
Modeling and Verification of 
Connectors in Complex Systems

Sun Meng

LMAM & Department of Information Science, School of Mathematical Sciences

Peking University

http://www.math.pku.edu.cn/teachers/sunm

Thanks to: B. K. Aichernig (TUG), F. Arbab (CWI), L. Aştefănoaei (INRIA), C. Baier (TUD), 

L. Barbosa (UM), F. de Boer (CWI), T. Chothia (Birmingham), N. Kokash (CWI), M. Kwiatkowska (Oxford), 

Y. Li (PKU), Y.-J. Moon (INRIA), H. Qu (Oxford), J. Rutten (CWI), R. van der Mei (VUA), C. Verhoef (CWI)

Workshop on Probabilistic and Hybrid System Verification, Beijing, September 26, 2013

http://www.is.pku.edu.cn/~sunm


Outline

•Coordination in complex systems
•Reo and Eclipse Coordination Tools
•Synthesis of connectors from BPMN / UML models
•Verification and Performance Analysis for connectors
•Conclusion and future work

2013/9/27 2Modeling and Verifying Connectors



Sources of Complexity in Systems

• Complexity inherent in task/algorithm/computation
• Examples:

• Computations/equations in quantum mechanics, astronomy, engineering, etc.
• Bit-map to jpeg conversion, sorting, etc.

• This type of complexity is not bewildering!
• Many good, intricate mathematical models have been developed to tame the 

complexity.

• Complexity arising from composition of simple components
• Example:

• Bewildering complexity emerges out of interaction
• Good formal models to tame this complexity?

2013/9/27 3Modeling and Verifying Connectors



Models of Concurrency

•Traditional models are action based
• Petri nets
• Work flow / Data flow
• Process algebra / calculi
• Actor models / Agents
• …

• In prominent models, a system is composed from
building blocks that represent actions/processes
• Interaction becomes an implicit side-effect

• Makes coordination of interactions more difficult to
• Specify
• Verify
• Manipulate
• Reuse

2013/9/27 4Modeling and Verifying Connectors



Interaction Based Concurrency

• Start with a set of primitive interactions as binary constraints

• Define (constraint) composition operators to combine
interactions into more complex interactions

• Properties of the resulting model of concurrency depend on
• Set of primitive interactions

• Composition operators

• As constraints, interaction protocols can be manifested
independently of the processes that they engage
• Connectors

• Imposing an interaction on actors exogenously coordinates
their activities

2013/9/27 5Modeling and Verifying Connectors



Exogenous Coordination

•P and C are black-box components that:
• Offer no inter-components methods nor make such calls
• Do not send/receive targeted messages
• Their only means of communication is through blocking

I/O primitives that they can perform on their own ports.
• Composing P and C with different connectors (that

impose different protocols from outside) constructs
different systems.

2013/9/27 6

CP
synchronousbounded bufferedunbounded bufferedOrdered (e.g., FIFO)unorderedasynchronousLossy (e.g., sampling)etc.

Modeling and Verifying Connectors



Reo: An Exogenous Coordination 
Language
• Reo is an exogenous coordination language for compositional construction 

of interaction protocols.

• Interaction is the only first-class concept in Reo:
• Explicit constructs representing interaction
• Composition operators over interaction constructs

• A (coordination or interaction) protocol:
• manifests as a connector
• gets imposed on its engaged components/services from outside
• remains mutually oblivious to its engaged components/services

• Reo offers:
• Loose(st) coupling
• Arbitrary mix of asynchrony, synchrony, and exclusion
• Open-ended user-defined primitive channels
• Distribution and mobility
• Dynamically reconfigurable connectors

• http://reo.project.cwi.nl

2013/9/27 7Modeling and Verifying Connectors

http://reo.project.cwi.nl/


Reo: A Coordination Language

2013/9/27 8Modeling and Verifying Connectors



Reo: A Coordination Language

2013/9/27 9Modeling and Verifying Connectors



Channels 

• Atomic connectors in Reo are called channels.

• Reo generalizes the common notion of channel.

• A channel is an abstract communication medium with:
• exactly two ends; and

• a constraint that relates (the flows of data at) its ends.

• Two types of channel ends
• Source: data enters into the channel.

• Sink: data leaves the channel.

• A channel can have two sources or two sinks.

• A channel represents a primitive interaction.

2013/9/27 10Modeling and Verifying Connectors



Reo Connectors

2013/9/27 11

=
A

B

C

FIFO1 channel synchronous 
channel

lossy synchronous 
channel

filter channel

≤

P-producer

synchronous drain asynchronous drainsynchronous spout asynchronous spout timer channel

A

B

C

Exclusive choice (deffered XOR)

closeopen

A B

Valve connector: 

controls flow from A to B

Modeling and Verifying Connectors



Eclipse Coordination Tools

• A set of Eclipse plug-ins provide the ECT visual programming
environment.

• Protocols can be designed by composing Reo circuits in a
graphical editor.

• The Reo circuit can be animated in ECT.

• ECT can automatically generate the CA for a Reo circuit.

• Model-checkers integrated in ECT can be used to verify the
correctness properties of a protocol.

• ECT can generate executable (Java/C) code from a CA as a single
sequential thread.

• http://reo.project.cwi.nl

2013/9/27 12Modeling and Verifying Connectors

http://reo.project.cwi.nl/


Eclipse Coordination Tools

2013/9/27 13Modeling and Verifying Connectors

Tool Description

Reo graphical editor Drag and drop editing of Reo circuits

Reo animation plug-in Flash animation of data-flow in Reo circuits

Extensible Automata editor and tools Graphical editor and other automata tools

Reo to constraint automata converter Conversion of Reo to Constraint Automata

Verification tools

•Vereofy model checker (www.vereofy.de)

•mCRL model checking

•Bounded model checking of Timed Constraint Automata

Java code generation plug-in
State machine based coordinator code

(Java, C, and CA interpreter for Tomcat servlets)

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)

(UML / BPMN / BPEL) GMT to Reo converter Automatic translation of UML SD / BPMN / BPEL to Reo

Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits

Markov chain generator (Reo2MC)
Compositional QoS model based on Reo

Analysis using, e.g., probabilistic symbolic model checker 

Prism (http://www.prismmodelchecker.org)

…… ……



Tool Snapshot

2013/9/27 14Modeling and Verifying Connectors



2013/9/27 15

Reo to constraint automata converter

Reo graphical editor

Reo simulation plug-in

Modeling and Verifying Connectors

Tool Snapshot



Snapshot of Reo Editor

2013/9/27 16Modeling and Verifying Connectors



Reo Animation Tool

2013/9/27 17Modeling and Verifying Connectors



Constraint Automata Tools

•ECT includes a graphical editor for CA and related
automata models
• Create and edit automata graphically
• Perform product and hiding on automata

•ECT includes tools to automatically derive the CA of
a Reo circuit

•ECT includes simulator engines to show automata
runs

2013/9/27 18Modeling and Verifying Connectors



Constraint Automata Editor

2013/9/27 19Modeling and Verifying Connectors



2013/9/27 20Modeling and Verifying Connectors

Synthesis from BPMN to Reo

Farhad Arbab, Natallia Kokash and Sun Meng. Towards Using Reo for Compliance-aware Business
Process Modeling. In Proceedings of ISoLA'08, pages 108-123, CCIS 17, Springer, 2008.



2013/9/27 21Modeling and Verifying Connectors

Input of BPMN-to-Reo Converter



2013/9/27 22Modeling and Verifying Connectors

Output of BPMN-to-Reo Converter



• Sequencers are derived for individual participants 

2013/9/27 23Modeling and Verifying Connectors

Synthesis from UML SD to Reo



• Nodes for different lifelines are connected pairwise by
synchronous or asynchronous channels according to the
types and order of messages.

2013/9/27 24Modeling and Verifying Connectors

Synthesis from UML SD to Reo



• Reo circuits are structured inductively according to the
operators in UML SDs.

• Correctness of the approach is proved by coinduction.

2013/9/27 25Modeling and Verifying Connectors

Synthesis from UML SD to Reo



• Accepts UML 2.x SD models as input

• Generates Reo circuits representing the communication
protocol

• Can combine SDs for different scenarios and use-cases

• Enables verification and reasoning about the combined
protocol

• Originally, a stand-alone tool

• Modified and improved to accept Bouml XMI input

• Support for Eclipse UML2 tool coming

2013/9/27 26Modeling and Verifying Connectors

SD-to-Reo Converter



2013/9/27 27Modeling and Verifying Connectors

UML SD Editor



2013/9/27 28Modeling and Verifying Connectors

SD-to-Reo Converter



References

1. Sun Meng, Farhad Arbab, Christel Baier. Synthesis of Reo circuits
from scenario-based interaction specifications. Science of
Computer Programming, vol. 76, pages 651-680, 2011.

2. Farhad Arbab, Sun Meng and Christel Baier. Synthesis of Reo
Circuits from Scenario-based Specifications. In Proceedings of
FOCLASA'08, Vol. 229 of ENTCS, pages 21-41, 2009.

3. Sun Meng and Luis Barbosa. A Coalgebraic Semantic Framework
for Reasoning about UML Sequence Diagrams. In Proceedings of
QSIC'08, pages 17-26, IEEE Computer Society, 2008.

4. Sun Meng and Luis Barbosa. A Coalgebraic Semantic Framework
for Reasoning about Interaction Designs. in Kevin Lano eds. UML
Semantics and its Applications. Wiley, 2009. (This work is an
extension of 3)

2013/9/27 29Modeling and Verifying Connectors



Verification

•Connectors as designs for refinement checking and
test case generation

•Vereofy: Model checker for Reo built in TU-Dresden:
• Symbolic model, LTL, and CTL-like logic for specification
• Can also verify properties such as deadlock-freeness and

behavioral equivalence

•SAT-based bounded model checking of Timed
Constraint Automata

•Translation of Reo to mCRL2 for model checking

•Translation of Reo to Coq for proving properties

2013/9/27 30Modeling and Verifying Connectors



Connectors as Designs

•Every connector R can be represented as
𝑃(𝑖𝑛𝐑) ⊢ 𝑄(𝑖𝑛𝐑, 𝑜𝑢𝑡𝐑)

• 𝑃(𝑖𝑛𝐑) (𝑄(𝑖𝑛𝐑, 𝑜𝑢𝑡𝐑)) is the pre-condition (post-condition)
that should be satisfied by inputs 𝑖𝑛𝐑 (outputs 𝑜𝑢𝑡𝐑) on the
source (sink) nodes of R.

• 𝑖𝑛𝐑 and 𝑜𝑢𝑡𝐑 are mappings from sets of source and sink
node names of R to timed data streams respectively.

2013/9/27 31Modeling and Verifying Connectors



Connectors as Designs

• Implication of predicates establishes a refinement order over
connectors. More concrete implementations imply more
abstract specifications.

• For two connectors

where 𝑖 = 1,2, if 𝑖𝑛𝐑1
= 𝑖𝑛𝐑2

and 𝑜𝑢𝑡𝐑1
= 𝑜𝑢𝑡𝐑2

, then

• Pre-conditions on inputs of connectors are weakened under
refinement, and post-conditions on outputs of connectors
are strengthened.

2013/9/27 32Modeling and Verifying Connectors



Connectors as Designs

2013/9/27 33Modeling and Verifying Connectors



References

1. Sun Meng，Farhad Arbab, Bernhard K. Aichernig, Lacramioara
Astefanoaei, Frank S. de Boer and Jan Rutten. Connectors as
Designs: Modeling, Refinement and Test Case Generation. In
Science of Computer Programming. vol. 77(7-8), pages 799-822,
2012.

2. Sun Meng. Connectors as Designs: the Time Dimension. In
Proceedings of TASE 2012, pages 201-208, IEEE Computer Society,
2012.

3. Bernhard K. Aichernig, Farhad Arbab, Lacramioara Astefanoaei,
Frank S. de Boer, Sun Meng and Jan Rutten. Fault-based Test Case
Generation for Component Connectors. In Proceedings of TASE
2009, pages 147-154, IEEE Computer Society, 2009.

4. Sun Meng and Farhad Arbab. Connectors as Designs. In
Proceedings of FOCLASA’09, Vol. 255 of ENTCS, pages 119-135,
2009.

2013/9/27 34Modeling and Verifying Connectors



Vereofy Model Checker

•Symbolic model checker for Reo:
• Based on constraint automata
• Developed at the University of Dresden
• LTL and CTL-like logic for property specification

• Modal formulae
• Branching time temporal logic: 

• AG[EX[true]] 

• check for deadlocks

• Linear temporal logics: 
• G(request → F (reject∪ sendFormOut)) 

• check that admissible states reject or sendFormOut are reached

• http://www.vereofy.de

2013/9/27 35Modeling and Verifying Connectors

http://www.vereofy.de/


• Modal formulae
• Branching time temporal logic: AG[EX[true]] – check for deadlocks
• Linear temporal logics: G(request → F (reject∪ sendFormOut)) – check that admissible states reject or 
sendFormOut are reached

2013/9/27 36

Reo2ConstraintAutomata

Modeling and Verifying Connectors

Verification with Vereofy



• Input parameters:
• Activation condition 

• Data: b: Boolean
• Filter condition: b==true, b==false

• Check condition
• Data: x, y: Real; (e.g., credit amount, maximal amount)
• Filter condition: x < y

• Problems:
• Data constraint specification language is needed

• Properties that include conditions: 
• G [(b & !(x < y)) → F violation]

2013/9/27 37Modeling and Verifying Connectors

Data-Dependent Control-Flow



Verification with mCRL2

• mCRL2 behavioral specification language and associated
toolset developed at TU Eindhoven
• http://www.mcrl2.org

• Based on the Algebra of Communicating Processes (ACP)

• Extended with data and time

• Expressive property specification language (m calculus)

• Abstract data types, functional language (l calculus)

• Automated mapping from Reo to mCRL2

2013/9/27 38Modeling and Verifying Connectors

http://www.mcrl2.org/


Verification with Coq

2013/9/27 Modeling and Verifying Connectors 39



Performance Analysis

• Quantitative Intentional Automata (QIA) extend CA with
quantitative properties:
• arrival rates at ports
• average delays of data-flows between ports

• Quantified Reo circuits are converted to QIA

• Markov Chain models are derived from QIA
• Resulting Markov Chains are very compact: efficient model checking

• PRISM is used for analysis of MC models
• Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Kwiatkowska and

Hongyang Qu. Reo2MC: a Tool Chain for Performance Analysis of
Coordination Models. Proceedings of ESEC/FSE’09, pages 287-288, ACM,
2009.

• Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Young-Joo Moon
and Chretien Verhoef. From Coordination to Stochastic Models of QoS.
Proceedings of Coordination'09, LNCS 5521, pages 268-287, Springer, 2009.

2013/9/27 40Modeling and Verifying Connectors



Performance Analysis

2013/9/27 41Modeling and Verifying Connectors

Reo Circuit

Stochastic 
Information

Stochastic 
Reo

QIA 
Generator

QIA (XML)

QIA2MC

MC (XML)Parser

PRISM
MATLAB, 

Maple

Files

GMF

Graphical 
Representation

GMF

Graphical 
Representation



Reo Primitives with Delays

2013/9/27 42Modeling and Verifying Connectors



QIA for FIFO1

2013/9/27 43Modeling and Verifying Connectors



QIA for Sync

2013/9/27 44Modeling and Verifying Connectors



QIA for LossySync

2013/9/27 45Modeling and Verifying Connectors



QIA for SyncDrain

2013/9/27 46Modeling and Verifying Connectors



QIA of Alternator Reo Circuit

2013/9/27 47Modeling and Verifying Connectors



Markov Chain for Alternator

2013/9/27 48Modeling and Verifying Connectors



Experiment

2013/9/27 49Modeling and Verifying Connectors



Conclusion & Future Work

• Making interaction explicit in concurrency allows its direct
• Specification
• composition
• Analysis
• Verification
• reuse

• Reo is a simple, rich, versatile, and surprisingly expressive
language for compositional construction of pure
(coordination or concurrency) protocols.

• Extension of the language for hybrid systems and related
tools development.

2013/9/27 50Modeling and Verifying Connectors



2013/9/27 Modeling and Verifying Connectors 51



2013/9/27 Modeling and Verifying Connectors 52


