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Abstract

The interplay of random phenomena and continuous dynamics deserves increased
attention, especially in the context of wireless sensing and control applications. Safety
verification for such systems thus needs to consider probabilistic variants of systems
with hybrid dynamics. In safety verification of classical hybrid systems, we are inter-
ested in whether a certain set of unsafe system states can be reached from a set of initial
states. In the probabilistic setting, we may ask instead whether the probability of reach-
ing unsafe states is below some given threshold. In this paper, we consider probabilistic
hybrid systems and develop a general abstraction technique for verifying probabilistic
safety problems. This gives rise to the first mechanisable technique that can, in prac-
tice, formally verify safety properties of non-trivial continuous-time stochastic hybrid
systems. Moreover, being based on abstractions computed by tools for the analysis
of non-probabilistic hybrid systems, improvements in effectivity of such tools directly
carry over to improvements in effectivity of the technique we describe. We demon-
strate the applicability of our approach on a number of case studies, tackled using a
prototypical implementation.

1 Introduction
Hybrid systems constitute a general and widely applicable class of dynamical sys-
tems with both discrete and continuous components. Conventional hybrid system for-
malisms [3, 27, 13, 30] capture many characteristics of real systems. However, in many
modern application areas, also probabilistic dynamics occur. This is especially true for
wireless sensing and control applications, where message loss probabilities and other ran-
dom effects (node placement, node failure, battery drain) turn the overall control problem
into a problem that can only be managed with a certain, hopefully sufficiently large, prob-
ability: Due to the influence of these random effects, the success (for example keeping the
hybrid system in a safe region) can only be guaranteed with a probability less than one.

The need to integrate probabilities into hybrid systems formalisms has led to several dif-
ferent notions of stochastic hybrid systems, each from a distinct perspective [2, 32, 9, 11, 1].
The most important distinction lies in the point of attack where to introduce randomness.
One option is to replace deterministic jumps by probability distributions over deterministic
jumps. Another option is to generalise the differential equation components inside a mode
by a stochastic differential equations component. More general models can be obtained
by blending the above two choices, and by combining them with memoryless timed prob-
abilistic jumps [8], and with nondeterminism. One prominent example of such a blend is
the model of piecewise-deterministic Markov processes [15], a deterministic hybrid system
model augmented with memoryless timed probabilistic jumps.

An important problem in hybrid systems theory is that of reachability analysis. In gen-
eral terms, a reachability analysis problem consists in evaluating whether a given system
may reach certain unsafe states, starting from certain initial states. This problem is asso-
ciated with the safety verification problem: to prove that the system can never reach any
unsafe state. In the probabilistic setting, the safety verification problem can be formulated
as that of checking whether the probability that the system trajectories reach an unsafe state
from an initial state can be bounded by some given probability threshold.

In this paper, we focus on the model of probabilistic hybrid automata [32], an extension
of hybrid automata where jumps involve probability distributions. This adds the possibility
to represent model-component failures, message losses, buffer overflows and the like. Since
these phenomena are important aspects when aiming at faithful models for networked and
embedded applications, the interest in this formalism is growing [16, 33]. We are striving
for computational tools to support the analysis of the models of Sproston [32] and more
complicated models, based on mathematically sound foundations.

Up to now, foundational results on the probabilistic reachability problem for probabilis-
tic hybrid automata are scarce. Since they form a strict superclass of hybrid automata, this
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is not surprising. Decidability results are available for probabilistic linear hybrid automata
and probabilistic o-minimal hybrid automata [32].

This paper explains how we can harvest and combine recent advances in the hybrid
automata and the probabilistic automata worlds, in order to treat the general case. We are
doing so by computing safe overapproximations via abstractions in the continuous as well
as the probabilistic domain. One of the core challenges then is how to construct a sound
probabilistic abstraction over a given covering (i.e., set of abstract states, each of which
is formed by a subset of the concrete state space, such that their union equals the com-
plete concrete state space) of the state space. For this purpose, we first consider the non-
probabilistic hybrid automaton obtained by replacing probabilistic branching with nonde-
terministic choices. Provided that we have obtained a finite abstraction for this classical
hybrid automaton, we then decorate it with probabilities to obtain a probabilistic abstrac-
tion, namely a finite probabilistic automaton [31]. We show the soundness of the approach,
which allows us to verify probabilistic safety properties on the abstraction: if such a prop-
erty holds in the abstraction, it holds also in the concrete system. Otherwise, refinement is
required to obtain a more precise result.

Our abstraction approach can be considered as an orthogonal combination of definitions
of abstraction for hybrid automata [4, 30], and for Markov decision processes [14, 19]. Be-
cause of this orthogonality, abstractions of probabilistic hybrid automata can be computed
via abstractions for non-probabilistic hybrid automata and Markov decision processes. To
show the applicability of this combination, we implemented a prototype tool, ProHVer,
that builds an abstraction via a combination of existing techniques for classical hybrid au-
tomata [17] as well as methods for Markov decision processes [14, 25, 19]. Subsequently,
a fixed-point engine computes the reachability probabilities on the abstraction, which pro-
vides a safe upper bound on the reachability probability in the model semantics. If needed,
iterative refinement of the hybrid abstraction is performed. We report several successful
applications of this prototypical implementation on different case studies. To the best of
our knowledge, this is the first implementation that automatically checks safety properties
for probabilistic hybrid automata.

The framework considered here has the advantage of orthogonality: if a non-
probabilistic abstraction is used that differs from the one we employ in this paper, then
this abstraction can be extended with probabilities in a very similar fashion. Furthermore,
future computational advances in hybrid automata analysis can directly be harvested for
the model of probabilistic hybrid automata.

Organisation of the paper. We first discuss related work in Section 2, and then recall the
definitions we use in Section 3. In Section 4, we introduce the notion of abstractions for
probabilistic hybrid automata, and discuss how to compute the abstractions for safety veri-
fication problems. We illustrate our approach by applying it on a small model in Section 5.
In Section 6, we describe an implementation of our algorithm and apply it on several case
studies. Section 7 concludes the paper.

2 Related Work
The model considered in this paper extends (nondeterministic) hybrid automata with prob-
abilistic discrete jumps. Davis [15] introduced piecewise-deterministic Markov processes,
whose state changes are triggered spontaneously as in continuous-time Markov chains.
Apart from forced and spontaneous probabilistic jumps, general stochastic hybrid sys-
tems [20, 10] comprise stochastic differential equations [5]. They can incorporate ran-
dom perturbations, such as Brownian motion, into the continuous dynamics. While these
models—with and without nondeterminism—enjoy a very rich variety of applications, their
analysis is limited and often based on Monte-Carlo simulations [11, 22, 1, 12] of systems
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without nondeterminism. Another approximate analysis technique, restricted to systems
without nondeterminism, relies on the use of stochastic simulation functions [23].

From the hybrid automata perspective, the general verification problem for safety
properties is known to be undecidable. Certain classes (e.g., initialised rectangular au-
tomata [18], o-minimal hybrid automata [26]) are decidable, and there are algorithms that
construct finite bisimulation quotients for them. These methods have been lifted to prob-
abilistic hybrid automata by Sproston [32], and this can be used to compute exact results,
rooted in a bisimulation-based abstraction. In these special cases, we can parametrise our
principal technique in such a way that it yields the very same exact results. In practice
however, our method gives us the liberty to use an abstraction that overapproximates the
behaviour, and is tailored to the problem at hand. The computational results will then not
be exact, but overapproximating. This relies on the use of nondeterminism as a powerful
abstraction mechanism, and extends to undecidable classes as well. Indeed, we treat the
general case using the fact that a practical verification can—to a certain extent—circumvent
the decidability barrier by a heuristic algorithm: we exploit tools which can, in practice,
verify hybrid automata belonging to undecidable classes, to verify corresponding proba-
bilistic hybrid automata (cf. also the notion of quasi-decidability [29]). While Sproston
focuses on decidability results for particular classes of probabilistic hybrid models, this
paper considers safety verification for models in full generality. The paper is based on an
earlier conference paper [34].

Abstraction approaches have also successfully been applied to probabilistic timed
automata [25, 24], a class of probabilistic hybrid automata, where only derivatives of con-
stant value 1 occur. Their abstract analysis is based on difference-bound matrices (DBMs),
and does not extend to the general setting considered here. Fränzle et al. [16, 33] use
stochastic SAT to solve reachability problems on probabilistic hybrid automata. Their anal-
ysis is limited to depth-bounded reachability properties, i.e., the probability of reaching a
location within at most N discrete jumps.

3 Preliminaries
In this section, we repeat the definition of conventional hybrid automata, in the style of [30],
followed by the definition of probabilistic hybrid automata [32].

3.1 Hybrid Automata
3.1.1 Syntax

We fix a variable m ranging over a finite set of discrete modes M = {m1, . . . ,mn} and
variables x1, . . . , xk ranging over the real numbers R. We denote by S the resulting state
space M × Rk. For denoting the derivatives of x1, . . . , xk we use variables ẋ1, . . . , ẋk,
ranging over R correspondingly. The primed versions m′, x′1, . . . , x

′
k shall be used to de-

scribe the next state in a transition. For simplicity, we sometimes use the vector ~x to denote
(x1, . . . , xk), and (m,~x) to denote a state. Similar notations are used for the primed and
dotted versions ~x′, ~̇x.

In order to describe hybrid automata, we use constraints that are arbitrary Boolean
combinations of equalities and inequalities over terms. This way, constraints represent
subsets of given sets. In case v is contained in the set represented by a given constraint,
we say that v satisfies a given constraint. These constraints are used, on the one hand, to
describe the possible flows and jumps and, on the other hand, to mark certain parts of the
state space (e.g., the set of initial/unsafe states). A state-space constraint is a constraint
over the variables m,~x, and represents a subset of M×Rk. A flow constraint is a constraint
over the variables m, ~x, ~̇x. It represents a subset of M × Rk × Rk. An example of a flow
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constraint for the case n = 2 and k = 1 is:(
(m = m1 → ẋ = x) ∧ (m = m2 → ẋ = −x)

)
.

In general, an invariant that has to hold in a mode can be modelled by formulating a flow
constraint that does not allow a continuous behaviour in certain regions. As an example,
the flow constraint (m = m1 → 1 ≤ x ≤ 5) expresses that in mode m1 the invariant
1 ≤ x ≤ 5 holds.

For capturing the jump behaviours, we introduce the notion of update constraints. An
update constraint u, also called a guarded command, has the form: condition → update
where condition is a state-space constraint overm,~x, and update is an expression denoting
a function M×Rk → M×Rk which is called the reset mapping for m and ~x. Intuitively, as-
sume that the state (m,~x) satisfies condition , then the modem and variable ~x are updated1

to the new state update(m,~x).
A jump constraint is a finite disjunction

∨
u∈U u where U is a set of guarded commands.

The constraint
∨
u∈U u can be represented by the set U for simplicity.

Definition 3.1 A hybrid automaton is a tuple H = (Flow ,U, Init ,UnSafe) consisting of
a flow constraint Flow , a finite set of update constraints U, a state-space constraint Init ,
describing the set of initial states, and a state-space constraint UnSafe , describing the set
of unsafe states.

A flow of length l in a mode m is a function r : [0, l] 7→ Rk such that

• if l > 0, then r is differentiable for all t ∈ [0, l], and we require that (m, r(t), ṙ(t))
satisfies Flow , where ṙ is the derivative of r, and

• if l = 0, we require that there exists a constant c ∈ Rk such that (m, r(t), c) satisfies
Flow .

Provided that the constraint of a jump is enabled, in systems modelled in a reasonable
manner, it will usually be the case that the corresponding jump leads to a state in which a
valid flow exists. This also restricts valid states of the hybrid automaton.

3.1.2 Transition System Semantics

The semantics of a hybrid automaton is a transition system with an uncountable set of
states.

Definition 3.2 A transition system is a tuple (S, T, SInit , SUnSafe) where

• S is the (possibly uncountable) set of states,

• T ⊆ S × S is the transition relation,

• SInit ⊆ is the set of initial states and

• SUnSafe ⊆ is the set of unsafe states.

The semantics of H = (Flow ,U, Init ,UnSafe) is a transition system TH =
(S, T, SInit , SUnSafe) with state set S = M × Rk, set of initial states SInit = {s ∈ S |
s satisfies Init}, and unsafe states SUnSafe = {s ∈ S | s satisfies UnSafe}. The transi-
tion set T is defined as the union of two transition relations TC , TD ⊆ S × S, where TC
corresponds to transitions due to continuous flows defined by:

1Our definition of jumps is deterministic, as in [4], i.e., if a jump is triggered for a state satisfying condition ,
the successor state is updated deterministically according to update . In [30], the jump is defined to be nondeter-
ministic: if a state satisfies condition , a successor will be selected nondeterministically from a set of states. Our
method can be easily extended to this. We restrict to deterministic jumps for simplicity of the presentation in this
paper.
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• ((m,~x), (m,~x′)) ∈ TC , if there exists a flow r of length l in mode m such that
r(0) = ~x and r(l) = ~x′;

and TD corresponds to transitions due to discrete jumps. The transition due to an update
constraint u : condition → update , denoted by TD(u), is defined by:

• ((m,~x), (m′, ~x′)) ∈ TD(u) if (m,~x) satisfies the guard condition and it holds that
(m′, ~x′) = update(m,~x).

Then, we define TD =
⋃
u∈U TD(u).

In the rest of the paper, if no confusion arises, we use Init to denote both the constraint
for the initial states and the set of initial states. Similarly, UnSafe is used to denote both
the constraint for the unsafe states and the set of unsafe states.

3.2 Probabilistic Automata
For defining the semantics of a probabilistic hybrid automaton, we recall first the notion of
a probabilistic automaton [31]. It is an extension of a transition system with probabilistic
branching.

We first introduce some notation. Let S be a (possibly uncountable) set. A distribution
over S is a function µ : S → [0, 1] such that (a) the support Supp(µ) = {s ∈ S | µ(s) > 0}
is finite, and (b) it is

∑
s∈S µ(s) = 1. Let Distr(S) denote the set of all distributions

over S. For an arbitrary but fixed state s ∈ S, a Dirac distribution for s, denoted by
Diracs, is a distribution over S such that Diracs(s) = 1, that is, Supp(Diracs) = {s}.
The Dirac distribution will be used to describe the continuous evolution of a probabilistic
hybrid automaton.

Definition 3.3 A probabilistic automaton M is a tuple (S,Steps, Init ,UnSafe), where
Steps ⊆ S ×Distr(S), Init ⊆ S, and UnSafe ⊆ S. Here,

• S denotes the set of states,

• Init is the set of initial states,

• UnSafe the set of unsafe states, and

• Steps the transition relation.

We use s → µ as a shorthand notation for (s, µ) ∈ Steps , and call µ a successor
distribution of s. Let Steps(s) be the set {µ | (s, µ) ∈ Steps}. We assume that Steps(s) 6=
∅ for all s ∈ S.

A finite path of M is finite sequence σ = s0µ0s1µ1 . . . sn such that si → µi and
µi(si+1) > 0 for all possible 0 ≤ i < n. Infinite paths are defined by taking n = ∞. We
denote by first(σ) the first state s0 of σ, by σ[i] the (i+ 1)-th state si, and, if σ is finite, by
last(σ) the last state of σ. Let Path be the set of all infinite paths and Path∗ the set of all
finite paths.

The nondeterministic choices inM are resolved by adversaries. Intuitively, an adver-
sary of M is a measurable map A : Path∗ → Distr(Steps) such that A(σ)(s, µ) > 0
implies that s = last(σ) and s → µ. If A(σ)(s, µ) > 0, then the successor distribution
µ should be selected from state s with probability A(σ)(s, µ). Given an initial state s, an
adversary A induces a discrete-time Markov chain with state space Path∗ in an obvious
way. We let ProbAs denote the corresponding unique probability measure [28] over Path .

3.3 Probabilistic Hybrid Automata
Now we recall the definition of probabilistic hybrid automata, by equipping the discrete
jumps with probabilities. This is needed to model, for example, component failure or
message losses.
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3.3.1 Syntax

For capturing the probabilistic jump behaviours, a probabilistic guarded command c is
defined to have the form

condition → p1 : update1 + . . .+ pqc : updateqc

where qc ≥ 1 denotes the number of probabilistic branching of c, pi > 0 for i = 1, . . . , qc
and

∑qc
i=1 pi = 1, condition is a constraint over (m,~x), and updatei is an expression

denoting a reset mapping for m and ~x for all i = 1, . . . , qc. Intuitively, if a state (m,~x)
satisfies the guard condition , a jump to states (m1, ~x1), . . . , (mqc , ~xqc) occurs such that
(mi, ~xi) = updatei(m,~x) is selected with probability pi for i = 1, . . . , qc. Observe that
for different i 6= j, it could be the case that (mi, ~xi) = (mj , ~xj). In this paper we assume
that qc is finite for all c. As for the non-probabilistic setting, we assume that conditions are
enabled only if corresponding jumps lead to a state in which a flow exists.

An example for the case n = 2, k = 1 and qc = 2 is:(
(m = m1 ∧ x ≥ 10)→ 0.2 : (m′ = m1 ∧ x′ = 0)

+ 0.8 : (m′ = m2 ∧ x′ = x+ 1)
)
.

Definition 3.4 A probabilistic hybrid automaton is a tuple H = (Flow ,C, Init ,UnSafe)
where Flow , Init ,UnSafe are the same as in the hybrid automaton, and C is a finite set of
probabilistic guarded commands.

A probabilistic hybrid automaton induces a classical hybrid automaton where proba-
bilistic branching is replaced by nondeterministic choices. Intuitively, the semantics of the
latter spans the semantics of the former.

Definition 3.5 Let c = (condition → p1 : update1 + . . . + pqc : updateqc) be a
probabilistic guarded command. It induces a set of qc update constraints: ind(c) =
{u1, . . . ,uqc} where ui corresponds to the update constraint condition → updatei for
i = 1, . . . , qc. Moreover, for a set C of probabilistic guarded commands we define
ind(C) =

⋃
c∈C ind(c).

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. The induced
hybrid automaton is a tuple ind(H) = (Flow , ind(C), Init ,UnSafe).

3.3.2 Semantics

The semantics of a probabilistic hybrid automaton is a probabilistic automaton [32]. Let
H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. Let ind(H) denote the
induced hybrid automaton, and let Tind(H) = (S, T, Init ,UnSafe) denote the transition
system representing the semantics of ind(H). Recall that T = TC ∪ TD where TC cor-
responds to transitions due to continuous flows and TD corresponds to transitions due to
discrete jumps.

The semantics of H is the probabilistic automaton MH = (S,Steps, Init ,UnSafe)
where S, Init ,UnSafe are the same as in Tind(H), and Steps is defined as the union of two
transition relations StepsC ,StepsD ⊆ S ×Distr(S). Here, as in the non-probabilistic set-
ting, StepsC corresponds to transitions due to continuous flows, while StepsD corresponds
to transitions due to discrete jumps. Both of them are defined respectively as follows.

For each transition ((m,~x), (m,~x′)) ∈ TC in ind(H), there is a corresponding transi-
tion in H from (m,~x) to (m,~x′) with probability 1. So, StepsC is defined by: StepsC =
{((m,~x),Dirac(m,~x′)) | ((m,~x), (m,~x′)) ∈ TC}.

Now we discuss transitions induced by discrete jumps. First, for a probabilistic guarded
command c, we define its corresponding set StepsD(c). Let ind(c) = {u1, . . . ,uqc}
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∧ x2 = 0

ẋ1 = 1 ∧ ẋ2 = −1

m2
0.95 : x′

1 = x1 ∧ x′
2 = x2

0.05 : x′
1 = x1 ∧ x′

2 = x2 + 0.5

m1

ẋ1 = 1 ∧ ẋ2 = 1

∧0 ≤ x1 ≤ 1

x2 = 1 →

Figure 1: Illustration of Example 3.6.

be as defined in Definition 3.5. Then, for a number of qc + 1 arbitrary states (m,~x),
(m1, ~x1), . . . , (mqc , ~xqc) ∈ S satisfying the condition ((m,~x), (mi, ~xi)) ∈ TD(ui) for
i = 1, . . . , qc, we introduce the transition ((m,~x), µ) ∈ StepsD(c) with

µ(mi, ~xi) =
∑

j∈{j|mj=mi∧~xj=~xi}

pj , (1)

for i = 1, . . . , qc. Then, StepsD is defined to be
⋃
c∈C StepsD(c). Recall that we have

assumed that qc is finite for all c. This implies Supp(µ) is finite for all transitions (s, µ)
with s ∈ S.

3.3.3 Safety Properties

For hybrid automata, the safety property asserts that the unsafe states can never be reached.
For probabilistic hybrid automata, however, the safety property expresses that the maximal
probability of reaching the set UnSafe is bounded by some given threshold p. In the
following we fix a certain threshold p.

Let Reach(UnSafe) denote the set of paths {σ ∈ Path | ∃i. σ[i] ∈ UnSafe}. The
automaton H is called safe if for each adversary A and each initial state s of M(H),
ProbAs (Reach(UnSafe)) ≤ p holds. Since safety verification in the non-probabilistic set-
ting is an undecidable problem [18], this implies that the safety problem in the probabilistic
setting is also undecidable. In the following, we develop a framework for a heuristic algo-
rithm to deal with such a probabilistic safety verification problem for general probabilistic
hybrid automata.

Example 3.6 Consider the probabilistic hybrid automaton illustrated in Figure 1. It con-
tains the modes m1,m2 and the continuous variables x1, x2 which both range over the
interval [0, 2], i.e, S = {m1,m2} × [0, 2] × [0, 2] (note that the state space can be re-
stricted via state-space constraints). The set of initial states is given by the constraint
Init(m, (x1, x2)) = (m = m1∧x1 = 0∧x2 = 0). The constraint UnSafe(m, (x1, x2)) =
(x1 ≥ 1 ∧ x2 ≥ 1.5) describes the set of unsafe states. The hybrid automaton can switch
modes from m1 to m2 with two possibilities if x2 = 1, i.e.,

(m = m1 ∧ x2 = 1)→
0.95 : (m′ = m2 ∧ x′1 = x1 ∧ x′2 = x2) +

0.05 : (m′ = m2 ∧ x′1 = x1 ∧ x′2 = x2 + 0.5) .

The continuous behaviour is very simple: in mode m1, the values of the variables x1, x2
change with slope 1; in modem2, the slope of variable x1 is 1 and variable x2 is−1. For a
flow in mode m1, the constraint 0 ≤ x1 ≤ 1 must hold. The corresponding flow constraint
is:

(m = m1 → (ẋ1 = 1 ∧ ẋ2 = 1 ∧ 0 ≤ x1 ≤ 1))

∧ (m = m2 → (ẋ1 = 1 ∧ ẋ2 = −1)) .

The constraint 0 ≤ x1 ≤ 1 in Flow forces a jump from mode m1 to m2 if x1 becomes 1.
The maximal reachability probability is 0.05, as can be seen as follows: From the

initial state, we can only apply the probabilistic guarded command once and exactly if we
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wait until x2 = 1, as seen from the guard. With probability 0.95, we then move to a state
with m = m2, x1 = 1, x2 = 1. In this case, we cannot reach unsafe states, because
in the following timed transitions x2 is decreased and thus we will never have x2 ≥ 1.5.
However, with probability 0.05 we jump to an unsafe state directly. Because of this, the
probabilistic system is safe if we have a threshold of e.g. p = 0.051 > 0.05.

3.3.4 Simulation Relations

We recall the notion of simulations between probabilistic automata. Intuitively, ifM2 sim-
ulatesM1, that is,M2 is an overapproximation ofM1, thenM2 can mimic all behaviours
ofM1. Thus, this allows us to verify safety properties on the abstractionM2 instead of
M1. To establish the notion of simulations, we introduce first the notion of weight func-
tions [21], which establish the correspondence between distributions.

Definition 3.7 Let µ1 ∈ Distr(S1) and µ2 ∈ Distr(S2) be two distributions. For a
relation R ⊆ S1 × S2, a weight function for (µ1, µ2) with respect to R is a function
∆: S1 × S2 → [0, 1] such that

1. ∆(s1, s2) > 0 implies (s1, s2) ∈ R,

2. µ1(s1) =
∑
s2∈S2

∆(s1, s2) for s1 ∈ S1, and

3. µ2(s2) =
∑
s1∈S1

∆(s1, s2) for s2 ∈ S2.

We write µ1 vR µ2 if and only if there exists a weight function for (µ1, µ2) with respect
to R.

Now, we recall the notion of simulations [31], adapted to reachability properties. The
simulation requires that every successor distribution of a state ofM1 is related to a succes-
sor distribution of its corresponding state ofM2 via a weight function.

Definition 3.8 Given two probabilistic automataM1 = (S1,Steps1, Init1,UnSafe1) and
M2 = (S2,Steps2, Init2,UnSafe2), we say thatM2 simulatesM1, denoted byM1 �
M2, if and only if there exists a relation R ⊆ S1 × S2, which we will call simulation
relation from now on, such that

1. for each s1 ∈ Init1 there exists an s2 ∈ Init2 with (s1, s2) ∈ R.

2. for each s1 ∈ UnSafe1 there exists an s2 ∈ UnSafe2 with (s1, s2) ∈ R, and there
does not exist an s′ ∈ S2 \UnSafe2 such that (s1, s

′) ∈ R.

3. for each pair (s1, s2) ∈ R, if there exists (s1, µ1) ∈ Steps1, then there exists a
distribution µ2 ∈ Distr(S2) such that (s2, µ2) ∈ Steps2 and µ1 vR µ2.

4 Abstractions for Probabilistic Hybrid Automata
Various abstraction refinement techniques have been developed for verifying safety proper-
ties of non-probabilistic hybrid automata. All of them have a common strategy: the set S is
covered by a finite set of abstract states, each representing a set of concrete states. Then, an
abstraction is constructed, that is an overapproximation of the original system. Afterwards,
the safety property is checked on the abstraction. If no abstract unsafe state is reachable,
the original system is safe since the abstraction overapproximates the original system. If
not, the covering might have been chosen too coarse, and a refinement step is needed.

Following this idea, refinement techniques for abstractions based on subsuming con-
crete states by validity of predicates on the state variables have been used [13, 4, 30].

LetH = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. The aim of this
section is—independently of which abstraction technique is used—to develop a framework
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H ind(H

QuoH(B) Quoind

AbsH(B) Absind

Lemma 4.7

Lemma 4.10

Theorem 4.12

Lemma 4.6

Figure 2: Computation of the abstraction.

for constructing an abstraction for H, which is a finite probabilistic automaton. First we
introduce the notion of abstract states, which form a (not necessarily disjoint) covering of
the concrete state space:

Definition 4.1 An abstract state is a pair (m,B) where m ∈ M and B ⊆ Rk. A covering
B is a finite set of abstract states such that S =

⋃{(m,~x) | (m,B) ∈ B ∧ ~x ∈ B}.

In the above definition, for two abstract states (m,B1) and (m,B2) we might have
B1 ∩ B2 6= ∅ 2. For instance, dependent on the abstraction technique used, B1 and B2

might have overlapping borders [30], or common interiors [17].
Figure 2 illustrates how this section is organised. Given a probabilistic hybrid automa-

ton H and an abstract state space B, we introduce the quotient automaton of both ind(H)
andH with respect to B in Section 4.1. In Section 4.2, we show the soundness with respect
to the quotient automaton (cf. Lemma 4.6 and Lemma 4.7).

The quotient automaton is in general hard to compute. Thus, in Section 4.3 we in-
troduce general abstractions, which overapproximate the quotient automata conservatively.
In Section 4.4, we discuss how the abstraction for the given probabilistic hybrid automa-
ton is constructed (see Figure 2): we first construct the abstraction of the induced hybrid
automaton, from which the abstraction of the probabilistic setting is obtained afterwards.

4.1 Quotient Automaton forH
We define the quotient automaton for the probabilistic hybrid automatonH. First we define
the quotient automaton for the induced hybrid automaton ind(H). As a convention, we use
T , I,U to denote the set of transitions, initial states, unsafe states in the quotient automata.

Definition 4.2 LetH = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton, and
let B denote the abstract state space. Further, let Tind(H) = (S, TC ∪ TD, Init ,UnSafe)
denote the automaton representing the semantics of ind(H). The quotient automaton for
Tind(H), denoted by Quoind(H)(B), is a finite transition system (B, T , I,U) where

• I = {(m,B) ∈ B | ∃~x ∈ B. (m,~x) ∈ Init},

• U = {(m,B) ∈ B | ∃~x ∈ B. (m,~x) ∈ UnSafe},

• TC corresponds to the set of abstract transitions due to continuous flow: TC =
{((m,B), (m,B′)) ∈ B2 | ∃~x ∈ B. ∃~x′ ∈ B′. ((m,~x), (m,~x′)) ∈ TC},

• TD corresponds to the set of abstract transitions due to discrete jumps. We
first define the transition induced by one fixed update u ∈ ind(C): TD(u) =
{((m,B), (m′, B′)) ∈ B2 | ∃~x ∈ B. ∃~x′ ∈ B′. ((m,~x), (m′, ~x′)) ∈ TD(u)}.
Then, let TD =

⋃
u∈ind(C) TD(u).

2We may also require that abstract states form a partitioning over the original state space S, with pairwise
disjoint abstract states. Such abstractions are, however, harder to construct for non-trivial models.

10



In the following let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automa-
ton, let MH = (S,StepsC ∪ StepsD, Init ,UnSafe) denote the probabilistic automaton
representing the semantics of H, and let B be an abstract state space. As in the induced
non-probabilistic setting, we define a quotient automaton, denoted by the probabilistic au-
tomaton QuoH(B), for the abstract state space B. For this, we first introduce the set of
lifted distributions:

Definition 4.3 Let H, MH and B be as described above. Let c ∈ C and assume
that (s, µ) ∈ StepsD(c) in MH. By definition of StepsD(c), there exist states
(m1, ~x1), . . . , (mqc , ~xqc) ∈ S satisfying the condition ((m,~x), (mi, ~xi)) ∈ TD(ui) for
i = 1, . . . , qc. Then, for arbitrary abstract states (m1, B1), . . . , (mqc , Bqc) with ~xi ∈ Bi
for i = 1, . . . , qc we introduce the distribution µ′ ∈ Distr(B) with:

µ′(mi, Bi) =
∑

{j|(mj ,Bj)=(mi,Bi)}

µ(mj , ~xj).

The set of lifted distributions liftB(µ) contains all such µ′.

Let µ be the distribution according to a probabilistic guarded command c. Since the
covering B is in general not disjoint, a concrete state (mi, ~xi) might belong to more than
one abstract states. In this case, µ induces more than one lifted distribution. In the above
definition, this is reflected by the way of defining one specific lifted distribution µ′, for
which we first fix to which abstract state each concrete state (mi, ~xi) belongs. Note that if
B is a disjoint partitioning of S, then the set liftB(µ) is a singleton. We now introduce the
quotient automaton for the probabilistic hybrid automaton:

Definition 4.4 LetH,MH and B be as described above. The quotient automaton forMH
with respect to B is defined by QuoH(B) = (B,ST , I,U) where I and U are defined as
for Quoind(H)(B), and ST = ST C ∪ ST D is the set of abstract transitions where:

• ST C corresponds to the set of abstract transitions due to continuous flows: ST C =
{((m,B),Dirac(m,B′)) ∈ B × Distr(B) | ∃~x ∈ B. ∃~x′ ∈ B′. ((m,~x), (m,~x′)) ∈
StepsC}.

• ST D corresponds to the set of abstract transitions due to discrete jumps. We
first define the transitions induced by one fixed probabilistic guarded command c.
We let ST D(c) = {((m,B), µ′) ∈ B × Distr(B) | ∃~x ∈ B. ∃((m,~x), µ) ∈
StepsD(c). µ′ ∈ liftB(µ)}. Then, let ST D =

⋃
c∈C ST D(c).

Example 4.5 Consider Figure 3 and assume we have a probabilistic guarded command
c = (condition → p1 : up1 + . . . + p4 : up4). Thus qc = 4. The abstract states
are represented by circles, labelled with the corresponding tuple. The concrete states are
represented by black points, labelled with only the evaluation of the variables (assume that
all of them are different). Thus the point labelled with s0 represents the state (m0, s0)
and so on. Arrows are transitions in the concrete models, where the labels represent the
probability pi of the corresponding update upi of c.

Consider the two (there may be more) concrete transitions in Tind(H):
((m0, s0), (m1, s1)), ((m0, s0), (m1, s2)) ∈ TD. Both of them lead from (m0, B0) to the
same abstract state (m1, B1). By Definition 4.2, we have that ((m0, B0), (mi, Bi)) ∈ TD
for i = 1, 2, 3, 4 in Quoind(H)(B).

We have a concrete transition ((m0, s0), µ) where µ is defined by: µ(si) = pi for i =
1, 2, 3, 4. Assume first that B0, B1, B2, B3 are disjoint. By Definition 4.3, liftB(µ) = {µ′}
where µ′ is defined by: µ′(m1, B1) = p1 + p2, µ′(m2, B2) = p3, and µ′(m3, B3) =
p4. Then, by Definition 4.4, this induces an abstract transition ((m0, B0), µ′) ∈ ST D in
QuoH(B).

11



(m0, B0)

(m3, B3
(m1, B1)

p1 : up1

p2 : up2

(m2, B2)

s4
s1

s2
s3

s0

p4 : up4

p3 : up3

Figure 3: Illustrating the abstract discrete transitions in the quotient automaton.

Assume now that the abstract states B1 and B2 are not disjoint, and that s2 is on
the common border of (m1, B1) and (m2, B2) (which implies also m1 = m2). In this
case, the set liftB(µ) contains another element µ′′ which defined by: µ′′(m1, B1) = p1,
µ′′(m2, B2) = p2+p3 and µ′′(m3, B3) = p4. Again by Definition 4.4, µ′′ induces another
abstract transition ((m0, B0), µ′′) in QuoH(B).

4.2 Soundness
Given a probabilistic hybrid automatonH and a set of abstract states B, we defined a prob-
abilistic quotient automaton QuoH(B). The following lemma shows that this automaton
conservatively overapproximatesMH.

Lemma 4.6 QuoH(B) simulatesMH.

Proof: We define R = {((m,~x), (m′, B)) ∈ S × B | m = m′ ∧ ~x ∈ B}. It suf-
fices to show that R is a simulation relation. Let ((m,~x), (m,B)) ∈ R be an arbitrary
pair. The first two conditions for simulation relations are trivially satisfied. It remains
to show the third condition. There are two types of transitions starting from (m,~x) in
MH: the case ((m,~x),Dirac(m,~x′)) ∈ StepsC is trivial and skipped. Now consider the
case ((m,~x), µ) ∈ StepsD: there exists then a probabilistic guarded command c such
that ((m,~x), µ) ∈ StepsD(c). Let c and ind(c) = {u1, . . . ,uqc} be as described in
Definition 3.5, and let (mi, ~xi) = ui(m,~x), where assume that i = 1, . . . , qc. Note that
it could be the case that, for i 6= j, we have ~xi = ~xj . Moreover, let (mi, Bi) ∈ B
denote an abstract state satisfying ~xi ∈ Bi. By construction of the relation R, we
know that ((mi, ~xi), (mi, Bi)) ∈ R. By the definition of ST (cf. Definition 4.4),
we have that ((m,B), µ′) ∈ ST D(c) where µ′(mi, Bi) =

∑
j∈{j|mj=mi∧Bj=Bi} pj .

Define ∆ for (µ, µ′) with respect to R by: ∆((mi, ~xi), (mi, Bi)) equals µ(mi, ~xi) for
i = 1, . . . , qc, and equals 0 otherwise. It remains to show that ∆ is the proper weight
function. For the first condition, assume ∆((m∗, ~x∗), (m′, B′)) > 0. By the defini-
tion of ∆, we have m∗ = m′ and ~x∗ ∈ B′, implying ((m∗, ~x∗), (m′, B′)) ∈ R.
Now we show the third condition (the second condition is similar). Let (mj , Bj) be
an abstract state (otherwise trivial). On the one hand, due to the definition of µ′, it is
µ′(mj , Bj) =

∑
i∈I pi where I = {i | mi = mj ∧ Bi = Bj} denotes the set of all

indices i such that (mi, Bi) = (mj , Bj). On the other hand, by the definition of ∆, it holds∑
i∈I pi =

∑
~xk∈Bj

µ(mj , ~xk) =
∑
k∈I ∆((mj , ~xk), (mj , Bj)) (cf. Equation (1)), which

implies the third condition.
Since simulation on probabilistic automata preserves safety properties [31], we have the
correctness of our construction:

Lemma 4.7 The abstraction preserves the safety property: if the probability of reaching
UnSafe in QuoH(B) is bounded by p, this is also the case inH.
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4.3 Abstractions forH
Consider the probabilistic hybrid automaton H. The computation of the exact quotient au-
tomaton QuoH(B) as defined in Definition 4.4 refers to concrete states, and often is hard
or even impossible. In this subsection, we introduce the notion of abstractions which over-
approximate the quotient automata. As a convention, we use the primed version T ′, I ′,U ′
to denote the set of transitions, initial states, unsafe states in the abstraction.

Definition 4.8 LetH = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton, and
let B denote the abstract state space. Then,

• Absind(H)(B) = (B, T ′, I ′,U ′) is an abstraction of the quotient Quoind(H)(B) iff
T ′ =

⋃
u∈ind(C) T ′D(u) ∪ T ′C and it holds TC ⊆ T ′C , TD(u) ⊆ T ′D(u) for all u ∈

ind(C), and we have I ⊆ I ′ and U ⊆ U ′,

• AbsH(B) = (B,ST ′, I ′,U ′) is an abstraction of the quotient QuoH(B) iff ST ′ =⋃
c∈C ST ′D(c) ∪ ST ′C and it holds ST D(c) ⊆ ST ′D(c) for all c ∈ C, and it is
ST C ⊆ ST ′C , I ⊆ I ′ and U ⊆ U ′.

In that case, we say also that Absind(H)(B) is an abstraction of the induced hybrid au-
tomaton ind(H). Similarly, we say also that AbsH(B) is an abstraction of the probabilistic
hybrid automaton H. Since the abstraction as defined may have more initial states, unsafe
states and transitions than the quotient automaton, it is easy to verify that the abstraction
simulates the corresponding quotient automaton. Since simulation is transitive, the abstrac-
tion also simulates the corresponding semantics automaton. Thus, the abstraction preserves
also safety properties ofH.

4.4 Computing Abstractions
Let H be a probabilistic hybrid automaton. Existing methods [17, 4, 30] can be used to
compute an abstraction Absind(H)(B) for the induced hybrid automaton ind(H). In the
following, we define an abstraction based on Absind(H)(B):

Definition 4.9 For a probabilistic hybrid automaton H, let B be the abstract state space,
and Absind(H)(B) = (B, T ′D ∪ T ′C , I ′,U ′) be an abstraction of ind(H). We define
AbsH(B) = (B,ST ′C ∪ ST ′D, I ′,U ′) forH as follows:

• ST ′C = {((m,B),Dirac(m,B′)) ∈ B ×Distr(B) | ((m,B), (m,B′)) ∈ T ′C},

• ST ′D corresponds to the set of abstract transitions due to discrete jumps. We first
define the transition induced by one fixed probabilistic guarded command c =
(condition → p1 : update1 + . . . + pqc : updateqc), and ind(c) = {u1, . . . ,uqc}
as defined in Definition 3.5. Then, for every sequence of abstract states
(m,B), (m1, B1), . . . , (mqc , Bqc) satisfying the condition: ((m,B), (mi, Bi)) ∈
T ′D(ui) for i = 1, . . . , qc, we introduce the transition ((m,B), µ) ∈ ST ′D(c) such
that µ(mi, Bi) =

∑
j∈{j|mj=mi∧Bj=Bi} pj for i = 1, . . . , qc. Then, ST ′D is defined

to be
⋃
c∈C ST ′D(c).

Is AbsH(B) in fact an abstraction of H? Since Absind(H)(B) is an abstraction for
Quoind(H)(B), by Definition 4.8 it holds that TC ⊆ T ′C , I ⊆ I ′,U ⊆ U ′ and that TD(u) ⊆
T ′D(u) for each u ∈ ind(C). Note that in general most of the inclusions above are strict [4,
30]. By the construction of AbsH(B), it holds that ST C ⊆ ST ′C , I ⊆ I ′,U ⊆ U ′. The
following lemma shows that it holds also ST D ⊆ ST ′D:

Lemma 4.10 Consider the abstraction AbsH(B) as defined in Definition 4.9. Then, it
holds that ST D(c) ⊆ ST ′D(c), for all c ∈ C.
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Figure 4: Abstracting abstract discrete transitions.

Proof: Fix c ∈ C. Assume that ((m,B), µ′) ∈ ST D(c). Then, by Defini-
tion 4.4, there exists ~x ∈ B and a transition ((m,~x), µ) ∈ StepsD(c) such that µ′ ∈
liftB(µ). For i = 1, . . . , qc, let (mi, ~xi) = updatei(m,~x), and let (mi, Bi) be the ab-
stract states corresponding to the distribution µ′ (cf. Definition 4.3), i.e., µ′(mi, Bi) =∑
{j|(mj ,Bj)=(mi,Bi)} µ(mj , ~xj). Obviously, ((m,~x), (mi, ~xi)) ∈ TD(ui). Since ~xi ∈ Bi

it holds that ((m,B), (mi, Bi)) ∈ TD(ui) ⊆ T ′D(ui) for i = 1, . . . , qc. By Definition 4.9,
we have that ((m,B), µ′) ∈ ST ′D(c)

The set of transitions ST ′D(c) is indeed an overapproximation, which is illustrated as
follows.

Example 4.11 Consider the fragment of the abstraction depicted in Figure 4 in which
we assume that the transitions correspond to the probabilistic guarded command c with
qc = 4: condition → p1 : up1 + . . .+ p4 : up4. Assume that all of the concrete states are
different and are not on borders. (Note: only parts of successor distributions are depicted,
and we assume that other parts, e.g. for state (m0, s1), lead to abstract states outside the
depicted fragment.)

Now we consider the distribution µ∗ ∈ Distr(B) which is defined as follows:
µ∗(m1, B1) = p1 + p2, µ∗(m2, B2) = p3 and µ∗(m3, B3) = p4. By the above assump-
tion, no concrete successor distributions of s0, s1 or s2 could induce µ∗ according Defini-
tion 4.3. Thus, by Definition 4.4, ((m0, B0), µ∗) 6∈ ST D(c). On the other hand, it holds
((m0, B0), (m1, B1)) ∈ T ′D(upi) for i = 1, 2, ((m0, B0), (m2, B2)) ∈ T ′D(up3), and
((m0, B0), (m3, B3)) ∈ T ′D(up4). Thus, by Definition 4.9 we have that ((m0, B0), µ∗) ∈
ST ′D(c).

Lemma 4.10 implies that AbsH(B) is an abstraction of QuoH(B). Thus:

Theorem 4.12 For every probabilistic hybrid automaton H, for every abstraction
Absind(H)(B) of the induced hybrid automaton ind(H), the safety of AbsH(B) implies
the safety ofH.

4.5 Computing Reachability Probabilities
First we note that, similar as in the non-probabilistic case, only abstract states reachable
from the initial abstract states are of interest. Below, we discuss briefly how to compute the
maximal probability of reaching the set of abstract unsafe states in the abstraction.

Given an initial state s, the maximal probability of reaching the set of abstract unsafe
states UnSafe from s is denoted by

Prob+
s (Reach(UnSafe)) = sup

A
ProbAs (Reach(UnSafe)),

where A ranges over all adversaries. Given the threshold p, the safety property is
satisfied if Prob+

s (Reach(UnSafe)) < p for all initial states s. The probability
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Figure 5: A probabilistic hybrid automaton for the thermostat.

Prob+
s (Reach(UnSafe)) can be characterised [7] as follows: it equals 1 if s ∈ UnSafe , it

is 0 if UnSafe can’t be reached from s at all, and otherwise it is

max
µ∈Steps(s)

∑
s′∈S

µ(s′)Prob+
s′∈S(Reach(UnSafe)).

This suggests the following well-known value iteration approach [6]. As a preprocessing,
those states which cannot be reached by any initial state, or cannot reach the unsafe states
can be pruned, since the probabilities for those states are 0. We iteratively compute the
solution vector ~v during the algorithm, and let ~vi denote the probability values in the i-th
iteration. Initially, we let ~v0(s) = 1 if s ∈ UnSafe , and ~v0(s) = 0 otherwise. The vector
~vi+1 can then be computed recursively according to ~vi+1(s) = 1 if s ∈ UnSafe and

~vi+1(s) = max
µ∈Steps(s)

∑
s′∈S

µ(s′)~vi(s′)

else. Hence, ~vi(s) corresponds to the maximal probability of reaching UnSafe within a
number of i steps, and moreover, it converges to Prob+

s (Reach(UnSafe)) if i → ∞. In
practice, a stopping criterion is needed to decide when the approximation is tight enough:
in our tool (see Section 6) we choose the relative error stopping criterion, namely we stop
if maxs

||~vi+1(s)−~vi(s)||
||~vi+1(s)|| ≤ ε with ε = 10−8.

5 An Illustrating Example
As an illustrating example, we here consider the thermostat example depicted in Figure 5,
which is extended from the one of Alur et al. [4]. There are four modes: Cool ,Heat ,Check
and Error . The latter mode models the occurrence of a failure, where the temperature
sensor gets stuck at the temperature checked last. The set of variables is {t, x, T}, where
T represents the temperature, t represents a local timer and x is used to measure the total
time passed so far. Thus, in all modes it holds that ẋ = 1 and ṫ = 1. In each mode there
is also an invariant constraint restricting the state space of this mode. Invariant constraints
are used only for the sake of convenience and comparison with [4].

The given initial condition is m = Heat ∧ t = 0 ∧ x = 0 ∧ 9 ≤ T ≤ 10. The unsafe
constraint is m = Error ∧ x ≤ 5, which corresponds to reaching the Error mode within 5
time units. Assume that the probability threshold for this risk is specified to be p = 0.2.

First we observe that initially it is t = 0 and 9 ≤ T ≤ 10. The system cannot stay in
the mode Heat for 2 time units, as this would increase the temperature by 4 units which
violates the invariant T ≤ 10 at Heat . This means that the system must switch to mode
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Cool to decrease the temperature. It would take some amount of time (approximately 0.41)
units to decrease the temperature until reaching 6 such that the system can go back to Heat .
Note that switching back to Heat would reset the local timer which implies that t = 0 and
that x ≥ 0.41. To reach the unsafe mode Error , the intermediate mode Check must be
touched. Because of the guard t ≥ 2 between Heat and Check , once the mode Check is
reached, it holds that t = 0 and x ≥ 2.41. Then, the system waits in Check for at least 0.5
time units. After the probabilistic jump from Check is triggered, it holds that x ≥ 2.91.
Then, the unsafe state could be reached with probability 0.05. With probability 0.95 the
system goes back to mode Heat and it holds that t = 0 and x ≥ 2.91. Reiterating the above
analysis, reaching Error from Heat would again take at least 2.5 time units, which implies
that there is only one chance to hit the unsafe mode Error within 5 time units. Thus, the
probability is bounded by 0.05, which implies that the safety property is indeed satisfied.

Heat Check

Error

Check HeatHeat

t = x

0.05

0.95

T ≤ 10

t ≥ 0, x ≥ 2
t ≤ x− 2

T ≤ 10
x ≤ 5

0.95

0.05

T ≤ 10

t ≥ 0, x ≥ 0

T ≤ 10T ≤ 10

t ≤ x− 2.5 t = x− 5t ≤ x− 4.5
t ≥ 0, x ≥ 2.5 t ≥ 0, x ≥ 4.5

t ≥ 0, x ≥ 0

Figure 6: A fragment of the abstract states and abstract transitions of the thermostat. Each
of the depicted abstract states has a self loop (which is not depicted) due to continuous
flows.

Now we consider an abstraction of the thermostat example. The initial abstract state is
(Heat , B), where B represents concrete valuations satisfying the constraint t ≥ 0, x ≥ 0,
t = x and T ≤ 10. In Figure 6, we depicted fragments of the abstract states and of those
abstract transitions which lead to abstract unsafe states. Notably, in this abstraction there
are two chances to touch abstract unsafe states, thus the probability amounts to 0.05+0.95·
0.05 = 0.0975. The reason is that from the initial state Heat the abstract system does not
need go back to Cool to let the temperature decrease, instead it can immediately switch
to Check . This is due to the overapproximation of the abstract initial states. However,
the computed probability for the threshold p = 0.2 is still good enough to prove the safety
property. If instead the threshold were set between 0.05 and 0.0975, refinement would have
been needed.

6 Experiments
We implemented our method in the prototypical tool ProHVer (probabilistic hybrid au-
tomata verifier). It combines a modified version of PHAVer [17] to obtain the abstract
state space with a component to compute an upper probability bound for the reachabil-
ity problem using value iteration (cf. Subsection 4.5) in the induced abstract probabilistic
automaton.

PHAVer can handle continuous dynamics with constant bounds on the derivatives ex-
actly. In order to be able to handle affine dynamics not in this class, it uses overapproxima-
tion. Here it splits locations (introducing new discrete locations) such that the continuous
state space of the resulting locations are polyhedra of a predefined maximal width. It is pos-
sible to improve the precision of the overapproximation by reducing this maximal width.
However, the resulting covering and location splits can look entirely different, which is
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time
bound

interval length 0.15 interval length 0.15, hull interval length 0.05, hull

prob. build (s) #states prob. build (s) #states prob. build (s) #states
1 0 1 38 0 1 17 0 2 56
2 0.25 3 408 0.25 2 59 0.25 9 185
3 0.5 13 3K 0.5 4 124 0.312 22 347

3.5 0.5 70 11K 1 5 145 0.5 32 425
3.6 0.5 140 14K 1 6 150 0.5 37 436
3.7 0.5 214 18K 1 6 154 - - -

Table 1: Bouncing ball performance figures. Where appropriate, we round probabilities to three
decimal places and denote multiples of 1000 by “K”.

also reflected on the probabilistic side. This phenomenon of PHAVer may induce situa-
tions, where that reduced width setting does not lead to tighter probability bounds. Usually,
however, bounds do improve.

To show the applicability of our approach, we applied ProHVer to several case studies,
which are small but diverse in the nature of their behaviour. In most of the examples con-
sidered, we focus on reachability probabilities with upper time bounds (obtained by using
an additional clock to measure time), because these correspond to very natural verification
problems for the settings considered. Notably, our method is not restricted to time-bounded
reachability. Actually, time-unbounded problems are simpler (because no additional clock
is needed). Experiments were run on a Pentium 4 with 2.16GHz and 2GB RAM.

6.1 Bouncing Ball
We consider a bouncing ball assembled from different materials. Assume this ball consist-
ing of three parts: 50 per cent of its surface consists of hard material, 25 per cent consists
of a material of medium hardness and the rest consists of very soft material. We drop the
ball from a height h = 2. Further, we assume the gravity constant to be g = 1. If the ball
hits the floor and falls on the hard side, it will jump up again with one half of the speed it
had before, and if it falls down on the medium side it will jump up with a quarter of the
speed. However, if it hits the ground with its soft side, it won’t jump up again. We assume
that the side with which the ball hits the ground is determined randomly, according to the
amount of surface covered by each of the materials.

We study the probability that the ball falls on the soft side before a given time bound.
Results are given in Table 1. We conducted three main analysis settings. With “inter-
val length” we denote the splitting interval for the PHAVer-specific refinement technique,
as described in the beginning of Section 6. In the left and medium part of the table, we
used partitioning with interval length of 0.15 on the position and speed variables. For the
medium part, we used the PHAVer-specific convex hull overapproximation [17]. For the
right part of the table, we used an interval length of 0.05, and the convex hull overapprox-
imation. Entries for which the analysis did not terminate within one hour are marked by
“-”.

We ascertain here that, without the convex hull overapproximation, with an interval of
length 0.15, we obtain non-trivial upper bounds. However, the analysis time as well as the
number of states grows very fast with increasing time bound. The reason for this to happen
is, that each time the ball hits the ground, there are three possibilities with which side it
will hit the ground. Thus, the number of possibilities for the amount of energy the ball still
has after a number of times n the ground is hit is exponential in n. Also notice that there is
some time bound up to which the ball has done an infinite number of jumps in all cases, as
this case study features Zeno behaviour. This indicates that for time bounds near this value
we have to use very small partitioning intervals to obtain realistic probability bounds. This
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time
bound

interval length 2 interval length 10

prob. build (s) #states prob. build (s) #states
2 0 0 11 0 0 8
4 0.05 0 43 1 0 12
5 0.097 1 58 1 0 13

20 0.370 20 916 1 1 95
40 0.642 68 2207 0.512 30 609
80 0.884 134 4916 1 96 1717

120 0.940 159 4704 0.878 52 1502
160 0.986 322 10195 0.954 307 4260
180 0.986 398 10760 0.961 226 3768
600 1.0 1938 47609 1 1101 12617

Table 2: Thermostat performance figures

leads to an even larger time and memory consumption in the analysis.
If we use the convex hull overapproximation and an interval length of 0.15, far less

resources have to be used. But we only obtain non-trivial results for time bounds up to
3. Using an interval width of 0.05, we obtain a tighter probability bound, while using still
less resources than the first configuration. However, for time bound T = 3.7 the third
configuration does not terminate within one hour.

For a time bound of 3, we can compute the probability manually: the ball can hit the
ground with its soft side when it hits the floor in first place with a probability of 0.25. It
hits the ground initially with its hard side with a probability of 0.5. In this case, it won’t hit
the ground again before T = 3. If it first hits the ground with its medium hard side, it will
hit the ground a second time before T = 3. After this, there is no chance of touching the
ground again before the time bound. Because of this, the overall probability of the property
under consideration is 0.25 + 0.25 · 0.25 = 0.3125. This means that the result obtained by
using an interval length of 0.05 and the convex hull overapproximation is exact.

6.2 Thermostat
We consider the thermostat example discussed in Section 5. For the safety property dis-
cussed there, ProHVer can verify this nontrivial system and property, and will answer that
the system is safe, the upper bound computed is 0.097.

In Table 2, we give further probability bounds and performance statistics (time to build
the abstraction—the value iteration time is negligible—and number of constructed abstract
states) for different time bounds. For the left (right) part of the table, we set the inter-
val length for the variable x to 2 (respectively 10). The time needed for the analysis as
well as the number of states of the abstract transition systems grows about linearly in the
time bound, though with oscillations. Comparing the left and the right side, we see that
for the larger interval we need less resources, as was to be expected. Due to the way
PHAVer splits locations along intervals, for some table entries, we see somewhat counter-
intuitive behaviour. We observe that bounds do not necessarily improve with decreasing
interval length. This is because PHAVer computes abstractions without taking into ac-
count probabilities, and hence does not guarantee abstractions with smaller intervals to be
an improvement of the probability bound, though they are in most cases. Moreover, the
abstractions we obtain from PHAVer also do not necessarily guarantee probability bounds
to increase monotonically with the time bound. This is because a slightly increased time
bound might induce an entirely different abstraction, leading to a tighter probability bound,
and thus giving the impression of a decrease in probability, even though the actual maximal
probability indeed stays the same or increases.
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6.3 Water Level Control
We consider a model of a water level control system (extended from the one of Alur et al.
[3]) which uses wireless sensors. Values submitted are thus subject to probabilistic delays,
due to the unreliable transport medium.

ẏ = 1

s0

ẋ = 0

y ≤ 10

ẋ = 1
ẏ = 1
x ≤ 3

s′1

s2

y ≥ 5

ẋ = 0
ẏ = −2ẏ = −2

s3

ẋ = 1

x ≤ 2
ẏ = −2
ẋ = 1

s′3

x ≤ 3

ẋ = 1
ẏ = 1
x ≤ 2

s1x := 0
∧y := 1

x =x = 3 →
x′ := 0

∧y′ := y

0.95 :x′ := 0
∧y′ := y

x′ := 0
∧y′ := y

x′ :=
∧y′

x′ := 0
∧y′ := y

x = 2 →
x = 3 →

x′ := 0
∧y′ := y

y = 10 →

y = 5 →0.95 :

0.05 :

0.05 x′ := 0
∧y′ := y

x′ := 0
∧y′ := y

Figure 7: Water level control automaton

A sketch of the model is given in Figure 7. The water level y of a tank is controlled by
a monitor. Its change is specified by a linear function. Initially, the water level is y = 1.
When no pump is turned on (s0), the tank is filled by a constant stream of water (ẏ). This
water streams out of a larger water tank, which initially has a water level of W . We thus
have Ẇ = −1 in all modes of the system, and stop the system as soon as W reaches 0. For
clarity, we do not explicitly included the dynamics ofW in Figure 7. When a water level of
y = 10 is seen by a sensor of the tank, the pump should be turned on. However, the pump
features a certain delay, which results from submitting control data via a wireless network.
With a probability of 0.95 this delay takes 2 time units (s1), but with a probability of 0.05
it takes 3 time units (s′1). The delay is realised by the timer x. After the delay has passed,
the water is pumped out with a higher speed than it is filled into the tank (ẏ = −2 in s2).
There is another sensor to check whether the water level is below 5. If this is the case, the
pump must turn off again. Again, we have a distribution over delays here (s3 and s′3). For
the system to work correctly, the water level must stay between 1 and 12.

We are interested in the probability that the pump system violates the property given
above, that is either the water level falls below 1 or grows above 12, before the larger
water tank from which the water tank is filled becomes empty. We model the system in
ProHVer and reason about this property: performance statistics are given in Table 3.
Without using partitioning, we were only able to obtain exact values for W up to 82 in-
cluding. Notice that we did not use the convex hull overapproximation, like in the bouncing
ball case study, nor another overapproximation. For W larger than this value, we always
obtained a probability limit of 1. To get tighter results, we partitioned x by an interval of
length 2. For W below 83 we obtain the exact value in both table parts, whereas for 83
we obtain a useful upper bound only when using partitioning. A plot of probabilities for
different W is given in Figure 8. The graph has a staircase form where wide steps alternate
with narrow ones. This form results, because each time the longer time bound is randomly
chosen, the tank will overflow or underflow respectively, if there is enough time left. The
wide steps corresponds to the chance of overflow in the tank, the narrow ones to the chance
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W
no partitioning interval length 2

prob. build (s) #states prob. build (s) #states
40 0.185 0 69 0.185 1 150
82 0.370 0 283 0.370 2 623
83 1 1 288 0.401 2 640

120 1 1 537 0.512 4 1220
500 1 38 3068 0.954 79 7158
1000 1 169 6403 0.998 365 14977

Table 3: Water level control performance figures

of underflow.
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Figure 8: Graph of probabilities in water level control

6.4 Autonomous Lawn-Mower
We consider an autonomous lawn-mower that uses a probability bias to avoid patterns on
lawns. This mower is started on a rectangular grassed area. When it reaches the border
of the area, it changes its direction. To prevent the mower from following a simple cyclic
pattern, this direction is randomly biased, such as to ensure that finally the entire area has
been cut.

A sketch of the automaton is given in Figure 9. There, l is the length and h the width
of the area. The position of the mower on the area is given by (x, y). With (vx, vy) we
denote the speed in (x, y) direction, which the mower takes with a probability of 0.95
when reaching a border, whereas with (v′x, v

′
y) denotes a variation of the speed that is taken

with probability 0.05. Further, (xg, yg) describes the mower’s initial position.
At the region with x ≥ 90 ∧ x ≤ 100 ∧ y ≥ 170 ∧ y ≤ 200 the owner of the lawn has

left a tarpaulin. We are interested in the probability that within a time bound of t = 120 the
mower hits the tarpaulin, thereby inevitably ripping it up.

For the analysis, we set vx = 10, vy = 10, v′x = 11, v′y = 9, l = 100, h = 200,
xg = 10, yg = 20. The creation of the labelled transition system for this automaton took
98 seconds whereas the computation time of the failure probability was negligible. The
upper bound we obtained was 0.000281861. We did not use any interval specifications.

As in the other case studies, we also varied the time bound. Results are given in Table 4.
For larger time bounds the analysis time as well as the number of states grows quickly. This
is due to a similar effect as in the bouncing ball case study. Each time the mower reaches a
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ẋ = −vx ẋ = −v′x
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Figure 9: Probabilistic Autonomous Lawn-Mower

time bound prob. build (s) #states

10 0 0.06 4
70 1.11984·10−05 1.22 632

100 1.11984·10−05 8.47 3022
110 0.000281861 65.55 9076
120 0.000281861 98.83 12660
130 0.000281861 303.40 25962
140 0.000281861 743.43 38830

Table 4: Lawn-mower performance figures

border, it may head into two different directions, which leads to a combinatorial explosion,
evident by the above statistics.

We also experimented with convex hull overapproximation without interval refinement.
However, the probability bounds obtained were always 1. Using interval partitioning also
did not improve on this, as it only made the analyses take more time. We feel that for
this case study there is not much hope of obtaining better results in resource usage. The
complexity does not really live in the hybrid behaviour, but results from the excessive
number of ways the mower can pass around the area. Because of this, we don’t think it is
possible to find an abstraction to handle this case study for larger time bounds.

6.5 Summary of Case Studies
We successfully applied our method on a number of case studies. However, it seems worth-
while to explore techniques more adapted to the generation of transition systems for prob-
abilistic systems, especially by adjusting the splitting of states to a method better adapted
to our needs. We may do so, for instance, by finding means to guarantee non-decreasing
probability bounds when smaller intervals are used. Another possibility would be to do a
more fine-grained splitting at places where this is useful to decrease the probability bound,
while saving space by a coarser abstraction for parts of the model where this is sufficient to
obtain a tight probability bound. Mostly, the upper bounds we could obtain were tight or
exact (checked by manual inspection).

In Table 5, we give running times for the largest instances completed successfully:
Here, 4 means success (exact or tight upper bounds) while 7/4 means useful results for
only some instances. Our implementation is effective in most cases considered, but there is
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ball thermostat water mower

214s 4 398s 4 365s 4 743s 7/4

Table 5: Largest instances of case studies completed successfully

still room for improvement in the ProHVer implementation to handle more complex case
studies. PHAVer files of the case studies can be found on the homepage of ProHVer:

http://depend.cs.uni-sb.de/tools/prohver

7 Conclusions
In this paper we have discussed how to check safety properties for probabilistic hybrid
automata. These models and properties are of central importance for the design and verifi-
cation of emerging wireless and embedded real-time applications. Moreover, being based
on arbitrary abstractions computed by tools for the analysis of non-probabilistic hybrid
automata, improvements in effectivity of such tools directly carry over to improvements
in effectivity of the technique we describe. The applicability of our approach has been
demonstrated on a number of case studies, tackled using a prototypical implementation.

As future work we are investigating whether our approach can be adapted to the safety
verification problem for more general probabilistic hybrid systems [9, 11], that is, systems
with stochastic differential equations instead of ordinary differential equations.
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