Compression of enumerations and gain

Xiaoyan Zhang

State Key Lab of Computer Science Institute of Software, Chinese Academy of Science

Recursion Theory and its Applications October 17, 2023

Joint work with George Barmpalias, Bohua Zhan

For $\sigma \in 2^{<\omega}$, let $C(\sigma)$ (or $K(\sigma)$) be its plain (or prefix-free) Komogorov complexity

$$
\min \left\{|\rho|: \rho \in 2^{<\omega}, U(\rho) \downarrow=\sigma\right\}
$$

where U is an universal (prefix-free) Turing machine.

For $\sigma \in 2^{<\omega}$, let $C(\sigma)$ (or $K(\sigma)$) be its plain (or prefix-free) Komogorov complexity

$$
\min \left\{|\rho|: \rho \in 2^{<\omega}, U(\rho) \downarrow=\sigma\right\}
$$

where U is an universal (prefix-free) Turing machine.
Let $K(\sigma \mid \tau)$ be the relative prefix-free Komogorov complexity

$$
K(\sigma \mid \tau)=\min \left\{|\rho|: \rho \in 2^{<\omega}, U^{\tau}(\rho) \downarrow=\sigma\right\} .
$$

For $\sigma \in 2^{<\omega}$, let $C(\sigma)$ (or $K(\sigma)$) be its plain (or prefix-free) Komogorov complexity

$$
\min \left\{|\rho|: \rho \in 2^{<\omega}, U(\rho) \downarrow=\sigma\right\}
$$

where U is an universal (prefix-free) Turing machine.
Let $K(\sigma \mid \tau)$ be the relative prefix-free Komogorov complexity

$$
K(\sigma \mid \tau)=\min \left\{|\rho|: \rho \in 2^{<\omega}, U^{\tau}(\rho) \downarrow=\sigma\right\} .
$$

Given a set $A \subset \omega$, let $A \Gamma_{n}$ be the first n bits of A. This can be regarded as the set $A \cap[0, n)$, or the string

$$
A(0) A(1) \cdots A(n-1)
$$

Roughly speeking, $n \mapsto C\left(A \upharpoonright_{n}\right)$ describes how the complexity of A grows.

Definition

Given $A, B \subset \omega$.

- $A \leq_{C} B$ if $C\left(A \upharpoonright_{n}\right) \leq C\left(B \upharpoonright_{n}\right)+O(1)$.
- $A \leq_{K} B$ if $K\left(A \upharpoonright_{n}\right) \leq K\left(B \upharpoonright_{n}\right)+O(1)$.
- $A \leq_{r K} B$ if $K\left(A \upharpoonright_{n} \mid B \upharpoonright_{n}\right) \leq O(1)$.
- $A \leq_{c l} B$ if $A \leq_{T} B$ with oracle use bounded by $n \mapsto n+O(1)$.
- $A \leq_{i b T} B$ if $A \leq_{T} B$ with oracle use bounded by indentity.

Definition

Given $A, B \subset \omega$.

- $A \leq_{C} B$ if $C\left(A \upharpoonright_{n}\right) \leq C\left(B \upharpoonright_{n}\right)+O(1)$.
- $A \leq_{K} B$ if $K\left(A \upharpoonright_{n}\right) \leq K\left(B \upharpoonright_{n}\right)+O(1)$.
- $A \leq_{r K} B$ if $K\left(A \upharpoonright_{n} \mid B \upharpoonright_{n}\right) \leq O(1)$.
- $A \leq_{c l} B$ if $A \leq_{T} B$ with oracle use bounded by $n \mapsto n+O(1)$.
- $A \leq_{i b T} B$ if $A \leq_{T} B$ with oracle use bounded by indentity.

Fact

$$
i b T \Rightarrow c l \Rightarrow r K \Rightarrow C, K
$$

Theorem (Downey, Hirschfeldt, and LaForte, 2004)

$$
r K \Rightarrow T
$$

Theorem (Downey, Hirschfeldt, and LaForte, 2004)

$$
r K \Rightarrow T
$$

Theorem (Downey, Hirschfeldt, and LaForte, 2004)
Given $A, B \subset \omega . A \leq_{r K} B$ if and only if there is a partial recursive function $f: 2^{<\omega} \times \omega \rightarrow 2^{<\omega}$ and a constant k such that one of

$$
f\left(B \upharpoonright_{n}, 0\right), f\left(B \upharpoonright_{n}, 1\right), \cdots, f\left(B \upharpoonright_{n}, k\right)
$$

halts and outputs $A \upharpoonright_{n}$.

Question

Are the partial orders of these degrees of r.e. sets dense?

Question

Are the partial orders of these degrees of r.e. sets dense?

Theorem (Barmpalias, Lewis, 2006)
ibT-degrees of r.e. sets are not dense.

Question

Are the partial orders of these degrees of r.e. sets dense?

Theorem (Barmpalias, Lewis, 2006)
ibT-degrees of r.e. sets are not dense.

Theorem (Day, 2010)
cl-degrees of r.e. sets are not dense.

Question

Are the partial orders of these degrees of r.e. sets dense?

Theorem (Barmpalias, Lewis, 2006)
ibT-degrees of r.e. sets are not dense.

Theorem (Day, 2010)
cl-degrees of r.e. sets are not dense.

For $r K, K$ and C-degrees, the question is open.

How were most of the density results in r.e. degrees proved?

How were most of the density results in r.e. degrees proved?

Given r.e. sets A and B with $B<A$. Construct r.e. D which contains "part" of information in A. We would want $B<B \oplus D<A$, so we need

- $D \leq A$,
- $B \oplus D \not \leq B$,
- $A \not \leq B \oplus D$,
which could be done using a priority argument.

How were most of the density results in r.e. degrees proved?

Given r.e. sets A and B with $B<A$. Construct r.e. D which contains "part" of information in A. We would want $B<B \oplus D<A$, so we need

- $D \leq A$,
- $B \oplus D \not \leq B$,
- $A \not \leq B \oplus D$,
which could be done using a priority argument.

However, we don't know a "join" (least upper bound) operator for r.e. $r K$-degrees.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

The compression is gainless if $D \leq_{r k} A$.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

The compression is gainless if $D \leq_{r K} A$. The compression is strong if $D \subset 2 \mathbb{N}$, i.e. it can be written as $A^{\prime} \oplus \varnothing$.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

The compression is gainless if $D \leq_{r K} A$. The compression is strong if $D \subset 2 \mathbb{N}$, i.e. it can be written as $A^{\prime} \oplus \varnothing$.

Fact

Given r.e. set A and B. If $A^{\prime} \oplus \varnothing, B^{\prime} \oplus \varnothing$ are strong gainless compression of A, B, respectively, then $A^{\prime} \oplus B^{\prime}$ is a least upper bound of A and B in $r K$-degrees.

Theorem
Given r.e. set A and B with $B<_{r} A$. If both A, B have strong gainless compression, then there is a r.e. C such that $B<_{r} C<_{r} A$, where r is any of $r K, K$ or C.

Theorem

Given r.e. set A and B with $B<_{r} A$. If both A, B have strong gainless compression, then there is a r.e. C such that $B<_{r} C<_{r} A$, where r is any of $r K, K$ or C.

Proof for the rK case.

Take $A^{\prime} \oplus \varnothing, B^{\prime} \oplus \varnothing$ to be strong gainless compressions of A, B. We shall enumerate $D^{\prime} \subset A^{\prime}$, and wish that $B<_{r K} B^{\prime} \oplus D^{\prime}<_{r K} A$. For the $e^{\text {th }} r K$ functional Φ_{e}, define the length of agreement

$$
\begin{aligned}
& p_{s}(e)=\max \left\{\ell: B^{\prime} \oplus D^{\prime} \upharpoonright_{\ell} \in \Phi_{e}\left(B \upharpoonright_{\ell}\right) \text { at some stage } t \leq s\right\} \\
& q_{s}(e)=\max \left\{\ell: A \upharpoonright_{\ell} \in \Phi_{e}\left(B^{\prime} \oplus D^{\prime} \upharpoonright_{\ell}\right) \text { at some stage } t \leq s\right\}
\end{aligned}
$$

Proof for the $r K$ case.

When a is enumerated into A^{\prime} at stage s,

- if $a<p_{s}(e)$ then the condition P_{e} wants to enumerate a in D^{\prime},
- if $a<q_{s}(e)$ then the condition N_{e} wants to skip a.

Let the conditions act according to the following priority

$$
P_{0}>N_{0}>P_{1}>N_{1}>\cdots>P_{e}>N_{e}>\cdots .
$$

Proof for the rK case.

When a is enumerated into A^{\prime} at stage s,

- if $a<p_{s}(e)$ then the condition P_{e} wants to enumerate a in D^{\prime},
- if $a<q_{s}(e)$ then the condition N_{e} wants to skip a.

Let the conditions act according to the following priority

$$
P_{0}>N_{0}>P_{1}>N_{1}>\cdots>P_{e}>N_{e}>\cdots .
$$

Verification. Automatically $D^{\prime} \leq_{r k} A^{\prime}$.

Proof for the rK case.

When a is enumerated into A^{\prime} at stage s,

- if $a<p_{s}(e)$ then the condition P_{e} wants to enumerate a in D^{\prime},
- if $a<q_{s}(e)$ then the condition N_{e} wants to skip a.

Let the conditions act according to the following priority

$$
P_{0}>N_{0}>P_{1}>N_{1}>\cdots>P_{e}>N_{e}>\cdots .
$$

Verification. Automatically $D^{\prime} \leq_{r k} A^{\prime}$. With an induction on e, if $B^{\prime} \oplus D^{\prime} \leq_{r K} B$ through Φ_{e}, then $p_{s}(e) \rightarrow \infty, A^{\prime} \leq_{r K} D^{\prime}$ and

$$
A \equiv_{r K} \varnothing \oplus A^{\prime} \leq_{r K} \varnothing \oplus D^{\prime} \leq_{r K} B^{\prime} \oplus D^{\prime} \leq_{r K} B,
$$

Proof for the rK case.

When a is enumerated into A^{\prime} at stage s,

- if $a<p_{s}(e)$ then the condition P_{e} wants to enumerate a in D^{\prime},
- if $a<q_{s}(e)$ then the condition N_{e} wants to skip a.

Let the conditions act according to the following priority

$$
P_{0}>N_{0}>P_{1}>N_{1}>\cdots>P_{e}>N_{e}>\cdots .
$$

Verification. Automatically $D^{\prime} \leq_{r k} A^{\prime}$. With an induction on e, if $B^{\prime} \oplus D^{\prime} \leq_{r K} B$ through Φ_{e}, then $p_{s}(e) \rightarrow \infty, A^{\prime} \leq_{r K} D^{\prime}$ and

$$
A \equiv_{r k} \varnothing \oplus A^{\prime} \leq_{r K} \varnothing \oplus D^{\prime} \leq_{r k} B^{\prime} \oplus D^{\prime} \leq_{r K} B
$$

if $A \leq_{r K} B^{\prime} \oplus D^{\prime}$ through Φ_{e}, then $q_{s}(e) \rightarrow \infty, D^{\prime}$ is computable and

$$
A \leq_{r K} B^{\prime} \oplus D^{\prime} \leq_{r K} B^{\prime} \oplus \varnothing \equiv_{r K} B
$$

Question
 Does each r.e. set have a strong gainless compression?

Question

Does each r.e. set have a strong gainless compression?

A useful Lemma:

Lemma

Given r.e. set A, D. $A \leq_{r K} D$ if and only if there is recursive enumerations $\left(A_{s}\right),\left(D_{s}\right)$ and a constant k, such that for all $s>t$ and all n,

$$
\left|A_{s}-A_{t} \upharpoonright_{n}\right| \geq k \Rightarrow\left|D_{s}-D_{t} \upharpoonright_{n}\right| \geq 1
$$

Question

Does each r.e. set have a strong gainless compression?

A useful Lemma:

Lemma

Given r.e. set A, D. $A \leq_{r K} D$ if and only if there is recursive enumerations $\left(A_{s}\right),\left(D_{s}\right)$ and a constant k, such that for all $s>t$ and all n,

$$
\left|A_{s}-A_{t} \upharpoonright_{n}\right| \geq k \Rightarrow\left|D_{s}-D_{t} \upharpoonright_{n}\right| \geq 1
$$

Roughly speeking, within the same range $[0, n]$, for each k elements enumerated into A, we need at least 1 element enumerated into D.

Theorem

Each r.e. set A has a strong compression D.

Theorem

Each r.e. set A has a strong compression D.

Proof.

For every 8 numbers of $\left[0,2^{n+2}\right.$) enumerated into A, enumerated an even number of $\left[2^{n}, 2^{n+1}\right)$ into D.

Theorem

Each r.e. set A has a strong compression D.

Proof.

For every 8 numbers of $\left[0,2^{n+2}\right.$) enumerated into A, enumerated an even number of $\left[2^{n}, 2^{n+1}\right)$ into D.
Verification.

- $A \leq_{r k} D$,
- D does not run out of number.

Take any $r K$-complete r.e. set A. It has a strong compression D.

Take any $r K$-complete r.e. set A. It has a strong compression D. Since A is $r K$-complete, $D \leq_{r k} A$, so this compression is gainless.

Take any $r K$-complete r.e. set A. It has a strong compression D. Since A is $r K$-complete, $D \leq_{r K} A$, so this compression is gainless.

Theorem (Barmpalias, Hölzl, Lewis, Merkle, 2013)
Every rK-complete set has a strong gainless compression.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

The compression is gainless if $D \leq_{r k} A$.
The compression is strong if $D \subset 2 \mathbb{N}$, i.e. it can be written as $A^{\prime} \oplus \varnothing$.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

The compression is gainless if $D \leq_{r k} A$.
The compression is strong if $D \subset 2 \mathbb{N}$, i.e. it can be written as $A^{\prime} \oplus \varnothing$. The compression is weak if $\left|D \upharpoonright_{n}\right| \leq\left|A \upharpoonright_{n}\right| / 2$.

Definition

Given r.e. set A. We call a r.e. set D a compression of A if $A \leq_{r k} D$.

The compression is gainless if $D \leq_{r k} A$.
The compression is strong if $D \subset 2 \mathbb{N}$, i.e. it can be written as $A^{\prime} \oplus \varnothing$. The compression is weak if $\left|D \upharpoonright_{n}\right| \leq\left|A \upharpoonright_{n}\right| / 2$.

Theorem

Each r.e. set A has a weak gainless compression D.

Game

Player A and D play on counters $a_{0}, a_{1}, \cdots, a_{n}, \cdots$, which are initially 0 . In each round (stage),

- Player A enumerates n. For all $i \geq n$, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate m. For all $i \geq m$, set positive counters to 0 and substract 1 to the negative counters.

Game

Player A and D play on counters $a_{0}, a_{1}, \cdots, a_{n}, \cdots$, which are initially 0 . In each round (stage),

- Player A enumerates n. For all $i \geq n$, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate m. For all $i \geq m$, set positive counters to 0 and substract 1 to the negative counters.

Intutively, positive a_{n} is the number of A-enumerations since the last D-enumeration (or the other way around if it is negative).

Game

Player A and D play on counters $a_{0}, a_{1}, \cdots, a_{n}, \cdots$, which are initially 0 . In each round (stage),

- Player A enumerates n. For all $i \geq n$, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate m. For all $i \geq m$, set positive counters to 0 and substract 1 to the negative counters.

Intutively, positive a_{n} is the number of A-enumerations since the last D-enumeration (or the other way around if it is negative).

Fact

- If $\left(a_{i}\right)$ has an uniform upper bound, then $A \leq_{r k} D$.
- If $\left(a_{i}\right)$ has an uniform lower bound, then $D \leq_{r k} A$.

Theorem

Each r.e. set A has a weak gainless compression D.

Proof.

When some $a_{n} \geq 8$, find the smallest m such that

$$
a_{i} \geq 4 \text { for all } m \leq i \leq n
$$

and enumerate it into D.
Verification.

- Each number is enumerated into D only once.
- $0 \leq a_{n} \leq 8$ throughout the construction.
- $\left|D \upharpoonright_{n}\right| \leq\left|A \upharpoonright_{n}\right| / 2$.

Game

Player A and D play on counters $a_{0}, a_{1}, \cdots, a_{n}, \cdots$, which are initially 0 . In each round (stage),

- Player A enumerates n. For all $i \geq n$, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate even m. For all $i \geq m$, set positive counters to 0 and substract 1 to the negative counters. If $\left(a_{n}\right)$ is uniformly bounded then player D wins. Otherwise player A wins.

Game

Player A and D play on counters $a_{0}, a_{1}, \cdots, a_{n}, \cdots$, which are initially 0 . In each round (stage),

- Player A enumerates n. For all $i \geq n$, set negative counters to 0 and add 1 to the positive counters.
- Player D may enumerate even m. For all $i \geq m$, set positive counters to 0 and substract 1 to the negative counters. If $\left(a_{n}\right)$ is uniformly bounded then player D wins. Otherwise player A wins.

Game

Consider game G_{k} with player A and D. In each round (stage),

- Player A chooses k numbers $n_{1}<n_{2}<\cdots<n_{k}$.
- Player D chooses an even number in $\left[n_{1}, n_{k}\right]$.

Each player cannot choose the numbers he has chosen. If player D runs out of number, then player A wins. Otherwise player D wins.

Theorem

Player A wins G_{2} and G_{3}.

Theorem
Player A wins G_{2} and G_{3}.

Question

Is there a k such that player D wins G_{k} ? And what is the winning strategy?

Winning strategy for player A in G_{3}.

- Player A: 100, 200, 300. Player D: 200.
- Player A: 140, 180, 240. Player D: 140.
- Player A: 120, 160, 220. Player D: 220.
- Player A: 202, 218, 222. Player D: 222.
- Player A: 219, 221, 223.

Game

Consider game G_{k}^{\prime} where player A and D play on a single string s, which is initially empty. In each round (stage),

- Player A insert k many O into the string.
- Player D change one of the O in the string to X.
- Player A may cut s at both ends.

If $k-1$ successive X appears, player A wins. Otherwise Player D wins.

Game

Consider game G_{k}^{\prime} where player A and D play on a single string s, which is initially empty. In each round (stage),

- Player A insert k many O into the string.
- Player D change one of the O in the string to X.
- Player A may cut s at both ends.

If $k-1$ successive X appears, player A wins. Otherwise Player D wins.

The above argument showed that player A wins G_{3}^{\prime}.

Game

Consider game G_{k}^{\prime} where player A and D play on a single string s, which is initially empty. In each round (stage),

- Player A insert k many O into the string.
- Player D change one of the O in the string to X.
- Player A may cut s at both ends.

If $k-1$ successive X appears, player A wins. Otherwise Player D wins.

The above argument showed that player A wins G_{3}^{\prime}.

If player D wins G_{k}^{\prime}, then he wins G_{k}.

Fact

Player A wins G_{4}^{\prime}.

To summarize,

- the structures of r.e. rK, K, C degrees are dense among sets that have strong gainless compression.
- Each r.e. set has a strong compression.
- Each r.e. set has a weak gainless compression.
- Simply presented games related to a strong gainless compression.

Thanks!

