Compression of enumerations and gain

Xiaoyan Zhang

State Key Lab of Computer Science Institute of Software, Chinese Academy of Science

Recursion Theory and its Applications October 17, 2023

Joint work with George Barmpalias, Bohua Zhan

For $\sigma \in 2^{<\omega}$, let $C(\sigma)$ (or $K(\sigma)$) be its plain (or prefix-free) Komogorov complexity

$$\min\{|\rho|:\rho\in 2^{<\omega}, U(\rho)\downarrow=\sigma\}$$

where U is an universal (prefix-free) Turing machine.

For $\sigma \in 2^{<\omega}$, let $C(\sigma)$ (or $K(\sigma)$) be its plain (or prefix-free) Komogorov complexity

$$\min\{|\rho|:\rho\in 2^{<\omega}, U(\rho)\downarrow=\sigma\}$$

where U is an universal (prefix-free) Turing machine.

Let $K(\sigma|\tau)$ be the relative prefix-free Komogorov complexity

$$\mathcal{K}(\sigma|\tau) = \min\{|\rho| : \rho \in 2^{<\omega}, U^{\tau}(\rho) \downarrow = \sigma\}.$$

For $\sigma \in 2^{<\omega}$, let $C(\sigma)$ (or $K(\sigma)$) be its plain (or prefix-free) Komogorov complexity

$$\min\{|\rho|:\rho\in 2^{<\omega}, U(\rho)\downarrow=\sigma\}$$

where U is an universal (prefix-free) Turing machine.

Let $K(\sigma|\tau)$ be the relative prefix-free Komogorov complexity

$$\mathcal{K}(\sigma|\tau) = \min\{|\rho| : \rho \in 2^{<\omega}, U^{\tau}(\rho) \downarrow = \sigma\}.$$

Given a set $A \subset \omega$, let $A \upharpoonright_n$ be the first *n* bits of *A*. This can be regarded as the set $A \cap [0, n)$, or the string

$$A(0)A(1)\cdots A(n-1).$$

Roughly speeking, $n \mapsto C(A \upharpoonright_n)$ describes how the complexity of A grows.

Given $A, B \subset \omega$.

- $A \leq_C B$ if $C(A \upharpoonright_n) \leq C(B \upharpoonright_n) + O(1)$.
- $A \leq_{\kappa} B$ if $K(A \upharpoonright_n) \leq K(B \upharpoonright_n) + O(1)$.
- $A \leq_{rK} B$ if $K(A \upharpoonright_n |B \upharpoonright_n) \leq O(1)$.
- $A \leq_{cl} B$ if $A \leq_T B$ with oracle use bounded by $n \mapsto n + O(1)$.
- $A \leq_{ibT} B$ if $A \leq_T B$ with oracle use bounded by indentity.

Given $A, B \subset \omega$.

- $A \leq_C B$ if $C(A \upharpoonright_n) \leq C(B \upharpoonright_n) + O(1)$.
- $A \leq_{\kappa} B$ if $K(A \upharpoonright_n) \leq K(B \upharpoonright_n) + O(1)$.
- $A \leq_{rK} B$ if $K(A \upharpoonright_n |B \upharpoonright_n) \leq O(1)$.
- $A \leq_{cl} B$ if $A \leq_T B$ with oracle use bounded by $n \mapsto n + O(1)$.
- $A \leq_{ibT} B$ if $A \leq_T B$ with oracle use bounded by indentity.

Fact

$$ibT \Rightarrow cl \Rightarrow rK \Rightarrow C, K$$

Theorem (Downey, Hirschfeldt, and LaForte, 2004) $rK \Rightarrow T$

Theorem (Downey, Hirschfeldt, and LaForte, 2004)
$$rK \Rightarrow T$$

Theorem (Downey, Hirschfeldt, and LaForte, 2004)

Given A, $B \subset \omega$. A $\leq_{rK} B$ if and only if there is a partial recursive function $f: 2^{<\omega} \times \omega \rightarrow 2^{<\omega}$ and a constant k such that one of

$$f(B \upharpoonright_n, 0), f(B \upharpoonright_n, 1), \cdots, f(B \upharpoonright_n, k)$$

halts and outputs $A \upharpoonright_n$.

Are the partial orders of these degrees of r.e. sets dense?

Are the partial orders of these degrees of r.e. sets dense?

Theorem (Barmpalias, Lewis, 2006)

ibT-degrees of r.e. sets are not dense.

Are the partial orders of these degrees of r.e. sets dense?

Theorem (Barmpalias, Lewis, 2006)

ibT-degrees of r.e. sets are not dense.

Theorem (Day, 2010)

cl-degrees of r.e. sets are not dense.

Are the partial orders of these degrees of r.e. sets dense?

Theorem (Barmpalias, Lewis, 2006)

ibT-degrees of r.e. sets are not dense.

Theorem (Day, 2010)

cl-degrees of r.e. sets are not dense.

For rK, K and C-degrees, the question is open.

How were most of the density results in r.e. degrees proved?

How were most of the density results in r.e. degrees proved?

Given r.e. sets A and B with B < A. Construct r.e. D which contains "part" of information in A. We would want $B < B \oplus D < A$, so we need

- *D* ≤ *A*,
- $B \oplus D \not\leq B$,
- $A \not\leq B \oplus D$,

which could be done using a priority argument.

How were most of the density results in r.e. degrees proved?

Given r.e. sets A and B with B < A. Construct r.e. D which contains "part" of information in A. We would want $B < B \oplus D < A$, so we need

- *D* ≤ *A*,
- $B \oplus D \not\leq B$,
- $A \not\leq B \oplus D$,

which could be done using a priority argument.

However, we don't know a "join" (least upper bound) operator for r.e. rK-degrees.

Given r.e. set A. We call a r.e. set D a **compression** of A if $A \leq_{rK} D$.

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{rK} D$.

The compression is **gainless** if $D \leq_{rK} A$.

Given r.e. set A. We call a r.e. set D a **compression** of A if $A \leq_{rK} D$.

The compression is **gainless** if $D \leq_{rK} A$. The compression is **strong** if $D \subset 2\mathbb{N}$, i.e. it can be written as $A' \oplus \emptyset$.

Given r.e. set A. We call a r.e. set D a **compression** of A if $A \leq_{rK} D$.

The compression is **gainless** if $D \leq_{rK} A$. The compression is **strong** if $D \subset 2\mathbb{N}$, i.e. it can be written as $A' \oplus \emptyset$.

Fact

Given r.e. set A and B. If $A' \oplus \emptyset$, $B' \oplus \emptyset$ are strong gainless compression of A, B, respectively, then $A' \oplus B'$ is a least upper bound of A and B in rK-degrees.

Given r.e. set A and B with $B <_r A$. If both A, B have strong gainless compression, then there is a r.e. C such that $B <_r C <_r A$, where r is any of rK, K or C.

Given r.e. set A and B with $B <_r A$. If both A, B have strong gainless compression, then there is a r.e. C such that $B <_r C <_r A$, where r is any of rK, K or C.

Proof for the *rK* case.

Take $A' \oplus \emptyset$, $B' \oplus \emptyset$ to be strong gainless compressions of A, B. We shall enumerate $D' \subset A'$, and wish that $B <_{rK} B' \oplus D' <_{rK} A$. For the $e^{\text{th}} rK$ functional Φ_e , define the length of agreement

$$p_s(e) = \max\{\ell : B' \oplus D' \mid_{\ell} \in \Phi_e(B \mid_{\ell}) ext{ at some stage } t \leq s\}$$

$$q_s(e) = \max\{\ell': A \upharpoonright_\ell \in \Phi_e(B' \oplus D' \upharpoonright_\ell) ext{ at some stage } t \leq s\}$$

When a is enumerated into A' at stage s,

- if $a < p_s(e)$ then the condition P_e wants to enumerate a in D',
- if $a < q_s(e)$ then the condition N_e wants to skip a.

Let the conditions act according to the following priority

 $P_0 > N_0 > P_1 > N_1 > \cdots > P_e > N_e > \cdots$

When a is enumerated into A' at stage s,

- if $a < p_s(e)$ then the condition P_e wants to enumerate a in D',
- if $a < q_s(e)$ then the condition N_e wants to skip a.

Let the conditions act according to the following priority

 $P_0 > N_0 > P_1 > N_1 > \cdots > P_e > N_e > \cdots$

Verification. Automatically $D' \leq_{rK} A'$.

When a is enumerated into A' at stage s,

- if $a < p_s(e)$ then the condition P_e wants to enumerate a in D',
- if $a < q_s(e)$ then the condition N_e wants to skip a.

Let the conditions act according to the following priority

$$P_0 > N_0 > P_1 > N_1 > \cdots > P_e > N_e > \cdots$$

Verification. Automatically $D' \leq_{rK} A'$. With an induction on e, if $B' \oplus D' \leq_{rK} B$ through Φ_e , then $p_s(e) \to \infty$, $A' \leq_{rK} D'$ and

$$A \equiv_{rK} \varnothing \oplus A' \leq_{rK} \varnothing \oplus D' \leq_{rK} B' \oplus D' \leq_{rK} B,$$

When a is enumerated into A' at stage s,

- if $a < p_s(e)$ then the condition P_e wants to enumerate a in D',
- if $a < q_s(e)$ then the condition N_e wants to skip a.

Let the conditions act according to the following priority

$$P_0 > N_0 > P_1 > N_1 > \cdots > P_e > N_e > \cdots$$

Verification. Automatically $D' \leq_{rK} A'$. With an induction on e, if $B' \oplus D' \leq_{rK} B$ through Φ_e , then $p_s(e) \to \infty$, $A' \leq_{rK} D'$ and

$$A \equiv_{rK} \varnothing \oplus A' \leq_{rK} \varnothing \oplus D' \leq_{rK} B' \oplus D' \leq_{rK} B,$$

if $A \leq_{rK} B' \oplus D'$ through Φ_e , then $q_s(e) \to \infty$, D' is computable and

$$A \leq_{rK} B' \oplus D' \leq_{rK} B' \oplus \emptyset \equiv_{rK} B.$$

Does each r.e. set have a strong gainless compression?

Does each r.e. set have a strong gainless compression?

A useful Lemma:

Lemma

Given r.e. set A, D. $A \leq_{rK} D$ if and only if there is recursive enumerations $(A_s), (D_s)$ and a constant k, such that for all s > t and all n,

$$|A_s - A_t \upharpoonright_n| \ge k \Rightarrow |D_s - D_t \upharpoonright_n| \ge 1.$$

Does each r.e. set have a strong gainless compression?

A useful Lemma:

Lemma

Given r.e. set A, D. $A \leq_{rK} D$ if and only if there is recursive enumerations $(A_s), (D_s)$ and a constant k, such that for all s > t and all n,

$$|A_s - A_t \upharpoonright_n| \ge k \Rightarrow |D_s - D_t \upharpoonright_n| \ge 1.$$

Roughly speeking, within the same range [0, n], for each k elements enumerated into A, we need at least 1 element enumerated into D.

Each r.e. set A has a strong compression D.

Each r.e. set A has a strong compression D.

Proof.

For every 8 numbers of $[0, 2^{n+2})$ enumerated into A, enumerated an even number of $[2^n, 2^{n+1})$ into D.

Each r.e. set A has a strong compression D.

Proof.

For every 8 numbers of $[0, 2^{n+2})$ enumerated into A, enumerated an even number of $[2^n, 2^{n+1})$ into D. **Verification.**

• $A \leq_{rK} D$,

• D does not run out of number.

Take any rK-complete r.e. set A. It has a strong compression D.

Take any *rK*-complete r.e. set *A*. It has a strong compression *D*. Since *A* is *rK*-complete, $D \leq_{rK} A$, so this compression is gainless.

Take any *rK*-complete r.e. set *A*. It has a strong compression *D*. Since *A* is *rK*-complete, $D \leq_{rK} A$, so this compression is gainless.

Theorem (Barmpalias, Hölzl, Lewis, Merkle, 2013)

Every rK-complete set has a strong gainless compression.

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{rK} D$.

The compression is **gainless** if $D \leq_{rK} A$. The compression is **strong** if $D \subset 2\mathbb{N}$, i.e. it can be written as $A' \oplus \emptyset$.

Given r.e. set A. We call a r.e. set D a **compression** of A if $A \leq_{rK} D$.

The compression is **gainless** if $D \leq_{rK} A$. The compression is **strong** if $D \subset 2\mathbb{N}$, i.e. it can be written as $A' \oplus \emptyset$. The compression is **weak** if $|D \upharpoonright_n| \leq |A \upharpoonright_n|/2$.

Definition

Given r.e. set A. We call a r.e. set D a **compression** of A if $A \leq_{rK} D$.

The compression is **gainless** if $D \leq_{rK} A$. The compression is **strong** if $D \subset 2\mathbb{N}$, i.e. it can be written as $A' \oplus \emptyset$. The compression is **weak** if $|D \upharpoonright_n| \leq |A \upharpoonright_n|/2$.

Theorem

Each r.e. set A has a weak gainless compression D.

Player A and D play on counters $a_0, a_1, \dots, a_n, \dots$, which are initially 0. In each round (stage),

- Player A enumerates n. For all i ≥ n, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate m. For all i ≥ m, set positive counters to 0 and substract 1 to the negative counters.

Player A and D play on counters $a_0, a_1, \dots, a_n, \dots$, which are initially 0. In each round (stage),

- Player A enumerates n. For all i ≥ n, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate m. For all i ≥ m, set positive counters to 0 and substract 1 to the negative counters.

Intutively, positive a_n is the number of A-enumerations since the last D-enumeration (or the other way around if it is negative).

Player A and D play on counters $a_0, a_1, \dots, a_n, \dots$, which are initially 0. In each round (stage),

- Player A enumerates n. For all i ≥ n, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate m. For all i ≥ m, set positive counters to 0 and substract 1 to the negative counters.

Intutively, positive a_n is the number of A-enumerations since the last D-enumeration (or the other way around if it is negative).

Fact

- If (a_i) has an uniform upper bound, then $A \leq_{rK} D$.
- If (a_i) has an uniform lower bound, then $D \leq_{rK} A$.

Theorem

Each r.e. set A has a weak gainless compression D.

Proof.

When some $a_n \ge 8$, find the smallest *m* such that

 $a_i \ge 4$ for all $m \le i \le n$

and enumerate it into D.

Verification.

- Each number is enumerated into D only once.
- $0 \le a_n \le 8$ throughout the construction.

•
$$|D\upharpoonright_n| \leq |A\upharpoonright_n|/2.$$

Player A and D play on counters $a_0, a_1, \dots, a_n, \dots$, which are initially 0. In each round (stage),

- Player A enumerates n. For all i ≥ n, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate even m. For all i ≥ m, set positive counters to 0 and substract 1 to the negative counters.

If (a_n) is uniformly bounded then player D wins. Otherwise player A wins.

Player A and D play on counters $a_0, a_1, \dots, a_n, \dots$, which are initially 0. In each round (stage),

- Player A enumerates n. For all i ≥ n, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate even m. For all i ≥ m, set positive counters to 0 and substract 1 to the negative counters.

If (a_n) is uniformly bounded then player D wins. Otherwise player A wins.

Game

Consider game G_k with player A and D. In each round (stage),

- Player A chooses k numbers $n_1 < n_2 < \cdots < n_k$.
- Player D chooses an even number in $[n_1, n_k]$.

Each player cannot choose the numbers he has chosen. If player D runs out of number, then player A wins. Otherwise player D wins.

Theorem

Player A wins G_2 and G_3 .

Theorem

Player A wins G_2 and G_3 .

Question

Is there a k such that player D wins G_k ? And what is the winning strategy?

Winning strategy for player A in G_3 .

- Player A: 100, 200, 300. Player D: 200.
- Player A: 140, 180, 240. Player D: 140.
- Player A: 120, 160, 220. Player D: 220.
- Player A: 202, 218, 222. Player D: 222.
- Player A: 219, 221, 223.

Consider game G'_k where player A and D play on a single string s, which is initially empty. In each round (stage),

- Player A insert k many O into the string.
- Player D change one of the O in the string to X.
- Player A may cut s at both ends.

If k - 1 successive X appears, player A wins. Otherwise Player D wins.

Consider game G'_k where player A and D play on a single string s, which is initially empty. In each round (stage),

- Player A insert k many O into the string.
- Player D change one of the O in the string to X.
- Player A may cut s at both ends.

If k - 1 successive X appears, player A wins. Otherwise Player D wins.

The above argument showed that player A wins G'_3 .

Consider game G'_k where player A and D play on a single string s, which is initially empty. In each round (stage),

- Player A insert k many O into the string.
- Player D change one of the O in the string to X.
- Player A may cut s at both ends.

If k - 1 successive X appears, player A wins. Otherwise Player D wins.

The above argument showed that player A wins G'_3 .

If player D wins G'_k , then he wins G_k .

Xiaoyan Zhang (ISCAS)

Compression of enumerations and gain

To summarize,

- the structures of r.e. *rK*, *K*, *C* degrees are dense among sets that have strong gainless compression.
- Each r.e. set has a strong compression.
- Each r.e. set has a weak gainless compression.
- Simply presented games related to a strong gainless compression.

Thanks!