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Probabilistic programs

What are probabilistic programs?
Sequential, possibly non-deterministic, programs with random assignments.

Applications
Cryptography, privacy, quantum computing, and randomized algorithms.

The scientific challenge

I Such programs are small, but hard to understand and analyse1.
I Problems: infinite variable domains, (lots of) parameters, and loops.
⇒ Our aim: push the limits of automated analysis

1Their analysis is undecidable.
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Once upon a time . . . . . .
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Duelling cowboys

int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
int t := A [] t := B; // decide cowboy for first shooting

turn
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B); // A shoots B with prob. a

} else {
(c := false [b] t := A); // B shoots A with prob. b

}
}

return t; // the survivor
}

Claim:
Cowboy A wins the duel with probability at least (1−b)·a

a+b−a·b .
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Playing with geometric distributions

I X is a random variable, geometrically distributed with parameter p
I Y is a random variable, geometrically distributed with parameter q
Q: generate a sample x , say, according to the random variable X − Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}
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An alternative program

int XminY2(float p, q){
int x := 0;
bool flip := false;
(flip := false [0.5] flip := true); // flip a fair coin
if (not flip) {

while (not flip) { // sample X to increase x
(x +:= 1 [p] flip := true);

}
} else {

flip := false; // reset flip
while (not flip) { // sample Y to decrease x

x -:= 1;
(skip [q] flip := true);

}
}

return x; // a sample of X-Y
}
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Program equivalence

int XminY1(float p, q){
int x, f := 0, 0;
while (f = 0) {

(x +:= 1 [p] f := 1);
}
f := 0;
while (f = 0) {

(x -:= 1 [q] f := 1);
}
return x;

}

int XminY2(float p, q){
int x, f := 0, 0;
(f := 0 [0.5] f := 1);
if (f = 0) {

while (f = 0) {
(x +:= 1 [p] f := 1);

}
} else {

f := 0;
while (f = 0) {

x -:= 1;
(skip [q] f := 1);

}
}

return x;
}

Claim: [Kiefer et. al., 2012]

Both programs are equivalent for (p, q) = (12 ,
2
3). Q: No other ones?
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Correctness of probabilistic programs
Question:
How to verify the correctness of such programs? In an automated way?

Apply model checking?

I Apply MDP model checking. LiQuor, PRISM
⇒ works for program instances, but no general solution.

I Use abstraction-refinement techniques. PASS, POGAR
⇒ loop analysis with real variables does not work well.

I Check language equivalence. APEX
⇒ cannot deal with parameterised probabilistic programs.

I Apply parameterised probabilistic model checking. PARAM
⇒ deals with fixed-sized probabilistic programs.

Apply deductive verification!
[McIver & Morgan]

I Use Floyd-Hoare style reasoning for probabilistic programs.
I allowing for backward post- pre-condition reasoning.

I Quantitative loop invariants are pivotal to this approach.
I . . . . . . but are much harder to find than qualitative loop invariants.

I Finding such loop invariants typically requires human ingenuity.

Our approach:
Semi-automated loop-invariant generation for probabilistic programs.

Let us illustrate what kind of results can be obtained by this approach.
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Duelling cowboys

int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
int t := A [] t := B; // decide which cowboy has first

shooting turn
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B); // A shoots B with prob. a

} else {
(c := false [b] t := A); // B shoots A with prob. b

}
}

return t; // the survivor
}

We can infer:

Cowboy A wins the duel with probability at least (1−b)·a
a + b − a·b .
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Program equivalence

int XminY1(float p, q){
int x, f := 0, 0;
while (f = 0) {

(x +:= 1 [p] f := 1);
}
f := 0;
while (f = 0) {

(x -:= 1 [q] f := 1);
}
return x;

}

int XminY2(float p, q){
int x, f := 0, 0;
(f := 0 [0.5] f := 1);
if (f = 0) {

while (f = 0) {
(x +:= 1 [p] f := 1);

}
} else {

f := 0;
while (f = 0) {

x -:= 1;
(skip [q] f := 1);

}
}

return x;
}

Our analysis yields:
Both programs are equivalent for any q with q = 1

2−p .
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Graphically this means . . .
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Both programs yield the same expected outcome for all points on the curve
q = 1

2−p .
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Dijkstra’s guarded command language

I skip empty statement
I abort abortion
I x := E assignment
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [] prog2 non-deterministic choice
I while (G) prog iteration
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Probabilistic guarded command language pGCL

I skip empty statement
I abort abortion
I x := E assignment
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [] prog2 non-deterministic choice
I prog1 [p] prog2 probabilistic choice
I while (G) prog iteration
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Markov decision processes

Markov decision process
An MDPM is a tuple (S,S0, −→) where
I S is a countable set of states with initial state-set S0 ⊆ S, S0 6= ∅
I −→ ⊆ S × Dist(S) is a transition relation
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Operational semantics of pGCL

Aim: Model the behaviour of a program P ∈ pGCL by an MDPM[[P ]].
Approach:
I Let η be a variable valuation of the program variables
I Use the special (semantic) construct exit for successful termination
I States are of the form 〈Q, η〉 with Q ∈ pGCL or Q = exit
I Initial states are tuples 〈P, η〉 where η fulfils the initial conditions
I Transition relation → is the smallest relation satisfying the inference

rules
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MDP of duelling cowboys

int cowboyDuel(float a, b) {
int t := A [] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

This MDP is parameterized but finite. Once we count the number of shots before one of
the cowboys dies, the MDP becomes infinite. Our approach however allows to determine
e.g., the expected number of shots before success.
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Weakest preconditions

Weakest precondition [Dijkstra 1975]

A predicate transformer is a total function between two predicates on the
state of a program.
The predicate transformer wp(P,F ) for program P and postcondition F
yields the “weakest" precondition E on the initial state of P ensuring that
the execution of P terminates in a final state satisfying F .
Hoare triple {E}P {F} holds for total correctness iff E ⇒ wp(P,F ).
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Predicate transformer semantics of Dijkstra’s GCL

Syntax

I skip

I abort

I x := E

I P1 ; P2

I if (G) P1 else P2

I P1 [] P2

I while (G)P

Semantics wp(P,F )

I F
I false
I F [x := E ]
I wp(P1,wp(P2,F ))
I (G ⇒ wp(P1,F )) ∧ (¬G ⇒ wp(P2,F ))
I wp(P1,F ) ∧ wp(P2,F )
I µX . ((G ⇒ wp(P,X )) ∧ (¬G ⇒ F ))

µ is the least fixed point operator wrt. the ordering ⇒ on predicates.
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Expectations

Weakest pre-expectation [McIver & Morgan 2004]

An expectation maps program states onto non-negative reals. It’s the
quantitative analogue of a predicate.
An expectation transformer is a total function between two expectations
on the state of a program.
The transformer wp(P, f ) for program P and post-expectation f yields the
least expectation e on P’s initial state ensuring that P’s execution
terminates with an expectation f .
Annotation {e}P {f } holds for total correctness iff e 6 wp(P, f ), where
6 is to be interpreted in a point-wise manner.
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Expectation transformer semantics of pGCL

Syntax

I skip

I abort

I x := E

I P1 ; P2

I if (G) P1 else P2

I P1 [] P2

I P1 [p] P2

I while (G)P

Semantics wp(P, f )

I f
I 0
I f [x := E ]
I wp(P1,wp(P2, f ))
I [G ] · wp(P1, f ) + [¬G ] · wp(P2, f )
I min (wp(P1, f ),wp(P2, f ))
I p · wp(P1, f ) + (1−p) · wp(P2, f )
I µX . ([G ] · wp(P,X ) + [¬G ] · f )

µ is the least fixed point operator wrt. the ordering 6 on expectations.
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A simple slot machine
void flip {

d1 := ♥ [1/2] ♦;
d2 := ♥ [1/2] ♦;
d3 := ♥ [1/2] ♦;

}

Example weakest pre-expectations
Let all(x) ≡ (x = d1 = d2 = d3).
I If f = [all(♥)], then wlp(flip, f ) = 1

8 .
I If g = 10 · [all(♥)] + 5 · [all(♦)], then:

wlp(flip, g) = 6 · 18 · 0+ 1 · 18 · 10+ 1 · 18 · 5 =
15
8

So the least fraction of the jackpot the gamer can expect to win is 15
8 .
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MDPs with rewards
To compare the operational and wp- and wlp-semantics, we use rewards.

MDP with rewards
An MDP with rewards is a pair (M, r) withM an MDP with state space
S and r : S → R a function assigning a real reward to each state.
The reward r(s) stands for the reward earned on entering state s.

Cumulative reward for reachability
Let π = s0 µ0−−→ s1 µ1−−→ . . . be an infinite path in (M, r) and T ⊆ S a set
of target states such that π |= ♦T . The cumulative reward along π before
reaching T is defined by:

rT (π) = r(s0)+ . . .+r(sk) where si 6∈ T for all i < k and sk ∈ T .

If π 6|= ♦T , then rT (π) = 0.
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Reward-bounded reachability

Expected reward for reachability
The minimal expected reward until reaching T ⊆ S from s ∈ S is:

ERew(s |= ♦T ) = min
P

∫ ∞
0

c · PrP{π ∈ PathsP(s,♦T ) | rT (π) = c } dc

A demonic positional policy corresponds to a weakest pre-expectation.
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Relating operational and wp-semantics of pGCL

Weakest pre-expectations vs. expected reachability rewards
For pGCL-program P, variable valuation η, and post-expectation f :

wp(P, f )(η) = ERewM[[P ]](〈P, η〉 |= ♦P
√
)

where rewards in MDPM[[P ]] are: r(〈exit, η′〉) = f (η′) and 0 otherwise.

Thus, wp(P, f ) evaluated at η is the minimal expected value of f over any
of the resulting distributions of P. The weakest liberal pre-expectation
wp(P, f ) is similar under the condition that the program terminates.
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Qualitative loop invariants

Recall that for while-loops we have:

wp(while(G){P},F ) = µX . (G ⇒ wp(P,X ) ∧ ¬G ⇒ F )

To determine this wp, one exploits an “invariant” I such that ¬G ∧ I ⇒ F .

Loop invariant
Predicate I is a loop invariant if it is preserved by loop iterations:

G ∧ I ⇒ wp(P, I) (consecution condition)

Then: {I} while(G){P} {F} is a correct program annotation.
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Linear invariant generation [Colón et al., 2003]

Linear programs
A program is linear program whenever all guards are linear constraints, and
updates are linear expressions (in the real program variables).

Approach by Colón et al.

1. Speculatively annotate a program with linear boolean expressions:

α1·x1 + . . .+ αn·xn + αn+1 6 0

where αi is a parameter and xi a program variable.
2. Express verification conditions as inequality constraints over αi , xi .
3. Transform these inequality constraints into polynomial constraints

(e.g., using Farkas lemma).
4. Use off-the-shelf constraint-solvers to solve them (e.g., Redlog).
5. Exploit resulting assertions to infer program correctness.
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Quantitative loop invariants

Recall that for while-loops we have:

wp(while(G){P}, f ) = µX . ([G ] · wp(P,X ) + [¬G ] · f )

To determine this wp, we use an “invariant” I such that [¬G ] · I 6 f .

Quantitative loop invariant
Expectation I is a quantitative loop invariant if —by consecution—
I it is preserved by loop iterations: [G ] · I 6 wlp(P, I).

To guarantee soundness, I has to fulfill either:
1. I is bounded from below and by above by some constants, or
2. on each iteration there is a probability ε > 0 to exit the loop

Then: {I} while(G){P} {f } is a correct program annotation.
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Our approach

Main steps

1. Speculatively annotate a program with linear expressions:

[α1·x1 + . . .+ αn·xn + αn+1 << 0] · (β1·x1 + . . .+ βn·xn + βn+1)

with real parameters αi ,βi , program variable xi , and <<∈ {<,6 }.
2. Transform these numerical constraints into Boolean predicates.
3. Transform these predicates into non-linear FO formulas
4. Use constraint-solvers for quantifier elimination (e.g., Redlog).
5. Simplify the resulting formulas (e.g., using Slfq and SMT solving).
6. Exploit resulting assertions to infer program correctness.
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Soundness and completeness

Theorem
For any linear pGCL program annotated with propositionally linear expressions, our
method will find all parameter solutions that make the annotation valid, and no
others.

Joost-Pieter Katoen Automated Analysis of Probabilistic Programs 36/45



ISCAS Beijing Synthesizing loop invariants

Prinsys Tool: Synthesis of Probabilistic Invariants

download from moves.rwth-aachen.de/prinsys
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Duelling cowboys: when does A win?

int cbDuel(float a, b) {
int t := A;
int c := 1;
while (c = 1) {
if (t = A) {
(c := 0 [a] t := B);

} else {
(c := 0 [b] t := A);

}
}
return t ;

}

Aim: find expectation T
Satisfying T 6 [t = A] upon termination.

Observation
On entering the loop, c = 1 and either t = A or
t = B.

Template suggestion

T = [t = A ∧ c = 0]︸ ︷︷ ︸
A wins duel

·1

+ [t = A ∧ c = 1]︸ ︷︷ ︸
A’s turn

·α

+ [t = B ∧ c = 1]︸ ︷︷ ︸
B’s turn

·β
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Duelling cowboys: when does A win?
Invariant template
T = [t = A ∧ c = 0] · 1+ [t = A ∧ c = 1] · α+ [t = B ∧ c = 1] · β
Initially, t = A ∧ c = 1 and thus α = Pr{A wins duel}.

Running PrinSys yields
a · β − a + α− β 6 0 ∧ b · α− α+ β 6 0

Simplification yields
β 6 (1− b)·α and α 6

a
a + b − a·b

As we want to maximise the probability to win
β = (1− b)·α and α =

a
a + b − a·b

It follows that cowboy A wins the duel with probability a
a+b−a·b .

Quantitative loop invariant

I = [t = A ∧ c = 0]·1+[t = A ∧ c = 1]· a
a + b − ab+[t = B ∧ c = 1]· (1− b)a

a + b − a·b
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Annotated program for post-expectation [t = A]
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When one starts nondeterministically

Cowboy A wins the duel with probability at least (1−b)·a
a + b − a·b .
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Program equivalence

int XminY1(float p, q){
int x, f := 0, 0;
while (f = 0) {
(x +:= 1 [p] f := 1);

}
f := 0;
while (f = 0) {
(x −:= 1 [q] f := 1);

}
return x;

}

int XminY2(float p, q){
int x, f := 0, 0;
( f := 0 [0.5] f := 1);
if (f = 0) {
while (f = 0) {
(x +:= 1 [p] f := 1);

}
} else {
f := 0;
while (f = 0) {
x −:= 1;
(skip [q] f := 1);

}
}

return x;
}

Using template T = x + [f = 0] · α we find the invariants :
α11 =

p
1−p , α12 = −

q
1−q , α21 = α11 and α22 = − 1

1−q .

Expected value of x is p
1− p −

q
1− q and p

2(1− p) −
1

2(1− q) .
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Recursive probabilistic programs
Probabilistic pushdown automata [Esparza et al., 2004]

Are a natural model for recursive probabilistic programs. Checking whether they
simulate (or are simulated by) a finite Markov chain is EXPTIME-complete.

Overview of complexities [Fu & Katoen, 2011]

(coupled) (coupled)
bisimilarity similarity

PDA vs. finite TS PSPACE-complete EXPTIME-complete

pPDA vs. finite pTS EXPTIME-complete EXPTIME-complete

Joost-Pieter Katoen Automated Analysis of Probabilistic Programs 44/45



ISCAS Beijing Epilogue

Epilogue

Take-home message

I Connection between wp-semantics and operational semantics.
I Synthesizing probabilistic loop invariants using constraint solving.
⇒ Large potential for automated probabilistic program analysis.
I Initial prototypical tool-support Prinsys.

Future work
I Further development of Prinsys.
I Non-linear probabilistic programs.
I Average time-complexity analysis.
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