Dimensionality and Randomness

Xiaoyan Zhang

State Key Lab of Computer Science
Institute of Software, Chinese Academy of Sciences

NUS Logic summer school July 11, 2024

Joint work with George Barmpalias

Notations. We use σ, τ to denote finite binary sequences (strings). Let 2^{n} be the set of strings of length n. We use x, y to denote infinite binary sequences (reals).
Let $x \upharpoonright_{n}$ be the first n bits of x. Let \prec be the prefix relation among strings and reals.

Definition

Let U be an universal prefix-free Turing machine. The Kolmogorov Complexity of a string σ is the length of the shortest program that outputs σ, i.e.

$$
K(\sigma):=\min \{|\tau|: U(\tau)=\sigma\}
$$

The deficiency of σ is the number of bits it can be best compressed, i.e. $\mathrm{d}(\sigma):=|\sigma|-K(\sigma)$.
The deficiency of a set of strings V is $\mathrm{d}(V)=\sup _{\sigma \in V} \mathrm{~d}(\sigma)$.
A set of strings V is incompressible if $\mathrm{d}(V)<\infty$.

Definition

Let U be an universal prefix-free Turing machine. The Kolmogorov Complexity of a string σ is the length of the shortest program that outputs σ, i.e.

$$
K(\sigma):=\min \{|\tau|: U(\tau)=\sigma\}
$$

The deficiency of σ is the number of bits it can be best compressed, i.e. $\mathrm{d}(\sigma):=|\sigma|-K(\sigma)$.
The deficiency of a set of strings V is $\mathrm{d}(V)=\sup _{\sigma \in V} \mathrm{~d}(\sigma)$.
A set of strings V is incompressible if $\mathrm{d}(V)<\infty$.

Definition

A real x is random if $K\left(x \Gamma_{n}\right) \geq^{+} n$. Equivalently, x is random if $\left\{x \upharpoonright_{n}: n \in \omega\right\}$ is incompressible.

Observation

Among incomplete incompressible sets, a thin one cannot compute a fat one.

Observation

Among incomplete incompressible sets, a thin one cannot compute a fat one.

Example

Let $x=0011001100010110 \cdots$ be an incomplete random real, let

$$
\begin{aligned}
& x_{0}=1011001100010110 \cdots \\
& x_{1}=0111001100010110 \cdots \\
& x_{2}=0001001100010110 \cdots
\end{aligned}
$$

Let $V=\left\{x \upharpoonright_{n}: n \in \omega\right\}, W_{i}=\left\{x_{i} \upharpoonright_{n}: n \in \omega\right\}$ and $W=\bigcup W_{i}$.
V is "thin" in the sense that $\left|V \cap 2^{n}\right|=1$;
W is "fat" in the sense that $\left|W \cap 2^{n}\right|=n$;
Each x_{i} is random, so V and W_{i} are incompressible.
However, W cannot be incompressible.

An order is a non-decreasing unbounded function.

Theorem (Barmpalias, Z., 2024)

An incomplete random real z cannot compute an incompressible set V with $n \mapsto\left|V \cap 2^{n}\right|$ being an order.

An order is a non-decreasing unbounded function.

Theorem (Barmpalias, Z., 2024)

An incomplete random real z cannot compute an incompressible set V with $n \mapsto\left|V \cap 2^{n}\right|$ being an order.

Proof Sketch.

Suppose otherwise, let Φ be such that $\Phi(z)$ is incompressible by constant k and $n \mapsto\left|\Phi(z) \cap 2^{n}\right|$ is an order.
Let $P=\{x: \mathrm{d}(\Phi(x)) \leq k\}$ and $\Phi^{-1}(\sigma)=\{x: \sigma \in \Phi(x)\}$.
By a Lemma, $\mu\left(P \cap \Phi^{-1}(\sigma)\right) \leq^{\times} 2^{-|\sigma|}$.
Let $Q_{n}^{m}=\left\{x:\left|\Phi(x) \cap 2^{n}\right| \geq 2^{m}\right\}$, then $\mu\left(P \cap Q_{n}^{m}\right) \leq^{\times} 2^{-m}$.
P is Π_{1}^{0} and Q_{n}^{m} is uniformly Σ_{1}^{0}.
$z \in P$ and for each m there is n with $z \in Q_{n}^{m}$.
Use $P \cap Q_{n}^{m}$ to carefully build a difference-test.

Theorem (Barmpalias, Z., 2024)

Every random real z computes an incompressible set V with $n \mapsto\left|V \cap 2^{n}\right|$ unbounded.

Theorem (Barmpalias, Z., 2024)

Every random real z computes an incompressible set V with $n \mapsto\left|V \cap 2^{n}\right|$ unbounded.

Proof Sketch.

Use z as a random oracle.
Randomly choose $I_{n} \in\left[2^{n-1}, 2^{n}\right]$, randomly choose n strings of length I_{n} and put them in V.
Probability that we fail at level $n \leq^{\times} 2^{-n}$. Since z is random we only fail at finitely many n, so V is incompressible.

A set V is g-fat if $\sup _{i \leq n}\left|V \cap 2^{i}\right| \geq g(n)$.
Theorem (Barmpalias, Z., 2024)
If g is a computable order with $\lim _{n} n / g(n)=0$, then an incomplete random real cannot compute an g-fat incompressible set.

Theorem (Barmpalias, Z., 2024)
Every random real z computes an $n /(\log n)^{2}$-fat incompressible set.

A tree is a non-empty set of strings T such that $\sigma \prec \tau$ and $\tau \in T$ then $\sigma \in T$. A real x is a path of T if $\left.x\right|_{n} \in T$ for all n. Let [T] be the set of paths through T. A tree T is

- pruned if each $\sigma \in T$ has an extension in T; All trees are assumed to be pruned.

A tree is a non-empty set of strings T such that $\sigma \prec \tau$ and $\tau \in T$ then $\sigma \in T$. A real x is a path of T if $x\left\lceil_{n} \in T\right.$ for all n. Let [T] be the set of paths through T. A tree T is

- pruned if each $\sigma \in T$ has an extension in T;

All trees are assumed to be pruned. A tree T is
■ proper if $\left|T \cap 2^{n}\right|$ is unbounded;
■ perfect if each $\sigma \in T$ has two incomparable extensions in T;

- positive if $\left|T \cap 2^{n}\right| \geq c \cdot 2^{n}$ for some $c>0$.

Corollary (Barmpalias, Z., 2024)

An incomplete random real z cannot compute a proper incompressible tree.

Corollary (Barmpalias, Z., 2024)

An incomplete random real z cannot compute a proper incompressible tree.

Theorem (Barmpalias, Wang, 2023)
There is a perfect incompressible tree which cannot compute any positive incompressible tree.

Corollary (Barmpalias, Z., 2024)

An incomplete random real z cannot compute a proper incompressible tree.

Theorem (Barmpalias, Wang, 2023)

There is a perfect incompressible tree which cannot compute any positive incompressible tree.

Theorem (Barmpalias, Z., 2024)

There is a proper incompressible tree which cannot wtt-compute any perfect incompressible tree.

Consider the following principles in RCA:
■ WKL: every infinite tree has a path;

- P^{+}: every positive tree has a positive perfect subtree;

■ P: every positive tree has a perfect subtree;
■ P^{-}: every positive tree has a countable family of paths;
■ WWKL: every positive tree has a path;

Consider the following principles in RCA:
■ WKL: every infinite tree has a path;
■ P^{+}: every positive tree has a positive perfect subtree;
■ P: every positive tree has a perfect subtree;
■ P^{-}: every positive tree has a countable family of paths;
■ WWKL: every positive tree has a path;
RCA proves $\mathrm{WKL} \rightarrow \mathrm{P}^{+} \rightarrow \mathrm{P} \rightarrow \mathrm{P}^{-} \rightarrow$ WWKL.

Consider the following principles in RCA:
■ WKL: every infinite tree has a path;

- P^{+}: every positive tree has a positive perfect subtree;

■ P: every positive tree has a perfect subtree;
■ P^{-}: every positive tree has a countable family of paths;
■ WWKL: every positive tree has a path;
RCA proves $\mathrm{WKL} \rightarrow \mathrm{P}^{+} \rightarrow \mathrm{P} \rightarrow \mathrm{P}^{-} \rightarrow \mathrm{WWKL}$.

Theorem (Barmpalias, Wang, 2023)

Each of the following extensions of RCA has an ω-model:

- WWKL $+\neg \mathrm{P}^{-}$;

■ $\mathrm{P}+\neg \mathrm{P}^{+}$;
■ $\mathrm{P}^{+}+\neg \mathrm{WKL}$.

Question

Is there an ω-model of $\mathrm{RCA}+\mathrm{P}^{-}+\neg P$, i.e. an ω-model where every positive tree has a countable family of paths, but some positive tree does not have a perfect subtree?

Question

Is there an ω-model of $\mathrm{RCA}+\mathrm{P}^{-}+\neg P$, i.e. an ω-model where every positive tree has a countable family of paths, but some positive tree does not have a perfect subtree?

Conjecture

There is a proper incompressible tree which cannot compute any perfect incompressible tree.

Question

Is there an ω-model of $\mathrm{RCA}+\mathrm{P}^{-}+\neg P$, i.e. an ω-model where every positive tree has a countable family of paths, but some positive tree does not have a perfect subtree?

Conjecture

There is a proper incompressible tree which cannot compute any perfect incompressible tree.

A tree is T skeletal if there is $x \in[T]$ such that $\sigma \in T$ has two incomparable extensions in T if and only if $\sigma \prec x$.

Conjecture

A skeletal incompressible tree cannot compute a perfect incompressible tree unless it is complete.

Let \mathbf{M} be the universal left-c.e. continuous semi-measure. For a Π_{1}^{0} class P with associated co-c.e. tree T, P is deep if there is computable f such that

$$
\mathbf{M}\left(T \cap 2^{f(n)}\right) \leq 2^{-n}
$$

Let \mathbf{M} be the universal left-c.e. continuous semi-measure. For a Π_{1}^{0} class P with associated co-c.e. tree T, P is deep if there is computable f such that

$$
\mathbf{M}\left(T \cap 2^{f(n)}\right) \leq 2^{-n} .
$$

Example

- The class of effectively proper incompressible trees.
- The class of complete extensions of PA.

Let \mathbf{M} be the universal left-c.e. continuous semi-measure. For a Π_{1}^{0} class P with associated co-c.e. tree T, P is deep if there is computable f such that

$$
\mathbf{M}\left(T \cap 2^{f(n)}\right) \leq 2^{-n}
$$

Example

- The class of effectively proper incompressible trees.
- The class of complete extensions of PA.

Theorem (Bienvenu, Porter, 2017)

An incomplete random cannot compute any member of any deep Π_{1}^{0} class.

Fact

The class of effectively proper incompressible trees is a deep Π_{1}^{0} class.
However, the class of proper incompressible trees is a Π_{2}^{0} class.

Fact

The class of effectively proper incompressible trees is a deep Π_{1}^{0} class.
However, the class of proper incompressible trees is a Π_{2}^{0} class.

Theorem (Barmpalias, Z., 2024)
There exists a perfect incompressible tree which is not a member of any deep Π_{1}^{0} class.

Fact

The class of effectively proper incompressible trees is a deep Π_{1}^{0} class.
However, the class of proper incompressible trees is a Π_{2}^{0} class.

Theorem (Barmpalias, Z., 2024)
There exists a perfect incompressible tree which is not a member of any deep Π_{1}^{0} class.

Question

Is there a reasonable way to define a deep Π_{2}^{0} class?

Thanks!

