Modeling and Verification of
Connectors in Complex Systems

Sun Meng

LMAM & Department of Information Science, School of Mathematical Sciences
Peking University
http://www.math.pku.edu.cn/teachers/sunm
Thanks to: B. K. Aichernig (TUG), F. Arbab (CWI), L. Astefdnoaei (INRIA), C. Baier (TUD),

L. Barbosa (UM), F. de Boer (CWI), T. Chothia (Birmingham), N. Kokash (CWI), M. Kwiatkowska (Oxford),
Y. Li (PKU), Y.-J. Moon (INRIA), H. Qu (Oxford), J. Rutten (CWI), R. van der Mei (VUA), C. Verhoef (CWI)

Workshop on Probabilistic and Hybrid System Verification, Beijing, September 26, 2013

http://www.is.pku.edu.cn/~sunm

Outline

* Coordination in complex systems

* Reo and Eclipse Coordination Tools

* Synthesis of connectors from BPMN / UML models

* \erification and Performance Analysis for connectors
* Conclusion and future work

Sources of Complexity in Systems

* Complexity inherent in task/algorithm/computation
e Examples:
* Computations/equations in quantum mechanics, astronomy, engineering, etc.
* Bit-map to jpeg conversion, sorting, etc.
* This type of complexity is not bewildering!
* Many good, intricate mathematical models have been developed to tame the
complexity.

» Complexity arising from composition of simple components
* Example:

»
>

d
<

* Bewildering complexity emerges out of interaction
* Good formal models to tame this complexity?

Models of Concurrency

* Traditional models are action based

* Petri nets

* Work flow / Data flow

* Process algebra / calculi
» Actor models / Agents

*In prominent models, a system is composed from
building blocks that represent actions/processes

* Interaction becomes an implicit side-effect

* Makes coordination of interactions more difficult to
* Specify
* Verify
* Manipulate
* Reuse

Interaction Based Concurrency

e Start with a set of primitive interactions as binary constraints

* Define (constraint) composition operators to combine
interactions into more complex interactions

* Properties of the resulting model of concurrency depend on
* Set of primitive interactions
* Composition operators

 As constraints, interaction protocols can be manifested
independently of the processes that they engage
* Connectors

* Imposing an interaction on actors exogenously coordinates
their activities

Exogenous Coordination

* P and C are black-box components that:
 Offer no inter-components methods nor make such calls
* Do not send/receive targeted messages

* Their only means of communication is through blocking
|/O primitives that they can perform on their own ports.

e Composing P and C with different connectors (that
impose different protocols from outside) constructs
different systems.

Reo: An Exogenous Coordination
Language

* Reo is an exogenous coordination language for compositional construction
of interaction protocols.

* Interaction is the only first-class concept in Reo:
* Explicit constructs representing interaction
* Composition operators over interaction constructs

* A (coordination or interaction) protocol:
* manifests as a connector
» gets imposed on its engaged components/services from outside
* remains mutually oblivious to its engaged components/services

* Reo offers:

* Loose(st) coupling

 Arbitrary mix of asynchrony, synchrony, and exclusion
Open-ended user-defined primitive channels
Distribution and mobility
* Dynamically reconfigurable connectors

* http://reo.project.cwi.nl

http://reo.project.cwi.nl/

Reo: A Coordination Language

produce(text)
| synchronize

| af
| dis

/M every 3sec

:|:—1

cdy(GREEN))

bufferRED := Empty
bufferGREEN := Empty

isReady (from)

| if (from = RED)

| bufferBED = Empty

| if (from = GREEN)

| bufferlGREEN = Empty

show (from,text)

| if (from = RED)

| bufferRED =text

| if (from = GREEN)

| bufferGREEN := text

|

| if {bufferBED isnot empty and
| bufferGREEN isnot empty)
| displayText(bufferRED)

| displayText(bufferGREEN)
| bufterRED = Empty

| bufferGREEN = Empty

Reo: A Coordination Language

| put(text)

i1

/" every 2 sec Y/
consume()

| text .= get()

| displayText(text)

Channels

e Atomic connectors in Reo are called channels.
* Reo generalizes the common notion of channel.

* A channel is an abstract communication medium with:

 exactly two ends; and
* a constraint that relates (the flows of data at) its ends.

* Two types of channel ends
e Source: data enters into the channel.
e Sink: data leaves the channel.

* A channel can have two sources or two sinks.
* A channel represents a primitive interaction.

Reo Connectors

O{_}1+0 0——0 O ---+0 O—W—0 O——O

FIFO1 channel synchronous lossy synchronous filter channel P-producer
channel channel <t

O>—0 O>—H—-<+O0 O+——0 O«—H—>0 O—_1—O

synchronous drain asynchronous drainsynchronous spout asynchronous spout timer channel

Valve connector:
controls flow from A to B

open close

Eclipse Coordination Tools

A set of Eclipse plug-ins provide the ECT visual programming
environment.

* Protocols can be designed by composing Reo circuits in a
graphical editor.

* The Reo circuit can be animated in ECT.
« ECT can automatically generate the CA for a Reo circuit.

* Model-checkers integrated in ECT can be used to verify the
correctness properties of a protocol.

« ECT can generate executable (Java/C) code from a CA as a single
sequential thread.

e http://reo.project.cwi.nl

http://reo.project.cwi.nl/

Eclipse Coordination Tools

Tool Description
Reo graphical editor Drag and drop editing of Reo circuits
Reo animation plug-in Flash animation of data-flow in Reo circuits
Extensible Automata editor and tools Graphical editor and other automata tools
Reo to constraint automata converter Conversion of Reo to Constraint Automata

*Vereofy model checker (www.vereofy.de)
Verification tools *mCRL model checking
*Bounded model checking of Timed Constraint Automata

State machine based coordinator code

Java code generation plug-in _
(Java, C, and CA interpreter for Tomcat servlets)

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)
(UML / BPMN / BPEL) GMT to Reo converter| Automatic translation of UML SD / BPMN / BPEL to Reo
Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits
Compositional QoS model based on Reo
Markov chain generator (Reo2MC) Analysis using, e.g., probabilistic symbolic model checker

Prism (http://www.prismmodelchecker.org)

Tool Snapshot

= BReo test/valwe.res Eclipre SDE |= Hﬁ'@

file Kea: Liegren Movizate Scarsh Frojeek Eun ¥iader Help

-3 E -y I Y N - i = EL o - = wen Dooawsing
B f|A-35 — B B cGrinc| T =R R 2oc [Fonuneg
S TC|[Ews e [[E sizoes Bl ot et cen [moadve e 85 =0
= -) Erarer-a 8
71 g ~
® T -est S8 Tramarctar m -
._@Co)\:\acto:’
E Cunueenl
- M ITH
0 e
Sanere Bad
§ | Sinx Ead
1 Linc
1 Lowper Ly
[=Lhanme s
B vritar l =10 w
= 1 apeslsFl = Feader
e 2 ter
[«
[Arinstion 5 Llig & = O
Network@1aas56b7)
[=] ™
List of i Lonneetor ‘
animations
mmaten 1| _© "
Animation 2 out
(6 steps)
Amimation 3 b | \
(3 steps) [=] [writer i
njs] s B EEB

$82013/9/27 #Modeling and Verifying Connectors #14

F] Recesalnda
s
O i
M1 iz
@ 1]
Stat End

|4] ReceiveOrder
- {ABCDEF}

Reo graphical editor

ReceiveOrder

0 O

)& 2

Start End

O (fs=tt xR dtz=AR$syEdty)

“=1{D,A}
<= (Ce} O (D=$5.x & $t2=A B fs.y= 1.

RE=CRfsz=ftz&C=§sy)

ReceiveOrder #5)

@ Dnzyl

= {F.B}
0 (B=$s.2 & $t.y=B)

ReceiveOrder #:

Ak ReceiveOrder #4)
o ($tz=08fs.y=$ty)

@ [zy]

Reo simulation plug-in

Reo to constraint automata converter

Snapshot of Reo Editor

[f] valve.reo =2

[r] Valve (open)

ut

2013/9/27

Modeling and Verifying Connectors

= B8
.+ Palette [
[;3 e
[#] Connector
O Node
= Channels £
—5ync

-2 LossySync

= Empty FIFO

o+ Full FIFO

*—=SyncDrain

= SyncSpout

8 AsyncSpout
=10 %

O Writer

O Reader

— |0 Link

= Generics £
— Generic Link

16

Reo Animation Tool

20 h LSO e quesl 02wt UEs, feo - LelipEe =0
B Et [apran Bewiges Sagrch Proict Bon Wndow Halp
: H s w —_ :ﬁi-.\,:r'.- = 3 Fridar i":'._ld_. =1 m- Efm"l]'m

K| oarfsg et pan

-}
{g |[¥] Araratian i3 L

E Credit broker (Network)

List of i Credit broker
animations

chedeConditionoreateLoanin createloaniut morsldM I=CreditAuth

Animatian 1
[teps)

1 Animation 2
[tepa)
animation 3
[tepa)

animation 4
& spepa)

sl

prepareFarmOUE sendFormin syl Farmdat

prepareFarmin

Wrter
requestss1

5]

7]

&
i
(]
=
1. |

$82013/9/27 Modeling and Verifying Connectors 817

Constraint Automata Tools

* ECT includes a graphical editor for CA and related
automata models
* Create and edit automata graphically
e Perform product and hiding on automata

* ECT includes tools to automatically derive the CA of
a Reo circuit

* ECT includes simulator engines to show automata
runs

Constraint Automata Editor

] *csde brokrga £

1 [Credit broker
% - {REQUEST,STCR}

il

STOR=§sr

B ($tU=REQUBST & $1.2=REQUEET) i

= praperties &3 . [E] Anmation

P me

i) fidd Nete

File

Eciit:
W Delte From Diaorem
¥ Delete From Modsl

Format
Abars

k
r

ExtEnsions k

Aubtamaton Tvpe
Compute Produd:
Aidd Slerk Trerskions

Remawe Slert Traratons

Hide part:
Ganersta Mo Rl
Trarslste to MC
Ed¥ Fort Types
Zenerste cods

[shows Froperties Ues

Toperkies

Compubs Risfinemsnt widh Constraiks

e o Context

[
E

LY
Al

Il o B

ET [

o

(1) Clock [Aukomakon)
(7P <luck guerd {Trarsiton)
D1 Tnck update {Trarsiion)

Trevariank [Gtate)
ConEkraints

Ciost Aoebies

Cost Ueles

Cuards

Park Mames (ukomaks)
Part Mamas ¢ TrarsHons)
Trkersonal Port Naimess

Cwley Informatian
ok Shates

Sate fMemory

1< <

FEOREE D

¥2013/9/27

Modeling and Verifying Connectors

#19

Synthesis from BPMN to Reo

Evaluate

ustomer banking|
profile

request

Send official form

524 Credit broker

checkCdhditions creftel canlr createl oanOu morel10M isCreditAuth

evaluateln evaluateQut conditionsOk getauthlr getAuthOu credithNotAuth
conditionshot ol creditAutt
less10M
stop
request reject prepareFormlIn prepareFormoUt sendFormln sendFormOut
[E wiritel [Reade | Reader
= requests=1 o requests=1 = requests=1

Farhad Arbab, Natallia Kokash and Sun Meng. Towards Using Reo for Compliance-aware Business
Process Modeling. In Proceedings of ISOLA'08, pages 108-123, CCIS 17, Springer, 2008.

2013/9/27 Modeling and Verifying Connectors 20

Input of BPMN-to-Reo Converter

Reo - loan/creditBroker.bpm/modeler.bpmn_diagram - Eclipse SDK

File Edit Diagram Navigate Search Project Run Window Help

Navigate
File

Edit

. Select
o2 Arrange All

View
#, Zoom

Load Resource...

] Show Properties View

(= |

Input Methods

¥2013/9/27

B Convert to Reo

b

Get
Create customer authorisation
loan profile

amount > 10M%es ¥e5 credit authorisedo

Prepare official Send official form
form

g o5

#Modeling and Verifying Connectors

¥21

Output of BPMN-to-Reo

= ey ML BT) e g =5) - Bl S

File Edk Diagram Mawvigske Ssarch Project Bun Mindow Help

= SR R =R B+ - el
[F] *lnanRequest.rea i

=

I8

T

S2 Credlit brokar
Createloaiout mare 100 isCredtAuth

createloarln

checkCondtiors

gethuthin creqittota i

corgitionsOlk:

evaluztaln evalLatalut

Crecitauth

stop

concitionshlotCl:
&

reqest FEJECE prepareformin prepareFarmCut
2] weriter 5l Reate = Reader
= requests=1 = requests=1 = requests=1

szncFormin sendFormout

onverter

C[E[x]

- [E e & ma
=0

Lk Pette
NEEE
S Cornector
2| omponent
2 Mooe
Sowrce End
Sink End
Link
= Propecky
= Channels
—5Srno
-+=LossySync
o Empky FIFC
s Full FIFD
=—<SynzDrain
=
[E Reader
[E] wiritesr
cPROBEDLS

$82013/9/27 #Modeling and Verifying Connectors

3622

Synthesis from UML SD to Reo

e Sequencers are derived for individual participants

| P2

Sequencer

2013/9/27 Modeling and Verifying Connectors

23

Synthesis from UML SD to Reo

* Nodes for different lifelines are connected pairwise by
synchronous or asynchronous channels according to the
types and order of messages.

IH3 A]
o o] G\ e
j m j "\\ A 3 +
l g DA m ¥ﬂ
k 1

- r .'n i
1 . 1) ||l
| B .
| Ml | AR -
Iy = | 'R r
I 1
I I
I I
I My o
: : = 1
' ' Sequencer Sequencer

Synthesis from UML SD to Reo

* Reo circuits are structured inductively according to the
operators in UML SDs.

I". AAA |I \
A ',’.' \ r Wy
/
Ac Acrd 7 N Be
Agp g B 5D 51 A CEXR ¢ 3 'SD fm
o [= Rear Ry ¢—>o——1—> A B .
A A sd]
sd] Byg; 52 B, ’ '|'

* Correctness of the approach is proved by coinduction.

2013/9/27 Modeling and Verifying Connectors 25

SD-to-Reo Converter

* Accepts UML 2.x SD models as input

* Generates Reo circuits representing the communication
protocol

* Can combine SDs for different scenarios and use-cases

* Enables verification and reasoning about the combined
protocol

* Originally, a stand-alone tool
* Modified and improved to accept Bouml XMl input
 Support for Eclipse UML2 tool coming

UML SD Editor

=] Bouml —ad ol
Project Windows Tools Languages Miscellaneous Help
=EHEa&us KN
J CustomerList
Ieditl:E] BEHOD— — &8 a8 ¢ - abe ‘ |100°/°§|jm%3=€
:AccountUl | |:AccountCirir | |:AccountMdl | [:AccountView :AccountDB
| 1 | | l |
1:search() | | | | 5
searn ;
Ib findCustome!’() | |
I i *[;] I 5
| 3: cn_'lgateCustomer |lst() : |
| | etCustomerL%t()
T			
l S: displayCILstomerList()			
	ﬂ I		
L]	I		
			I
382013/9/27 #Modeling and Verifying Connectors 3827

SD-to-Reo Converter

—

-

Project Windows Toois Languages Miscellaneous

!@ R s AR A ey
ol Xmi 2.1 genera
|ed
¥2013/9/27

Fm_

generated

XMi flle - |samplesd]| | browse

Encoding : UTF-8 _’I
Umi

’7\, uml 2.0 “ uml 2.1

Generate views as package (non compatible with profile generation)
Generate 'pk ' prefix for parameter direction

Generate 'vis_' prefix for visibility

Use PrimitiveType rather than DataType

Generate extensions

Generate for Eclipse (aggregation set on other relation side)
Comment exporter indication (needed to import in some tools like Rsa)

VS B 1SR T LSS TS I

Generate If and cr characters in string rather than '‘
 and '‰

uUmil C++ | Java I Qancell

L
Remark : to help Eclipse to import the generated file,
choose Uml 2.1 and name the file with the extension ".xmi"

! Close I Clear l

#Modeling and Verifying Connectors

%28

References

1.

Sun Meng, Farhad Arbab, Christel Baier. Synthesis of Reo circuits
from scenario-based interaction specifications. Science of
Computer Programming, vol. 76, pages 651-680, 2011.

Farhad Arbab, Sun Meng and Christel Baier. Synthesis of Reo
Circuits from Scenario-based Specifications. In Proceedings of
FOCLASA'08, Vol. 229 of ENTCS, pages 21-41, 2009.

Sun Meng and Luis Barbosa. A Coalgebraic Semantic Framework
for Reasoning about UML Sequence Diagrams. In Proceedings of
QSIC'08, pages 17-26, IEEE Computer Society, 2008.

Sun Meng and Luis Barbosa. A Coalgebraic Semantic Framework
for Reasoning about Interaction Designs. in Kevin Lano eds. UML
Semantics and its Applications. Wiley, 2009. (This work is an
extension of 3)

Verification

* Connectors as designs for refinement checking and
test case generation

*\Vereofy: Model checker for Reo built in TU-Dresden:
* Symbolic model, LTL, and CTL-like logic for specification

e Can also verify properties such as deadlock-freeness and
behavioral equivalence

* SAT-based bounded model checking of Timed
Constraint Automata

* Translation of Reo to mCRL2 for model checking
* Translation of Reo to Coq for proving properties

Connectors as Designs

* Every connector R can be represented as
P(ing) F Q(ing, outy)
* P(ing) (Q(ing, outy)) is the pre-condition (post-condition)
that should be satisfied by inputs ing (outputs outg) on the
source (sink) nodes of R.

* ing and outy are mappings from sets of source and sink
node names of R to timed data streams respectively.

Connectors as Designs

* Implication of predicates establishes a refinement order over
connectors. More concrete implementations imply more
abstract specifications.

* For two connectors
con: R;(in:ing;out: outg,)
pre : Pi(ing,)
post: Q;(ing, . outgr,)
where i = 1,2, if ing, = ing, and outg, = outg,, then
RiC Ry =g (P1= Po)AN(P1AQ= Q)

* Pre-conditions on inputs of connectors are weakened under
refinement, and post-conditions on outputs of connectors
are strengthened.

Connectors as Designs

1
I

(a) (b) (c)

testRefinement of
connector ABCa = R((a , sa) : (¢, sc), (b, sb)) , Dc sa > |-
D< comp(dc,tc) > and tc =t between2(ta) and D< comp (db,tb) >
and tb =t between2(ta) and db =d dc and da =d db
and
connector ABCc = R{(&a , Ba) 5 (b, 8k }, {c , 8c ¥) ,
D< comp(da,ta) > |- D< comp(db,tb) > and between2 (ta) =t tb and

da =d db and D< comp(dc,tc) > and between2(ta) =t tc and da =d dc
is:
True () and True()

$82013/9/27 #Modeling and Verifying Connectors 833

References

1.

Sun Meng, Farhad Arbab, Bernhard K. Aichernig, Lacramioara
Astefanoaei, Frank S. de Boer and Jan Rutten. Connectors as
Designs: Modeling, Refinement and Test Case Generation. In
Science of Computer Programming. vol. 77(7-8), pages 799-822,
2012.

Sun Meng. Connectors as Designs: the Time Dimension. In
Proceedings of TASE 2012, pages 201-208, IEEE Computer Society,
2012.

Bernhard K. Aichernig, Farhad Arbab, Lacramioara Astefanoaei,
Frank S. de Boer, Sun Meng and Jan Rutten. Fault-based Test Case
Generation for Component Connectors. In Proceedings of TASE
2009, pages 147-154, IEEE Computer Society, 2009.

Sun Meng and Farhad Arbab. Connectors as Designs. In
Proceedings of FOCLASA’09, Vol. 255 of ENTCS, pages 119-135,
20009.

Vereofy Model Checker

* Symbolic model checker for Reo:
e Based on constraint automata
* Developed at the University of Dresden
* LTL and CTL-like logic for property specification

* Modal formulae

* Branching time temporal logic:
* AG[EX[truel]]
* check for deadlocks

* Linear temporal logics:

* G(request = F (reject U sendFormOut))
* check that admissible states reject or sendFormOut are reached

* http://www.vereofy.de

http://www.vereofy.de/

Verification with Vereofy

Sgd Credit broker

checkConditions createloanlr createloanOu more10M isCreditAuth

evajuateln evaluateOut conditionsOk getAuthlr getAuthOu cregithotAutt
conditionsMotOk creditAutt
less10M
stop
reqJest reject prepareFormIn prepareFormOLUt sendFormIn sendFormOut
Writer Reate Reade
= requests=1 = requests=1 = requests=1

- {REQUEST,EVALUATEIN}

=

S1=00000

<
<= {REJECT,CONDITIONSNOTOK, EVALUATED - {REXECT}

\ {REQUEST}

. {CREDITNOTAUTH,

% {EVALUATEOUT,CONDITIONSOK, PREPAREFORMIN, CREATEL
. {SENDFORMOUT}

& {CREATELOANOUT, MORE 10M, GET,

S4=00001

= o=
L M Od a I fo rm u I a e <= {CREATELOANOUT ,PREPAREFORMOUT LESS10M} <= {CREDITAUTH,GETAUTHOUT}

* Branching time temporal logic: AG[EX[true]] — check for deadlocks

* Linear temporal logics: G(request = F (reject U sendFormOut)) — check that admissible states reject or
sendFormOut are reached

$82013/9/27 #Modeling and Verifying Connectors 336

Data-Dependent Control-Flow

Sigd Check-fragment

|=| Reader
O reguests=1
violation
(=] Wiriter
O requests=1
|=| Reader
O requests=1

doMotPerformCheck: stop

* Input parameters:

* Activation condition
* Data: b: Boolean
* Filter condition: b==true, b==false
* Check condition
* Data: x, y: Real; (e.g., credit amount, maximal amount)
* Filter condition: x<y

* Problems:
 Data constraint specification language is needed

* Properties that include conditions:
* G[(b&!(x<y)) = F violation]

2013/9/27 Modeling and Verifying Connectors

Verification with mCRL2

* mCRL2 behavioral specification language and associated
toolset developed at TU Eindhoven
 http://www.mcrl2.org
* Based on the Algebra of Communicating Processes (ACP)
* Extended with data and time
* Expressive property specification language (u calculus)
» Abstract data types, functional language (A calculus)

e Automated mapping from Reo to mCRL2

http://www.mcrl2.org/

Verification with Coq

¥2013/9/27

Application Layer
Calculation Proof
Component Layer
Datalnput Simulate DataOutput
Data&Type Layer
Environment DataStreamMatrix
Coq Proof Assistant

#Modeling and Verifying Connectors

¥39

Performance Analysis

e Quantitative Intentional Automata (QIA) extend CA with

guantitative properties:

e arrival rates at ports
» average delays of data-flows between ports

* Quantified Reo circuits are converted to QIA

* Markov Chain models are derived from QIA
» Resulting Markov Chains are very compact: efficient model checking

* PRISM is used for analysis of MC models

e Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Kwiatkowska and
Hongyang Qu. Reo2MC: a Tool Chain for Performance Analysis of
Coordination Models. Proceedings of ESEC/FSE’09, pages 287-288, ACM,
2009.

e Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Young-Joo Moon
and Chretien Verhoef. From Coordination to Stochastic Models of QoS.
Proceedings of Coordination'09, LNCS 5521, pages 268-287, Springer, 2009.

Performance Analysis

7~

Reo Circuit

\ Stochasticl | QIA I l Y
Reo Generator Q1D v

GMF

Graphical
Representation

FiIes‘E—[Parser HMC(XML)H GMF

[Stochastic
| Information

N v

[QIA2MC]

N

[e] [MATLAB,]
Maple

2013/9/27 Modeling and Verifying Connectors 41

Graphical
Representation

Reo Primitives with Delays

B
dAF——dFB dAB_ . dAB JJAB
32013/9/27 #Modeling and Verifying Connectors 342

QIA for FIFO1

dAF dFB
dA dB
(1B},
{?X{}’}dA %%}’{} dAF)} {Aﬂ{}’ dA S
(AL 100, o (AL D0AD) | sy ALY, oo
(B, 5 BI(,
(0. B).dBY) RTHL: {0 B0
1/,"7&3\ T {AB
A, AR A, i
(A} .dA)} (A}, {({A}.13,4A)}

{B},
},{B

$82013/9/27 #Modeling and Verifying Connectors 3843

QIA for Sync

dAB X
dA dB
(A .y

B,
(B, (({}|{B}.dB)]
({y,{B},dB)} L {A, B,

da=dB, {({A},{Bhd/

{A}{},
{({A},1),dA)}

362013/9/27 Modeling and Verifying Connectors ¥44

QIA for LossySync

32013/9/27 #Modeling and Verifying Connectors 345

QIA for SyncDrain

382013/9/27 #Modeling and Verifying Connectors 3846

QIA of Alternator Reo Circuit

[£] ardering
ﬁ{CJCl,CZ,BZJAl,A,AZ,BLB}

° 1CH{}

L[CLO- 1)}

E
{ 4BL{LO.2)}

A
{4200,0.2)}

AN T{C2, AL, A2, B1, B2}| {C, C2, A Al, A2, B, B1, B2}

0.5), ({ALL{L0.2), {RAATE=1.0, (AL {AL, A2}0.4),((A2].{),-1.0), ([A2, B1}{},0.8),((L{B1}-1.0),d}{B2},-1.0),(B}L{B1, B2}0.5)}

EACL 4G, C1}
{ QC1H{%-1.0), ACLH{CHO.), (L {C1H-1.0, §KICLLO.50} Oy} 64, 0.5
= g o
BN { SR)

1 dqBLL0 23}

EACUHC €1
{ {C1L{L-1.0), CIL{CY0.4), {LIC1L-1.0), ¢L{C1LO.5)}

e p- 4} e

{ALIEE0. 1Y W (B} | {}

! { 4BRAL0.2)}
A
) {625 {10.2)T s

LA L{CL0. 1))
Tl

2013/9/27 Modeling and Verifying Connectors

47

Markov Chain for Alternator

{(4).4B}.dB)}

{({ANATL A2} dAATAZN)}

ALLHdA)

B13.4.dA281))
{(112),{C2}.dB2C2)}

1F);

{H

1}.{},dA2B1)}

{UA}L L

—{{R{CT},

B} .dB))

){j}d{“l},ﬂl"(‘.])}

$82013/9/27 #Modeling and Verifying Connectors 3848

Experiment

-
2 Java - Reofxample/simplified_mary_step2.reo - Eclipse SDK

-
2 Java - Reoxample/simplified_mary_step3.ea - Eclipse SDK

[PRISM Model Fie: D' work3pace ReoExongies Yest3 sm

7 Madel.tests sm H
« Type: Stochastic (T
& [Modules.

© [Constants

conat dowble T
const int ¥ = 1651
const dosble A = L.1;
const dowle @ « 1.2;
const dowle o - 1.3;
const dowble @3 - 1.4;
const. dowle oG = 1.5
const dosble SAAMOALAZAS = L.6;
comst dowble AN = 1.7
const dowle GA0E - 1.6;

const dowble dAlTransection = 1.9:

const dowble GFAZ = 2.0;
const dowle dGTransaction = 2.1;

const dowble €IDODIDZ = 2.

Proparbes st DhmrcckspsceRecEcmplestest co
operties

=@
K- et "y = S 4 _ = = . EED Sedpasas s
File Edit Diagam Nevigate Search Project Run Window Help Fle Edit Diagam Nevigate Search Project Run Window Help |
¢ a $-0-Q- BHE~ rivi i F-0-Q- BHE~ 5 Debug [C/Ce+ 50 Team Synchr..
I v v il Sy 5~ v v il Sy
Tatioma v|9 v) | S > o Tahoma *|9 v| ¥ | - - v —
| [£) simplified_mary_step2.reo 52 =& [f) simplified_mary_step2reo | [A] *simplified_mary_step3.ea &3 ==
L4 & B, | ———) &
- . < » | 4% Palett
|| @ Bow Ple i L !
:d = QAT -
% = animation... © animations... = % El
434 Connector (4] Automaton
D pe
E Component = State
out i I Come: %0310 o
O Node GIT] — Transition
Source End D300y 102 DUPUfNE D3,01,02,00,Q
c F Sink End 1y,
Link
& Property
8 & Channels |
in A
G out — Sync
> LossySync
-a» Empty FIFO
B
H 1 J] Reader
|« i = 5) Writer |+
s ke ¥
&
P prus
Flo EOt Mocel Propaties Smustor Log Optens DEUER gl Diperies S Log R,
IR LIECE Lo 3 3 31

- P
H Pe?{true UD.T] (XE=3SG01E-2)) |

Name ‘ Type i Valug I

ethod.
Verification

oragn 1 |
100

075

Name. Dafinion J

Probabil

25 50 75 100 125 150 175 200

e

¥2013/9/27

#Modeling and Verifying Connectors

¥49

Conclusion & Future Work

* Making interaction explicit in concurrency allows its direct
 Specification
* composition
* Analysis
* \erification
* reuse

* Reo is a simple, rich, versatile, and surprisingly expressive
language for compositional construction of pure
(coordination or concurrency) protocols.

* Extension of the language for hybrid systems and related
tools development.

¥2013/9/27

Thanks!
Heel hartelijk bedankt!
iIch danke lhnen sekhy!

1 i

Questions ?
Je hebt een problem?
Sie haben ein Problemn ?

i) e 2

¥2013/9/27

