Notations and definitions	Main observation	ω -models of second order arithmetics	Deep Π_1^0 class

Dimensionality and Randomness

Xiaoyan Zhang

State Key Lab of Computer Science Institute of Software, Chinese Academy of Sciences

NUS Logic summer school July 11, 2024

Joint work with George Barmpalias

Notations and definitions ●0	Main observation	ω -models of second order arithmetics 00	Deep Π^0_1 class

Notations. We use σ, τ to denote finite binary sequences (strings). Let 2^n be the set of strings of length n. We use x, y to denote infinite binary sequences (reals). Let $x \upharpoonright_n$ be the first n bits of x. Let \prec be the prefix relation among strings and reals.

Notations and definitions	Main observation	ω -models of second order arithmetics	Deep Π_1^0 class
00			

Definition

Let *U* be an universal prefix-free Turing machine. The **Kolmogorov Complexity** of a string σ is the length of the shortest program that outputs σ , i.e.

$$K(\sigma) := \min\{|\tau| : U(\tau) = \sigma\}.$$

The **deficiency** of σ is the number of bits it can be best compressed, i.e. $d(\sigma) := |\sigma| - K(\sigma)$. The **deficiency** of a set of strings *V* is $d(V) = \sup_{\sigma \in V} d(\sigma)$. A set of strings *V* is **incompressible** if $d(V) < \infty$.

Notations and definitions	Main observation	ω -models of second order arithmetics	Deep Π_1^0 class
00			

Definition

Let *U* be an universal prefix-free Turing machine. The **Kolmogorov Complexity** of a string σ is the length of the shortest program that outputs σ , i.e.

$$K(\sigma) := \min\{|\tau| : U(\tau) = \sigma\}.$$

The **deficiency** of σ is the number of bits it can be best compressed, i.e. $d(\sigma) := |\sigma| - K(\sigma)$. The **deficiency** of a set of strings V is $d(V) = \sup_{\sigma \in V} d(\sigma)$. A set of strings V is **incompressible** if $d(V) < \infty$.

Definition

A real x is random if $K(x \upharpoonright_n) \ge^+ n$. Equivalently, x is random if $\{x \upharpoonright_n : n \in \omega\}$ is incompressible.

Xiaoyan Zhang

Dimensionality and Randomness

Notations and definitions 00	Main observation ●000	$\omega\text{-models}$ of second order arithmetics $_{\rm OO}$	Deep Π_1^0 class

Observation

Among incomplete incompressible sets, a **thin** one cannot compute a **fat** one.

Notations and definitions	Main observation	ω -models of second order arithmetics	Deep Π ₁ ⁰ class
	0000		

Observation

Among incomplete incompressible sets, a **thin** one cannot compute a **fat** one.

Example

Let x = 0.011 0.001 0.001 0.001 0.000 be an incomplete random real, let

 $x_0 = 1011\ 0011\ 0001\ 0110\ \cdots$ $x_1 = 0111\ 0011\ 0001\ 0110\ \cdots$ $x_2 = 0001\ 0011\ 0001\ 0110\ \cdots$ Let $V = \{x \upharpoonright_n : n \in \omega\}, W_i = \{x_i \upharpoonright_n : n \in \omega\}$ and $W = \bigcup W_i$. *V* is "thin" in the sense that $|V \cap 2^n| = 1$; *W* is "fat" in the sense that $|W \cap 2^n| = n$; Each x_i is random, so *V* and W_i are incompressible. However, *W* cannot be incompressible.

Xiaovan Zhang

Notations and definitions	Main observation	ω -models of second order arithmetics	Deep Π ⁰ ₁ class
	0000		

An order is a non-decreasing unbounded function.

Theorem (Barmpalias, Z., 2024)

An incomplete random real z cannot compute an incompressible set V with $n \mapsto |V \cap 2^n|$ being an order.

Notations and definitions	Main observation	ω -models of second order arithmetics	Deep Π_1^0 class
	0000		

An order is a non-decreasing unbounded function.

Theorem (Barmpalias, Z., 2024)

An incomplete random real z cannot compute an incompressible set V with $n \mapsto |V \cap 2^n|$ being an order.

Proof Sketch.

Suppose otherwise, let Φ be such that $\Phi(z)$ is incompressible by constant k and $n \mapsto |\Phi(z) \cap 2^n|$ is an order. Let $P = \{x : d(\Phi(x)) \le k\}$ and $\Phi^{-1}(\sigma) = \{x : \sigma \in \Phi(x)\}$. By a Lemma, $\mu(P \cap \Phi^{-1}(\sigma)) \le x 2^{-|\sigma|}$. Let $Q_n^m = \{x : |\Phi(x) \cap 2^n| \ge 2^m\}$, then $\mu(P \cap Q_n^m) \le x 2^{-m}$. P is Π_1^0 and Q_n^m is uniformly Σ_1^0 . $z \in P$ and for each m there is n with $z \in Q_n^m$. Use $P \cap Q_n^m$ to carefully build a difference-test.

Notations and definitions	Main observation ○○●○	ω -models of second order arithmetics 00	Deep Π_1^0 class

Theorem (Barmpalias, Z., 2024)

Every random real z computes an incompressible set V with $n \mapsto |V \cap 2^n|$ unbounded.

Notations and definitions	Main observation 00●0	ω -models of second order arithmetics 00	Deep Π_1^0 class 000

Theorem (Barmpalias, Z., 2024)

Every random real z computes an incompressible set V with $n \mapsto |V \cap 2^n|$ unbounded.

Proof Sketch.

Use z as a random oracle. Randomly choose $l_n \in [2^{n-1}, 2^n]$, randomly choose n strings of length l_n and put them in V. Probability that we fail at level $n \leq^{\times} 2^{-n}$. Since z is random we only fail at finitely many n, so V is incompressible.

Notations and definitions	Main observation	ω -models of second order arithmetics 00	Deep Π_1^0 class

A set V is g-fat if
$$\sup_{i < n} |V \cap 2^i| \ge g(n)$$
.

Theorem (Barmpalias, Z., 2024)

If g is a computable order with $\lim_{n} n/g(n) = 0$, then an incomplete random real cannot compute an g-fat incompressible set.

Theorem (Barmpalias, Z., 2024)

Every random real z computes an $n/(\log n)^2$ -fat incompressible set.

Notations and definitions	Main observation 0000	Trees ●0	ω -models of second order arithmetics 00	Deep Π ₁ class 000

A **tree** is a non-empty set of strings T such that $\sigma \prec \tau$ and $\tau \in T$ then $\sigma \in T$. A real x is a **path** of T if $x \upharpoonright_n \in T$ for all n. Let [T] be the set of paths through T. A tree T is

pruned if each $\sigma \in T$ has an extension in T;

All trees are assumed to be pruned.

Notations and definitions	Main observation 0000	Trees ●0	ω -models of second order arithmetics 00	Deep Π_1^0 class

A **tree** is a non-empty set of strings T such that $\sigma \prec \tau$ and $\tau \in T$ then $\sigma \in T$. A real x is a **path** of T if $x \upharpoonright_n \in T$ for all n. Let [T] be the set of paths through T. A tree T is

pruned if each $\sigma \in T$ has an extension in T;

All trees are assumed to be pruned. A tree T is

- **proper** if $|T \cap 2^n|$ is unbounded;
- **perfect** if each $\sigma \in T$ has two incomparable extensions in T;
- **positive** if $|T \cap 2^n| \ge c \cdot 2^n$ for some c > 0.

Notations and definitions	Main observation 0000	Trees ○●	ω -models of second order arithmetics 00	Deep Π_1^0 class

Corollary (Barmpalias, Z., 2024)

An incomplete random real z cannot compute a proper incompressible tree.

Notations and definitions	Main observation	Trees	ω -models of second order arithmetics	Deep Π_1^0 class
		00		

Corollary (Barmpalias, Z., 2024)

An incomplete random real z cannot compute a proper incompressible tree.

Theorem (Barmpalias, Wang, 2023)

There is a perfect incompressible tree which cannot compute any positive incompressible tree.

Notations and definitions	Main observation	Trees	ω -models of second order arithmetics	Deep Π_1^0 class
		00		

Corollary (Barmpalias, Z., 2024)

An incomplete random real z cannot compute a proper incompressible tree.

Theorem (Barmpalias, Wang, 2023)

There is a perfect incompressible tree which cannot compute any positive incompressible tree.

Theorem (Barmpalias, Z., 2024)

There is a proper incompressible tree which cannot wtt-compute any perfect incompressible tree.

Notations and definitions 00	Main observation	ω -models of second order arithmetics $\bullet \circ$	Deep Π_1^0 class

Consider the following principles in RCA:

- WKL: every infinite tree has a path;
- P⁺: every positive tree has a positive perfect subtree;
- P: every positive tree has a perfect subtree;
- P⁻: every positive tree has a countable family of paths;
- WWKL: every positive tree has a path;

Notations and definitions 00	Main observation	ω -models of second order arithmetics $\bullet \circ$	Deep Π_1^0 class

Consider the following principles in RCA:

- WKL: every infinite tree has a path;
- P⁺: every positive tree has a positive perfect subtree;
- P: every positive tree has a perfect subtree;
- P⁻: every positive tree has a countable family of paths;
- WWKL: every positive tree has a path;

RCA proves WKL \rightarrow P⁺ \rightarrow P \rightarrow P⁻ \rightarrow WWKL.

Notations and definitions 00	Main observation 0000	ω -models of second order arithmetics $\bullet \circ$	Deep Π_1^0 class

Consider the following principles in RCA:

- WKL: every infinite tree has a path;
- P⁺: every positive tree has a positive perfect subtree;
- P: every positive tree has a perfect subtree;
- P⁻: every positive tree has a countable family of paths;
- WWKL: every positive tree has a path;

RCA proves WKL \rightarrow P⁺ \rightarrow P \rightarrow P⁻ \rightarrow WWKL.

Theorem (Barmpalias, Wang, 2023)

Each of the following extensions of RCA has an ω -model:

• WWKL +
$$\neg P^-$$
;

$$\bullet P + \neg P^+;$$

•
$$P^+ + \neg WKL$$
.

Notati 00	ons and definitions	0000	00	ω-models of second order arithmetics ⊙●	000
	Question				
	Is there an ω	-model of RCA	A + P-	$^-$ + $\neg P$, i.e. an ω -model	where
	every positive	e tree has a co	ountable	family of paths, but some	•

positive tree does not have a perfect subtree?

Notations and definitions 00	Main observation	ω -models of second order arithmetics $\circ \bullet$	Deep Π_1^0 class

Question

Is there an ω -model of RCA + P⁻ + \neg P, i.e. an ω -model where every positive tree has a countable family of paths, but some positive tree does not have a perfect subtree?

Conjecture

There is a proper incompressible tree which cannot compute any perfect incompressible tree.

Notations and definitions 00	Main observation	ω -models of second order arithmetics $\odot \bullet$	Deep Π_1^0 class

Question

Is there an ω -model of RCA + P⁻ + \neg P, i.e. an ω -model where every positive tree has a countable family of paths, but some positive tree does not have a perfect subtree?

Conjecture

There is a proper incompressible tree which cannot compute any perfect incompressible tree.

A tree is T skeletal if there is $x \in [T]$ such that $\sigma \in T$ has two incomparable extensions in T if and only if $\sigma \prec x$.

Conjecture

A skeletal incompressible tree cannot compute a perfect incompressible tree unless it is complete.

Xiaoyan Zhang

Notations and definitions Main observation Trees ω -models of second order arithmetics Deep Π_1^0 class oo oo oo oo oo

Let **M** be the universal left-c.e. continuous semi-measure. For a Π_1^0 class *P* with associated co-c.e. tree *T*, *P* is **deep** if there is computable *f* such that

 $\mathsf{M}(T \cap 2^{f(n)}) \leq 2^{-n}.$

Notations and definitions Main observation Trees ω -models of second order arithmetics Deep Π_1^0 class 000 00 00 00 00 00

Let **M** be the universal left-c.e. continuous semi-measure. For a Π_1^0 class *P* with associated co-c.e. tree *T*, *P* is **deep** if there is computable *f* such that

$$\mathsf{M}(T\cap 2^{f(n)})\leq 2^{-n}.$$

Example

- The class of effectively proper incompressible trees.
- The class of complete extensions of PA.

Notations and definitions Main observation Trees ω -models of second order arithmetics **Deep** Π_1^0 class oo oo 000

Let **M** be the universal left-c.e. continuous semi-measure. For a Π_1^0 class *P* with associated co-c.e. tree *T*, *P* is **deep** if there is computable *f* such that

$$\mathsf{M}(T\cap 2^{f(n)})\leq 2^{-n}.$$

Example

- The class of effectively proper incompressible trees.
- The class of complete extensions of PA.

Theorem (Bienvenu, Porter, 2017)

An incomplete random cannot compute any member of any deep Π_1^0 class.

Notations and definitions 00	Main observation	ω -models of second order arithmetics 00	Deep ∏ ⁰ class ○●○

Fact

The class of effectively proper incompressible trees is a deep Π_1^0 class.

However, the class of proper incompressible trees is a Π_2^0 class.

Notations and definitions 00	Main observation	$\omega\text{-models}$ of second order arithmetics $_{\rm OO}$	Deep ∏ ⁰ class ○●○

Fact

The class of effectively proper incompressible trees is a deep Π_1^0 class.

However, the class of proper incompressible trees is a Π_2^0 class.

Theorem (Barmpalias, Z., 2024)

There exists a perfect incompressible tree which is not a member of any deep Π_1^0 class.

Notations and definitions	Main observation	ω -models of second order arithmetics 00	Deep ∏ ⁰ class 0●0

Fact

The class of effectively proper incompressible trees is a deep Π_1^0 class.

However, the class of proper incompressible trees is a Π_2^0 class.

Theorem (Barmpalias, Z., 2024)

There exists a perfect incompressible tree which is not a member of any deep Π_1^0 class.

Question

Is there a reasonable way to define a deep Π_2^0 class?

Notations and definitions	Main observation	ω -models of second order arithmetics 00	Deep Π_1^0 class

Thanks!