Automated Analysis of Probabilistic Programs

Joost-Pieter Katoen

Software Modeling and Verification Group RWTH Aachen University

joint work with Friedrich Gretz and Annabelle McIver

September 24, 2013

Joost-Pieter Katoen

Automated Analysis of Probabilistic Programs

Overview

Introduction

- Probabilistic guarded command language
- 3 Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

What are probabilistic programs?

Sequential, possibly non-deterministic, programs with random assignments.

Applications

Cryptography, privacy, quantum computing, and randomized algorithms.

The scientific challenge

- Such programs are small, but hard to understand and analyse¹.
- Problems: infinite variable domains, (lots of) parameters, and loops.
- \Rightarrow Our aim: push the limits of automated analysis

¹Their analysis is undecidable.

Introduction

Once upon a time

Duelling cowboys

```
int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
    int t := A [] t := B; // decide cowboy for first shooting
    turn
bool c := true;
while (c) {
    if (t = A) {
        (c := false [a] t := B); // A shoots B with prob. a
    } else {
        (c := false [b] t := A); // B shoots A with prob. b
    }
    }
return t; // the survivor
}</pre>
```

Claim:

Cowboy A wins the duel with probability at least $\frac{(1-b)\cdot a}{a+b-a\cdot b}$.

Playing with geometric distributions

- \triangleright X is a random variable, geometrically distributed with parameter p
- \blacktriangleright Y is a random variable, geometrically distributed with parameter q
- Q: generate a sample x, say, according to the random variable X Y

```
int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x
  (x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x
  (x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y
}</pre>
```

An alternative program

```
int XminY2(float p, q){
 int x := 0;
 bool flip := false;
  (flip := false [0.5] flip := true); // flip a fair coin
 if (not flip) {
   while (not flip) { // sample X to increase x
     (x +:= 1 [p] flip := true);
   }
 } else {
   flip := false; // reset flip
   while (not flip) { // sample Y to decrease x
     x -:= 1:
     (skip [q] flip := true);
   }
 }
return x; // a sample of X-Y
}
```

Introduction

Program equivalence

```
int XminY1(float p, q){
    int x, f := 0, 0;
    while (f = 0) {
        (x +:= 1 [p] f := 1);
    }
    f := 0;
    while (f = 0) {
        (x -:= 1 [q] f := 1);
    }
    return x;
}
```

```
int XminY2(float p, q){
 int x, f := 0, 0;
  (f := 0 [0.5] f := 1);
 if (f = 0) \{
   while (f = 0) {
     (x +:= 1 [p] f := 1);
   }
 } else {
   f := 0;
   while (f = 0) {
     x -:= 1;
     (skip [q] f := 1);
   }
 }
return x;
```

Claim: [Kiefer et. al., 2012]

Both programs are equivalent for $(p, q) = (\frac{1}{2}, \frac{2}{3})$. Q: No other ones?

Correctness of probabilistic programs

Question:

Joost-Pieter Katoen

How to verify the correctness of such programs? In an automated way?

Apply model checking?

Apply MDP model checking.	LiQuor, PRISM
\Rightarrow works for program instances, but no general solution.	
Use abstraction-refinement techniques.	PASS, POGAR
\Rightarrow loop analysis with real variables does not work well.	
Check language equivalence.	APEX
\Rightarrow cannot deal with parameterised probabilistic programs.	
 Apply parameterised probabilistic model checking. 	PARAM
\Rightarrow deals with fixed-sized probabilistic programs.	

Apply deductive verification!

Automated Analysis of Probabilistic Programs

[Mclver & Morgan]

Duelling cowboys

```
int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
  int t := A [] t := B; // decide which cowboy has first
      shooting turn
  bool c := true;
  while (c) {
    if (t = A) {
        (c := false [a] t := B); // A shoots B with prob. a
    } else {
        (c := false [b] t := A); // B shoots A with prob. b
    }
  3
return t: // the survivor
}
```

We can infer:

Cowboy A wins the duel with probability at least $\frac{(1-b)\cdot a}{a+b-a\cdot b}$.

Introduction

Program equivalence

```
int XminY1(float p, q){
    int x, f := 0, 0;
    while (f = 0) {
        (x +:= 1 [p] f := 1);
    }
    f := 0;
    while (f = 0) {
        (x -:= 1 [q] f := 1);
    }
    return x;
}
```

```
int XminY2(float p, q){
 int x, f := 0, 0;
  (f := 0 [0.5] f := 1);
  if (f = 0) \{
   while (f = 0) {
    (x +:= 1 [p] f := 1);
   }
 } else {
   f := 0;
   while (f = 0) {
     x -:= 1;
     (skip [q] f := 1);
   }
  }
return x;
```

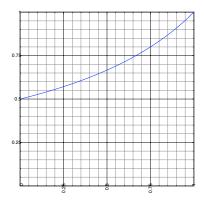
Our analysis yields:

Both programs are equivalent for any q with $q = \frac{1}{2-n}$.

```
Joost-Pieter Katoen
```

Introduction

Graphically this means



Both programs yield the same expected outcome for all points on the curve $q = \frac{1}{2-p}$.

Joost-Pieter Katoen

Automated Analysis of Probabilistic Programs

Roadmap of the talk

Introduction

- Probabilistic guarded command language
- Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

Overview

Introduction

- Probabilistic guarded command language
 - 3 Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

Dijkstra's guarded command language

▶ skip	empty statement
▶ abort	abortion
► x := E	assignment
▶ prog1 ; prog2	sequential composition
▶ if (G) prog1 else prog2	choice
▶ prog1 [] prog2	non-deterministic choice
▶ while (G) prog	iteration

Probabilistic guarded command language pGCL

skip	empty statement
abort	abortion
x := E	assignment
prog1 ; prog2	sequential composition
<pre>if (G) prog1 else prog2</pre>	choice
prog1 [] prog2	non-deterministic choice
prog1 [p] prog2	probabilistic choice

while (G) prog

iteration

Overview

Introduction

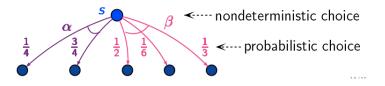
- Probabilistic guarded command language
- Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

Markov decision processes

Markov decision process

An MDP \mathcal{M} is a tuple (S, S_0, \rightarrow) where

- ▶ *S* is a countable set of states with initial state-set $S_0 \subseteq S$, $S_0 \neq \emptyset$
- $\rightarrow \subseteq S \times Dist(S)$ is a transition relation

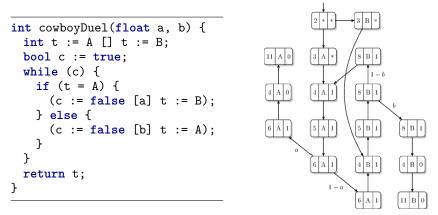


Operational semantics of pGCL

Aim: Model the behaviour of a program $P \in \text{pGCL}$ by an MDP $\mathcal{M}[\![P]\!]$. Approach:

- Let η be a variable valuation of the program variables
- ► Use the special (semantic) construct exit for successful termination
- ▶ States are of the form $\langle Q, \eta \rangle$ with $Q \in \text{pGCL}$ or Q = exit
- Initial states are tuples $\langle P, \eta \rangle$ where η fulfils the initial conditions
- \blacktriangleright Transition relation \rightarrow is the smallest relation satisfying the inference rules

MDP of duelling cowboys



This MDP is parameterized but finite. Once we count the number of shots before one of the cowboys dies, the MDP becomes infinite. Our approach however allows to determine e.g., the expected number of shots before success.

Overview

Introduction

- Probabilistic guarded command language
- 3 Operational semantics of pGCL

4 Denotational semantics of pGCL

- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

Weakest preconditions

Weakest precondition

[Dijkstra 1975]

A predicate transformer is a total function between two predicates on the state of a program.

The predicate transformer wp(P, F) for program P and postcondition F yields the "weakest" precondition E on the initial state of P ensuring that the execution of P terminates in a final state satisfying F.

Hoare triple $\{E\} P \{F\}$ holds for total correctness iff $E \Rightarrow wp(P, F)$.

Predicate transformer semantics of Dijkstra's GCL

Syntax	Semantics wp(P, F)
► skip	► F
▶ abort	► false
► x := E	► F [x := E]
▶ P1 ; P2	\blacktriangleright wp(P ₁ , wp(P ₂ , F))
▶ if (G)P1 else P2	$\blacktriangleright (G \Rightarrow wp(P_1, F)) \land (\neg G \Rightarrow wp(P_2, F))$
▶ P1 [] P2	$\blacktriangleright wp(P_1, F) \land wp(P_2, F)$
► while (G)P	► $\mu X. ((G \Rightarrow wp(P, X)) \land (\neg G \Rightarrow F))$

 μ is the least fixed point operator wrt. the ordering \Rightarrow on predicates.

Expectations

Weakest pre-expectation

[McIver & Morgan 2004]

An expectation maps program states onto non-negative reals. It's the quantitative analogue of a predicate.

An expectation transformer is a total function between two expectations on the state of a program.

The transformer wp(P, f) for program P and post-expectation f yields the least expectation e on P's initial state ensuring that P's execution terminates with an expectation f.

Annotation $\{e\} P\{f\}$ holds for total correctness iff $e \leq wp(P, f)$, where \leq is to be interpreted in a point-wise manner.

Expectation transformer semantics of pGCL

Syntax	Semantics wp(P, f)
▶ skip	► f
▶ abort	▶ 0
► x := E	• $f[x := E]$
▶ P1 ; P2	$\blacktriangleright wp(P_1, wp(P_2, f))$
▶ if (G)P1 else P2	$\models [G] \cdot wp(P_1, \mathbf{f}) + [\neg G] \cdot wp(P_2, \mathbf{f})$
▶ P1 [] P2	$\blacktriangleright \min(wp(P_1, f), wp(P_2, f))$
▶ P1 [p] P2	$\blacktriangleright p \cdot wp(P_1, f) + (1-p) \cdot wp(P_2, f)$
▶ while (G)P	$\blacktriangleright \mu X. ([G] \cdot wp(P, X) + [\neg G] \cdot f)$

 μ is the least fixed point operator wrt. the ordering \leqslant on expectations.

A simple slot machine

Example weakest pre-expectations

Let
$$all(x) \equiv (x = d_1 = d_2 = d_3)$$
.
• If $f = [all(\heartsuit)]$, then $wlp(flip, f) = \frac{1}{8}$.
• If $g = 10 \cdot [all(\heartsuit)] + 5 \cdot [all(\diamondsuit)]$, then:
 $wlp(flip, g) = 6 \cdot \frac{1}{8} \cdot 0 + 1 \cdot \frac{1}{8} \cdot 10 + 1 \cdot \frac{1}{8} \cdot 5 = \frac{15}{8}$

So the least fraction of the jackpot the gamer can expect to win is $\frac{15}{8}$.

Overview

Introduction

- Probabilistic guarded command language
- 3 Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

MDPs with rewards

To compare the operational and wp- and wlp-semantics, we use rewards.

MDP with rewards

An MDP with rewards is a pair (\mathcal{M}, r) with \mathcal{M} an MDP with state space S and $r : S \to \mathbb{R}$ a function assigning a real reward to each state.

The reward r(s) stands for the reward earned on entering state s.

Cumulative reward for reachability

Let $\pi = s_0 \xrightarrow{\mu_0} s_1 \xrightarrow{\mu_1} \ldots$ be an infinite path in (\mathcal{M}, r) and $T \subseteq S$ a set of target states such that $\pi \models \Diamond T$. The cumulative reward along π before reaching T is defined by:

$$r_{\mathcal{T}}(\pi) = r(s_0) + \ldots + r(s_k)$$
 where $s_i
ot\in \mathcal{T}$ for all $i < k$ and $s_k \in \mathcal{T}$.

If $\pi \not\models \Diamond T$, then $r_T(\pi) = 0$.

Reward-bounded reachability

Expected reward for reachability

The minimal expected reward until reaching $T \subseteq S$ from $s \in S$ is:

$$ERew(s \models \Diamond T) = \min_{\mathfrak{P}} \int_0^\infty \mathbf{c} \cdot Pr^{\mathfrak{P}} \{ \pi \in Paths^{\mathfrak{P}}(s, \Diamond T) \mid r_T(\pi) = \mathbf{c} \} d\mathbf{c}$$

A demonic positional policy corresponds to a weakest pre-expectation.

Relating operational and wp-semantics of pGCL

Weakest pre-expectations vs. expected reachability rewards

For pGCL-program P, variable valuation η , and post-expectation f:

$$wp(P, f)(\eta) = ERew^{\mathcal{M}\llbracket P \rrbracket}(\langle P, \eta \rangle \models \Diamond P^{\checkmark})$$

where rewards in MDP $\mathcal{M}[\![P]\!]$ are: $r(\langle exit, \eta' \rangle) = f(\eta')$ and 0 otherwise.

Thus, wp(P, f) evaluated at η is the minimal expected value of f over any of the resulting distributions of P. The weakest liberal pre-expectation wp(P, f) is similar under the condition that the program terminates.

Overview

Introduction

- Probabilistic guarded command language
- 3 Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

Qualitative loop invariants

Recall that for while-loops we have:

$$wp(while(G)\{P\}, F) = \mu X. (G \Rightarrow wp(P, X) \land \neg G \Rightarrow F)$$

To determine this *wp*, one exploits an "invariant" I such that $\neg G \land I \Rightarrow F$.

Loop invariant

Predicate *I* is a loop invariant if it is preserved by loop iterations:

 $G \land I \Rightarrow wp(P, I)$ (consecution condition)

Then: $\{I\}$ while $(G)\{P\}$ $\{F\}$ is a correct program annotation.

Linear invariant generation [Colón et al., 2003]

Linear programs

A program is linear program whenever all guards are linear constraints, and updates are linear expressions (in the real program variables).

Approach by Colón et al.

1. Speculatively annotate a program with linear boolean expressions:

$$\alpha_1 \cdot x_1 + \ldots + \alpha_n \cdot x_n + \alpha_{n+1} \leq 0$$

where α_i is a parameter and x_i a program variable.

- 2. Express verification conditions as inequality constraints over α_i , x_i .
- 3. Transform these inequality constraints into polynomial constraints (e.g., using Farkas lemma).
- 4. Use off-the-shelf constraint-solvers to solve them (e.g., RedLOG).
- 5. Exploit resulting assertions to infer program correctness.

Quantitative loop invariants

Recall that for while-loops we have:

$$wp(while(G)\{P\}, f) = \mu X. ([G] \cdot wp(P, X) + [\neg G] \cdot f)$$

To determine this wp, we use an "invariant" I such that $[\neg G] \cdot I \leq f$.

Quantitative loop invariant

Expectation / is a quantitative loop invariant if —by consecution—

▶ it is preserved by loop iterations: $[G] \cdot I \leq wlp(P, I)$.

To guarantee soundness, / has to fulfill either:

1. I is bounded from below and by above by some constants, or

- 2. on each iteration there is a probability $\epsilon > 0$ to exit the loop
- Then: $\{I\}$ while $(G)\{P\}$ $\{f\}$ is a correct program annotation.

Our approach

Main steps

1. Speculatively annotate a program with linear expressions:

 $[\alpha_1 \cdot x_1 + \ldots + \alpha_n \cdot x_n + \alpha_{n+1} \ll 0] \cdot (\beta_1 \cdot x_1 + \ldots + \beta_n \cdot x_n + \beta_{n+1})$

with real parameters α_i , β_i , program variable x_i , and $\ll \in \{<, \leqslant\}$.

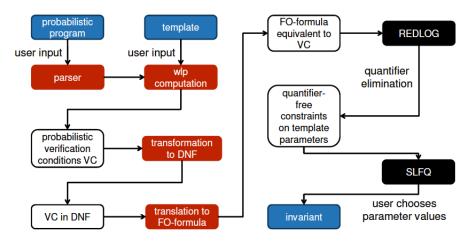
- 2. Transform these numerical constraints into Boolean predicates.
- 3. Transform these predicates into non-linear FO formulas
- 4. Use constraint-solvers for quantifier elimination (e.g., REDLOG).
- 5. Simplify the resulting formulas (e.g., using SLFQ and SMT solving).
- 6. Exploit resulting assertions to infer program correctness.

Soundness and completeness

Theorem

For any linear pGCL program annotated with propositionally linear expressions, our method will find all parameter solutions that make the annotation valid, and no others.

PRINSYS Tool: Synthesis of Probabilistic Invariants



download from moves.rwth-aachen.de/prinsys

Duelling cowboys: when does A win?

Aim: find expectation \mathcal{T}_{i}

Satisfying $\mathcal{T} \leqslant [t = A]$ upon termination.

Observation

On entering the loop, c = 1 and either t = A or t = B.

Template suggestion

$$\mathcal{T} = \underbrace{[t = A \land c = 0]}_{A \text{ wins duel}} \cdot 1 \\ + \underbrace{[t = A \land c = 1]}_{A' \text{ s turn}} \cdot \alpha \\ + \underbrace{[t = B \land c = 1]}_{B' \text{ s turn}} \cdot \beta$$

Duelling cowboys: when does A win?

Invariant template

$$\mathcal{T} = [\mathsf{t} = \mathsf{A} \land \mathsf{c} = \mathsf{0}] \cdot \mathsf{1} + [\mathsf{t} = \mathsf{A} \land \mathsf{c} = \mathsf{1}] \cdot \alpha + [\mathsf{t} = \mathsf{B} \land \mathsf{c} = \mathsf{1}] \cdot \beta$$

Initially, $t = A \land c = 1$ and thus $\alpha = \Pr{A \text{ wins duel}}$.

Running **PRINSYS** yields

 $\mathbf{a} \cdot \mathbf{\beta} - \mathbf{a} + \mathbf{\alpha} - \mathbf{\beta} \leqslant \mathbf{0} \quad \wedge \quad \mathbf{b} \cdot \mathbf{\alpha} - \mathbf{\alpha} + \mathbf{\beta} \leqslant \mathbf{0}$

Simplification yields

$$\beta \leqslant (1-b) \cdot \alpha$$
 and $\alpha \leqslant rac{a}{a+b-a \cdot b}$

As we want to maximise the probability to win

$$\beta = (1 - b) \cdot \alpha$$
 and $\alpha = \frac{a}{a + b - a \cdot b}$

It follows that cowboy A wins the duel with probability $\frac{a}{a+b-a\cdot b}$.

Quantitative loon invariant

Joost-Pieter Katoen

Automated Analysis of Probabilistic Programs

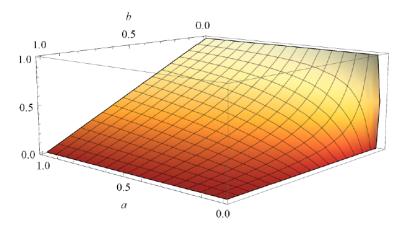
Annotated program for post-expectation [t = A]

1 int covboyDuel(a, b) {
2
$$\left\langle \frac{(1-b)a}{a+b-ab} \right\rangle$$

3 $\left\langle \min\left\{\frac{a}{a+b-ab}, \frac{(1-b)a}{a+b-ab}\right\} \right\rangle$
4 $(t := A [] t := B);$
5 $\left\langle [t = A] \cdot \frac{a}{a+b-ab} + [t = B] \cdot \frac{(1-b)a}{a+b-ab} \right\rangle$
6 $c := 1;$
7 $\left\langle [t = A \land c = 0] \cdot 1 + [t = A \land c = 1] \cdot \frac{a}{a+b-ab} + [t = B \land c = 1] \cdot \frac{(1-b)a}{a+b-ab} \right\rangle$
8 while $(c = 1)$ {
9 $\left\langle [t = A \land c = 1] \cdot \frac{a}{a+b-ab} + [t = B \land c = 1] \cdot \frac{(1-b)a}{a+b-ab} \right\rangle$
10 $\left\langle [t = A \land c \neq 1] \cdot a + [t = A \land c = 1] \cdot \frac{a}{a+b-ab} \right\rangle$
11 if $(t = A)$ {
12 $(c := 0 [a] t := B);$
13 $\}$ else {
14 $(c := 0 [b] t := A);$
15 \rbrace
16 $\left\langle [t = A \land c = 0] \cdot 1 + [t = A \land c = 1] \cdot \frac{a}{a+b-ab} + [t = B \land c = 1] \cdot \frac{(1-b)a}{a+b-ab} \right\rangle$
17 $\right\rbrace$
18 $\left\langle [c \neq 1] \cdot \left([t = A \land c = 0] \cdot 1 + [t = A \land c = 1] \cdot \frac{a}{a+b-ab} + [t = B \land c = 1] \cdot \frac{a}{a+b-ab} + [t = B \land c = 1] \cdot \frac{(1-b)a}{a+b-ab} \right)$
19 $\left\langle [t = A] \right\rangle$

Joost-Pieter Katoen

When one starts nondeterministically



Cowboy A wins the duel with probability at least
$$\frac{(1-b)\cdot a}{a+b-a\cdot b}$$
.

Joost-Pieter Katoen

Program equivalence

Using template $\mathcal{T} = x + [f = 0] \cdot \alpha$ we find the invariants :

$$\alpha_{11} = \frac{p}{1-p}$$
, $\alpha_{12} = -\frac{q}{1-q}$, $\alpha_{21} = \alpha_{11}$ and $\alpha_{22} = -\frac{1}{1-q}$.

Joost-Pieter Katoen

Overview

Introduction

- Probabilistic guarded command language
- Operational semantics of pGCL
- 4 Denotational semantics of pGCL
- 5 Denotational vs. operational semantics of pGCL
- 6 Synthesizing loop invariants

Recursive probabilistic programs

Probabilistic pushdown automata

[Esparza *et al.*, 2004]

Are a natural model for recursive probabilistic programs. Checking whether they simulate (or are simulated by) a finite Markov chain is EXPTIME-complete.

0١	verview of complexitie	2S	[Fu & Katoen, 2011]
		(coupled) bisimilarity	(coupled) similarity
	PDA vs. finite TS	PSPACE-complete	EXPTIME-complete
	pPDA vs. finite pTS	EXPTIME-complete	EXPTIME-complete

Epilogue

Take-home message

- Connection between wp-semantics and operational semantics.
- Synthesizing probabilistic loop invariants using constraint solving.
- \Rightarrow Large potential for automated probabilistic program analysis.
 - Initial prototypical tool-support PRINSYS.

Future work

- Further development of **PRINSYS**.
- Non-linear probabilistic programs.
- Average time-complexity analysis.

