
Modeling and Testing of Cloud Applications
*

W.K. Chan
†

City University of Hong Kong

Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Lijun Mei
The University of Hong Kong

Pokfulam, Hong Kong

ljmei@cs.hku.hk

Zhenyu Zhang
The University of Hong Kong

Pokfulam, Hong Kong

zyzhang@cs.hku.hk

Abstract—What is a cloud application precisely? In this paper,

we formulate a computing cloud as a kind of graph, a computing

resource such as services or intellectual property access rights as

an attribute of a graph node, and the use of a resource as a

predicate on an edge of the graph. We also propose to model

cloud computation semantically as a set of paths in a subgraph of

the cloud such that every edge contains a predicate that is

evaluated to be true. Finally, we present algorithms to compose

cloud computations and a family of model-based testing criteria

to support the testing of cloud applications.

Keywords—cloud application; graph; testing criteria

I. INTRODUCTION

Cloud computing [8][16] is an emerging trend to deploy

and maintain software and is being adopted by the industry

such as Google [14], IBM [7], Microsoft [26], and Amazon [1].

Several prototype applications and platforms, such as the IBM

“Blue Cloud” infrastructure [7], the Google App Engine [15],

the Amazon Cloud [1], and the Elastic Computing Platform

[11], have been proposed. However, when it comes to the

question on how to model cloud applications (e.g., [9][30]), the

question remains unexplored. In our previous work [21][25],

we put forward several issues toward developing cloud

applications. In this paper, we sketch an application model, and

develop theoretical test adequacy criteria for testing

applications in a cloud.

There was a debate on programming-in-the-large versus

programming-in-the-small [10]. It led to the consensus in the

software engineering community that software methodologies

and techniques to support the former kind can be different from

those for the latter kind. On the other hands, we observe that

many recent proposals on cloud computing are “in the large”,

such as focusing on scaling an application to the internet scale

transparently or without much user intervention. There is little

discussion on the “in the small” side. We incline to believe that

such a “small cloud” could be more manageable than a huge

cloud, and thus having a more uniform strategy to reason or

manage cloud applications may be viable.

In this paper, we present a semantic model to support

modeling, analysis and testing of computing “clouds in-the-

small”. We first formulate the notion of a bare-bone cloud as a

foundation for modeling and analyzing cloud computing. We

use selected features of the real-life weather cloud system as a

metaphor to refine the notion of bare-bone clouds to a kind of

directed graph, which we call a cloud graph. In a cloud graph,

every node is a computing entity. A computing resource such

as a service or an intellectual property (IP) access right to use a

particular service or data (e.g., image or photo) is modeled as

an attribute of a node. The availability of an attribute of one

node to another node is modeled as a predicate on an edge that

connects from the latter node to the former one. Thus, a cloud

execution can be semantically modeled as a set of paths in a

predicate-enabled subgraph of a cloud graph.

We also develop algorithms to manipulate cloud

computations. Furthermore, we propose theoretical test

adequacy criteria to assure the quality of such cloud

applications. Although our model may be applicable to clouds

of different scales, our algorithms are particularly viable to

clouds in-the-small, in the sense that a process (in the system

sense) is capable to oversee the activities of the cloud and

exercise cloud management.

The main contribution of this paper is threefold. (i) We

present a graph-theoretic model of computing clouds. (ii) We

formulate how to transform, compose, and decompose cloud

graphs, in which the cloud computations are taking place. (iii)
We propose the first set of model-based testing criteria for

testing cloud applications.

The rest of the paper is organized as follows: Section II

presents the concept of bare-bone clouds. Section III uses a

metaphor to show three characteristics of a weather cloud

system, and maps these characteristics to the properties of

computing clouds. Section IV presents a cloud graph model,

discusses its properties and behaviors, and develops a family of

testing criteria, followed by a literature review in Section V.

Section VI concludes the paper.

II. BARE-BONE CLOUDS

In this section, we present a bare-bone model to facilitate

software designers to reason the composition and

decomposition of computing clouds to meet the requirements

of their applications. This model will also be used as the basis

to derive our cloud graph model (in Section IV).

In our bare-bone model, a computing cloud is modeled as a

directed graph c, representing a grid of computing resources.

* This research is supported in part by the General Research Fund of the

Research Grant Council of Hong Kong (project nos. 123207 and 717308),

and the Strategic Research Grant of City University of Hong Kong (project
no 7002464).

† Correspondence author.

111978-1-4244-5336-8/09/$26.00 c©2009 IEEE

Each computing resource can be a service [3][4], IP rights,

computing power, persistent storage, memory, or network

bandwidth (that connects multiple computing resources). We

model such a bare-bone cloud c as a graph �V, E�, where V is a

set of nodes, denoting the providers of computing resources,

and E (⊆ V × V) is a set of edges, and each edge relates to two

providers that communicate directly with each other at the

application level. Because different providers may offer

different kinds of computing resources, each node n (∈ V) is

also associated with a set of computing resources {r1, r2, …, rk}.

A subcloud is a connected subgraph of a cloud. The same

resource ri may exist at multiple nodes in the same cloud, or

may have been “virtualized” [13].

We refer to a client that uses a computing resource as a

cloud consumer (or simply a consumer), which is also a node

in the cloud. For instance, a Hong Kong-based parcel agency

may develop a tailor-made service that directly communicates

with the Google Map web service so that a consumer can use

Google Map with mash up to locate their parcels.

n1 { r1 } n2 { r2 }

Cloud Graph Node (Provider)

Cloud c

e (n1, n2)

Cloud Graph Edge (Provider Communication)

Figure 1. Example of bare-bone cloud.

In the above scenario, the location of a particular Google

Map service is transparent to the parcel agent. For the ease of

presentation, we refer to the computing cloud as c. In the bare-

bone model, the Google Map provider is represented by a node

n1 in the graph c, and n1 is associated with a map service r1. We

use the notation n1.r1 to denote the consumption of the

computing resource r1 available at node n1. Similarly, the

parcel agency can be modeled as a node (say, n2) that is associ-

ated with the tailor-made service r2. There is also an edge �n1,

n2� in the cloud c to denote the consumption of a service in a

cloud, which is shown as a relation among n1, n2, r1, and r2 in

the cloud. This edge is illustrated in Figure 1.

III. A METAPHOR FOR CLOUD COMPUTING

In this section, we study the lifecycle of a real-life weather

cloud as a metaphor to enrich our model.

A. Weather Cloud as a Metaphor

We observe that a weather cloud exhibits at least three

characteristics.

(C1) The shape of a weather cloud changes constantly.

Moreover, the entropy of the cloud and environmental factors

such as pressure and wind play important roles in changing the

shape of the cloud. Furthermore, there is usually a chain
reaction, rather than a single action-reaction pattern. On the

other hand, such a cloud reacts passively to these

environmental factors.

(C2) The water vapor grains that constitute a cloud may

vary in size, type, shape, and composition. Different grains

may merge to become a bigger grain, or a grain may

decompose into smaller grains. However, once a composition

or decomposition of grains has started, it is impractical to

reverse the process. For this reason, the original state of a cloud

can be too costly to restore. This observation leads us to

obsolete the notion of keeping the history of a cloud in our

cloud model.

(C3) Multiple clouds may merge to become a united cloud.

Unlike object aggregation in the sense of object-oriented

modeling, the original composing elements of this newly

formed cloud can hardly be distinguished. This observation

leads us to obsolete the notion of keeping the boundaries of

sub-clouds in our cloud model.

B. Cloud Computing Based on the Metaphor

Following the highlighted characteristics (C1−C3) of the

metaphor in the last section, we proceed to study the mapped

characteristics in cloud computing.

(M1) Computing clouds should be adaptive. Whenever a

computing cloud detects changes in its environment, it needs to

adjust itself to the new situation. Furthermore, according to our

observation on chain reaction in C1, a cloud evolution is likely

to trigger new changes in the environment, and hence the cloud

will evolve further. In general, there is no explicit equilibrium

point for such evolutions because the cloud is an open system,

and there are frequent changes in the environment.

(M2) Computing clouds should only marginally depend

on the history. When a cloud is composed from subclouds,

every individual subcloud may involve different types and

quantities of computing resources. According to our

observation on the forgotten history in C2 and the passive

reactions to the environmental changes in C1, the functionality

of the composed cloud should be strongly decoupled from the

historical events.

(M3) Computing clouds are typically tightly-coupled.

When the computing resources in a cloud cannot satisfy a

computing requirement (such as processing a transaction to

store a huge file in the network), the cloud can be merged with

another one to seek additional such resources. The extent of

cloud integration may, however, vary. For instance, if the

integration merely seeks sharing of certain resources, a way is

to link up multiple clouds. Clouds in such a bridged cloud

cluster can be loosely coupled. Nevertheless, after cloud

integration, the computing resources may need to be

redistributed among clouds in the cluster. These clouds then

become tightly coupled, and any split of the cloud may affect

the computations taking place.

Thus, adding such a bridge will result in chain reactions

(see C1) within a cloud cluster, which is then transformed into

a set of tightly coupled clouds. As such, a cloud cluster is

112 2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC)

hardly separable, and the assumption of a loosely coupled one

appears to be out of the norm. Thus, keeping the boundaries of

subclouds serves little practical purpose and may only increase

the complexity of cloud management, which is of course

undesirable (see C3).

IV. MODELING AND TESTING CLOUD COMPUTATION

In this section, we present a model to formulate computing

clouds in-the-small.

A. Formulation

We propose to model the environment as a cloud as well. It

simplifies the model so that an interaction between the environ-

ment and a cloud can be modeled as an interaction between

two clouds [32] (dubbed as a cloud interaction). Thus, a chain

reaction, possibly with the environment, can be modeled as a

sequence (or directed graph) of cloud interactions.

In our bare-bone model (see Section II), a cloud is a

directed graph of providers and consumers. Each provider

carries a set of computing resources. However, the access of

resources has not been modeled. Thus, we extend a cloud with

a set (possibly empty) of labels attached to the edges of the

cloud graph. Each of these labels is a predicate over the set of

computing resources in the cloud. Such a predicate decides

whether the providers (that is, the nodes associated with the

edge) have the computing resources available for consumption

through the edge.

Definition 1 (Cloud Graph). A cloud graph is a 4-tuple

G�V, E, P, R�. �V, E� is a bar-bone cloud. Every node v ∈ V is

associated with a resource set {r1, r2, …, rn}, where each ri ∈ R

is some computing resource. Every edge e ∈ E is associated

with a predicate set {p1, p2, …, pm}, where each pi ∈ P is a

first-order predicate over the computing resource variables.

We also use the notation e.[p] to denote the predicate p on

the edge e. We say that the binding of variables in the predicate

p is well formed if every variable is successfully bound to the

computing resources of the nodes associated with the edge e. In

other words, for every variable x on e.[p], if e = �n1, n2�, then x

should be bound to a resource in either n1 or n2. We further

impose a health constraint on our model: only those well-

formed predicates can be evaluated to be true or false.

If an edge has a predicate that has been evaluated to be true,

then the edge is said to be enabled. Otherwise, it is said to be

disabled. Since an edge in the bare-bone model represents a

direct communication between two providers, an enabled edge

thus indicates that the underlying computing resources support

the communication between the providers. A disabled edge

models a potential (but inactive) communication between a

consumer and a provider.

In our model, edge enabling is an important concept to

support the reasoning of cloud computation. For instance, a

primary cloud consumer may use a resource provided by a

primary cloud provider, which, in turn, acts as a secondary

cloud consumer that requires other computing resources from

other secondary providers, and so on. This scenario can be

modeled by a sequence of enabled edges in a cloud graph.

Formally, an enabled subcloud sc is a subgraph of a cloud c

such that every edge is enabled. However, not every enabled

subcloud represents a cloud computation. Consider Figure 2,

where two edges e1 = �n1, n2� and e2 = �n2, n3� connect two

nodes n1 and n3 via a third node n2. Suppose n2 has two

resources r1 and r2. The predicate p1 on edge e1 is well formed

by successfully binding variable x to r1. The predicate p2 on e2

is well-formed by binding variable y to r3 or r4. In this way, e1

can be enabled when r1 is available, and e2 can be enabled

when either r3 or r4 is available.

n3 { r3, r4 }n2 { r1, r2 }

Cloud c

n1 { }

e2.[p2]e1.[p1]

Cloud Graph Node (Provider)

Cloud Graph Edge (Provider Communication)

p1 : bound (r1, x) � enable (e1)

p2 : bound (r3, y) bound (r4, y) � enable (e2)

bound is true when a resource is bound to a variable; otherwise, false.

enable sets the enabling of an edge true.

x, y : variables

r1 - r4 : resources

e1 e2

Figure 2. Example of enabled subcloud.

In this example, the consecutive edges are not connected

via shared computing resources. Thus, we add two more health

constraints to our model that represents cloud computation (see

Definition 2.)

Definition 2 (Cloud Computation). A cloud computation

Ω for a cloud consumer n of a cloud c is a set of paths in an

enabled subcloud c’ of c satisfying two conditions: (i) n is a

node of c’. (ii) For any path � ∈ Ω and for any two consecutive

edges (say e1 and e2) on �, the node (say n’) connecting e1 and

e2 should have at least one computing resource bound to the

same set of variables that simultaneously enable at least one

predicate on each of e1 and e2.

B. Properties of cloud graphs

In this section, we, referencing the graph theory [31], define

a few utility properties of the cloud graph. They will be used in

the next section.

Definition 3 (Cloud Computation Distance). A cloud

graph distance for a cloud computation Ω in a cloud graph c,

denoted by Dist (Ω), is the length of the shortest computation

path in Ω.

Obviously, Dist (Ω) = Dist ({�}) if and only (�∈ Ω and, ∀�’

∈ Ω, Dist ({�}) ≤ Dist ({�’})).

2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC) 113

The cloud computation distance measures the length of the

shortest invocation sequence in a cloud graph. Due to the

changing connectivity of the cloud graph, our heuristics is that

the smaller the cloud computation distance is more stable (with

respect to changes of structure to meet the change in the cloud

as a whole) the computation will be. Furthermore, if all edges

have the same cost, a lower cost is expected with a smaller

cloud computation distance. One may use the Dijkstra’s

shortest path algorithm to find such a distance.

However, we note that different edges in a cloud graph c

may represent different distances and qualities. Therefore, we

further propose a weighted cloud computation distance to

distinguish such cases. A weighted cloud computation distance

for a cloud computation Ω in a cloud graph c is dubbed as

WeightDist (Ω), which calculates the weighted length of a

cloud computation in c. One may use a weighted version of the

Dijkstra’s shortest path algorithm to find such a distance.

Next, we define cloud graph connectivity that aims to

reveal the internal structure of a cloud graph. The connectivity

will also be used as the base of merging and splitting a cloud

graph. We refer to the graph theory [31] to define edge-

connectivity of a cloud graph.

Definition 4 (Cloud Graph Connectivity). A cloud graph

G is said to be k-connected (k-edge-connected) if its edge

connectivity is k or more. The edge connectivity is the size of a

smallest edge cut. An edge cut of G is a set of edges whose

removal renders G disconnected.

We note that there are many algorithms to find edge cuts in

a given graph, and we denote such an algorithm as find-
edgecut-set(G). In the next section, we will use these properties

to develop the algorithms to model cloud computations.

C. Cloud graph interaction

Based on the definitions in Section IV(B), we proceed to

model a cloud interaction between two clouds. As mentioned in

Section III, a cloud interaction represents a situation that a

cloud may grow or shrink. Rather than studying a passive

cloud, we study how a cloud computation can be grown or

shrunk actively.

A cloud interaction may be feasible if it happens between

the enabled subclouds of two clouds; or else, it lacks in

computing resources to enable the interactions. (Due to space

limit, we omit the proof.) We further observe that a

computation should take place during a cloud interaction;

otherwise, there is no enabled subcloud in at least one cloud,

prohibiting a cloud interaction from occurring. Based on such

observations, we refine the idea of cloud interaction to the

interaction of cloud computation.

Definition 5 (Interaction of Cloud Computation). Given

two cloud computations Ω1 and Ω2, if there are common sub-

paths between Ω1 and Ω2 (i.e., Ω1 ∩ Ω2 ≠ ∅), we say that there

is an interaction between Ω1 and Ω2. (Note that, we have

overloaded the symbols Ω1 and Ω2 to refer to their path sets,

respectively.)

Based on this interaction concept, we further identify that

the computing resource binding for a common sub-path on Ω1

may or may not be the same as that on Ω2. Let us consider two

scenarios to illustrate our model. (However, our model is not

just applicable to these two scenarios.)

Inconsistency detection on cloud graph. First, if these

two cloud computations compete for a shared computing

resource on a node, it will result in resource contention. This

can be checked via a subsequence checking operation between

paths of Ω1 and Ω2 to identify whether there is any common

sub-path (i.e., Ω1 ∩ Ω2 ≠ ∅). Once such a common sub-path

has been identified, the predicates of both Ω1 and Ω2 on the

sub-path can be further checked on whether these predicates

use the same computing resources of nodes on the sub-path. If

so, a resource confliction is detected.

Cloud partitioning. Second, given a set of cloud com-

putations, we can determine whether two cloud computations

may share any edges or nodes. If so, we may merge these two

cloud computations to become one cloud computation. We can

repeat the merging process until no two clouds share any edges

or nodes. Thus, the original computing cloud is readily

partitioned into multiple subclouds, each subcloud containing a

cloud computation, and a (remaining) cloud consisting of

nodes that are not involved in any cloud computations (dubbed

as a buffer cloud). Individual subclouds can then be used for

further analysis or optimization. When a cloud computation is

completed, the belonging subcloud may merge with the buffer

cloud. However, the procedures to split a cloud by using the

current and local state still require more research.

D. Dynamic cloud graph composition

In this section, we demonstrate how our cloud graph model

can be used in the dynamic composition of computing cloud.

Since not all clouds are of the same type, these clouds

cannot simply merge into the same type of cloud. Therefore,

from this point of view, the computing clouds can be

considered to be provisioned for different tasks. When the task

requirement changes, or the computing resources change, a

cloud may require modifying its embedding cloud computation

to optimize the fulfillment of this task.

The changes indicate a need of an algorithm to reform the

original cloud graph to a new cloud graph so that the existing

cloud computations may continue to execute. Similarly, a cloud

may split into multiple clouds, or multiple clouds may merge

together. To support such scenarios, we propose three

algorithms.

1) Cloud graph reform procedure.

We present the algorithm Reform_CloudGraph to reorganize

a cloud computation so that it adapts to the changes in resource

binding.

114 2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC)

Algorithm Reform_CloudGraph

Inputs Cloud graph c �V, E, P, R�

Outputs Cloud graph c �V, E, P, R�

1 for each cloud computation Ω in c do

 // Find the shortest cloud computation path:

2 Ω� ← {� | ∀�, �’ ∈ Ω, Dist({�’}) ≥ Dist({�})}

3 for each �∈Ω do

4 if � ∈ Ω� then

5 EnablePath(�)

6 else
7 DisablePath(�)

8 end if

9 end for

10 end for
 // Check if potential cloud computation path exists:

11 for each �∈Ω do

12 if ∃ni, nj, nk ∈ V, �ni, nj� ∈ E, �ni, nk� ∉ E, then

13 let Rj and Rk be the resource set of nj and nk

14 let Rj’ (⊆ Rj) be the resource subset that ni

 consumes from Rj

15 if Rj’ ⊆ Rk and

 EdgeDist (ni, nk) < EdgeDist(ni, nj), then

 // Add a new edge to the graph:

16 e ← � ni, nk �

17 let p be the predicate formed by Rj’ for e

18 e.[p] ← true // i.e., enable the edge

19 E’ ← E ∪ {e}

20 end if

21 end if

22 end for

23 if the input cloud graph ≠ the output cloud graph then

24 return Reform_CloudGraph(c)

25 else

26 return c

27 end if

In this algorithm, we define the functions EnablePath and

DisablePath to bind and unbind resources on each edge of a

computation path, and define the function EdgeDist to calculate

the distance of a single edge, which can represent network

latency, cost, or other measures on the QoS attributes of the

edge. The algorithm accepts a cloud graph, and iteratively

removes those edges that are not used by the current

computation (#1−#10). It then looks for alternative resources

provider (nk) of the current resources provider (ni), and replaces

the latter node by the former node if the former one is closer to

the original node than the latter one. Thus, the algorithm uses a

hill-climbing strategy to optimize the overall edge distances of

each cloud computation.

n1 n4

Cloud c

n2

n3

n5

n1 n4

Cloud c’

n2

n3

n5

e1.[p1]

e2.[p2]

e4.[p4]

e3.[p3]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]
e1.[p1]

e2.[p2]

e4.[p4]

e3.[p3]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]

Figure 3. An example cloud graph reform.

An example showing the reform of a cloud graph c is given

in Figure 3. Suppose the edge �n5, n3� in the cloud graph c

(dashed line) has a smaller distance than through the edges �n5,

n2� and �n2, n3�. Therefore, we transform cloud graph c to c’

through enabling edge �n5, n3� and disabling edge �n5, n2�.

The cloud graph reform procedure can be invoked right

after the cloud graph changes. Two basic operations on

changing a cloud graph are graph splitting and graph merging.

2) Cloud graph splitting procedure.

A cloud graph c can be split into multiple subgraphs {c1,

c2, …, cn} if the cloud graph connectivity (see Definition 4) is

not more than a defined ceiling. Intuitively, the ceiling

parameter controls the strength of coupling among nodes

within each cloud computations (as captured by a notion of

cloud).

We present an algorithm Split_CloudGraph to show how a

cloud graph can be split into multiple subgraphs.

Algorithm Split_CloudGraph

Inputs Cloud graphs c

Outputs Subcloud graphs c1, c2, …, cn

 // Calculate the connectivity of cloud graph c:

1 k ← connectivity (c)

 // Split cloud graph c if k ≤ SPLIT_LEVEL:

2 if k ≤ SPLIT_LEVEL then

 // Find a set of edge cut of cloud graph c

3 E’ ← find-edgecut-set (c)

 // Remove edges in the edge cut sets:

4 E ← E \ E’

5 end if

6 collect the disconnected subgraphs as C

 // Recursively process the disconnected subgraphs:

7 for each c’∈C do

8 Split_CloudGraph(c’)

9 end for

n1 n4

Cloud c

n1 n4

Cloud c1

Cloud c2

n2 n3
n5

n6

n7

n8

n2 n3

n5

n6

n7

n8

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e6.[p6]

Figure 4. An example cloud graph split.

Each subgraph represents a sub-computation if it contains at

least one node that at least one of its connecting edges has been

enabled. In some cases, a split cloud may contain “idle” nodes

2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC) 115

and edges, and thus, this sub-graph essentially represents no

computation, and can be removed from the cloud computation

set.

An example showing the split of cloud graph c is given in

Figure 4. Suppose the SPLIT_LEVEL is set to be 1. Cloud graph

c can be split into two subgraphs c1 and c2. The cloud graph

split procedure can be invoked automatically or manually.

3) Cloud graph merging procedure.

We present an algorithm to show how two cloud graphs can

be merged.

Algorithm Merge_CloudGraph

Inputs Cloud graphs c1�V1, E1�, c2�V2, E2�

Outputs (Merged) cloud graph c�V, E�

// Collect the interactions between c1 and c2:

1 V ← ∅, E ← ∅

2 numOfInteraction ← 0

3 for each v1∈V1 do

4 for each v2∈V2 do

5 if ∃e = �v1, v2� or �v2, v1� such that e.P is true

6 then

 numOfInteraction ← numOfInteraction + 1

7 end if

8 end for

9 end for
// Merge cloud graphs if the number of interactions is

// above MERGE_LEVEL:

10 if numOfInteraction � MERGE_LEVEL then

 // First, combine cloud graphs c1 and c2 into c:

11 V ← V1 ∪ V2

12 E ← E1 ∪ E2

13 end if

 // Then, reform c:

14 Reform_Graph(c)

n1 n4

Cloud c1 Cloud c2

n2

n3

n5

n6

n7

n8

n1

n4

Cloud c

n2
n3

n5

n6

n7

n8

Merge

Reform

e1.[p1]
e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6] e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]
e11.[p11]

e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e11.[p11]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e12.[p12]

n1

n4

Cloud c

n2
n3

n5

n6

n7

n8e1.[p1]

e2.[p2]

e3.[p3]

e4.[p4]

e5.[p5]

e6.[p6]

e11.[p11]

e7.[p7]

e8.[p8]

e9.[p9]

e10.[p10]

e12.[p12]

Figure 5. An example cloud graph merge.

More than two cloud graphs can also be merged using this

algorithm iteratively. An example showing the merging of

cloud graph c is shown in Figure 5. Suppose the

MERGE_LEVEL is set to be 2. Two cloud graphs c1 and c2 have

two interactions (shown in dashed lines). Then we form a

union of c1 and c2 into cloud graph c. After that, we reform c.

Contrast to the cloud graph splitting procedure, the cloud

graph merging procedure can be invoked when certain

thresholds of cloud clusters have been reached. When graphs

are merged, there will be opportunities to share resources that

are not feasible because the related resources may be located in

disconnected cloud graphs. Therefore, for optimization purpose,

the algorithm Reform_CloudGraph can optionally be invoked

right afterward.

We formulate the notion of self-optimization (reform) of a

cloud to address both evolving resource qualities and the

changing environment. In particular, we use a hierarchical and

incremental approach to merge or split cloud graphs. Suppose,

for instance, that a mobile device has been modeled as a cloud

graph c consisting of one node. When the device moves to

another location, it usually needs to disconnect from the current

cloud (say, c1) and connect to another one (say, c2). Such a

procedure happens frequently to mobile devices. We can

represent such actions through the split and merge procedures.

Moreover, the environmental data of cloud c can be transferred

from its previous surrounding cloud c1 to current surrounding

cloud c2.

E. Testing

Testing is the de facto activity to assure the quality of an

application. We believe that cloud application is not an

exception. In general, testing criteria define whether adequacy

test has been conducted. To the best of our knowledge, there is

no proposal in the literature on testing criteria [20][23] for

assuring the quality of cloud applications. This section

proposes a couple of such testing criteria.

The first criterion (all-predicates) tests whether the

application has decided to use the resources properly. If safety

is a requirement, this criterion can be further refined into a

family of well-known MC/DC-like testing criteria. Owing to

page limit, we omit this family in this paper.

Criterion 1 (all-predicates): Given a cloud computation

graph c, the all-predicates criterion is fulfilled by a test set T if

every predicate in c has been exercised by at least once test

case in T.

The second criterion is to test whether the application can

be performed correctly after horizontal scaling of the cloud.

However, there are potentially infinite numbers of possible

scaling. Thus, it is infeasible to test every configuration. We

resolve to test whether computational equivalence [29] can be

achieved after mutation of the cloud graph. Such mutation can

be achieved through simulation and virtualization techniques.

We define that a cloud graph m is called a mutant of a

cloud graph c if (1) one of the predicates of c has been mutated

using a mutation operator in the sense of mutation testing [33]

116 2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC)

to form m, (2) one of the nodes or edges has been removed

from c, or (3) one of the nodes of c has been duplicated in d

and thus relabeled to a new distinct node of d. A mutant is said

to be killed if the output of the mutant is not the same as that of

the original program. (We note that in our model, the output

can be measured at the predicate level or node level.)

Criterion 2 (all-reforms): The all-reforms criterion is said

to be fulfilled by a test set T if every mutant (after applying the

algorithm Reform_CloudGraph) can be killed by T.

Since cloud scalability should be transparent to a cloud

computation, thus even though mutation has been occurred, the

computation should not be affected if it can compute an output.

Chances are, the mutants will make certain resources (via

predicate mutants) unavailable for the cloud computation under

test, and lead the applications to produce non-equivalent results

or the “execution” simply crashes. This property forms a

correctness criterion to test and analyze cloud computation in

our model.

Owing to page limit, testing criteria to test applications

against cloud splitting and merging have not been presented.

We also note that the above-mentioned testing criteria are

theoretical in nature. We are studying whether they can be

effective by examining the fault classes [17] that have been

developed in the software engineering community. We have

not studied the effectiveness and the feasibility of such testing

criteria in details. The way to define a test case should also

require more studies.

V. RELATED WORK

This section reviews the literature related to our work.

The paradigm of grid computing is close to that of cloud

computing. Foster and Kesselman [12] take the grid as a

computing infrastructure and introduce the notion of grid

computing. They illustrate how grids can be used to solve

research problems such as diagnostic problems and the Aero-

engine DP problem. Existing research (e.g., [5][6][13]) on grid

computing focuses on the computing resource organization and

computing task distribution. On the contrary, cloud computing

emphasizes user experience when using cloud services. The

availability of virtualized resources becomes a key factor. Our

model explicitly incorporates resources as a key dimension.

Next, we review the context-aware computing. Context-

aware computing is important to provide adaptive behaviors to

systems. Lu et al. [20] propose a technique to test pervasive

software surrounded by different services. Mokhtar et al. [27]

illustrate the problem of composition in the environment of

pervasive computing. Lee et al. [18] propose to use a smart

space middleware to hide the complexity involved in context-

aware and automated service composition. Anhalt et al. [2]

outline a general solution to support contextual awareness. Our

previous work [21][25] discusses the context-awareness of

cloud computing by comparing the key characteristics of cloud

computing with pervasive computing and services computing

[28]. Our model has put special focus on modeling the

environmental contexts of clouds. It is because each computing

device in a cloud can be deployed on different machines, the

environmental contexts may play an important role in

determining the quality of the resultant clouds.

Compared to the service-oriented applications, many

researchers have suggested that a computing cloud may also

provide services. Our previous work [21][25] compares the key

characteristics of cloud computing and services computing. Lin

et al. [19] put cloud computing and IT as a Service (ITaaS)

together, and propose to study them from both the technology

and business model perspectives. Our previous work [22]

proposes to solve the service selection problem by using link

analysis techniques. In cloud computing, different computing

resources also need to be evaluated and ranked. As such, only

qualified resources will be used by the computing clouds. Such

filtering process will increase the quality of the computing

clouds. Testing criteria for service-related systems have been

proposed (e.g., [20][23][24]), but we are not aware of any

existing testing criteria for cloud applications.

Finally, cloud interactions can be considered similar to the

interactions among services. However, we have learnt from

services computing that such consumption or data exchange

between services may result in integration problem that may

affect cloud compositions. Assuring the quality and providing

dependability of cloud interactions warrant more research

efforts.

VI. CONCLUDING REMARKS

Cloud computing is an emerging computing model that
requires more research attention. In this paper, we have
presented a graph-theoretic model aiming to describe and
reason applications of computing cloud in the small and their
interactions. We have studied the concept of a cloud as a graph,
the representation of resources as node attributes, the use of
resources as predicates, and an execution as a set of directed
paths of a cloud graph. Our model can be viewed as a kind of
predicate-based graph.

Through the notion of predicate-enabled subclouds, we

have studied how cloud interactions can be captured and

represented by our model to support formal analysis. We have

further illustrated how to use our model to conduct analysis on

cloud composition and detection of anomalies. We have further

proposed model-based test adequacy criteria to support the

testing of cloud applications.

Our model also has several limitations. Currently, it only

supports stateless atomic operations or cloud computations that

can be expressed in the form of context-free grammars. One

may incorporate different types of scalability, exception

handling, and dynamic binding among attributes of nodes.

Service transactions and explicit concurrency have not been

studied. Model development to address them could be valuable.

ACKNOWLEDGMENT

We thank Prof. T.H. Tse of The University of Hong Kong

for his discussion on an earlier version of this paper. We also

thank the anonymous reviewers for their helpful comments.

2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC) 117

REFERENCES

[1] Amazon Elastic Compute Cloud. Available at http://aws.amazon.
com/ec2/. (Last access September 12, 2009.)

[2] J. Anhalt, A. Smailagic, D. P. Siewiorek, F. Gemperle, D. Salber, S.

Weber, J. Beck, and J. Jennings. Toward context-aware computing:

experiences and lessons. IEEE Intelligent Systems, 16 (3): 38–46, 2001.

[3] B. Benatallah, R. M. Dijkman, M. Dumas, and Z. Maamer. Service-

composition: concepts, techniques, tools and trends. In Service-Oriented
Software System Engineering: Challenges and Practices, pages 48–66.

Idea Group, Hershey, PA, 2005.

[4] M. Broy, I. H. Kruger, and M. Meisinger. A formal model of services.

ACM Transactions on Software Engineering and Methodology

(TOSEM), 16 (1): Article No. 5, 2007.

[5] R. Buyya. Economic-based Distributed Resource Management and

Scheduling for Grid Computing. PhD Thesis. Monash University,
Melbourne, Australia, 2002.

[6] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud
computing: vision, hype, and reality for delivering IT services as

computing utilities. In Proceedings of the 10th IEEE International

Conference on High Performance Computing and Communications
(HPCC 2008), pages 5–13, 2008.

[7] Cloud Computing. IBM. Available at http://www.ibm.com/ibm/ cloud/.
(Last access September 12, 2009.)

[8] Cloud Computing. Wikipdia. Available at http://en.wikipedia.org/
wiki/Cloud_computing. (Last access September 12, 2009.)

[9] K. A. Delic and M. A. Walker. Emergence of the academic computing

clouds. Ubiquity, 9 (31): 1, 2008.

[10] F. DeRemer and H. Kron. Programming-in-the large versus

programming-in-the-small. In Proceedings of the international

Conference on Reliable Software, pages 114–121, 1975.

[11] Enomaly’s Elastic Computing Platform in Sourceforge. Available at

http://sourceforge.net/projects/enomalism/. (Last access September

12, 2009.)

[12] I. Foster and C. Kesselman (editors). The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann, San Francisco, CA, 1999.

[13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:

enabling scalable virtual organizations. International Journal of High
Performance Computing Applications, 15 (3):200–222, 2001.

[14] Google and the wisdom of clouds. Business Week. 2007. Available at

http://www.businessweek.com/magazine/content/07_52/b406404
8925836.htm.

[15] Google App Engine. Google. Available at http://code.google.com/
appengine/. (Last access September 12, 2009.)

[16] B. Hayes. Cloud computing. Communications of the ACM (CACM),
51 (7): 9–11, 2008.

[17] M. F. Lau and Y. T. Yu. An extended fault class hierarchy for

specification-based testing. TOSEM, 13 (3):247–276, 2005.

[18] C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal. Context-aware service

composition for mobile network environments. In Ubiquitous
Intelligence and Computing, volume 4611 of Lecture Notes in Computer

Science, pages 941–952, 2007.

[19] G. Lin, G. Dasmalchi, and J. Zhu. Cloud computing and IT as a service:

opportunities and challenges. In Proceedings of the IEEE International

Conference on Web Services (ICWS 2008), page 5, 2008.

[20] H. Lu, W. K. Chan, and T. H. Tse. Testing pervasive software in the

presence of context inconsistency resolution services. In Proceedings of
the 30th International Conference on Software Engineering (ICSE

2008), pages 61–70, 2008.

[21] L. Mei, W. K. Chan, and T. H. Tse. A tale of clouds: paradigm

comparisons and some thoughts on research issues. In Proceedings of

the 2008 IEEE Asia-Pacific Services Computing Conference (APSCC
2008), pages 464–469, 2008.

[22] L. Mei, W. K. Chan, and T. H. Tse. An adaptive service selection
approach to service composition. In Proceedings of ICWS 2008, pages

70–77, 2008.

[23] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-oriented

workflow applications. In Proceedings of ICSE 2008, pages 371–380,

2008.

[24] L. Mei, W. K. Chan, and T.H. Tse. Data flow testing of service

choreography. In Proceedings of ESEC/FSE 2009, pages 151-160, 2009.

[25] L. Mei, Z. Zhang, and W.K. Chan. More tales of clouds: software

engineering research issues from the cloud application perspective. In
Proceedings of COMPSAC 2009, pages 525–530, 2009.

[26] Microsoft plans ‘cloud’ operating system. New York Times. 2008.

Available at http://www.nytimes.com/2008/10/28/technology/
28soft.html.

[27] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny. Context-

aware service composition in pervasive computing environments. In

Rapid Integration of Software Engineering Techniques, volume 3943 of
Lecture Notes in Computer Science, pages 129–144, 2006.

[28] D. Saha and A. Mukherjee. Pervasive computing: a paradigm for the
21st century. IEEE Computer, 36 (3): 25–31, 2003.

[29] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen. Testing
context-sensitive middleware-based software applications. In

Proceedings of the 28th Annual International Computer Software and

Applications Conference (COMPSAC 2004), volume 1, pages 458–465,
2004.

[30] A. Weiss. Computing in the clouds. netWorker, 11 (4):16–25, 2007.

[31] D. B. West. Introduction to Graph Theory, Prentice Hall, 2nd Edition,

Chapter 2 and Chapter 4, 2001.

[32] When clouds collide. The Economist. 2008. Available at

http://www.economist.com/business/displaystory.cfm?story_id=10
650607.

[33] Wikipedia. Mutation testing. Available at

http://en.wikipedia.org/wiki/Mutation_testing.

118 2009 IEEE Asia-Pacific Services Computing Conference (IEEE APSCC)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

