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Abstract

We present a heuristic framework for attacking the undecidable termination problem of logic

programs, as an alternative to current termination/nontermination proof approaches. We

introduce an idea of termination prediction, which predicts termination of a logic program

in case that neither a termination nor a non-termination proof is applicable. We establish

a necessary and sufficient characterization of infinite (generalized) SLDNF-derivations with

arbitrary (concrete or moded) queries, and develop an algorithm that predicts termination

of general logic programs with arbitrary nonfloundering queries. We have implemented a

termination prediction tool and obtained quite satisfactory experimental results. Except for

five programs which break the experiment time limit, our prediction is 100% correct for all

296 benchmark programs of the Termination Competition 2007, of which 18 programs cannot

be proved by any of the existing state-of-the-art analyzers like AProVE07, NTI, Polytool, and

TALP.

KEYWORDS: Logic programming, termination analysis, loop checking, moded queries,

termination prediction

1 Introduction

Termination is a fundamental problem in logic programming with SLDNF-resolution

as the query evaluation mechanism (Clark 1978; Lloyd 1987), which has been

extensively studied in the literature (see, e.g., Schreye and Decorte 1993 for a survey

and some recent papers Apt and Pedreschi 1993; Lindenstrauss and Sagiv 1997;

Decorte et al. 1999; Mesnard and Neumerkel 2001; Genaim and Codish 2005;

Payet and Mesnard 2006; Schneider-Kamp et al. 2006; Bruynooghe et al. 2007).

Since the termination problem is undecidable, existing algorithms/tools either focus

on computing sufficient termination conditions which once satisfied, lead to a positive

conclusion terminating (Arts and Zantema 1995; Marchiori 1996a; Lindenstrauss

et al. 1997; Ohlebusch et al. 2000; Dershowttz et al. 2001; Mesnard and Neumerkel
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Fig. 1. A framework for handling the termination problem.

2001; Bossi et al. 2002; Genaim and Codish 2005; Mesnard and Bagnara 2005; Giesl

et al. 2006; Schneider-Kamp et al. 2006), or on computing sufficient non-termination

conditions which lead to a negative conclusion nonterminating (Payet 2006; Payet and

Mesnard 2006). For convenience, we call the former computation a termination proof,

and the latter a non-termination proof. Due to the nature of undecidability, there

must be situations in which neither a termination proof nor a non-termination proof

can apply; i.e., no sufficient termination/non-termination conditions are satisfied

so that the user would get no conclusion (see the results of the Termination

Competition 2007 which are available at http://www.lri.fr/~marche/termination-

competition/2007). We observe that in such a situation, it is particularly useful

to compute a heuristic conclusion indicating likely termination or likely non-

termination, which guides the user to continue to improve his program towards

termination. To the best of our knowledge, however, there is no existing heuristic

approach available. The goal of the current paper is then to develop such a heuristic

framework.

We propose an idea of termination prediction, as depicted in Figure 1. In the case

that neither a termination nor a non-termination proof is applicable, we appeal

to a heuristic algorithm to predict possible termination or non-termination. The

prediction applies to general logic programs with concrete or moded queries.
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We develop a framework for predicting termination of general logic programs

with arbitrary (i.e., concrete or moded) queries. The basic idea is that we establish a

characterization of infinite (generalized) SLDNF-derivations with arbitrary queries.

Then based on the characterization, we design a complete loop-checking mechanism,

which cuts all infinite SLDNF-derivations. Given a logic program and a query, we

evaluate the query by applying SLDNF-resolution while performing loop checking.

If the query evaluation proceeds without encountering potential infinite derivations,

we predict terminating for this query; otherwise we predict nonterminating.

The core of our termination prediction is a characterization of infinite SLDNF-

derivations with arbitrary queries. In Shen et al. (2003), a characterization is

established for general logic programs with concrete queries. This is far from enough

for termination prediction; a characterization of infinite SLDNF-derivations for

moded queries is required. Moded queries are the most commonly used query form

in static termination analysis. A moded query contains (abstract) atoms like p(I, T )

where T is a term (i.e., a constant, variable, or function) and I is an input mode.

An input mode stands for an arbitrary ground (i.e., variable-free) term, so that to

prove that a logic program terminates for a moded query p(I, T ) is to prove that

the program terminates for any (concrete) query p(t, T ) where t is a ground term.

It is nontrivial to characterize infinite SLDNF-derivations with moded queries.

The first challenge we must address is how to formulate an SLDNF-derivation for

a moded query Q0, as the standard SLDNF-resolution is only for concrete queries

(Clark 1978; Lloyd 1987). We will introduce a framework called a moded-query

forest, which consists of all (generalized) SLDNF-trees rooted at an instance of Q0

(the instance is Q0 with each input mode replaced by a ground term). An SLDNF-

derivation for Q0 is then defined over the moded-query forest such that a logic

program P terminates for Q0 if and only if the moded-query forest contains no

infinite SLDNF-derivations.

A moded-query forest may have an infinite number of SLDNF-trees, so it

is infeasible for us to predict termination of a logic program by traversing the

moded-query forest. To handle this challenge, we will introduce a novel compact

approximation for a moded-query forest, called a moded generalized SLDNF-tree.

The key idea is to treat an input mode as a special meta-variable in the way

that during query evaluation, it can be substituted by a constant or function, but

cannot be substituted by an ordinary variable. As a result, SLDNF-derivations for

a moded query can be constructed in the same way as the ones for a concrete

query. A characterization of infinite SLDNF-derivations for moded queries is then

established in terms of some key properties of a moded generalized SLDNF-tree.

We have implemented a termination prediction tool and obtained quite satisfactory

experimental results. Except for five programs which break the experiment time limit,

our prediction is 100% correct for all 296 benchmark programs of the Termination

Competition 2007, of which 18 programs cannot be proved by any of the existing

state-of-the-art analyzers like AProVE07, NTI, Polytool, and TALP.

The paper is organized as follows. Section 2 reviews some basic concepts in-

cluding generalized SLDNF-trees. Sections 3 and 4 present a characterization of

infinite SLDNF-derivations for concrete and moded queries, respectively. Section 5
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introduces a new loop-checking mechanism, and based on it develops an algorithm

that predicts termination of general logic programs with arbitrary queries. The

termination prediction method is illustrated with representative examples including

ones borrowed from the Termination Competition 2007. Section 6 describes the

implementation of our termination prediction algorithm and presents experimental

results over the programs of the Termination Competition 2007. Section 7 mentions

related work, and Section 8 concludes.

2 Preliminaries

We assume that the reader is familiar with standard terminology of logic programs,

in particular with SLDNF-resolution, as described in Lloyd (1987). Variables begin

with a capital letter X,Y , Z,U, V , or I , and predicate, function, and constant symbols

with a lower case letter. A term is a constant, a variable, or a function of the form

f(T1, . . . , Tm) where f is a function symbol and each Ti is a term. For simplicity, we

use T to denote a tuple of terms T1, . . . , Tm. An atom is of the form p(T ) where

p is a predicate symbol. Let A be an atom/term. The size of A, denoted by |A|, is

the number of occurrences of function symbols, variables, and constants in A. Two

atoms are called variants if they are the same up to variable renaming. A literal is

an atom A or the negation ¬A of A.

A (general) logic program P is a finite set of clauses of the form A← L1, . . . , Ln,

where A is an atom and each Li is a literal. Throughout the paper, we consider only

Herbrand models. The Herbrand universe and Herbrand base of P are denoted by

HU(P ) and HB(P ), respectively.

A goal Gi is a headless clause ← L1, . . . , Ln where each literal Lj is called a

subgoal. The goal G0 =← Q0 for a query Q0 is called a top goal. Without loss of

generality, we assume that Q0 consists only of one atom. Q0 is a moded query if

some arguments of Q0 are input modes (in this case, Q0 is called an abstract atom);

otherwise, it is a concrete query. An input mode always begins with a letter I.

Let P be a logic program and G0 a top goal. G0 is evaluated by building a

generalized SLDNF-tree GTG0
as defined in Shen et al. (2003), in which each node is

represented by Ni : Gi where Ni is the name of the node and Gi is a goal attached to

the node. We do not reproduce the definition of a generalized SLDNF-tree. Roughly

speaking, GTG0
is the set of standard SLDNF-trees for P ∪ {G0} augmented with

an ancestor–descendant relation on their subgoals. Let Li and Lj be the selected

subgoals at two nodes Ni and Nj , respectively. Li is an ancestor of Lj , denoted by

Li ≺anc Lj , if the proof of Li goes via the proof of Lj . Throughout the paper, we

choose to use the best-known depth-first, left-most control strategy, as is used in

Prolog, to select nodes/goals and subgoals (it can be adapted to any other fixed

control strategies). So by the selected subgoal in each node Ni :← L1, . . . , Ln, we refer

to the left-most subgoal L1.

Recall that in SLDNF-resolution, let Li = ¬A be a ground negative subgoal

selected at Ni, then (by the negation-as-failure rule Clark 1978) a subsidiary child

SLDNF-tree TNi+1:←A rooted at Ni+1 :← A will be built to solve A. In a generalized

SLDNF-tree GTG0
, such parent and child SLDNF-trees are connected from Ni to
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Fig. 2. The generalized SLDNF-tree GTG0
of P0.

Ni+1 via a dotted edge “· · ·�” (called a negation arc), and A at Ni+1 inherits all

ancestors of Li at Ni. Therefore, a path of a generalized SLDNF-tree may come

across several SLDNF-trees through dotted edges. Any such path starting at the

root node N0 : G0 of GTG0
is called a generalized SLDNF-derivation.

We do not consider floundering queries; i.e., we assume that no nonground negative

subgoals are selected at any node of a generalized SLDNF-tree (see Shen et al. 2003).

Another feature of a generalized SLDNF-tree GTG0
is that each subsidiary child

SLDNF-tree TNi+1:←A in GTG0
terminates (i.e., stops expanding its nodes) at the first

success leaf. The intuition behind this is that it is absolutely unnecessary to exhaust

the remaining branches because they would never generate any new answers for

A (since A is ground). In fact, Prolog executes the same pruning by using a cut

operator to skip the remaining branches once the first success leaf is generated (e.g.,

see SICStus Prolog at http://www.sics.se /sicstus/docs/latest4/pdf/sicstus.pdf). To

illustrate, consider the following logic program and top goal:

P0 : p← ¬q. Cp1

q. Cq1

q ← q. Cq2

G0 : ← p.

The generalized SLDNF-tree GTG0
for P0 ∪ {G0} is depicted in Figure 2. Note

that the subsidiary child SLDNF-tree TN2:←q terminates at the first success leaf N3,

leaving N4 not further expanded. As a result, all generalized SLDNF-derivations in

GTG0
are finite.

For simplicity, in the following sections by a derivation or SLDNF-derivation we

refer to a generalized SLDNF-derivation. Moreover, for any node Ni : Gi we use L1
i

to refer to the selected subgoal in Gi.

A derivation step is denoted by Ni : Gi ⇒C,θi Ni+1 : Gi+1 meaning that applying

a clause C to Gi produces Ni+1 : Gi+1, where Gi+1 is the resolvent of C and Gi on

L1
i with the mgu (most general unifier) θi. Here, for a substitution of two variables,

X in L1
i and Y in (the head of) C , we always use X to substitute for Y . When no

confusion would occur, we may omit the mgu θi when writing a derivation step.
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3 A characterization of infinite SLDNF-derivations for concrete queries

In this section, we review the characterization of infinite derivations with concrete

queries presented in Shen et al. (2003).

Definition 3.1

Let T be a term or an atom and S be a string that consists of all predicate symbols,

function symbols, constants, and variables in T , which is obtained by reading these

symbols sequentially from left to right. The symbol string of T , denoted by ST , is

the string S with every variable replaced by X.

For instance, let T1 = a and T2 = f(X, g(X, f(a, Y ))). Then ST1
= a and ST2

=

fXgXfaX.

Definition 3.2

Let ST1
and ST2

be two symbol strings. ST1
is a projection of ST2

, denoted by

ST1
⊆proj ST2

, if ST1
is obtained from ST2

by removing zero or more elements.

Definition 3.3

Let A1 and A2 be two atoms (positive subgoals) with the same predicate symbol.

A1 is said to loop into A2, denoted by A1 �loop A2, if SA1
⊆proj SA2

. Let Ni : Gi and

Nj : Gj be two nodes in a derivation with L1
i ≺anc L

1
j and L1

i �loop L1
j . Then Gj is

called a loop goal of Gi.

Observe that if A1 �loop A2 then |A1| � |A2|, and that if G3 is a loop goal of G2

that is a loop goal of G1 then G3 is a loop goal of G1. Since a logic program has only

a finite number of clauses, an infinite derivation results from repeatedly applying

the same set of clauses, which leads to either infinite repetition of selected variant

subgoals or infinite repetition of selected subgoals with recursive increase in term

size. By recursive increase of term size of a subgoal A from a subgoal B we mean

that A is B with a few function/constant/variable symbols added and possibly with

some variables changed to different variables. Such crucial dynamic characteristics

of an infinite derivation are captured by loop goals. The following result is proved

in Shen et al. (2003).

Theorem 3.1

Let G0 =← Q0 be a top goal with Q0 a concrete query. Any infinite derivation D in

GTG0
contains an infinite sequence of goals G0, . . . , Gg1

, . . . , Gg2
, . . . such that for any

j � 1, Ggj+1
is a loop goal of Ggj .

Put another way, Theorem 3.1 states that any infinite derivation D in GTG0
is of

the form

N0 : G0 ⇒C0
· · · Ng1

: Gg1
⇒C1

· · · Ng2
: Gg2

⇒C2
· · · Ng3

: Gg3
⇒C3

· · · ,

where for any j � 1, Ggj+1
is a loop goal of Ggj . This provides a necessary

and sufficient characterization of an infinite generalized SLDNF-derivation with

a concrete query.
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Fig. 3. The generalized SLDNF-tree GT←p(X) of P1 for a concrete query p(X).

Example 3.1

Consider the following logic program:

P1 : p(a). Cp1

p(f(X))← p(X). Cp2

The generalized SLDNF-tree GT←p(X) for a concrete query p(X) is shown in Figure 3,

where for simplicity the symbol ← in each goal is omitted. Note that GT←p(X) has

an infinite derivation

N0 : p(X)⇒Cp2
N2 : p(X2)⇒Cp2

N4 : p(X4)⇒Cp2
· · · ,

where for any j � 0, G2(j+1) is a loop goal of G2j .

4 A characterization of infinite SLDNF-derivations for moded queries

We first define generalized SLDNF-derivations for moded queries by introducing a

framework called moded-query forests.

Definition 4.1

Let P be a logic program and Q0 = p(I1, . . . ,Im, T1, . . . , Tn) a moded query. The

moded-query forest of P for Q0, denoted by MFQ0
, consists of all generalized SLDNF-

trees for P ∪ {G0}, where G0 =← p(t1, . . . , tm, T1, . . . , Tn) with each ti being a ground

term from HU(P ). A (generalized SLDNF-) derivation for the moded query Q0 is a

derivation in any generalized SLDNF-tree of MFQ0
.

Therefore, a logic program P terminates for a moded query Q0 if and only if there

is no infinite derivation for Q0 if and only if MFQ0
has no infinite derivation.

Example 4.1

Consider the logic program P1 again. We have HU(P1) = {a, f(a), f(f(a)), . . .}. Let

p(I) be a moded query. The moded-query forest MFp(I) consists of generalized

SLDNF-trees GT←p(a), GT←p(f(a)), etc., as shown in Figure 4. Note that MFp(I)

has an infinite number of generalized SLDNF-trees. However, any individual tree,

GTG0
with G0 =← p(f(f(. . . f

︸ ︷︷ ︸

n items

(a) . . .))) (n � 0), is finite. MFp(I) contains no infinite

derivation, thus P1 terminates for p(I).
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Fig. 4. The moded-query forest MFp(I) of P1 for a moded query p(I).

In a moded-query forest, all input modes are instantiated into ground terms in

HU(P ). When HU(P ) is infinite, the moded-query forest would contain infinitely

many generalized SLDNF-trees. This means that it is infeasible to build a moded-

query forest to represent the derivations for a moded query. An alternative yet

ideal way is to directly apply SLDNF-resolution to evaluate input modes and build

a compact generalized SLDNF-tree for a moded query. Unfortunately, SLDNF-

resolution accepts only terms as arguments of a top goal; an input mode I is not

directly evaluable.

Since an input mode stands for an arbitrary ground term, i.e., it can be any

term from HU(P ), during query evaluation it can be instantiated to any term except

variable (note that a ground term cannot be substituted by a variable). This suggests

that we may approximate the effect of an input mode I by treating it as a special

(meta-) variable I in the way that in SLDNF-derivations, I can be substituted by a

constant or function, but cannot be substituted by an ordinary variable. Therefore,

when doing unification of a special variable I and a variable X, we always substitute

I for X.

Definition 4.2

Let P be a logic program and Q0 = p(I1, . . . ,Im, T1, . . . , Tn) a moded query. The

moded generalized SLDNF-tree of P for Q0, denoted by MTQ0
, is defined to be the

generalized SLDNF-tree GTG0
for P ∪ {G0}, where G0 =← p(I1, . . . , Im, T1, . . . , Tn)

with each Ii being a distinct special variable not occurring in any Tj . The special

variables I1, . . . , Im for the input modes I1, . . . ,Im are called input mode variables

(or input variables).

In a moded generalized SLDNF-tree, an input variable I may be substituted by

either a constant t or a function f(T ). It will not be substituted by any noninput

variable. If I is substituted by f(T ), all variables in T are also called input variables

(thus are treated as special variables).

In this paper, we do not consider floundering moded queries; i.e., we assume that

no negative subgoals containing either ordinary or input variables are selected at

any node of a moded generalized SLDNF-tree.

Definition 4.3

Let P be a logic program, Q0 = p(I1, . . . ,Im, T1, . . . , Tn) a moded query, and G0 =←
p(I1, . . . , Im, T1, . . . , Tn). Let D be a derivation in the moded generalized SLDNF-tree

MTQ0
. A moded instance of D is a derivation obtained from D by first instantiating

all input variables at the root node N0 : G0 with an mgu θ = {I1/t1, . . . , Im/tm},
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Fig. 5. The moded generalized SLDNF-tree MTp(I) of P1 for a moded query p(I).

where each ti ∈ HU(P ), then passing the instantiation θ down to the other nodes

of D.

Example 4.2

Consider the logic program P1 again. Let Q0 = p(I) be a moded query and

G0 =← p(I). The moded generalized SLDNF-tree MTQ0
is GTG0

as depicted in

Figure 5, where all input variables are underlined. Since I is an input variable, X2

is an input variable, too (due to the mgu θ2). For the same reason, all X2i are input

variables (i > 0).

Consider the following infinite derivation D in MTQ0
:

N0 : p(I)⇒Cp2
N2 : p(X2)⇒Cp2

N4 : p(X4)⇒Cp2
· · · .

By instantiating the input variable I at N0 with different ground terms from HU(P1)

and passing the instantiation θ down to the other nodes of D, we can obtain different

moded instances from D. For example, instantiating I to a (i.e., θ = {I/a}) yields

the moded instance

N0 : p(a).

Instantiating I to f(a) (i.e., θ = {I/f(a)}) yields the moded instance

N0 : p(f(a))⇒Cp2
N2 : p(a).

And, instantiating I to f(f(a)) (i.e., θ = {I/f(f(a))}) yields the moded instance

N0 : p(f(f(a)))⇒Cp2
N2 : p(f(a))⇒Cp2

N4 : p(a.)

Observe that a moded instance of a derivation D in MTQ0
is a derivation in

GTG0θ , where G0θ =← p(t1, . . . , tm, T1, . . . , Tn) with each ti being a ground term from

HU(P ). By Definition 4.1, GTG0θ is in the moded-query forest MFQ0
. This means

that any moded instance of a derivation in MTQ0
is a derivation for Q0 in MFQ0

.

For instance, all moded instances illustrated in Example 4.2 are derivations in the

moded-query forest MFQ0
of Figure 4.

Theorem 4.1

Let MFQ0
and MTQ0

be the moded-query forest and the moded generalized SLDNF-

tree of P for Q0, respectively. If MFQ0
has an infinite derivation D′, MTQ0

has an

infinite derivation D with D′ as a moded instance.
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Proof

Let Q0 = p(I1, . . . ,Im, T1, . . . , Tn). Then, the root node of D′ is N0 :← p(t1, . . . , tm,

T1, . . . , Tn) with each ti ∈ HU(P ), and the root node of MTQ0
is N0 :← p(I1, . . . , Im,

T1, . . . , Tn) with each Ii being an input variable not occurring in any Tj . Note that

the former is an instance of the latter with the mgu θ = {I1/t1, . . . , Im/tm}. Let D′ be

of the form

N0 :← p(t1, . . . , tm, T1, . . . , Tn)⇒C0
N1 : G′1 · · · ⇒Ci

Ni+1 : G′i+1 · · · .

MTQ0
must have a derivation D of the form

N0 :← p(I1, . . . , Im, T1, . . . , Tn)⇒C0
N1 : G1 · · · ⇒Ci

Ni+1 : Gi+1 · · · ,

such that each G′i = Giθ, since for any i � 0 and any clause Ci in P , if G′i can unify

with Ci, so can Gi with Ci. Note that when the selected subgoal at some G′i is a

negative ground literal, by the assumption that Q0 is nonfloundering, we have the

same selected literal at Gi. We then have the proof. �

Our goal is to establish a characterization of infinite derivations for a moded

query such that the converse of Theorem 4.1 is true under some conditions.

Consider the infinite derivation in Figure 5 again. The input variable I is

substituted by f(X2); X2 is then substituted by f(X4), . . . . This produces an infinite

chain of substitutions for I of the form I/f(X2), X2/f(X4), . . . . The following lemma

shows that infinite derivations containing such an infinite chain of substitutions have

no infinite moded instances.

Lemma 4.2

If a derivation D in a moded generalized SLDNF-tree MTQ0
is infinite but none of

its moded instances is infinite, then there is an input variable I such that D contains

an infinite chain of substitutions for I of the form

I/f1(. . . , Y1, . . .), . . . , Y1/f2(. . . , Y2, . . .), . . . , Yi−1/fi(. . . , Yi, . . .), . . . . (1)

(some fis would be the same).

Proof

We distinguish the following four types of substitution chains for an input variable

I in D:

(1) X1/I, . . . , Xm/I or X1/I, . . . , Xi/I, . . . That is, I is never substituted by any

terms.

(2) X1/I, . . . , Xm/I, I/t where t is a ground term. That is, I is substituted by a

ground term.

(3) X1/I, . . . , Xm/I, I/f1(. . . , Y1, . . .), . . . , Y1/f2(. . . , Y2, . . .), . . . , Yn−1/fn(. . . , Yn, . . .), . . .

where fn( . . . , Yn, . . .) is the last nonground function in the substitution chain

for I in D. In this case, I is recursively substituted by a finite number of

functions.

(4) X1/I, . . . , Xm/I, I/f1(. . . , Y1, . . .), . . . , Y1/f2(. . . , Y2, . . .), . . . , Yi−1/fi(. . . , Yi, . . .), . . . .

In this case, I is recursively substituted by an infinite number of functions.



Termination prediction for general logic programs 761

For type 4, D retains its infinite extension for whatever ground term we replace I

with. For type 4, D retains its infinite extension when we use t to replace I . To sum

up, for any input variable I whose substitution chain is of type 4 or of type 4, there

is a ground term t such that replacing I with t does not affect the infinite extension

of D. In this case, replacing I in D with t leads to an infinite derivation less general

than D.

For type 4, note that all variables appearing in the fi(.)s are input variables. Since

fn(. . . , Yn, . . .) is the last nonground function in the substitution chain for I in D,

the substitution chain for every variable Yn in fn(. . . , Yn, . . .) is either of type 4 or

of type 4. Therefore, we can replace each Yn with an appropriate ground term tn
without affecting the infinite extension of D. After this replacement, D becomes Dn

and fn(. . . , Yn, . . .) becomes a ground term fn(. . . , tn, . . .). Now fn−1(. . . , Yn−1, . . .) is the

last nonground function in the substitution chain for I in Dn. Repeating the above

replacement recursively, we will obtain an infinite derivation D1, which is D with all

variables in the fi(.)s replaced with a ground term. Assume f1(. . . , Y1, . . .) becomes

a ground term t in D1. Then the substitution chain for I in D1 is of type 4. So

replacing I with t in D1 leads to an infinite derivation D0.

The above constructive proof shows that if the substitution chains for all input

variables in D are of type 4, 4, or 4, then D must have an infinite moded instance.

Since D has no infinite moded instance, there must exist an input variable I whose

substitution chain in D is of type 4. That is, I is recursively substituted by an infinite

number of functions. Note that some fis would be the same because a logic program

has only a finite number of function symbols. This concludes the proof. �

We are ready to introduce the following principal result:

Theorem 4.3

Let MFQ0
and MTQ0

be the moded-query forest and the moded generalized SLDNF-

tree of P for Q0, respectively. MFQ0
has an infinite derivation if and only if MTQ0

has an infinite derivation D of the form

N0 : G0 ⇒C0
· · · Ng1

: Gg1
⇒C1

· · · Ng2
: Gg2

⇒C2
· · · Ng3

: Gg3
⇒C3

· · · , (2)

where (i) for any j � 1, Ggj+1
is a loop goal of Ggj , and (ii) for no input variable I ,

D contains an infinite chain of substitutions for I of form (1).

Proof

(=⇒) Assume MFQ0
has an infinite derivation D′. By Theorem 4.1, GTG0

has an

infinite derivation D with D′ as a moded instance. By Theorem 3.1, D is of form (2)

and satisfies condition (i).

Assume, on the contrary, that D does not satisfy condition (ii). That is, for some

input variable I , D contains an infinite chain of substitutions for I of the form

I/f1(. . . , Y1, . . .), . . . , Y1/f2(. . . , Y2, . . .), . . . , Yi−1/fi(. . . , Yi, . . .), . . . .

Note that for whatever ground term t we assign to I , this chain can be instantiated

at most as long in length as the following one:

t/f1(. . . , t1, . . .), . . . , t1/f2(. . . , t2, . . .), . . . , tk/fk+1(. . . , Yk+1, . . .),
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where k = |t|, tis are ground terms and |tk| = 1. This means that replacing I with

any ground term t leads to a finite moded instance of D. Therefore, D has no infinite

moded instance in MFQ0
, a contradiction.

(⇐=) Assume, on the contrary, that MFQ0
has no infinite derivation. By Lemma

4.2, we reach a contradiction to condition (ii). �

Theorem 4.3 provides a necessary and sufficient characterization of an infinite

generalized SLDNF-derivation for a moded query. Note that it coincides with

Theorem 3.1 when Q0 is a concrete query, where MFQ0
= MTQ0

and condition (ii)

is always true.

The following corollary is immediate to this theorem.

Corollary 4.4

A logic program P terminates for a moded query Q0 if and only if the moded

generalized SLDNF-tree MTQ0
has no infinite derivation of form (2) satisfying

conditions (i) and (ii) of Theorem 4.3.

We use simple yet typical examples to illustrate the proposed characterization of

infinite SLDNF-derivations with moded queries.

Example 4.3

Consider the moded generalized SLDNF-tree MTQ0
in Figure 5. It has only one

infinite derivation, which satisfies condition (i) of Theorem 4.3 where for each

j � 0, Ngj in Theorem 4.3 corresponds to N2j in Figure 5. However, the chain of

substitutions for I in this derivation violates condition (ii). This means that MFQ0

contains no infinite derivations; therefore, there is no infinite derivation for the

moded query p(I). As a result, P1 terminates for p(I).

Example 4.4

Consider the append program:

P2 : append([], X,X). Ca1

append([X|Y ], U, [X|Z])← append(Y ,U,Z). Ca2

Let us choose the following three simplest moded queries:

Q1
0 = append(I, V2, V3),

Q2
0 = append(V1,I, V3),

Q3
0 = append(V1, V2,I).

Since applying clause Ca1
produces only leaf nodes, for simplicity we ignore it when

depicting moded generalized SLDNF-trees. The three moded generalized SLDNF-

trees MTQ1
0
, MTQ2

0
, and MTQ3

0
are shown in Figures 6(a), 6(b), and 6(c), respectively.

Note that all the derivations are infinite and satisfy condition (i) of Theorem 4.3,

where for each j � 0, Ngj in Theorem 4.3 corresponds to Nj in Figure 6. Apparently,

the chains of substitutions for I in the derivations of MTQ1
0

and MTQ3
0

violate

condition (ii) of Theorem 4.3. MFQ1
0

and MFQ3
0

contain no infinite derivation and

thus there exists no infinite derivation for the moded queries Q1
0 and Q3

0. Therefore,

P2 terminates for Q1
0 and Q3

0. However, the derivation in MTQ2
0
satisfies condition (ii),

thus there exist infinite derivations for the moded query Q2
0. P2 does not terminate

for Q2
0.
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Fig. 6. Three moded generalized SLDNF-trees: (a) MTQ1
0
, (b) MTQ2

0
, and (c) MTQ3

0
.

Let pred(P ) be the set of predicate symbols in P . Define

MQ(P ) = {p(T ) | p is an n-ary predicate symbol in pred(P ),

and T consists of m > 0 input modes and n− m variables}.
Note that MQ(P ) contains all most general moded queries of P in the sense that

any moded query of P is an instance of some query in MQ(P ). Since pred(P ) is

finite, MQ(P ) is finite. Therefore, it is immediate that P terminates for all moded

queries if and only if it terminates for each moded query in MQ(P ).

Theorem 4.5
Let Q1 = p(T1) and Q2 = p(T2) be two moded queries in MQ(P ), where all input

modes of Q1 occur in Q2. If there is no infinite derivation for Q1, there is no infinite

derivation for Q2.

Proof
Note that we consider only nonfloundering queries by assuming that no negative

subgoals containing either ordinary or input variables are selected at any node of

a moded generalized SLDNF-tree. Then, for any concrete query Q, that there is no

infinite derivation for Q implies there is no infinite derivation for any instance of Q.

For ease of presentation, let Q1 = p(I1, . . . ,Il , Xl+1, . . . , Xn) and Q2 = p(I1, . . . ,Im,

Xm+1, . . . , Xn) with l < m.

Assume that there is no infinite derivation for Q1, then, there is no infinite

derivation for any query Q = p(t1, . . . , tl , Xl+1, . . . , Xn), where each ti is a ground

term from HU(P ). Then, there is no infinite derivation for any query Q′ =

p(t1, . . . , tl , sl+1, . . . , sm, Xm+1, . . . , Xn), where each ti is a ground term from HU(P )

and each si an instance of Xi. Since all Xis are variables, there is no infinite

derivation for any query Q′′ = p(t1, . . . , tl , tl+1, . . . , tm, Xm+1, . . . , Xn), where each ti is

a ground term from HU(P ). That is, there is no infinite derivation for Q2. �

Applying this theorem, we can conclude that P2 in Example 4.4 terminates for all

moded queries in MQ(P2) except Q2
0.

5 An algorithm for predicting termination of logic programs

We develop an algorithm for predicting termination of logic programs based on

the necessary and sufficient characterization of an infinite generalized SLDNF-

derivation (Theorem 4.3 and Corollary 4.4). We begin by introducing a loop-checking

mechanism.
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A loop-checking mechanism, or more formally a loop check (Bol et al. 1991), defines

conditions for us to cut a possibly infinite derivation at some node. By cutting a

derivation at a node N we mean removing all descendants of N. Informally, a loop

check is said to be weakly sound if for any generalized SLDNF-tree GTG0
, GTG0

having a success derivation before cut implies it has a success derivation after cut;

it is said to be complete if it cuts all infinite derivations in GTG0
. An ideal loop

check cuts all infinite derivations while retaining success derivations. Unfortunately,

as shown by Bol et al. (1991), there exists no loop check that is both weakly sound

and complete. In this paper, we focus on complete loop checks, because we want to

apply them to predict termination of logic programs.

Definition 5.1

Given a repetition number r � 2, LP-check is defined as follows: Any derivation D

in a generalized SLDNF-tree is cut at a node Ngr if D has a prefix of the form

N0 : G0 ⇒C0
· · · Ng1

: Gg1
⇒Ck

· · · Ng2
: Gg2

⇒Ck
· · · Ngr : Ggr ⇒Ck

, (3)

such that (a) for any j < r, Ggj+1
is a loop goal of Ggj , and (b) for all j � r, the

clause Ck applied to Ggj is the same. Ck is then called a looping clause.

LP-check predicts infinite derivations from prefixes of derivations based on the

characterization of Theorem 3.1 (or condition (i) of Theorem 4.3). The repetition

number r specifies the minimum number of loop goals appearing in the prefixes. It

does not appear appropriate to choose r < 2, as that may lead to many finite

derivations being wrongly cut. Although there is no mathematical mechanism

available for choosing this repetition number (since the termination problem is

undecidable), in many situations it suffices to choose r = 3 for a correct prediction

of infinite derivations. For instance, choosing r = 3 we are able to obtain correct

predictions for all benchmark programs of the Termination Competition 2007 (see

Section 6).

LP-check applies to any generalized SLDNF-trees including moded generalized

SLDNF-trees.

Theorem 5.1

LP-check is a complete loop check.

Proof

Let D be an infinite derivation in GTG0
. By Theorem 3.1, D is of the form

N0 : G0 ⇒C0
· · · Nf1

: Gf1
⇒C1

· · · Nf2
: Gf2

⇒C2
· · · ,

such that for any i � 1, Gfi+1
is a loop goal of Gfi . Since a logic program has only

a finite number of clauses, there must be a (looping) clause Ck being repeatedly

applied at infinitely many nodes Ng1
: Gg1

, Ng2
: Gg2

, . . . , where for each j � 1,

gj ∈ {f1, f2, . . .}. Then for any r > 0, D has a partial derivation of form (3). So D

will be cut at node Ngr : Ggr . This shows that any infinite derivation can be cut by

LP-check. That is, LP-check is a complete loop check. �
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Example 5.1

Let us choose r = 3 and consider the infinite derivation D depicted in Figure 5. p(X4)

at N4 is a loop goal of p(X2) at N2 that is a loop goal of p(I) at N0. Moreover, the

same clause Cp2
is applied at the three nodes. D satisfies the conditions of LP-check

and is cut at node N4.

Recall that to prove that a logic program P terminates for a moded query

Q0 = p(I1, . . . , Im, T1, . . . , Tn) is to prove that P terminates for any query p(t1, . . . , tm,

T2, . . . , Tn), where each ti is a ground term. This can be reformulated in terms of

a moded-query forest; that is, P terminates for Q0 if and only if MFQ0
has no

infinite derivation. Then, Corollary 4.4 shows that P terminates for Q0 if and

only if the moded generalized SLDNF-tree MTQ0
has no infinite derivation D of

form (2) satisfying the two conditions (i) and (ii) of Theorem 4.3. Although this

characterization cannot be directly used for automated termination test because it

requires generating infinite derivations in MTQ0
, it can be used along with LP-check

to predict termination, as LP-check is able to guess if a partial derivation would

extend to an infinite one. Before describing our prediction algorithm with this idea,

we introduce one more condition following Definition 5.1.

Definition 5.2

Let D be a derivation with a prefix of form (3). The prefix of D is said to have

the term-size decrease property if for any i with 0 < i < r, there is a substitution

X/f(. . . Y . . .) between Ngi and Ngi+1
, where X is an input variable and Y (an

ordinary or input variable) appears in the selected subgoal of Ggi+1
.

Theorem 5.2

Let D be a derivation such that for all r � 2, D has a prefix of form (3), which has

the term-size decrease property. D contains an infinite chain of substitutions of form

(1) for some input variable I at the root node of D.

Proof

Due to the term-size decrease property of the prefix of D which holds for all r � 2,

D contains an infinite number of substitutions of the form X/f(. . .), where X is an

input variable. Assume, on the contrary, that D does not contain such an infinite

chain of form (1). Let M be the longest length of substitutions of form (1) for

each input variable I at the root node of D. Note that each input variable can be

substituted only by a constant or function. For each substitution X/f(. . .) with X

an input variable, assume f(. . .) contains at most N variables (i.e., it introduces at

most N new input variables). Then, D contains at most K × (N0 + N1 + · · ·+ NM)

substitutions of the form X/f(. . .), where K is the number of input variables at the

root node of D and X is an input variable. This contradicts the condition that D

contains an infinite number of such substitutions. �

LP-check and the term-size decrease property approximate conditions (i) and

(ii) of Theorem 4.3, respectively. So, we can guess an infinite extension (2) from

a prefix (3) by combining the two mechanisms, as described in the following
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algorithm:

Algorithm 5.1 (Predicting termination of a logic program)

Input: A logic program P , a (concrete or moded) query Q0, and a repetition num-

ber r � 2 (r = 3 is recommended).

Output: terminating, predicted-terminating, or predicted-nonterminating.

Method: Apply the following procedure.

procedure TPoLP(P ,Q0, r)

{

(1) Initially, set L = 0. Construct the moded generalized SLDNF-tree MTQ0
of

P for Q0 in the way that whenever a prefix Dx of the form

N0 : G0 ⇒C0
· · · Ng1

: Gg1
⇒Ck

· · · Ng2
: Gg2

⇒Ck
· · · Ngr : Ggr ⇒Ck

is produced which satisfies conditions (a) and (b) of LP-check, if Dx does not

have the term-size decrease property then goto step 5.1; else set L = 1 and

extend Dx from the node Ngr with the looping clause Ck skipped.

(2) Return terminating if L = 0; otherwise, return predicted-terminating.

(3) Return predicted-nonterminating.

}

Starting from the root node N0 : G0, we generate derivations of a moded

generalized SLDNF-tree MTQ0
step by step. If a prefix Dx of form (3) is generated

which satisfies conditions (a) and (b) of LP-check, then by Theorem 3.1 Dx is very

likely to extend infinitely in MTQ0
(via the looping clause Ck). By Theorem 4.1,

however, the extension of Dx may not have infinite moded instances in MFQ0
. So

in this case, we further check if Dx has the term-size decrease property. If not, by

Theorem 4.3 Dx is very likely to have moded instances that extend infinitely in

MFQ0
. Algorithm 5.1 then predicts nonterminating for Q0 by returning an answer

predicted-nonterminating. If Dx has the term-size decrease property, however, we

continue to extend Dx from Ngr by skipping the clause Ck (i.e., the derivation via Ck

is cut at Ngr by LP-check).

When the answer is not predicted-nonterminating, we distinguish between two

cases: (1) L = 0. This shows that no derivation was cut by LP-check during the

construction of MTQ0
. Algorithm 5.1 concludes terminating for Q0 by returning

an answer terminating. (2) L = 1. This means that some derivations were cut by

LP-check, all of which have the term-size decrease property. Algorithm 5.1 then

predicts terminating for Q0 by returning an answer predicted-terminating.

Note that for a concrete query Q0, no derivation has the term-size decrease

property. Therefore, Algorithm 5.1 returns predicted-nonterminating for Q0 once a

prefix of a derivation satisfying the conditions of LP-check is generated.

We prove the termination property of Algorithm 5.1.

Proposition 5.3

For any logic program P , concrete/moded query Q0, and repetition number r, the

procedure TPoLP(P ,Q0, r) terminates.
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Proof

The procedure TPoLP (Termination Prediction of Logic Programs) constructs MTQ0

while applying LP-check to cut possible infinite derivations. Since LP-check is a

complete loop check, it cuts all infinite derivations at some depth. This means that

MTQ0
after cut by LP-check is finite. So, TPoLP(P ,Q0, r) terminates. �

Algorithm 5.1 yields a heuristic answer, predicted-terminating or predicted-

nonterminating, or an exact answer terminating, as shown by the following theorem:

Theorem 5.4

A logic program P terminates for a query Q0 if Algorithm 5.1 returns terminating.

Proof

If Algorithm 5.1 returns terminating, no derivations were cut by LP-check, so the

moded generalized SLDNF-tree MTQ0
for Q0 is finite. By Corollary 4.4, the logic

program P terminates for the query Q0. �

In the following examples, we choose a repetition number r = 3.

Example 5.2

Consider Figure 5. Since the prefix Dx between N0 and N4 satisfies the conditions of

LP-check, Algorithm 5.1 concludes that the derivation may extend infinitely in MTQ0
.

It then checks the term-size decrease property to see if Dx has moded instances that

would extend infinitely in MFQ0
. Clearly, Dx has the term-size decrease property.

So Algorithm 5.1 skips Cp2
at N4 (the branch is cut by LP-check). Consequently,

Algorithm 5.1 predicts terminating for p(I) by returning an answer predicted-

terminating. This prediction is correct (see Example 4.3).

Example 5.3

Consider Figure 6. All the derivations starting at N0 and ending at N2 satisfy

the conditions of LP-check, so they are cut at N2. Since the derivations in MTQ1
0

and MTQ3
0

have the term-size decrease property, Algorithm 5.1 returns predicted-

terminating for Q1
0 and Q3

0. Since the derivation in MTQ2
0
does not have the term-size

decrease property, Algorithm 5.1 returns predicted-nonterminating for Q2
0. These

predictions are all correct (see Example 4.4).

Example 5.4

Consider the following logic program P3:

mult(s(X), Y , Z)← mult(X,Y ,U), add(U,Y , Z). Cm1

mult(0, Y , 0). Cm2

add(s(X), Y , s(Z))← add(X,Y , Z). Ca1

add(0, Y , Y ). Ca2

MQ(P3) consists of 14 moded queries, seven for predicate mult and 7 for predi-

cate add. Applying Algorithm 5.1 yields the following result: (1) P3 is predicted-

terminating for all moded queries to add except add(V1,I2, V3) for which P3 is

predicted-nonterminating, and (2) P3 is predicted-terminating for mult(I1,I2, V3)

and mult(I1,I2, I3), but is predicted-nonterminating for the remaining moded
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Fig. 7. Two moded generalized SLDNF-trees of P3 generated by Algorithm 5.1.

queries to mult. For illustration, we depict two moded generalized SLDNF-trees for

mult(I, V2, V3) and mult(I1, I2, V3), as shown in Figures 7(a) and 7(b), respectively.

In the two moded generalized SLDNF-trees, the prefix from N0 down to N2 satisfies

the conditions of LP-check and has the term-size decrease property, so clause Cm1
is

skipped when expanding N2. When the derivation is extended to N6, the conditions

of LP-check are satisfied again, where G6 is a loop goal of G5 that is a loop goal of

G4. Since the derivation for mult(I, V2, V3) (Figure 7(a)) does not have the term-size

decrease property, Algorithm 5.1 returns an answer, predicted-nonterminating, for

this moded query. The derivation for mult(I1,I2, V3) (Figure 7(b)) has the term-size

decrease property, so clause Ca1
is skipped when expanding N6. For simplicity, we

omitted all derivations leading to a success leaf. Because all derivations satisfying

the conditions of LP-check have the term-size decrease property, Algorithm 5.1 ends

with an answer, predicted-terminating, for mult(I1,I2, V3). It is then immediately

inferred by Theorem 4.5 that P3 is predicted-terminating for mult(I1,I2,I3). It is

not difficult to verify that all these predictions are correct.

AProVE07 (Giesl et al. 2006), NTI (Payet 2006; Payet and Mesnard 2006),

Polytool (Nguyen and Schreye 2005; Nguyen et al. 2006), and TALP (Ohle-

busch et al. 2000) are four well-known state-of-the-art analyzers. NTI proves

nontermination, while the others prove termination. The Termination Competition

2007 (http://www.lri.fr/~marche/termination-competition/2007) reports their latest

performance. We borrow three representative logic programs from the competition

website to further demonstrate the effectiveness of our termination prediction.

Example 5.5

Consider the following logic program coming from the Termination Competition

2007 with Problem id LP/talp/apt - subset1 and difficulty rating 100%. AProVE07,
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Fig. 8. The moded generalized SLDNF-tree of P4 generated by Algorithm 5.1.

NTI, Polytool, and TALP all failed to prove/disprove its termination by yielding an

answer ‘don’t know’ in the competition.

P4 : member1(X, [Y |Xs])← member1(X,Xs). Cm1

member1(X, [X|Xs]). Cm2

subset1([X|Xs], Y s) : −member1(X,Y s), subset1(Xs, Y s). Cs1

subset1([], Y s). Cs2

Query Mode: subset1(o, i).

The query mode subset1(o, i) means that the second argument of any query must

be a ground term, while the first one can be an arbitrary term. Then, to prove the

termination property of P4 with this query mode is to prove the termination for

the moded query Q0 = subset1(V ,I). Applying Algorithm 5.1 generates a moded

generalized SLDNF-tree as shown in Figure 8. The prefix from N0 down to N3

satisfies the conditions of LP-check and has the term-size decrease property, so

clause Cm1
is skipped when expanding N3. When the derivation is extended to N10,

the conditions of LP-check are satisfied again, where G10 is a loop goal of G9 that
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Fig. 9. The moded generalized SLDNF-tree of P5 generated by Algorithm 5.1.

is a loop goal of G8. Since the derivation has the term-size decrease property, N10 is

expanded by Cm2
.

At N11 (resp. N13 and N15), the derivation satisfies the conditions of LP-check

and has the term-size decrease property, where G11 (resp. N13 and N15) is a loop

goal of G4 that is a loop goal of G0. Therefore, N11 (resp. N13 and N15) is expanded

by Cs2 . When the derivation is extended to N17, the conditions of LP-check are

satisfied, where G17 is a loop goal of G4 that is a loop goal of G0, but the term-size

decrease condition is violated. Algorithm 5.1 stops immediately with an answer,

predicted-nonterminating, for the query Q0. It is easy to verify that this prediction is

correct.

Example 5.6

Consider another logic program in the Termination Competition 2007 with Problem

id LP/SGST06 - incomplete and difficulty rating 75%. Polytool succeeded to prove

its termination, while AProVE07, NTI, and TALP failed.

P5 : p(X)← q(f(Y )), p(Y ). Cp1

p(g(X))← p(X). Cp2

q(g(Y )). Cq1

Query Mode: p(i).

To prove the termination property of P5 with this query mode is to prove the

termination for the moded query Q0 = p(I). Applying Algorithm 5.1 generates a

moded generalized SLDNF-tree as shown in Figure 9. The prefix from N0 down to

N4 satisfies the conditions of LP-check and has the term-size decrease property, so

clause Cp2
is skipped when expanding N4. Algorithm 5.1 yields an answer predicted-

terminating for the query Q0. This prediction is correct.

Example 5.7

Consider a third logic program from the Termination Competition 2007 with

Problem id LP/SGST06 - incomplete2 and difficulty rating 75%. In contrast to

Example 5.6, for this program AProVE07 succeeded to prove its termination, while

Polytool, NTI, and TALP failed.

P6 : f(X)← g(s(s(s(X)))). Cf1

f(s(X))← f(X). Cf2

g(s(s(s(s(X)))))← f(X). Cg1

Query Mode: f(i).
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Fig. 10. The moded generalized SLDNF-tree of P6 generated by Algorithm 5.1.

To prove the termination property of P6 with this query mode is to prove the

termination for the moded query Q0 = f(I). Applying Algorithm 5.1 generates

a moded generalized SLDNF-tree as shown in Figure 10. Cf1
and/or Cf2

is

skipped at N4, N5, N6, N9, N10, N11, N13, N18, N19, N20, N22, N23, N25, and N27, due

to the occurrence of the following prefixes which satisfy both the conditions of

LP-check and the term-size decrease condition:

(1), N0 : f(I)⇒Cf1
· · · N2 : f(X)⇒Cf1

· · · N4 : f(X1)⇒Cf1

(2), N0 : f(I)⇒Cf1
· · · N2 : f(X)⇒Cf1

· · · N5 : f(X2)⇒Cf1

(3), N0 : f(I)⇒Cf1
· · · N2 : f(X)⇒Cf1

· · · N6 : f(X3)⇒Cf1

(4), N0 : f(I)⇒Cf1
· · · N4 : f(X1)⇒Cf2

N5 : f(X2)⇒Cf2
N6 : f(X3)⇒Cf2

(5), N0 : f(I)⇒Cf1
· · · N7 : f(X1)⇒Cf1

· · · N9 : f(X2)⇒Cf1

(6), N0 : f(I)⇒Cf1
· · · N7 : f(X1)⇒Cf1

· · · N10 : f(X3)⇒Cf1

(7), N0 : f(I)⇒Cf1
· · · N2 : f(X)⇒Cf2

· · · N9 : f(X2)⇒Cf2
N10 : f(X3)⇒Cf2

(8), N0 : f(I)⇒Cf1
· · · N11 : f(X2)⇒Cf1

· · · N13 : f(X3)⇒Cf1

(9), N0 : f(I)⇒Cf1
· · · N2 : f(X)⇒Cf2

N7 : f(X1)⇒Cf2
· · · N13 : f(X3)⇒Cf2

(10), N0 : f(I)⇒Cf1
· · · N2 : f(X)⇒Cf2

N7 : f(X1)⇒Cf2
N11 : f(X2)⇒Cf2

(11), N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf1

· · · N16 : f(X1)⇒Cf1
· · · N18 : f(X2)⇒Cf1

(12), N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf1

· · · N16 : f(X1)⇒Cf1
· · · N19 : f(X3)⇒Cf1

(13), N0 : f(I)⇒Cf2
· · · N18 : f(X2)⇒Cf2

N19 : f(X3)⇒Cf2

(14), N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf1

· · · N20 : f(X2)⇒Cf1
· · · N22 : f(X3)⇒Cf1

(15), N0 : f(I)⇒Cf2
· · · N16 : f(X1)⇒Cf2

· · · N22 : f(X3)⇒Cf2

(16), N0 : f(I)⇒Cf2
· · · N16 : f(X1)⇒Cf2

N20 : f(X2)⇒Cf2

(17), N0 : f(I)⇒Cf2
· · · N23 : f(X1)⇒Cf1

· · · N25 : f(X2)⇒Cf1
· · · N27 : f(X3)⇒Cf1

(18), N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf2

· · · N27 : f(X3)⇒Cf2

(19), N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf2

· · · N25 : f(X2)⇒Cf2

(20), N0 : f(I)⇒Cf2
N14 : f(X)⇒Cf2

· · · N23 : f(X1)⇒Cf2

Since there is no derivation satisfying the conditions of LP-check while violating

the term-size decrease condition, Algorithm 5.1 ends with an answer predicted-

terminating for the query Q0. This again is a correct prediction.
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Fig. 11. The moded generalized SLDNF-tree of P7 with a moded query p(I, 0).

Choosing r = 3 for Algorithm 5.1, we are able to obtain correct predictions for all

benchmark programs of the Termination Competition 2007 (see Section 6). However,

we should remark that due to the undecidability of the termination problem, there

exist cases that choosing r = 3 will lead to an incorrect prediction. Consider the

following carefully crafted logic program:

P7 : p(f(X), Y )← p(X, s(Y )). Cp1

p(Z, s(s(
︸︷︷︸

100 items

(0) . . .)))← q. Cp2

q ← q. Cq1

P7 does not terminate for a moded query Q0 = p(I, 0), as there is an infinite

derivation (see Figure 11)

N0 : p(I, 0)⇒Cp1
· · · N101 : q ⇒Cq1

N102 : q ⇒Cq1
· · ·

which satisfies conditions (i) and (ii) of Theorem 4.3, where for any j � 101, Gj+1 is

a loop goal of Gj . Note that for any repetition number r with 3 � r � 100, the prefix

ending at Nr−1 satisfies both the conditions of LP-check and the term-size decrease

property, where for any j with 0 � j < r − 1, Gj+1 is a loop goal of Gj . However,

for any r > 100, a prefix ending at N100+r will be encountered, which satisfies the

conditions of LP-check but violates the term-size decrease condition, where for any

j with 101 � j < 100 + r, Gj+1 is a loop goal of Gj . Therefore, Algorithm 5.1 will

return predicted-terminating for Q0 unless r is set above 100.

The following result shows that choosing a sufficiently large repetition number

guarantees the correct prediction for nonterminating programs.
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Theorem 5.5

Let P be a logic program and Q be a query such that P is nonterminating for Q.

There always exists a number R such that Algorithm 5.1 with any repetition number

r � R produces the answer predicted-nonterminating.

Proof

Let us assume the contrary. That is, we assume that for any number N, there exists a

larger number r such that Algorithm 5.1 for P with query Q and repetition number

r produces the answer predicted-terminating. This means that for all r � 2 the prefix

of form (3) of each infinite branch D in the moded generalized SLDNF-tree MTQ

satisfies the term-size decrease property. According to Theorem 5.2, D has an infinite

chain of substitutions of form (1) for some input variable I at Q. This means that D

does not satisfy condition (ii) of Theorem 4.3. However, since P is nonterminating

for Q, by Corollary 4.4 MTQ has at least one infinite branch of form (2) satisfying

conditions (i) and (ii) of Theorem 4.3. We then have a contradiction and thus

conclude the proof. �

The same result applies for any concrete query Q. That is, there always exists a

number R such that Algorithm 5.1 with any r � R produces the answer terminating

or predicted-terminating when P is terminating for Q. The proof for this is simple.

When P is terminating for a concrete query Q, the (moded) generalized SLDNF-tree

for Q is finite. Let R be the number of nodes of the longest branch in the tree. For any

r � R, Algorithm 5.1 will produce the answer terminating or predicted-terminating,

since no branch will be cut by LP-check.

However, whether the above claim holds for any moded query Q when P is

terminating for Q remains an interesting open problem.

6 Experimental results

We have evaluated our termination prediction technique on a benchmark of

301 Prolog programs. In this section, we first describe the benchmark and our

experimental results using a straightforward implementation of Algorithm 5.1. Then,

we define a pruning technique to reduce the size of moded generalized SLDNF-trees

generated for our prediction. Finally, we make a comparison between the state-of-

the-art termination and nontermination analyzers and our termination prediction

tool.

Our benchmark consists of 301 programs with moded queries from the Termina-

tion Competition 2007 (http://www.lri.fr/~marche/termination-competition/2007).

Only 23 programs of the competition are omitted because they contain nonlogical

operations such as arithmetics (for most of these programs neither termination

nor nontermination could be shown by any of the tools in the competition). The

benchmark contains 244 terminating programs and 57 nonterminating ones. The

most accurate termination analyzer of the competition, AProVE (Giesl et al. 2006),

proves termination of 238 benchmark programs. The nontermination analyzer NTI

(Payet 2006; Payet and Mesnard 2006) proves nontermination of 42 programs.

Because the prediction does not produce a termination or nontermination proof,
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Table 1. Prediction with different repetition numbers

r = 2 r = 3 r = 4

Correct predictions 291 271 234

Wrong predictions 7 0 0

Out of time/memory 3 30 67

Average time (s) 1.7 24.9 59.3

our goal is to outperform the analyzers of the competition by providing a higher

number of correct predictions.

We implemented our tool, TPoLP: Termination Prediction of Logic Programs,

in SWI-prolog (http://www.swi-prolog.org). TPoLP is freely available from http://

www.cs.kuleuven.be/~dean. The moded generalized SLDNF-tree is generated fol-

lowing Algorithm 5.1. It is initialized with the moded query and extended until all

branches are cut or a timeout occurs. To improve the efficiency of the analysis, a

number of optimizations were implemented, such as constant time access to the

nodes and the arcs of the derivations. The experiments have been performed using

SWI-Prolog 5.6.40 (http://www.swi-prolog.org), on an Intel Core2 Duo 2,33GHz, 2

Gb RAM.

Table 1 gives an overview of the predictions with repetition numbers r = 2, r = 3,

and r = 4. As we mentioned earlier, r = 2 does not suffice because some of the

predictions are wrong and we want high reliable predictions. When r is set above

two, all predictions made for the benchmark are correct. This shows that in practice,

there is no need to increase the repetition number any further.

When we increase the repetition number, the cost of prediction increases as well.

Table 1 shows that for r = 3, about 10% of the programs break the time limit of

4 min, and for r = 4, about 20% break the limit.

The component of the algorithm taking most of the time differs from program

to program. When a lot of branches are cut by LP-check, constructing the LP cuts

is usually the bottleneck. For programs with a low amount of LP cuts, most of the

time is spent on constructing the SLDNF-derivations. Some of the derivations count

more than a million nodes. To overcome such performance issues, we implemented

the following pruning technique on loop goals:

Definition 6.1 (Pruning variants)

Let G2 be a loop goal of G1 for which the selected subgoals are variants. Then, all

clauses that have already been applied at G2 are skipped at G1 during backtracking.

The idea of this pruning is simple. For loop goals with variant selected subgoals,

applying the nonlooping clauses to them will generate the same derivations below

them with the same termination properties. Therefore, the derivations already

generated below G2 need not be regenerated at G1 during backtracking.

For the sake of efficiency, in our implementation we determine variants by checking

that they have the same symbol string.

Consider Example 5.7 again. When the above pruning mechanism is applied,

Algorithm 5.1 will simplify the moded generalized SLDNF-tree of Figure 10 into
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Table 2. The effect of pruning

No pruning Pruning variants Pruning loop goals

Correct predictions 271 296 297

Wrong predictions 0 0 3

Out of time/memory 30 5 1

Average time (s) 24.9 4.4 0.05

Fig. 12. Figure 10 is simplified with pruning.

Figure 12. The pruning takes place at N2 and N0, where G4 is a loop goal of G2

that is a loop goal of G0 and their selected subgoals are variants.

A stronger version of the above pruning mechanism can be obtained by removing

the condition in Definition 6.1: for which the selected subgoals are variants. That

is, we do not require the selected subgoals of loop goals to be variants. We call this

version Pruning loop goals.

Table 2 gives an overview of our predictions with r = 3 as the repetition number

in the cases of no pruning, pruning variants, and pruning loop goals. The table

shows that pruning is a good tradeoff between the accuracy and the efficiency

of the prediction. When applying the variants pruning mechanism the size of the

derivations drops considerably, while all predictions for the benchmark are still

correct. Due to the pruning, more than 98% of the predictions finish within the time

limit. Applying the loop goals pruning mechanism leads to a greater reduction in the

size of derivations. However, in this case we sacrifice accuracy: three nonterminating

programs are predicted to be terminating.

Table 3 gives a comparison between our predictions (with r = 3 and the variants

pruning mechanism) and the proving results of the state-of-the-art termination

and nontermination analyzers. Note that our tool, TPoLP, is the only tool which

analyzes both for termination and nontermination of logic programs. The results are

very encouraging. We correctly predict the termination property of all benchmark

programs except for five programs which broke the time limit. It is also worth

noticing that for all programs of the benchmark, either an existing analyzer finds a

termination or nontermination proof, or a correct prediction is made by our tool.
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Table 3. Comparison between TPoLP and the existing analyzers.

Termination/nontermination proof

TPoLP prediction AProVE NTI Polytool TALP

Answer Terminating (244) 239 238 0 206 164

Answer Nonterminating (57) 57 0 42 0 0

This shows that our prediction tool can be a very useful addition to any termination

or nontermination analyzer.

7 Related work

Most existing approaches to the termination problem are norm- or level mapping-

based in the sense that they perform termination analysis by building from the source

code of a logic program some well-founded termination conditions/constraints in

terms of norms (i.e., term sizes of atoms of clauses), level mappings, interargument

size relations, and/or instantiation dependencies, which when solved, yield a ter-

mination proof (see, e.g., Schreye and Decorte 1993 for a survey and more recent

papers Apt and Pedreschi 1993; Marchiroi 1996a; Lidenstrauss and Sagiv 1997;

Decorte et al. 1999; Mesnard and Neumerkel 2001; Bossi et al. 2002; Genaim and

Codish 2005; Bruynooghe et al. 2007). Another main stream is transformational

approaches, which transform a logic program into a term rewriting system (TRS)

and then analyze the termination property of the resulting TRS instead (Aguzzi and

Modigliani 1993; Arts and Zantema 1995; Marchiori 1996b; van Raamsdonk 1997;

Rao et al. 1998; Ohlebusch et al. 2000; Giesl et al. 2006; Schneider-Kamp et al. 2006).

All of these approaches are used for a termination proof; i.e., they compute sufficient

termination conditions which once satisfied, lead to a positive conclusion terminating.

Recently, Payet (2006) and Payet and Mesnard (2006) propose an approach to

computing sufficient nontermination conditions which when satisfied lead to a

negative conclusion nonterminating. A majority of these termination/nontermination

proof approaches apply only to positive logic programs.

Our approach presented in this paper differs significantly from existing termination

analysis approaches. First, we do not make a termination proof, nor do we make a

nontermination proof. Instead, we make a termination prediction (see Figure 1)—a

heuristic approach to attacking the undecidable termination problem. Second, we do

not rely on static norms or level mappings, nor do we transform a logic program to

a term rewriting system. Instead, we focus on detecting infinite SLDNF-derivations

with the understanding that a logic program is terminating for a query if and

only if there is no infinite SLDNF-derivation with the query. We have established

a necessary and sufficient characterization of infinite SLDNF-derivations with

arbitrary (concrete or moded) queries, introduced a new loop-checking mechanism,

and developed an algorithm that predicts termination of general logic programs

with arbitrary queries by identifying potential infinite SLDNF-derivations. Since the
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algorithm implements the necessary and sufficient conditions (the characterization)

of an infinite SLDNF-derivation, its prediction is very effective. Our experimental

results show that except for five programs which break the time limit, our prediction

is 100% correct for all 296 benchmark programs of the Termination Competition

2007, of which 18 programs cannot be proved by any of the existing state-of-

the-art analyzers like AProVE07 (Giesl et al. 2006), NTI (Payet 2006; Payet and

Mesnard 2006), Polytool (Nguyen and Schreye 2005; Nguyen et al. 2006), and TALP

(Ohlebusch et al. 2000).

Our termination prediction approach uses a loop-checking mechanism (a loop

check) to implement a characterization of infinite SLDNF-derivations. Well-known

loop checks include VA-check (Gelder 1987; Bol et al. 1991), OS-check (Bruynooghe

et al. 1992; Sahlin 1993; Martens and Schreye 1996), and VAF-checks (Shen 1997;

Shen et al. 2001). All apply to positive logic programs. In particular, VA-check

applies to function-free logic programs, where an infinite derivation is characterized

by a sequence of selected variant subgoals. OS-check identifies an infinite derivation

with a sequence of selected subgoals with the same predicate symbol whose sizes

do not decrease. VAF-checks take a sequence of selected expanded variant subgoals

as major characteristics of an infinite derivation. Expanded variant subgoals are

variant subgoals except that some terms may grow bigger. In this paper, a new

loop-check mechanism, LP-check, is introduced in which an infinite derivation is

identified with a sequence of loop goals. Most importantly, enhancing LP-check

with the term-size decrease property leads to the first loop check for moded

queries.

8 Conclusion and future work

We have presented a heuristic framework for attacking the undecidable termination

problem of logic programs, as an alternative to current termination/nontermination

proof approaches. We introduced an idea of termination prediction, established

a necessary and sufficient characterization of infinite SLDNF-derivations with

arbitrary (concrete or moded) queries, built a new loop-checking mechanism, and

developed an algorithm that predicts termination of general logic programs with

arbitrary queries. We have implemented a termination prediction tool, TPoLP, and

obtained quite satisfactory experimental results. Except for five programs which

break the experiment time limit, our prediction is 100% correct for all 296 benchmark

programs of the Termination Competition 2007.

Our prediction approach can be used standalone, e.g., it may be incorporated

into Prolog as a termination debugging tool; or it is used along with some

termination/nontermination proof tools (see the framework in Figure 1).

Limitations of the current prediction approach include that it cannot handle

floundering queries and programs with nonlogical operators. To avoid floundering,

we assume that no negative subgoals containing either ordinary or input variables

are selected at any node of a moded generalized SLDNF-tree (violation of the

assumption can easily be checked in the course of constructing generalized SLDNF-

trees). This assumption seems able to be relaxed by allowing input variables to occur
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in selected negative subgoals. This makes us able to predict termination of programs

like

P : p(X)← ¬q(X).

q(a)← q(a).

which is nonterminating for the moded query p(I).

Our future work includes further improvement of the prediction efficiency of

TPoLP. As shown in Table 2, there are five benchmark programs breaking our ex-

periment time limit. We are also considering extensions of the proposed termination

prediction to typed queries (Bruynooghe et al. 2007) and to logic programs with

tabling (Chen and Warren 1996; Verbaeten et al. 2001; Shen et al. 2004).
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