Notations	Inversions	Randomized Inversions	Injectivity	One-wayness
00	000	0000	0000	000

Computable one-way functions on the reals

Xiaoyan Zhang

State Key Lab of Computer Science Institute of Software, Chinese Academy of Sciences

NUS Logic summer school July 11, 2024

Joint work with George Barmpalias

Computable one-way functions on the reals

Notations ●0	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Notations. Let x, y, \cdots denote infinite binary sequences (reals). Let 2^{ω} be the set of all reals. Let x(n) denote the n^{th} bit of x.

Notations ●0	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness

Notations. Let x, y, \dots denote infinite binary sequences (reals). Let 2^{ω} be the set of all reals. Let x(n) denote the n^{th} bit of x.

We care about functions from 2^{ω} to 2^{ω} .

Notations ●0	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Notations. Let x, y, \cdots denote infinite binary sequences (reals). Let 2^{ω} be the set of all reals. Let x(n) denote the n^{th} bit of x.

We care about functions from 2^{ω} to 2^{ω} .

We regard an oracle Turing functional Φ as a partial function f from 2^{ω} to 2^{ω} , where

- f(x) is defined if $\Phi^{x}(n) \downarrow$ for all n;
- the output of f(x) is the y such that $y(n) = \Phi^{x}(n)$.

Notations ●0	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Notations. Let x, y, \cdots denote infinite binary sequences (reals). Let 2^{ω} be the set of all reals. Let x(n) denote the n^{th} bit of x.

We care about functions from 2^{ω} to 2^{ω} .

We regard an oracle Turing functional Φ as a partial function f from 2^{ω} to 2^{ω} , where

- f(x) is defined if $\Phi^{x}(n) \downarrow$ for all n;
- the output of f(x) is the y such that $y(n) = \Phi^{x}(n)$.

These are called **computable** functions.

Notations 0•	Inversions 000	Randomized Inversions 0000	Injectivity 0000	One-wayness

One-way functions are the functions that are **easy to compute** but **hard to invert**.

Definition

Given partial f, g, and $y \in f(2^{\omega})$, we say that g inverts f on y if

f(g(y)) = y.

We say that g is an inversion of f if g inverts y on all $y \in f(2^{\omega})$.

Notations 00	Inversions ●00	Randomized Inversions	Injectivity 0000	One-wayness

Theorem (Folklore)

If f is total computable, then there is a partial computable g which inverts f on all y such that $|f^{-1}(y)| = 1$. In particular, all total computable injections have partial computable inverse.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Let $\exists s, E(s)$ be a Σ_1^0 formula where E(s) is computable and there is at most one s such that E(s) holds. Then any g that inverts

$$f(x) = \begin{cases} 0^{s} x(0) 0^{\omega} & \text{if } E(s) \\ 0^{\omega} & \text{otherwise} \end{cases}$$

at $y = 0^{\omega}$ encodes the answer to $\exists s, E(s)$.

Notations 00	Inversions	Randomized Inversions	Injectivity 0000	One-wayness

There exists a total computable f such that any inversion of f computes \emptyset' . In particular, f does not have any computable inversion.

Notations 00	Inversions	Randomized Inversions	Injectivity 0000	One-wayness

There exists a total computable f such that any inversion of f computes \emptyset' .

In particular, f does not have any computable inversion.

Construction.

Let $\langle\cdot,\cdot\rangle$ be a computable bijection such that $\langle \textit{n},\textit{s}\rangle\geq\textit{s}.$ Let

$$f(x)(\langle n,s\rangle) = \begin{cases} x(n) & \text{if } n \in \emptyset'_{s+1} - \emptyset'_s \\ 0 & \text{otherwise.} \end{cases}$$

Xiaoyan Zhang

Notations	Inversions	Randomized Inversions	Injectivity	One-wayness
00	000	●000	0000	000

We give access to g a random oracle r to help inverting f. Then the probability that g inverts f at y is $\mu(\{r : f(g(y, r)) = y\})$.

Notations	Inversions	Randomized Inversions	Injectivity	One-wayness
00	000	●000	0000	000

We give access to g a random oracle r to help inverting f. Then the probability that g inverts f at y is $\mu(\{r : f(g(y, r)) = y\})$. More generally, we consider

$$L_{f,g} = \{(y, r) : f(g(y, r)) = y\}$$

and say that **the probability that** g inverts f is $\mu(L_{f,g})$.

Notations	Inversions	Randomized Inversions	Injectivity	One-wayness
00	000	●000	0000	000

We give access to g a random oracle r to help inverting f. Then the probability that g inverts f at y is $\mu(\{r : f(g(y, r)) = y\})$. More generally, we consider

$$L_{f,g} = \{(y, r) : f(g(y, r)) = y\}$$

and say that **the probability that** g inverts f is $\mu(L_{f,g})$.

Definition (Levin, 2023)

A partial computable f is **one-way** if $\mu(f(2^{\omega})) > 0$ and for any partial computable g, $\mu(L_{f,g}) = 0$.

Notations	Inversions	Randomized Inversions	Injectivity	One-wayness
00	000	●000	0000	000

We give access to g a random oracle r to help inverting f. Then the probability that g inverts f at y is $\mu(\{r : f(g(y, r)) = y\})$. More generally, we consider

$$L_{f,g} = \{(y, r) : f(g(y, r)) = y\}$$

and say that **the probability that** g inverts f is $\mu(L_{f,g})$.

Definition (Levin, 2023)

A partial computable f is **one-way** if $\mu(f(2^{\omega})) > 0$ and for any partial computable g, $\mu(L_{f,g}) = 0$.

Question (Levin, 2023)

Is there a random-preserving one-way function?

	Randomized Inversions	Injectivity	One-wayness
	0000		

There is a total computable surjective random-preserving one-way function.

	Randomized Inversions	Injectivity	One-wayness
	0000		

There is a total computable surjective random-preserving one-way function.

Construction.

$$\text{Let } f(x)(\langle n,s\rangle) = \begin{cases} x(2n) & \text{if } n \in \emptyset_{s+1}' - \emptyset_s' \\ x(2\langle n,s\rangle + 1) & \text{otherwise.} \end{cases}$$

Verify that

- f is total computable,
- f is surjective,
- f is random-preserving (f^{-1} is measure-preserving),
- *f* is one-way (Lebesgue's density theorem).

Notations	Inversions	Randomized Inversions	Injectivity	One-wayness
00	000	00●0	0000	000

Remark

Any g such that $\mu(L_{f,g}) > 0$ computes \emptyset' .

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Remark

Any g such that $\mu(L_{f,g}) > 0$ computes \emptyset' .

Remark

If either

- y is weakly 2-random and g is partial computable
- y is weakly 1-random and g is total computable

then the probability that g inverts f on y is 0.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Theorem (Folklore)

All total computable injections have partial computable inverse.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Theorem (Folklore)

All total computable injections have partial computable inverse.

Observation

Among computable functions, being **total**, being **injective** and being **one-way** are incompatible.

Notations 00	Inversions 000	Randomized Inversions 000●	Injectivity 0000	One-wayness

Theorem (Folklore)

All total computable injections have partial computable inverse.

Observation

Among computable functions, being **total**, being **injective** and being **one-way** are incompatible.

What if we weaken or remove one of these conditions?

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 000

Theorem (Folklore)

All total computable injections have partial computable inverse.

Observation

Among computable functions, being **total**, being **injective** and being **one-way** are incompatible.

What if we weaken or remove one of these conditions?

Observation

The random oracle r does not help invert functions.

From now on we drop the random oracle r.

Notations 00	Inversions 000	Randomized Inversions	Injectivity ●000	One-wayness 000

If f is total computable and one-way, then $f^{-1}(y)$ has no isolated path (in particular, $|f^{-1}(y)| = 2^{\aleph_0}$) for almost all $y \in f(2^{\omega})$.

Notations 00	Inversions 000	Randomized Inversions	Injectivity ●000	One-wayness 000

If f is total computable and one-way, then $f^{-1}(y)$ has no isolated path (in particular, $|f^{-1}(y)| = 2^{\aleph_0}$) for almost all $y \in f(2^{\omega})$.

Proof.

If $f^{-1}(y)$ has an isolated path x, then there is $\sigma \prec x$ that seperate x from all other paths.

Use σ to build a partial computable g that inverts f on y. Now

 $\{y: f^{-1}(y) \text{ has an isolated path}\}$

 $\subseteq \{y : \text{some partial computable } g \text{ inverts } f \text{ at } y\}$

Finally note that there are only countably many partial computable functions, and each of them inverts f with 0 probability.

Notations 00	Inversions 000	Randomized Inversion	s Injectivity 0●00	One-wayness 000
<i>c</i> · · ·		(1 - 1)		

f is two-to-one if $|f^{-1}(y)| \leq 2$ for all y.

Theorem (Barmpalias, Z., 2024)

There is a total computable two-to-one surjection, such that if there is g and σ such that g inverts f on all $y \succ \sigma$, then g computes \emptyset' .

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0●00	One-wayness 000

f is two-to-one if $|f^{-1}(y)| \leq 2$ for all y.

Theorem (Barmpalias, Z., 2024)

There is a total computable two-to-one surjection, such that if there is g and σ such that g inverts f on all $y \succ \sigma$, then g computes \emptyset' .

Let $x \oplus y$ be the z such that z(2n) = x(n) and z(2n+1) is y(n).

Proof Sketch.

Define $f(x \oplus z) = h^z(x) \oplus z$.

The function *h* picks, for each *n*, a particular index p_n^z and copy $x(p_n^z)$ to $h^z(x)(n)$. The oracle *z* can (partially) control this process. We make sure at most one bit is not copied into $h^z(x)$. We use *z* to control which question this bit is allocated to: let the event $z(\langle n, s \rangle) = 1$ indicate *h* to skip the question " $n \in \emptyset$?".

Notations 00	Inversions 000	Randomized Inversions	Injectivity 00●0	One-wayness 000

There is a total computable two-to-one surjection, such that if there is g such that g inverts f on almost all y, then g computes \emptyset' . In particular, any partial computable g cannot invert f with probability 1.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 00●0	One-wayness

There is a total computable two-to-one surjection, such that if there is g such that g inverts f on almost all y, then g computes \emptyset' . In particular, any partial computable g cannot invert f with probability 1.

Proof Sketch (for the "in particular" case).

Similarly, except z indicates h to skip the question " $n \in \emptyset'$?" when some corresponding colunm of z appears to be non-random. Fix $y \oplus w$ weakly 1-random, y random but no colunm of w is random, and that $y \oplus w$ is incomplete. Build several z obtained by replacing a colunm of w by y. These z are weakly 1-random, and $L_{f,g}$ is a Π_2^0 class, so if $\mu(L_{f,g}) = 1$ then all such $z \in L_{f,g}$.

Notations invers	ions Randomized I	nversions Injectivity	y Iotality	One-wayness
		0000		

Summary for injectivity requirement

Assuming f is total computable, then

- without injectivity requirement, it could be that any partial computable g inverts f with probability 0;
- by requiring that |f⁻¹(y)| < 2^{ℵ0}, there is always partial computable g that inverts f with positive probability;
- even when requiring that $|f^{-1}(y)| \le 2$, it could be that no partial computable g inverts f with probability 1;
- by requiring that |f⁻¹(y)| ≤ 1, a single partial computable g inverts f on all y.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	Totality ●	One-wayness

Theorem (Barmpalias, Z., ongoing)

There is a partial computable random-preserving one-way injection.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness ●00

Rather than considering $L_{f,g} = \{y : f(g(y)) = y\}$ and requiring that $\mu(f(2^{\omega})) > 0$, we can instead consider

$${x : f(g(f(x))) = f(x)}.$$

Definition (Gács, 2024)

A partial computable f is **semi-oneway** if $\mu(\{x : f(x) \downarrow\}) > 0$ and for any partial computable g, $\mu(\{x : f(g(f(x))) = f(x)\}) = 0$.

Theorem (Gács, 2024)

There is a partial computable semi-oneway function.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness ○●○

For total computable random-preserving f with $\mu(f(2^{\omega})) > 0$, f is one-way if and only if it is semi-oneway.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness ○●○

For total computable random-preserving f with $\mu(f(2^{\omega})) > 0$, f is one-way if and only if it is semi-oneway.

Proof.

For total computable f, let ν_f be the measure defined by

$$\nu_{\mathbf{f}}(\llbracket \sigma \rrbracket) = \mu(f^{-1}(\llbracket \sigma \rrbracket)).$$

- ν_f is a computable measure,
- x is random if and only if x is ν_{f} -random,
- ν_f and μ have the same null sets.

Notations 00	Inversions 000	Randomized Inversions	Injectivity 0000	One-wayness 00●

Thanks!

Xiaoyan Zhang Computable one-way functions on the reals