Model checking quantum Markov chains

Yuan Feng, Nengkun Yu, and Mingsheng Ying

University of Technology Sydney, Australia, Tsinghua University, China

Model checking quantum Markov chains. Journal of Computer and System Sciences 79, 1181-1198, (2013)

Reachability of recursive quantum Markov chains. Proceedings of the 38th Int. Symp. on Mathematical Foundations of Computer Science (MFCS'13) 385-396.

Outline

- 2 Basic notions from quantum information theory
- 3 Quantum Markov chain
- Quantum computation tree logic
- **5** Algorithm

Outline

1 Motivation

- 2 Basic notions from quantum information theory
- 3 Quantum Markov chain
- Quantum computation tree logic
- 5 Algorithm
- 6 Summary

Motivation

- Quantum mechanics is highly counterintuitive; flaws and errors creep in during the design of quantum programs and quantum protocols.
- So, it is indispensable to develop techniques of verifying and debugging quantum systems.

Model checking

- Model-checking is one of the dominant techniques for verification of classical hardware as well as software systems.
- It has proved mature as witnessed by a large number of successful industrial applications.
- Quantum model checking???

Outline

1 Motivation

2 Basic notions from quantum information theory

- 3 Quantum Markov chain
- Quantum computation tree logic
- 5 Algorithm
- 6 Summary

Probability Theory v.s. Quantum Information Theory

Binary Random Varable X:

$$X = 0$$
 or $X = 1$

Quantum bit:

Unit vector in a 2D Hilbert space $|\phi\rangle = a_0|0\rangle + a_1|1\rangle$, $a_i \in C$, $|a_0|^2 + |a_1|^2 = 1$

Probability Theory v.s. Quantum Information Theory

Evolution: Stochastic Matrices

Evolution: Unitary Matrices

Preserve l_1 -norm $p' = S \cdot p$

$$\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right) \left(\begin{array}{c} p_0 \\ p_1 \end{array}\right) = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right)$$

Preserve *l*₂-norm

$$\begin{aligned} |\phi'\rangle &= U \cdot |\phi\rangle \\ \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}(a_0 + a_1) \\ \frac{1}{\sqrt{2}}(a_0 - a_1) \end{pmatrix} \end{aligned}$$

Probability Theory v.s. Quantum Information Theory

Observation:

$$\Pr(X = b) = p_b,$$

$$p_b \in [0, 1]$$

Measurement:

A measurement of $|\phi\rangle$ according to a Hermitian operator $M = \sum_i \lambda_i |b_i\rangle \langle b_i|$ is a projection onto the orthonormal vectors $|b_i\rangle$, and $\Pr[\text{outcome is } \lambda_i] = |\langle \phi | b_i \rangle|^2$.

|0|

Density operators

• Mixed state: Classical distribution over (pure) quantum states.

$$ho = \left\{ egin{array}{ll} |\phi_1
angle, & ext{with probability } p_1 \ dots & dots \ |\phi_k
angle, & ext{with probability } p_k \ ec{ ext{Ensemble:}} & \{p_i: |\phi_i
angle\}. \end{array}
ight.$$

- Density operator: $ho=\sum_{i=1}^k
 ho_i |\phi_i
 angle \langle \phi_i|$ (hermitian, trace 1, positive)
 - Contains all information about the state.
 - Different ensembles can have the same density operator.

Density operators

• Different ensembles can have the same density operator.

$$\begin{cases} \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle), & \text{w.p.} \quad \frac{1}{2} \\ |0\rangle, & \text{w.p.} \quad \frac{1}{2} \end{cases} = \\ \begin{cases} \frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle, & \text{w.p.} \quad \frac{1}{\sqrt{3}} \\ |0\rangle, & \text{w.p.} \quad \frac{3}{4}(1 - \frac{1}{\sqrt{3}}) \\ |1\rangle, & \text{w.p.} \quad \frac{1}{4}(1 - \frac{1}{\sqrt{3}}) \end{cases} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

Super-operators and Kraus theorem

- Super-operators: (special) mapping from density operators to density operators.
- Kraus representation theorem: A map $\mathcal E$ is a super-operator if and only if

$$\mathcal{E}(\rho) = \sum_{i=1}^{d} E_i \rho E_i^{\dagger}$$

for some set of matrices $\{E_i, i=1,\ldots,d\}$ with $\sum_i E_i^{\dagger} E_i \leq I$.

- Special case:
 - Unitary transformation: $ho o U
 ho U^{\dagger}$
 - Measurement with outcome $i: \rho \to |b_i\rangle\langle b_i|\rho|b_i\rangle\langle b_i|$

(日)

• Measurement with reading outcome: $\rho \rightarrow \sum_i |b_i\rangle \langle b_i | \rho | b_i \rangle \langle b_i |$

Matrix representation of super-operators

Let $\mathcal{E} = \{E_i : i \in I\}$ be a super-operator. The matrix representation of \mathcal{E} is defined as

$$M_{\mathcal{E}} = \sum_{i \in I} E_i \otimes E_i^*.$$

Here the complex conjugate is taken according to the orthonormal basis $\{|k\rangle : k \in K\}$. It is easy to check that $M_{\mathcal{E}}$ is independent of the choice of orthonormal basis and the Kraus operators E_i .

Outline

1 Motivation

- 2 Basic notions from quantum information theory
- 3 Quantum Markov chain
- Quantum computation tree logic
- 5 Algorithm
- 6 Summary

Markov chains

A Markov chain (MC) is a tuple (S, P) where

- S is a countable set of states;
- P:S imes S o [0,1] such that for each $s\in S$,

$$\sum_{t\in S} P(s,t) = 1,$$

or equivalently, $P(s, \cdot)$ is a probabilistic distribution over S.

Quantum Markov chains

(<i>S</i> , <i>P</i>)	\Rightarrow	$(\mathcal{H},\mathcal{E})$
Set <i>S</i>	\Rightarrow	Hilbert space ${\cal H}$
Prob. distributions	\Rightarrow	Density operators
$P: \textit{Dist}(S) \rightarrow \textit{Dist}(S)$	\Rightarrow	$\mathcal{E}:\mathcal{D}(\mathcal{H})\to\mathcal{D}(\mathcal{H})$

Obstacles for model checking quantum system

- The set of all possible quantum states, \mathcal{H} , is a continuum, even when it is finite dimensional.
- The techniques of classical model checking, which normally work for finite state spaces, cannot be applied directly.

In this talk, we propose...

- A super-operator weighted Markov chain model which aims at providing finite models for general quantum programs and quantum communication protocols.
- A quantum extension QCTL of the logic PCTL to describe properties we are interested in for QMCs.
- An algorithm to model check logic formulas in QCTL against a QMC model.

Some more notations

Let $\mathcal{SO}(\mathcal{H})$ be the set of super-operators on $\mathcal{H},$ ranged over by $\mathcal{E},\mathcal{F},\cdots.$

Definition

Let $\mathcal{E}, \mathcal{F} \in \mathcal{SO}(\mathcal{H}).$

- $\mathcal{E} \sqsubseteq \mathcal{F}$ if for any $\rho \in \mathcal{D}(\mathcal{H})$, $\mathcal{F}(\rho) \mathcal{E}(\rho)$ is positive semi-definite;
- $\textbf{2} \ \mathcal{E} \lesssim \mathcal{F} \text{ if for any } \rho \in \mathcal{D}(\mathcal{H}), \, \mathrm{tr}(\mathcal{E}(\rho)) \leq \mathrm{tr}(\mathcal{F}(\rho)).$

Let \approx be $\leq \cap \geq$; it is obviously an equivalence relation.

Some notations

Let

$$\mathcal{SI}(\mathcal{H}) = \{\mathcal{E} \in \mathcal{SO}(\mathcal{H}): \mathcal{E} \lesssim \mathcal{I}_{\mathcal{H}}\}$$

be the 'quantum' correspondence of the unit interval $\left[0,1\right]$ for real numbers.

Quantum Markov chains

A super-operator weighted Markov chain, or quantum Markov chain (QMC), over \mathcal{H} is a tuple (*S*, **Q**, *AP*, *L*), where

- S is a countable set of states;
- $\mathbf{Q}: S \times S \to \mathcal{SI}(\mathcal{H})$ such that for each $s \in S$, $\sum_{t \in S} \mathbf{Q}(s, t) \eqsim \mathcal{I}_{\mathcal{H}}$,
- AP is a finite set of atomic propositions;
- L is a mapping from S to 2^{AP} .

A classical Markov chain may be viewed as a degenerate quantum Markov chain in which all super-operators appear in the transition matrix have the form $p\mathcal{I}_{\mathcal{H}}$ for some $0 \le p \le 1$.

Example: quantum loop

A simple quantum loop program goes as follows:

$$\begin{array}{rrrr} \mathit{l}_0 & : & q := \mathcal{F}(q) \\ \mathit{l}_1 & : & \textbf{while } \mathit{M}[q] \ \textbf{do} \\ \mathit{l}_2 & : & q := \mathcal{E}(q) \\ \mathit{l}_3 & : & \textbf{od} \end{array}$$

where $M = \lambda_0 |0\rangle \langle 0| + \lambda_1 |1\rangle \langle 1|$.

Example: quantum loop

Here $\mathcal{E}_q^0 = \{|0
angle_q \langle 0|\}$ and $\mathcal{E}_q^1 = \{|1
angle_q \langle 1|\}.$

Outline

1 Motivation

- 2 Basic notions from quantum information theory
- 3 Quantum Markov chain
- **4** Quantum computation tree logic
- 5 Algorithm
- 6 Summary

The syntax of quantum computation tree logic (QCTL) is as follows:

$$\begin{split} \Phi & ::= & a \mid \neg \Phi \mid \Phi \land \Psi \mid \mathbb{Q}_{\sim \mathcal{E}}[\psi] \\ \psi & ::= & \mathbf{X} \Phi \mid \Phi \mathbf{U} \Psi \end{split}$$

where a is an atomic proposition, $\sim \in \{\leq, \geq\}$, and $\mathcal{E} \in \mathcal{SI}(\mathcal{H})$. We call Φ a state formula and ψ a path formula.

Let $\mathcal{M} = (S, \mathbf{Q}, AP, L)$. The satisfaction relation \models is defined inductively: for any state $s \in S$,

$$\begin{array}{ccc} s \models a & \text{iff} & a \in L(s) \\ s \models \neg \Phi & \text{iff} & s \not\models \Phi \\ s \models \Phi \land \Psi & \text{iff} & s \models \Phi \text{ and } s \models \Psi \end{array}$$

and for any path $\pi \in \textit{Path}^\mathcal{M}(s)$,

$$\begin{split} \pi &\models \mathbf{X} \Phi \quad \text{iff} \quad \pi(1) \models \Phi \\ \pi &\models \Phi \mathbf{U} \Psi \quad \text{iff} \quad \exists i \in \mathbb{N}. (\pi(i) \models \Psi \land \forall j < i. (\pi(j) \models \Phi)). \end{split}$$

Finally,

$$s \models \mathbb{Q}_{\sim \mathcal{E}}[\psi]$$
 iff $\mathcal{Q}^{\mathcal{M}}(s,\psi) \sim \mathcal{E}$

where

$$Q^{\mathcal{M}}(s,\psi) = Q_s(\{\pi \in \mathsf{Path}^{\mathcal{M}}(s) \mid \pi \models \psi\}).$$

But how to define Q_s ?

Super-operator valued measures

Let (Ω, Σ) be a measurable space; that is, Ω is a non-empty set and Σ a σ -algebra over Ω . A function $\Delta : \Sigma \to S\mathcal{I}(\mathcal{H})$ is said to be a super-operator valued measure (SVM for short) if Δ satisfies the following properties:

- ② $\Delta(\biguplus_i A_i) ≂ \sum_i \Delta(A_i)$ for all pairwise disjoint and countable sequence A_1 , A_2 , ... in Ω .

We call the triple (Ω, Σ, Δ) a (super-operator valued) measure space.

Properties of super-operator valued measures

- Let (Ω, Σ, Δ) be a measure space. Then

 - $(\mathbf{A}^{c}) + \Delta(\mathbf{A}) \eqsim \mathcal{I}_{\mathcal{H}};$
 - S for any A, A' ∈ Σ, if A ⊆ A' then $\Delta(A) \lesssim \Delta(A')$;

• for any sequence A_1, A_2, \ldots in Σ ,

- if $A_1 \subseteq A_2 \subseteq \ldots$, then there exists a sequence $\mathcal{E}_1 \sqsubseteq \mathcal{E}_2 \sqsubseteq \ldots$ in $\mathcal{SI}(\mathcal{H})$ such that for any *i*, $\Delta(A_i) \eqsim \mathcal{E}_i$, and $\Delta(\bigcup_{i>1} A_i) = \lim_{i \to \infty} \mathcal{E}_i$.
- if $A_1 \supseteq A_2 \supseteq \ldots$, then there exists a sequence $\mathcal{E}_1 \sqsupseteq \mathcal{E}_2 \sqsupseteq \ldots$ in $\mathcal{SI}(\mathcal{H})$ such that for any *i*, $\Delta(A_i) \eqsim \mathcal{E}_i$, and $\Delta(\bigcap_{i \ge 1} A_i) = \lim_{i \to \infty} \mathcal{E}_i$.

SVM for a QMC

Fix a state $s \in S$.

- Sample space $\Omega = Path^{\mathcal{M}}(s)$.
- Let the cylinder set ${\it Cyl}(\widehat{\pi})\subseteq {\it Path}^{\mathcal{M}}(s)$ be defined as

$${\it Cyl}(\widehat{\pi})=\{\pi\in {\it Path}^{\mathcal{M}}({\it s}):\widehat{\pi} \text{ is a prefix of }\pi\};$$

that is, the set of all infinite paths with prefix $\widehat{\pi}.$

• σ -algebra over Ω :

$$\Sigma^{s} = \sigma(\{Cyl(\widehat{\pi}) : \widehat{\pi} \in Path_{fin}^{\mathcal{M}}(s)\})$$

A D > A P > A B > A B >

SVM for QMCs

• For any finite path $\widehat{\pi} = s_0 \dots s_n \in Path_{fin}^{\mathcal{M}}(s)$, we define the super-operator

$$\mathbf{Q}(\widehat{\pi}) = \left\{ \begin{array}{ll} \mathcal{I}_{\mathcal{H}}, & \text{if } n = 0; \\ \mathbf{Q}(s_{n-1}, s_n) \cdots \mathbf{Q}(s_0, s_1), & \text{otherwise.} \end{array} \right.$$

• Let a mapping Q_s be defined by letting $Q_s(arnow) = 0_{\mathcal{H}}$ and

$$Q_s(Cyl(\hat{\pi})) = \mathbf{Q}(\hat{\pi}). \tag{1}$$

Extend Q_s to a SVM

Theorem

The mapping Q_s can be extended to a SVM on the σ -algebra Σ^s . Furthermore, this extension is unique up to the equivalence relation $\overline{\sim}$.

Remark: The main tool we use to prove this theorem is the Kluvanek's generalisation of the Carathéodory-Hahn extension theorem from vector measure theory.

Theorem

For each path formula ψ and each state s in a QMC $\mathcal{M},$ the set

$$\{\pi \in \mathsf{Path}^{\mathcal{M}}(s) \mid \pi \models \psi\}$$

is measurable.

Back to the example

Let $\Diamond \Psi \equiv tt \mathbf{U} \Psi$. The QCTL formula $\mathbb{Q}_{\geq \mathcal{E}}[\Diamond I_3]$ asserts that the probability that the loop program terminates is lower bounded by \mathcal{E} . That is, for any initial quantum state ρ , the termination probability is not less than $tr(\mathcal{E}(\rho))$.

In particular, the property that it terminates everywhere described as $\mathbb{Q}_{\geq \mathcal{I}_{\mathcal{H}}}[\Diamond I_3]$.

Outline

1 Motivation

- 2 Basic notions from quantum information theory
- 3 Quantum Markov chain
- Quantum computation tree logic

Model checking

Given a state *s* in a qMC $\mathcal{M} = (S, \mathbf{Q}, AP, L)$ and a state formula Φ expressed in QCTL, model checking if $s \models \Phi$ is essentially to determine whether *s* belongs to the satisfaction set $Sat(\Phi) = \{s \in S : s \models \Phi\}$ which is defined inductively as follows:

$$\begin{array}{lll} \mathsf{Sat}(\mathsf{a}) &=& \{\mathsf{s} \in \mathsf{S} : \mathsf{a} \in \mathsf{L}(\mathsf{s})\}\\ \mathsf{Sat}(\neg \Psi) &=& \mathsf{S} \backslash \mathsf{Sat}(\Psi)\\ \mathsf{Sat}(\Psi \land \Phi) &=& \mathsf{Sat}(\Psi) \cap \mathsf{Sat}(\Phi)\\ \mathsf{Sat}(\mathbb{Q}_{\sim \mathcal{E}}[\psi]) &=& \{\mathsf{s} \in \mathsf{S} : \mathcal{Q}^{\mathcal{M}}(\mathsf{s},\psi) \sim \mathcal{E}\}. \end{array}$$

 $\texttt{Recall:} \quad Q^{\mathcal{M}}(s,\psi) = Q_s(\{\pi \in \textit{Path}^{\mathcal{M}}(s) \ | \ \pi \models \psi\})$

Case 1: $\psi = X\Phi$

By definition, $\{\pi \in Path^{\mathcal{M}}(s) : \pi \models \mathbf{X}\Phi\} = \biguplus_{t \in Sat(\Phi)} Cyl(st)$. Thus

$$\begin{array}{lcl} Q^{\mathcal{M}}(s,\mathbf{X}\Phi) & = & Q_s\left(\biguplus_{t\in Sat(\Phi)} Cyl(st)\right) \eqsim \sum_{t\in Sat(\Phi)} Q_s(Cyl(st)) \\ & = & \sum_{t\in Sat(\Phi)} \mathbf{Q}(s,t). \end{array}$$

This can be calculated easily since by the recursive nature of the definition, we can assume that $Sat(\Phi)$ is already known.

Case 2: $\psi = \Phi U \Psi$

In this case, after some calculation, we get the equation system

$$Q^{\mathcal{M}}(s, \Phi \mathbf{U} \Psi) \approx \begin{cases} \mathcal{I}_{\mathcal{H}}, & \text{if } s \in Sat(\Psi); \\ \mathbf{0}_{\mathcal{H}}, & \text{if } s \notin Sat(\Phi) \cup Sat(\Psi); \\ \sum_{t \in S} Q^{\mathcal{M}}(t, \Phi \mathbf{U} \Psi) \mathbf{Q}(s, t), & \text{if } s \in Sat(\Phi) \backslash Sat(\Psi). \end{cases}$$

Then for each $s \in Sat(\Phi) \setminus Sat(\Psi)$,

$$Q^{\mathcal{M}}(s, \Phi \mathbf{U} \Psi) \approx \sum_{t \in \mathit{Sat}(\Phi) \backslash \mathit{Sat}(\Psi)} Q^{\mathcal{M}}(t, \Phi \mathbf{U} \Psi) \mathbf{Q}(s, t) + \sum_{t \in \mathit{Sat}(\Psi)} \mathbf{Q}(s, t).$$

Let
$$S' = Sat(\Phi) \setminus Sat(\Psi)$$
. For any $s \in S'$,
 $Q^{\mathcal{M}}(s, \Phi \mathbf{U}\Psi) \approx \sum_{t \in S'} Q^{\mathcal{M}}(t, \Phi \mathbf{U}\Psi) \mathbf{Q}(s, t) + \sum_{t \in Sat(\Psi)} \mathbf{Q}(s, t)$.

Let

$$\mathcal{T} = \left[\mathbf{Q}(t,s)\right]_{s,t\in S'}$$

and

$$\mathcal{G} = \left[\sum_{t \in Sat(\Psi)} \mathbf{Q}(s, t)\right]_{s \in S'}.$$

Then the required row vector $(Q^{\mathcal{M}}(s, \Phi \mathbf{U}\Psi))_{s \in S'}$ is equivalent to the fixed point of the function

$$f(X) = X\mathcal{T} + \mathcal{G}.$$

A theorem

Theorem

Let

$$f(X) = X\mathcal{T} + \mathcal{G}$$

be defined above. Then

- f(X) has the least fixed point, denoted by E⁰, in SI(H)^{|S'|} under the order ⊑;
- ② Given any $\mathcal{E} \in S\mathcal{I}(\mathcal{H})$ and $1 \leq i \leq |S'|$, it can be decided whether $\mathcal{E} \sim \mathcal{E}_i^0$, ~ ∈{≲, ≥}, in time $O(n^2d^4)$ where $d = dim(\mathcal{H})$ is the dimension of \mathcal{H} and n = |S'|.

Back to the example again

We check the property $\mathbb{Q}_{\geq \mathcal{E}}[\Diamond I_3] = \mathbb{Q}_{\geq \mathcal{E}}[\text{tt}\mathbf{U}I_3]$ when $\mathcal{F} = \{|+\rangle\langle i|: i = 0, 1\}, \ \mathcal{E}^i = \{|i\rangle\langle i|\}, \ i = 0, 1, \text{ and } \mathcal{E} = \mathcal{X}.$

We first calculate that $Sat(I_3) = \{I_3\}$ and $Sat(tt) = \{I_0 \land I_1 \land I_3\}$

・ロト ・ 一 ト ・ 日 ト ・ 日

Back to the example again

$$\begin{array}{rcl} Q^{\mathcal{M}}(l_{0},\Diamond \ l_{3}) &=& Q^{\mathcal{M}}(l_{1},\Diamond \ l_{3})\mathcal{F} \\ Q^{\mathcal{M}}(l_{1},\Diamond \ l_{3}) &=& Q^{\mathcal{M}}(l_{2},\Diamond \ l_{3})\mathcal{E}^{1} + \mathcal{E}^{0} \\ Q^{\mathcal{M}}(l_{2},\Diamond \ l_{3}) &=& Q^{\mathcal{M}}(l_{1},\Diamond \ l_{3})\mathcal{E} \end{array}$$

Example

We calculate that for i = 0, 1, 2,

$$Q^{\mathcal{M}}(l_i, \Diamond \ l_3) = Set^0$$

where $Set^0 = \{|0
angle\langle 0|, |0
angle\langle 1|\} \equiv \mathcal{I}$, and so
 $l_i \models \mathbb{Q}_{\gtrsim \mathcal{E}}[\Diamond \ l_3]$

for any $\mathcal{E} \lesssim \mathcal{I}$.

Outline

1 Motivation

- Basic notions from quantum information theory
- 3 Quantum Markov chain
- Quantum computation tree logic
- 5 Algorithm

Summary

- A super-operator weighted Markov chain model which aims at providing finite models for general quantum programs and quantum communication protocols.
- A quantum extension QCTL of the logic PCTL to describe properties we are interested in for QMCs.
- An algorithm to model check logic formulas in QCTL against a QMC model.

Topics for further studies

- Tools to implement the model checking algorithm.
- Model checking quantum properties.
- Check security of physically implemented quantum cryptographic systems.

Thank you!

Questions or Comments?

