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Notations. We use σ, τ to denote finite binary sequences
(strings). Let 2n be the set of strings of length n.
We use x, y to denote infinite binary sequences (reals).
Let x ↾n be the first n bits of x. Let ≺ be the prefix relation among
strings and reals.
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Definition
Let U be an universal prefix-free Turing machine. The
Kolmogorov Complexity of a string σ is the length of the
shortest program that outputs σ, i.e.

K(σ) := min{|τ | : U(τ) = σ}.

The deficiency of σ is the number of bits it can be best
compressed, i.e. d(σ) := |σ| − K(σ).
The deficiency of a set of strings V is d(V) = supσ∈V d(σ).
A set of strings V is incompressible if d(V) < ∞.

Definition
A real x is random if K(x ↾n) ≥+ n.
Equivalently, x is random if {x ↾n: n ∈ ω} is incompressible.
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Observation
Among incomplete incompressible sets, a thin one cannot compute
a fat one.

Example
Let x = 0011 0011 0001 0110 · · · be an incomplete random real,
let

x0 = 1011 0011 0001 0110 · · ·
x1 = 0111 0011 0001 0110 · · ·
x2 = 0001 0011 0001 0110 · · ·

Let V = {x ↾n: n ∈ ω}, Wi = {xi ↾n: n ∈ ω} and W =
∪

Wi.
V is “thin” in the sense that |V ∩ 2n| = 1;
W is “fat” in the sense that |W ∩ 2n| = n;
Each xi is random, so V and Wi are incompressible.
However, W cannot be incompressible.
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An order is a non-decreasing unbounded function.

Theorem (Barmpalias, Z., 2024)
An incomplete random real z cannot compute an incompressible
set V with n 7→ |V ∩ 2n| being an order.

Proof Sketch.
Suppose otherwise, let Φ be such that Φ(z) is incompressible by
constant k and n 7→ |Φ(z) ∩ 2n| is an order.
Let P = {x : d(Φ(x)) ≤ k} and Φ−1(σ) = {x : σ ∈ Φ(x)}.
By a Lemma, µ(P ∩ Φ−1(σ)) ≤× 2−|σ|.
Let Qm

n = {x : |Φ(x) ∩ 2n| ≥ 2m}, then µ(P ∩ Qm
n ) ≤× 2−m.

P is Π0
1 and Qm

n is uniformly Σ0
1.

z ∈ P and for each m there is n with z ∈ Qm
n .

Use P ∩ Qm
n to carefully build a difference-test.
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Theorem (Barmpalias, Z., 2024)
Every random real z computes an incompressible set V with
n 7→ |V ∩ 2n| unbounded.

Proof Sketch.
Use z as a random oracle.
Randomly choose ln ∈ [2n−1, 2n], randomly choose n strings of
length ln and put them in V.
Probability that we fail at level n ≤× 2−n . Since z is random we
only fail at finitely many n, so V is incompressible.
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A set V is g-fat if supi≤n |V ∩ 2i| ≥ g(n).

Theorem (Barmpalias, Z., 2024)
If g is a computable order with limn n/g(n) = 0, then an incomplete
random real cannot compute an g-fat incompressible set.

Theorem (Barmpalias, Z., 2024)
Every random real z computes an n/(log n)2-fat incompressible set.
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A tree is a non-empty set of strings T such that σ ≺ τ and τ ∈ T
then σ ∈ T. A real x is a path of T if x ↾n∈ T for all n. Let [T] be
the set of paths through T. A tree T is

pruned if each σ ∈ T has an extension in T;
All trees are assumed to be pruned.

A tree T is
proper if |T ∩ 2n| is unbounded;
perfect if each σ ∈ T has two incomparable extensions in T;
positive if |T ∩ 2n| ≥ c · 2n for some c > 0.
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Corollary (Barmpalias, Z., 2024)
An incomplete random real z cannot compute a proper
incompressible tree.

Theorem (Barmpalias, Wang, 2023)
There is a perfect incompressible tree which cannot compute any
positive incompressible tree.

Theorem (Barmpalias, Z., 2024)
There is a proper incompressible tree which cannot wtt-compute
any perfect incompressible tree.
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Consider the following principles in RCA:
WKL: every infinite tree has a path;
P+: every positive tree has a positive perfect subtree;
P: every positive tree has a perfect subtree;
P−: every positive tree has a countable family of paths;
WWKL: every positive tree has a path;

RCA proves WKL → P+ → P → P− → WWKL.

Theorem (Barmpalias, Wang, 2023)
Each of the following extensions of RCA has an ω-model:

WWKL + ¬P−;
P + ¬P+;
P+ + ¬WKL.
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Question
Is there an ω-model of RCA + P− + ¬P, i.e. an ω-model where
every positive tree has a countable family of paths, but some
positive tree does not have a perfect subtree?

Conjecture
There is a proper incompressible tree which cannot compute any
perfect incompressible tree.

A tree is T skeletal if there is x ∈ [T] such that σ ∈ T has two
incomparable extensions in T if and only if σ ≺ x.

Conjecture
A skeletal incompressible tree cannot compute a perfect
incompressible tree unless it is complete.
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Let M be the universal left-c.e. continuous semi-measure. For a Π0
1

class P with associated co-c.e. tree T, P is deep if there is
computable f such that

M(T ∩ 2f(n)) ≤ 2−n.

Example

The class of effectively proper incompressible trees.
The class of complete extensions of PA.

Theorem (Bienvenu, Porter, 2017)
An incomplete random cannot compute any member of any deep
Π0

1 class.
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Fact
The class of effectively proper incompressible trees is a deep Π0

1
class.
However, the class of proper incompressible trees is a Π0

2
class.

Theorem (Barmpalias, Z., 2024)
There exists a perfect incompressible tree which is not a member
of any deep Π0

1 class.

Question
Is there a reasonable way to define a deep Π0

2 class?
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Thanks!
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