is phrased as more sound.



It is proved that EVA-check is more reliable than OS-check [20]. In the Intro-
duction, we mentioned a notion of ancestor subgoals.

Definition 2.6 ([20]) For each subgoal A in an SLD-tree, its ancestor list
AL, is defined recursively as follows:

(i) If A is at the root, then AL, = {}.

(ii)) Let M =<« Ay, ..., A, be a node in the SLD-tree, with A; being selected
to resolve against a clause A} < By, ..., B,. Let A;0 = Al6. So M has
a child node N =« B0, ..., B,0, As0, ..., A,,0. Let the ancestor list of
each A; at M be AL,,. Then the ancestor list AL,y of each B;# at N is
{A1} UAL,, and the ancestor list AL4;q of each A;0 is AL,;.

Obviously, for any subgoals A and B, if A is in the ancestor list of B, i.e.
A € ALg, the proof of A requires the proof of B.

Definition 2.7 Let G; and G} be two nodes in an SLD-derivation, and A
and B be the selected subgoals in G; and Gy, respectively. We say A is an
ancestor subgoal of B, denoted A <anc B, if A € ALp.

The following result shows that the ancestor relation < ,y¢ is transitive.

Theorem 2.1 If Ay <anc Az and Ay <anc Az then Ay <anc As.

Proof. By the definition of ancestor lists, for any subgoal A if A € ALy,
then ALy C ALy . So Ay <anc As implies ALA2 C ALA3. Thus A, € ALA2
(since Ay <anc As) and ALy, C ALy, implies A; € ALy4,. That is, Ay <anc
As. O

With no loss in generality, in the sequel we assume the leftmost computation
rule. So the selected subgoal at each node is the leftmost subgoal. For conve-
nience, for any node (goal) G;, unless otherwise specified we use A; to refer to
the leftmost subgoal of G;.

3 Expanded Variants

To design a complete and reliable loop check, we first need to determine what
principal characteristics that an infinite loop possesses. Consider the infinite
loop Ls (see the Introduction) again. We notice that for any i > 0, the subgoal
p(f(..f(f(g(a)))..)) at the (i + 1)-th node G;;; is a variant of the subgoal
p(f(..f(g(a))..)) at the i-th node G; except for the function g(a) at G; that
grows into a function f(g(a)) at G,1. However, If we replace g(a) with a



constant a in Ly, then p(f(..f(f(a))..)) at G4y is a variant of p(f(..f(a)..)) at
G; except for the constant a at G; that grows into a function f(a) at G-
Furthermore, If we replace g(a) with a variable X in Ly, then p(f(..f(f(X))..))
at G;11 is a variant of p(f(..f(X)..)) at G; except for the variable X at G;
that grows into a function f(X) at Gjy1.

As another example, consider the program

Py p(X,Y) «+ ¢(X,Y). Cx
9(X, 9(Y)) < p(X, 9(f (X, Y))). Ci

Let the top goal Gy =« p(a,Z). Then we will get an infinite loop Lj as
depicted in Fig.1. Observe that for any ¢ > 0, the subgoal at Gty is a
variant of that at G; except that the variable Y at Gy grows into f(a,Y’) at
Gagit1)-

+— pla, 2) G
llC’31

+—q(a,2) G4
U’Csz

< pla,g(f(a,Y))) Gy
U’C:n

< pla,9(f(a, f(a,...f(a,Y))))) G

llC’31

Fig.1 The infinite loop Ls.

These observations reveal a key structural characteristic of some subgoals in
an infinite loop with functions, which can be formalized as follows.

Definition 3.1 Let A and A’ be two atoms/functions. A’ is said to be an
expanded variant of A, denoted A" Jgy A, if after variable renaming A’ be-
comes B that is the same as A except that there may be some terms at
certain positions in A each A[i]...[k] of which grows in B into a function
Bli]...[k] = f(..., A[d]...[k],...). Such terms like A[i]...[k] in A are then called

growing terms w.r.t. A’

For example, p(f(Y)) is an expanded variant of p(X) since by renaming the
variable Y with X p(f(Y")) becomes p(f(X)), which is the same as p(X) except
for X growing into f(X).

To simplify the presentation, in the sequel of the paper, when comparing
atoms/functions we always assume their variables have already been renamed.
The following result is immediate.



Theorem 3.1 If A is a variant of B, then A Jgy B.

Example 3.1 At each of the following lines, A’ is an expanded variant of A
because it is the same as A except for the growing terms.

A" p(f(g(a))) Az p(g(a)) where A'[1] = f(A[1])
p(f(9(h(X)))) p(h(X)) A'l1] = fg(A[1])°
pla,g(f(a, f(a,Y)))) pla,g(f(a,Y)))  A[2][1] = f(a, A[2][1]) or

A2)[1][2] = f(a, A2][1][2])
p(f(b,a),a, X) p(a,a,Y) A1) = f(b, A1)
p(X, f(X)) p(X, X) A'l2] = f(A[2])
p([X1, Xa, X)) p([X2, X;]) A1 = [X4[A[1]]
However, at the following lines A’ is not an expanded variant of A.
A" p(f(a),b) A: p(a,c) /*c and b are not unifiable
p(F(X),Y)  p(X.F(Y)) [*f(Y) cannot be in ¥
p(X, f(X)) p(Y, X) /*since p(X, X) is not a variant of p(Y, X)

In the above example, p(X, f(X)) is an expanded variant of p(X, X). It might
be doubtful how that would happen in an infinite loop. Here is an example.

Example 3.2 Let P, = {p(X,Y) < p(X, f(Y)) (Cy1)} be a logic program
and Gy =« p(X, X) a top goal. We have the following infinite loop:

p(X, X) 2oy p(X FX) Sy o oy e p(X, Flf(X))) = . Ly

Clearly, for any ¢ > 0, the subgoal A;,; at G, is the subgoal A; at G; with
the second X growing to f(X). That is, A;;; is a variant of A; except for

A [2] = f(Ai[2]).
Any expanded variant has the following properties.
Theorem 3.2 Let A’ Jgy A.

(1) |A] < [A'].

(2) For any i, ..., k, |Ali]...[k]| < |A'[i]...]K]]|

(8) When |A| = |A'|, A and A’ are variants.

(4) When |A| # |A'|, there exists i such that |A[i]| < |A'[1]].

Proof. (1)and (2) are immediate from Definition 3.1. By (2), when |A| = |A/|,
for any i, ..., k |A[i]...[k]| = |A’[i]...[k]|- That is, there is no growing term in
A, so by Definition 3.1 A’ is a variant of A. This proves (3). Finally, (4) is
immediate from (2). O

6 This example is suggested by an anonymous referee.



These properties are useful for the computation of expanded variants. That
is, if |A’| < |A|, we conclude A’ is not an expanded variant of A. Otherwise, if
|A| = |A’|, we determine if both are variants. Otherwise, we proceed to their
arguments (recursively) to find growing terms and check if they are variants
except for the growing terms.

The relation “variant of” defined in Definition 2.1 yields an equivalent relation;
it is reflexive (i.e., A is a variant of itself), symmetric (i.e., A being a variant
of B implies B is a variant of A), and transitive (i.e., if A is a variant of B
and B is a variant of C', then A is a variant of C'). However, the relation Jgy
is not an equivalent relation.

Theorem 3.3 The following properties hold:

(2) A Jgyv B does not imply B Jgy A.
(3) Adgyv B and A Jgy C does not imply B Jgy C.
(4) A dgyv B and B Jdgy C does not imply A Jgy C.

Proof. (1) Straightforward by Theorem 3.1. (2) Here is a counter-example:
p(f(X)) Zev p(X), but p(X) Zpy p(f(X)). (3) Immediate by letting A =
p(f(X1),9(M1)), B = p(f(X2),Y3), and € = p(X3,9(Y3)). (4) A counter-
e?;r(rll));e: p(9(f(9(a)))) Zev p(f(9(a))) Zev p(f(a)), but p(g(f(g(a)))) Lev
p(f(a)) O

The following result is immediate from Theorem 3.2, which states that the
size of expanded variants is transitively decreasing.

Corollary 3.4 If A Jdgy B and B Jdgy C then |A| > |C|.

The concept of expanded variants provides a basis for designing loop checking
mechanisms for logic programs with functions. This claim is supported by the
following theorem.

Theorem 3.5 Let D = (Gy =¢, G1 = ... =¢, G; = ...) be an infinite SLD-
derivation with infinitely large subgoals. Then there are infinitely many goals
Gy, Giy, ... such that for any j > 1, A, <anc A and A;, ., Jpy Ay, with
|Aij+1| > |AZ] |

ij+1 ij+1

Proof. Since D is infinite, by the justification given by Bol [3] (page 40) D
has an infinite subderivation D’ of the form

(« Aj,.

== (A

1927

)= (AL ) =



where for any 5 > 1, A;J, <ANC A;Hl. Since any logic program has only a
finite number of clauses, there must be a set of clauses in the program that
are invoked an infinite number of times in D’. Let S = {C}, ..., C,} be the set
of all different clauses that are used an infinite number of times in D'. Then
D' must have an infinite subderivation D" of the form

((— A;’l, ) :>011 :>C'1n1 (% A

797

) DOy e =0, (AL ) S,
where for any j > 1, A} <anc 4, and {C}y, ..., C;, } = S.7 Since any logic
program has only a finite number of predicate/function/constant symbols and
D contains infinitely large subgoals, there must be an infinite sequence of A;-;s
in D": A; ..., Ay, ... such that for any j > 1, A;; <anc Aij,, and 4;; is a
variant of A; , except for a few terms in A; , whose size increases. Note that
such an infinite increase in term size in D” must result from some clauses in S
that cause some terms I to grow into functions of the form f(...I...) each cycle
S is applied. This means that A;; is a variant of A;;,, except for some terms
I that grow in A into f(]), i.e., A Jdev Aij with |Aij+1| > |AZJ | O

ij+1 Gj+1

4 VAF-Checks

Based on expanded variants, we can define a series of loop checking mech-
anisms for logic programs with functions. In this section, we present four
representative VAF-checks and prove their completeness.

Definition 4.1 Let P be a logic program, GGy a top goal, and d > 1 a depth
bound. Define

VAF(d) = RemSub({D | D = (Gy =¢, G1 = ... =¢, Gy) in which there
are up to d goals G;,,Gl,, ..., Gy (0 < iy <iig < ... <ig <k ='igs1)
that satisfy the following conditions:

(1) For each 5 < d, Aij <ANC Aij+1 and Aij+1 Jdpv Az]
(2) For amy j < d |A, | = | A, | or for amy § < d |4, | < |4;,.]. ]

Theorem 4.1 (1) VAF\(d) is a (simple) loop check. (2) V AF\(d) is complete

w.r.t. the leftmost computation rule.

Proof. (1) Straightforward from Definition 2.2. (2) Let D = (Gy =¢, G1 =
. =¢, G; = ...) be an infinite SLD-derivation. Since P has only a finite

"Note that (1) the order of clauses in {C;,, ..., Cjnj} is not necessarily the same as
that in S, say {C},, ...,Cjnj} ={Cy,Cy,...,C1}, and (2) {C},, ..., Cjnj} may contain
duplicated clauses, say {C},, ..., Cjn]_} ={Cy,Cy,Ch, ...,C1 }.

10



number of clauses, there must be a set of clauses in P that are invoked an
infinite number of times during the derivation. Let S = {C4, ..., C,, } be the set
of all distinct clauses that are applied an infinite number of times in D. Then,
by the proof of Theorem 3.5 D has an infinite sub-derivation of the form

(= Ay, ) =, - =0, (< Ay, ) =0, o = Cay, (< Aiyy ) =y, -

where for any j > 1, {Cj17""Cjnj} = S and A;; <anvc A Let T =

{4, A;,,...}. We distinguish between two cases.

UESE

(i) There is no subgoal in D whose size is infinitely large. Because any logic
program has only a finite number of predicate symbols, function symbols
and constants, there must be infinitely many atoms in 7" that are variants.
Let { By, ..., B4, Ba11} be the first d+1 atoms in T" that are variants. Then,
by Theorem 3.1, for each 1 < j < d Bj;y Jgv B; with |Bj 1| = |B;|, so
the conditions of V AF;(d) are satisfied, which leads to the derivation D
being pruned at the node with the leftmost subgoal By, ;.

(ii) There is a subgoal in D with infinitely large size. Then by Theorem 3.5,
there must be infinitely many atoms in 7' that are expanded variants
with growing terms. Let {Bj, ..., By, B4y1} be the first d + 1 atoms in T
such that for each 1 < j < d, B;j;1 Jgv B; with |Bj1] > |B;|. Again,
the conditions of VAF;(d) are satisfied, so that the derivation D will be
pruned. O

Since V AFj(d) is complete for any d > 1, taking d — oo leads to the following
immediate corollary to Theorem 4.1.

Corollary 4.2 Any infinite SLD-derivation contains an infinite sub-derivation
of the form

(A, )= = A, )= = (A, ) =
such that all A;; satisfy the two conditions of VAF\(d) (d — oo).

Observe that V AF}(d) identifies infinite loops only based on expanded variants
of selected subgoals. More reliable loop checks can be built by taking into
account the clauses selected to generate those expanded variants.

Definition 4.2 Let P be a logic program, GGy a top goal, and d > 1 a depth
bound. Define

VAF,(d) = RemSub({D | D = (Gy =¢, G1 = ... =¢, Gi) in which there
are up to d goals G;,,Gl,, ..., Gy (0 < iy <ig < ... <ig <k ='igs1)
that satisfy the following conditions:

(1) For each j <d, A;j; <anc As;,, and A;, Jpy Aj;.

1541 i1
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(2) For any j < d |A;| = |4, ], or for any j < d |A;;]| < |A;,, |
(3) For all j < d, the clause selected to resolve with A;; is the
same. })

Theorem 4.3 (1) VAF,(d) is a (simple) loop check. (2) V AFy(d) is complete

w.r.t. the leftmost computation rule.

Proof. (1) Straightforward. (2) By Corollary 4.2, for any infinite SLD-derivation
D, there is an infinite sub-derivation in D of the form

(Af ) =0 = (AL ) = = (AL ) =g

117 127

such that all A; satisfy the first two conditions of V AF5(d). Since any logic
program has only a finite number of clauses, there must be a clause C} that

resolves with infinitely many A’ s in the sub-derivation. Let A4, ,..., 4;, be
the first d A; s that resolve with ‘Cy. The third condition of VAF,(d) is then
satisfied, so we conclude the proof. O

Again, taking d — oo leads to the following corollary to Theorem 4.3.

Corollary 4.4 Any infinite SLD-derivation contains an infinite sub-derivation
of the form

(A, ) = = (A, ) =0, = (& Ay ) 20,
such that all A;; satisfy the three conditions of VAFy(d) (d — o0).

Since VAF,(d) is a special case of VAF;(d), any SLD-derivation pruned by
V AF,(d) must be pruned by VAF|(d), but the converse is not true. As an
example, consider the SLD-derivation

<—p(a) :>01%p(f1(a)) :>C2<_p(f2(f1(a))) =cy U

It will be cut by VAF;(2) but not by VAF,(2) because condition (3) is not
satisfied. This leads to the following.

Theorem 4.5 VAF,(d) is more reliable than V AF(d).

V AF,(d) considers only the repetition of one clause in an infinite SLD-derivation.
More constrained loop checks can be developed by considering the repetition
of a set of clauses.

Definition 4.3 Let P be a logic program, GGy a top goal, and d > 1 a depth
bound. Define

12



VAF;(d) = RemSub({D | D = (Gy =¢, G1 = ... =¢, Gy) in which there
are up to d goals Gi,, Gy, ..., Giy (0 <iy <iig < ... <ig < k =1ig41)
that satisfy the following conditions:

(1) For each j < d, A;j; <anc Aij,, and A;, Jpy Aj;.

(2) For any j < d |A;;| = |Ay,,, |, or for any j < d A | < |A;,,].

(3) For all j < d the clause selected to resolve with A; is the same.

(4) For all j < d the set S of clauses used to derive A4; , from A;

tj+1
is the same. })

Theorem 4.6 (1) VAF;3(d) is a (simple) loop check. (2) V AF3(d) is complete
w.r.t. the leftmost computation rule.

Proof. (1) Straightforward. (2) By Corollary 4.4, for any infinite SLD-derivation
D, there is an infinite sub-derivation in D of the form

4/ 4’ 4’
< Z'l,... :> & ...:> < . :> ...:> < e :> cee

127

such that all A satisfy the first two conditions of VAF;(d). Obviously, the
third condition of V AF3(d) is satisfied as well. Since any logic program has only
a finite number of clauses, there must be an infinite sequence, Aj , ... A; e
of A’ s in the sub-derivation such that the set S of clauses used to derive A’
frorn A; is the same. Let A; , ..., A;, , be the first d+ 1 such A’]s The fourth
condition of V AFs(d) is then satisfied. O

Taking d — oo leads to the following immediate corollary to Theorem 4.6.

Corollary 4.7 Any infinite SLD-derivation contains an infinite sub-derivation
of the form

((— Ail, ) =0y - :>Cn1 ((— Ai27 ) =y - :>Cn2 (% Aij, )
=0 - =0

nj

such that all A;; satisfy the three conditions of VAFy(d) (d — oc), and that
forany 7 > 1 {C,...,C;} = {Chy ..., Cryy ) }-

Obviously, any SLD-derivation pruned by V AF3(d) must be pruned by V AF;(d).
But the converse is not true. Consider the SLD-derivation

« pla) =c, < p(fi(a)) =c, ¢ p(fa(fi(a)) =c,+ p(fi(fa(fi(a)))) =¢, O

It will be cut by VAF5(2) but not by VAF3(2) because condition (4) is not
satisfied. This leads to the following.

Theorem 4.8 VAF3(d) is more reliable than V AF,(d).

13



Before introducing another more constrained loop check, we recall a concept
of recursive clauses, which was introduced in [19].

Definition 4.4 A set of clauses, { Ry, ..., R, }, are called recursive clauses if
they are of the form (or similar forms)

QO(X(]) < ,ql(X(]), Ry
Q1(X1) — ,QQ(Xl), R,
Qm—l(---Xm—l---) — an(Xm—l)a R,
(o Xmeo) oy oo f (e X ) o )s - R,

where for any 0 < ¢ < m, ¢;(...X; ;...) in R; ; is unifiable with ¢;(...X;...) in
R; with an mgu containing X;_;/X;, and ¢o(...f(...Xp...)...) in Ry, is unifiable
with go(...Xo...) in Ry with an mgu containing f(...X,,...)/X,. Put another
way, {Rq, ..., R } is a set of recursive clauses if starting from the head of Ry (
replacing X, with X) applying them successively leads to an inference chain
of the form

qO(X) = Ro ql(X) =Ry -+ = Rpm_1 qm(X) = Rm qO(f(X))

such that the last atom go(...f(...X...)...) is unifiable with the head of Ry with
an mgu containing f(...X...)/Xj.

Example 4.1 The sets of clauses, {C11} in P, {Co1} in Py, {C31,C32} in P,
and {Cy;} in Py, are all recursive clauses.

Recursive clauses cause some subgoals to increase their size recursively; i.e.,
each cycle {Ry, ..., R, } is applied, the size of go(.) increases by a constant. If
{Ry, ..., Ry} can be repeatedly applied an infinite number of times, a subgoal
¢o(.) will be generated with infinitely large size (note that not any recursive
clauses can be repeatedly applied). Since any logic program has only a finite
number of clauses, if there exist no recursive clauses in a program, there will be
no infinite SLD-derivations with infinitely large subgoals, because no subgoal
can increase its size recursively. This means that any infinite SLD-derivation
with infinitely large subgoals is generated by repeatedly applying a certain set
of recursive clauses. This leads to the following.

Definition 4.5 Let P be a logic program, GGy a top goal, and d > 1 a depth
bound. Define

VAFy(d) = RemSub({D | D = (Gy =¢, G1 = ... =¢, Gy) in which there
are up to d goals G;,,Gl,, ..., G, (0 < iy <ig < ... <ig <k ='igs1)
that satisfy the following conditions:

(1) For each 5 < d, Aij <ANC Aij+1 and Aij+1 Jpv Az]
(2) For any j < d |A;,| = |Ai,,, |, or for any j <d |4, | < |4

gEs| |

14



(3) For all j < d the clause selected to resolve with A4; is the same.

(4) For all j < d the set S of clauses used to derive A; , from A;
is the same.

(5) If for any j < d |A;;| < |A;;,,| then S contains recursive clauses
that lead to the size increase. })

41

Theorem 4.9 (1) VAF,(d) is a (simple) loop check. (2) V AFy(d) is complete

w.r.t. the leftmost computation rule.

Proof. (1) Straightforward. (2) By Corollary 4.7, for any infinite SLD-derivation
D, there is an infinite sub-derivation E in D of the form

((— Al ) =y - :>Cn1 ((— Al

i1’ in? ) =0y - :>Cn2 (<— A;j, )
=y - =C

nj

such that all A; satisfy the first four conditions of VAFy(d) (d — oo). Now
assume that for : any j > 1[A4; [ <|4; | Then E contains A;  with infinitely
large size. Such infinitely increase in term size in E must be generated by the
repeated applications of some recursive clauses. This means that there must
be an infinite sequence, A; , .. A; ,.ony Of A’ s in E such that the clauses used
to derive Aj Lt from A’ contain recursive clauses that lead to the size increase
from A to A’ . Let A“, <oy Aiy,, be the first d + 1 such A’js Then all A;
satisfy the five conditions of VAF4(d). O

When d — 0o, we obtain the following corollary to Theorem 4.9.

Corollary 4.10 Any infinite SLD-derivation contains an infinite sub-derivation
of the form

(= Ais ) =0 =0, (A, ) =o =, (5 Ay
=0y - =C

such that fOT any.] 2 ]-7 Aij <ANC Aij+17 Aij+1 gEV Aij; {Cka"'acnj} -

{Ck, .., Cnyp )y and for all j > 1 [Ay| = |Ai | or for all j > 1 [A; | < |Ai,,|
where the size increase results from the application of a set of recursive clauses

mn {Ck, ceey Cn]}
Since VAFy(d) is an enhancement of V AF3(d), any SLD-derivation pruned by
V AF,(d) must be pruned by VAF;(d). But the converse is not true. Consider

the program that consists of the clauses Cy : p(a) < p(f(a)) and Cy : p(f(a)).
The SLD-derivation

< p(a) =o < p(f(a)) =c O

15



will be cut by VAF3(1) but not by VAF,(1) because there are no recursive
clauses in the program. So we have the following result.

Theorem 4.11 V AFy(d) is more reliable than V AF;(d).

Example 4.2 Let us choose the depth bound d = 1. Then by applying any
one of the four VAF-checks, VAF;_4(1), all the four illustrating infinite loops
introduced earlier, Ly, ..., Ly, will be cut at some node. That is, L, Ly and Ly
will be pruned at G (the second node from the root), and L3 (Fig.1) pruned
at G4.

Example 4.3 Consider the following list-reversing program (borrowed from

31)

Ps:  reverse([], X, X). Cs
reverse([0|X],Y, Z) < reverse(X,Y, 7). Cso
reverse([s(W)|X],Y, Z) < reverse(X, [s(W)|Y], Z). Cs3

and the top goal Gy =<« reverse([0, s(0), s(s(0))|X],[], Z). Note that Cs; is a
recursive clause. Again, let us choose d = 1. After successively applying the
clauses Csy, Cs3 and Cs3, we get the following SLD-derivation:

« TeveTsEgi, 5(0), s(s(0))| X7, ], 2) Go
« Teversiigi(ﬂ), s(s(0)|X], 1], 2) Gy
« TeversEgi(s(O))|X], [5(0)], 2) Gy
« reverse(X,[s(s(0)), s(0)], Z) Gs

It is easy to check that there is no expanded variant, so we continue to expand
G'3. We first apply Cs; to G3, generating a successful node O; we then apply
Cso to G3, generating a node

+ reverse(X',[s(s(0)), s(0)], Z) Gs

As A3z <anc As and As Dy As with |A5| = |As], VAF) _4(1) are satisfied,
which stop expanding G5. We then apply Cs3 to (G5, generating a node

+— reverse(X', [s(W')|[s(s(0)), s(0)]], Z2) Ge

Obviously, A3 <anc A¢ and Ag Jdpy Az with |Ag| > |As| where the size
increase of Ag is via the recursive clause Cs3, so VAF]_4(1) are satisfied again,
which stop expanding Gg. Since VAF;_4(1) cut all infinite branches while
retaining the (shortest) successful SLD-derivation

GO = Cs2 Gl = Cs3 G2 = Cs3 G3 =Cs L]
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they are weakly sound for P; U {Go}.

Observe that each condition of the above VAF-checks captures one charac-
teristic of an infinite loop. Obviously, except (1) and (5), all the conditions
(2)—(4) make sense only when d > 1. Because expanded variants capture a key
structural characteristic of subgoals in infinite loops, all the VAF-checks with
d = 1 are weakly sound for a majority of representative logic programs (see
the above examples). However, considering the undecidable nature of the loop
checking problem, choosing d > 1 would be safer.® The following example,
although quite artificial, illustrates this point.

Example 4.4 Consider the following logic program

Ps:  p(X) <+ p(f(X)). Co1
p(f(a)). Co2

and the following successful SLD-derivation D for the top goal Gy =< p(a):

< p(a) = Ce1 < p(f((l)) = Cer U

Obviously, p(a) <anc p(f(a)), p(f(a)) ey p(a), and Cg; is a recursive clause.
If we choose d = 1, the derivation D will be pruned at G by all the above
four VAF-checks. That is, VAF;_4(1) are not weakly sound for this program.
Apparently, VAF, 4(2) are weakly sound.

Observe that from VAF;(d) to VAF,(d), the reliability increases, but the com-
putational overhead increases as well. Therefore, we need to consider a trade-
off in choosing among these VAF-checks. For practical applications, when
d > 1 we suggest choosing the VAF-checks in the following order: VAFy(d),
VAF;(d), VAF(d), and VAF,(d). The basic reasons for such a preference are
(i) our experience shows that VAF,(2) is weakly sound for a vast majority
of logic programs, and (ii) the check of condition (3) of VAF,(d) takes lit-
tle time, whereas the check of recursive clauses (condition (5) of VAF,(d)) is
rather costly.

5 Comparison with OS-Check and EVA-Check

Because OS-check, EVA-check and VAF;_4(d) are complete loop checks, we
make the comparison based on the two key factors: reliability and computa-
tional overhead.

8 As mentioned by Bol [3], the question of which depth bound is optimal remains
open. However, our experiments show that VAF5(2) is weakly sound for a vast
majority of logic programs.
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5.1  Comparison with OS-Check

We begin by recalling the formal definition of OS-check.

Definition 5.1 ([3,17]) Let P be a logic program, G, a top goal, and d > 1
a depth bound. Let size be a size-function on atoms. Define

0SC(d,size) = RemSub({D | D = (Gy =¢, G1 = ... =¢, Gy) in which

there are up to d goals G;,, Gy, ..., Gi, (0 <d) < iy < ... <ig <

k =ig.1) such that for any 1 < j < d

(1) Ai; <anc Aij,, and rel(A;;) = rel(Ag).

(2) size(A;;) < size(Ay,).})
There are three versions of OS-check, depending on how the size-function size
is defined [17,3]. In the first version, size(A) = size(B) for any atoms A and
B, so condition (2) will always hold and thus can be ignored. In the second
version, size(A) = |A| for any atom A. And in the third version, for any
atoms A and B with the same arity n, size(A) < size(B) if forany 1 <i <n
|A[i]| < |Bli]|. Obviously, the third version is more reliable than the first two
versions so we can focus on the third version for the comparison.

OS-check is complete [3], but is too weak in that it identifies infinite loops
mainly based on the size-function, regardless of what the internal structure of
atoms is. Therefore, in order to increase its reliability, we have to choose the
depth bound d as large as possible. For example, in [17] d = 10 is suggested.
However, because the internal structure of atoms with functions may vary
drastically in different application programs, using only a large depth bound
together with the size-function as the loop checking criterion could in general
be ineffective/inefficient. For example, when applying OSC(10, size) to the
programs Py, ..., Ps, we would generate a lot of redundant nodes. The following
example further illustrates this fact.

Example 5.1 Consider the following logic program and top goal:

P op(X,1) < p(f(X),2). Cn
p(X,2) « p(f(X),3). Cra
p(X, 99): < p(f(X),100). Cr.99
p(X7 100)- 07,100
Gy =« p((], 1)

The successful SLD-derivation for P; U {G,} is as follows:

<~ p(07 1) =Ccn$ p(f(U), 2) = Cyg oo :>C7,99<_ p(f(f(o))’ 100) :>C7,100 O
99 fs

18



It is easy to see that OSC/(d, size) is not weakly sound for this program unless
we choose d > 100.

In contrast, in our approach the common structural features of repeated sub-
goals in infinite loops are characterized by expanded variants. Based on ex-
panded variants the VAF-checks VAF|_4(d) are weakly sound with small
depth bounds (e.g. d < 2) for a majority of logic programs. For instance,
VAF, 4(1) are weakly sound for P; in the above example, which shows a
dramatical difference.

The above discussion is summarized in the following results

Theorem 5.1 Let size be the size-function of the third version of OS-check.
For any atoms A and B, A Jgy B implies size(B) < size(A).

Proof. Immediate from Theorem 3.2. O

Theorem 5.2 Foranyl <i <4, VAF;(d) is more reliable than OSC(d, size).

Proof. By Theorem 5.1 and Corollary 3.4, OSC(d, size) will be satisfied
whenever condition (1) of VAF;(d) holds. So any SLD-derivations pruned by
V AF;(d) will be pruned by OSC(d, size) as well. But the reverse is not true.
As a counter-example, when d < 100, the SLD-derivation in Example 5.1 will

be pruned by OSC(d, size) but not by VAF;(d). O

We now discuss computational overhead. First note that in both OS-check
and the VAF-checks, the ancestor checking, A;; <anc Aj ., is required.
Moreover, for each ancestor subgoal A;, of A, in OSC(d, size) we compute
size(Ay;) < size(A;,), whereas in VAF,_4(d) we compute A; ,, Jpy A;;. Al-
though the computation of expanded variants is a little more expensive than
that of the size-function, both are processes of two strings (i.e. atoms). Since
string processing is far faster than ancestor checking (which needs to scan the
goal-stack), we can assume that the two kinds of string computations take
constant time w.r.t. scanning the goal-stack. Under such an assumption, the
complexity of OSC(d, size) and VAF|_5(d) is the same (note that the check

of conditions (2) and (3) of the VAF-checks takes little time).

Since the check of condition (4) of the VAF-checks requires scanning the goal-
stack, VAF3(d) is more expensive than OSC(d, size). Furthermore, condition
(5) of the VAF-checks, i.e. the computation of recursive clauses, is quite ex-
pensive because on the one hand, given a logic program we need to determine
which clauses in it are recursive clauses, and on the other hand, for two sub-
goals A;; and A;,, with |A4; | <|A,,,|in an SLD-derivation, we need to find

b1 141

19



if the size increase from Aij to Aij ., results from some recursive clauses. This
means that VAF,(d) could be much more expensive than OSC(d, size).

The above discussion further suggests that VAF,(d) is the best choice (bal-
anced between reliability and overhead) among OSC(d, size) and VAF,_4(d).

5.2 Comparison with EVA-Check

We begin by reproducing the definition of EVA-check.

Definition 5.2 ([20]) Let P be a logic program, G a top goal, and d > 1 a
depth bound. Define

EV A(d) = RemSub({D | D = (Gy =¢, G1 = ... =¢, Gj) in which there
are up to d goals G;,, Gi,, ..., Gi, (0 <y <iy < ...<ig<k=1lg41)
such that for any 1 < j <d
(1) Ay, <anc Aij,,-

(2) Ay is a generalized variant of A, .})

Here, a subgoal A’ is said to be a generalized variant of a subgoal A if it is a
variant of A except that there may be some arguments whose size increases
from A via a set of recursive clauses.

The following characterization of generalized variants is immediate from the
above definition and Definition 3.1.

Theorem 5.3 For any subgoals A" and A in an SLD-derivation, A’ is a gen-
eralized variant of A if and only if A" Jpy A and if |A’'| > |A| then the size
increase is via a set of recursive clauses.

EV A(d) relies heavily on recursive clauses, so its complexity is similar to
V AFy(d). Since the computation of recursive clauses is too expensive, we will
not choose EFV A(d) in practical applications unless it is more reliable than
some V AF;(d). However, the following example shows that EV A(d) cannot
be more reliable than any of the four VAF-checks.

Example 5.2 Consider the following logic program and top goal:

Py: p(X) < p(X). Cs1
p(X) < p(f(X)). Csa
p(f(a)). Css

Gy =<+ pla).

A successful SLD-derivation for Py U {Gy} is as follows:
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<~ p(a) =Ca p(a) = Cp ¥ p(f((l)) = Cg3 O

It can be easily seen that {Cs;, Cso} and {Csa} are two sets of recursive clauses.
Let us choose d = 2. Then A, is a generalized variant of both Ay and Ay, so
EV A(2) will cut the derivation at G5. However, this SLD-derivation will never
be cut by any V AF;(2) because condition (2) of the VAF-checks is not satisfied
(i.e. we have |Ag| = |A4], but |A;] < |Ag|).

6 Conclusions

We have developed four VAF-checks for logic programs with functions based
on the notion of expanded variants. We observe that the key structural feature
of infinite loops is repetition (of selected subgoals and clauses) and recursive
increase (in term size). Repetition leads to variants (because a logic program
has only a finite number of clauses and predicate/function/constant symbols),
whereas recursive increase introduces growing terms. The notion of expanded
variants exactly catches such a structural characteristic of certain subgoals in
infinite loops. Due to this, the VAF-checks are much more reliable than OS-
check and no less reliable than EVA-check even with small depth bounds (see
Examples 5.1 and 5.2). On the other hand, since the structural information
is extracted directly from individual subgoals, without appealing to recursive
clauses, the VAF-checks (except V AFy(d)) are much more efficient than EVA-
check.

In balancing between the reliability and computational overhead, we choose
V AF,(d) as the favorite one for practical applications. Although VAF;(2) is
reliable for a vast majority of logic programs, due to the undecidability of
the loop checking problem, like any other complete loop checks, VAFy(d) in
general cannot be weakly sound for any fixed d. The only way to deal with
this problem is by heuristically tuning the depth bound in practical situations.
Methods of carrying out such a heuristic tuning then present an interesting
open problem for further study.
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