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Abstract. The testing of programs in wireless sensor networks (WSN) is an
important means to assure quality but is a challenging process. As pervasive
computing has been identified as a notable trend in computing, investigations on
effective software testing techniques for WSN are essential. In particular, energy is
a crucial and scarce resource in WSN nodes. Programs running correctly but failing
to meet the energy constraints may still be problematic. As such, testing techniques
for power-aware applications are useful; otherwise, the quickly depleted device
batteries will need frequent replacements, hence challenging the effectiveness of
automation. Since current testing techniques do not consider the issue of energy
constraints, their automation in the WSN domain warrants further investigation.

This paper proposes a novel power-aware technique built on top of the notion
of metamorphic testing to alleviate both the test oracle issue and the power-
awareness issue. It tests the functions of programs in WSN nodes that are in
close proximity, and uses the data consolidation criteria of data aggregation in
programs as the basis for verifying test results. The power-aware transmissions of
intermediate and final test data as well as the computation required for verification
of test results are directly supported by the WSN programs. Our proposed
technique has been strategically designed to blend in with the special features
of the WSN environment.

Keywords: Wireless sensor network, WSN application, power awareness, test
oracle, metamorphic testing, software testing, test automation.

1 Introduction

A wireless sensor network (WSN) is an ad hoc computer network formed by many
sensor devices interconnected by wireless channels. Each sensor device, known as
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a sensor node or simply a node, is built with sensors to capture data (such as
temperature and light intensity) from its physical environment. Because of physical
and environmental limitations, such nodes should satisfy various constraints regarding
battery power, computation capacity, unforeseeable communication restrictions, and
others. A popular class of sensor nodes are those that, once deployed, will be operational
until the depletion of their batteries. In other words, the lifetime of the sensor nodes
depend critically on power management.

In certain WSN, many nodes are deployed in proximity to perform the same function,
such as sensing a change of temperature for the detection of any passing hot object. A
few nodes, equipped with relatively plentiful resources, are selected as base stations
that bridge other nodes and target client stations. These nodes are normally known
as data aggregators. They consolidate the data from sensory nodes and send the
consolidated results to other nodes. For example, they eliminate duplicated copies of
data or compute statistics from the data received according to defined evaluation criteria.
In this paper, we refer to such criteria as data consolidation criteria. In this way, the
data consolidation feature of a WSN application would save transmission energy by
propagating the computed results instead of simply relaying received data [10].

Power efficiency is critical to many WSN applications. A power-aware application
should “enable users to work for longer periods of time before having to reconnect
to recharge the system battery. . . . an anti-virus scanner would run in a full-featured
fashion, providing file scanning on all files opened and also running periodic system-
wide scans. When on battery power, the scanner could defer the system-wide scans
until a later time and continue processing safely, analyzing just the open files.” 1 For
example, according to http://www.tinyOS.net, the de facto site for important news
release for tinyOS, researchers advocate to design WSN artifacts to be power-aware.

On the other hand, the nodes in a typical WSN must coordinate among themselves
and the transmission of data across nodes in the network is a typical feature in a WSN
application — but data communication is the most energy-demanding aspect among
communication, sensing and computation. 2

The development of automated testing techniques for WSN applications with the
above properties is further complicated by the following:

(a) The outputs from an individual node are often unstable, unreliable, and dependent
on hardware quality and unforeseeable physical environmental conditions. One way
to overcome these limitations is to test software components on a node simulator,
such as TOSSIM 3, which emulates simplified situations of WSN applications.
In practice, however, such an approach requires elaborated studies of possible
application-specific environments. Testing on a real platform is another alternative.
Unfortunately, the results of an application in the unforeseeable WSN environment
are determined not only by what test cases are selected, but also where, when and
how they are executed.

1 http://solveit.jotxpert.net/WikiHome/Articles/277366.
2 M. Srivastava. Wireless sensor and actuator networks: challenges in long-lived and high-

integrity operation. ASI Lecture, City University of Hong Kong, December 4, 2006. Available
at http://www.cs.cityu.edu.hk/ asi06/program.shtml.

3 http://www.cs.berkeley.edu/ pal/research/tossim.html.
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(b) As the power-aware aspect is a key feature of WSN applications, the testing of
both functional correctness and power-awareness is necessary for quality assurance.
In particular, applications in sensor nodes are often designed for a particular
range of workload such as sleeping for 99% of its time and working actively
for the remaining 1%. Using excessive resources in sensor nodes to conduct
testing activities may change the workload pattern, which directly alters the
energy consumption and, hence, the power-awareness test results. The testing
of applications in the WSN environment is, therefore, a research and practical
challenge.

As such, we identify at least two testing research directions for assuring WSN
applications: (1) the formulation of effective testing techniques for power-aware
applications, and (2) the development of energy-efficient testing techniques for WSN.
This paper is our first step towards these goals.

As we have mentioned earlier, data communication is unavoidable in WSN and
consumes most of the energy. It inspires us to use the existing data communication
of the application to transmit test results to data aggregators (which have relatively
plentiful resources) to conduct the checking of test results. We explore this observation
to develop our testing proposal.

This paper proposes a novel test automation strategy to alleviate the test oracle issue
associated with power management concerns in a WSN environment. The backbone of
our test verification technique is metamorphic testing [7]. Our strategy consists of three
elements: (a) The test inputs are sensed data of isotropic physical phenomena of sensor
nodes that are in proximity. (b) We then use the data consolidation criteria supported
by the data aggregators of WSN applications as a basis for verifying results according
to the metamorphic approach [8]. (c) We enhance current techniques of metamorphic
testing, such as [8,9,17], to address non-functional concerns. For any given test case,
apart from verifying the functional output from the sensor node, we also check the
energy consumption that has been used to compute the functional output. By comparing
and contrasting the energy consumptions, we verify whether an abnormal amount of
energy has been consumed.

The main contributions of the paper are two-fold: (i) To our best knowledge, it is the
first research to alleviate the test oracle problem for the testing of software applications
running on top of wireless sensor networks. (ii) It is also the first attempt to address the
testing of power-aware concerns for these applications.

The rest of the paper is organized as follows: It first reviews related work in the
next section, followed by metamorphic testing in Section 3. In Section 4, we shall
develop a software testing model that helps testers alleviate the test oracle problem
in the presence of power management concerns. In Section 5, we discuss issues of
other potential options, and portray directions for future work. We conclude the paper
in Section 6.

2 Related Work

To support high-quality automated software testing, a reliable and automatic test
oracle should be developed. Binder [6] extensively reviews many popular types of



Towards the Testing of Power-Aware WSN Software Applications 87

test oracle and casts them in the context of object-oriented testing. A simple and
intuitive mechanism for automatic test oracles is program assertion, as supported by
JUnit [2]. This approach may also be applied to the testing of programs in sensor nodes.
However, sensory computing is intrinsically imprecise. The use of program assertions
in imprecise WSN computation warrants further research.

Some practitioners recommend adopting the techniques in Graphical User Interface
(GUI) testing to embedded systems testing [11]. Berstel et al. [5] use a formal
specification approach to verify GUI specifications. They work at the specification
level; whereas we propose a technique that works at the implementation level. Xie and
Memon [19] empirically study the effect of a number of selected test oracle approaches
on GUI applications. They find in their experiments that, for effective identification
of failures, test oracles should be strong, or else the failures for some test cases may
not be identifiable by the test oracles. Our approach proposes to use data aggregation
criteria of the application to serve as the mechanism to define test oracles. Their work
complements ours.

Chen et al. [9] evaluate the failure-detection capabilities of different metamorphic
relations for the same applications. They find that different forms of metamorphic
relations have diverse strengths in detecting failures even for the same set of source
test cases. We also utilize the knowledge of domain experts specified in the data
consolidation criteria for eliminating duplicated data entries by the data aggregator of
the application.

Tse et al. [16] report on an approach, which is close to metamorphic testing, to tackle
the test oracle issue for embedded software in bonding machines. They do not consider
the power-awareness issue. Kapfhammer et al. [12] propose to unload not-in-use test
components to ease the memory constraints of testing activities. Our approach, on the
other hand, directly uses application code to detect failures.

Some researches improve the infrastructure to support testing. For example, testers
may use emulators of wireless sensor networks [13,18] to selectively track whether
their applications have executed as intended. These emulators simulate the hardware
environments to facilitate the development and checking software applications.

The emulator approach is quite laborious since extensive prior profiling is required.
An alternative is to use verification patterns [15] that implement test scenarios
collectively as test templates so that different initializations of test scripts can share the
same test infrastructure. There are approaches that propose some kind of conformance
testing framework to test embedded software formally [14].

The effectiveness and tradeoffs of these approaches are, however, not examined.
Although WSN applications are gaining popularity, their testing problems have not yet
been adequately studied.

3 Metamorphic Approach

Metamorphic testing [7,8] was proposed as a property-based approach to alleviate the
test oracle problem. It has been applied to unit testing as well as integration testing.
These studies illustrate the notion of metamorphic testing via functional testing. Since
our proposal is closely related to the notion, we review it in this section.
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3.1 Concept

A test oracle is a mechanism to determine whether a test case has passed or failed. It is
difficult to establish (automated) test oracles for some programs. Examples are software
for optimal routing, shortest paths, and partial differential equations. This is known as
the test oracle problem. Although human may serve as manual test oracles in some
cases, it is costly and error-prone.

In such circumstances, metamorphic testing aims at selecting follow-up test cases
based on source test cases, and check whether their results satisfy necessary conditions
relating the expected solutions of the source and follow-up test cases. These necessary
conditions are known as metamorphic relations [7,8].

3.2 Metamorphic Relation

Informally, a metamorphic relation consists of two components. The first relies on a
relation, known as a source relation, which defines the relationship between source test
cases, their outputs, and follow-up test cases. This effectively provides a specification
for developers or test drivers to select follow-up test cases. The second component
defines the relationship among the target functional outputs of the source test cases and
follow-up test cases, and the test cases themselves. Such a metamorphic relation can be
used to verify test results to alleviate the test oracle problem.

A metamorphic relation is vital to the application of metamorphic testing. We adapt
the definition of metamorphic relation from [8] as follows:

Let f be a target function and let P be its implementation. Intuitively,
a metamorphic relation is a necessary condition over a series of inputs
x1, x2, . . . , xn and their corresponding results f (x1), f (x2), . . . , f (xn) for
multiple evaluations of f .

Definition 1 (Metamorphic Relation). [8] Let x1, x2, . . . , xk, where k ≥ 1, be a series
of inputs to a function f and let 〈 f (x1), f (x2), . . . , f (xk)〉 be the corresponding
series of results. Suppose 〈 f (xi1), f (xi2), . . . , f (xim)〉 is a subseries, possibly an
empty subseries, of 〈 f (x1), f (x2), . . . , f (xk)〉. Let 〈xk+1, xk+2, . . . , xn〉, where n ≥
k + 1, be another series of inputs to f and let 〈 f (xk+1), f (xk+2), . . . , f (xn)〉 be
the corresponding series of results. Suppose, further, that there exist relations
r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn) and r′(x1, x2, . . . , xn,
f (x1), f (x2), . . . , f (xn)) such that r′ must be true whenever r is satisfied. We say that

MR = { (x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))|
r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn)
→ r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))}

is a metamorphic relation. When there is no ambiguity, we simply write the metamorphic
relation as

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn),
then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).
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Furthermore, x1, x2, . . . , xk are known as source test cases and xk+1, xk+2, . . . , xn are
known as follow-up test cases.

Consider an implementation of a hash function f , which computes the hashed
values of input vectors a1, a2, . . . , am. A necessary condition for its correctness is that
the hashed values of the input elements of an input vector should not change even
if we rearrange their positions in the input vector. In other words, given a correct
implementation, the hash total of the outputs from a source input vector should be the
same as that of the outputs from a permuted input vector.

Based on the above concept, a tester may first find a reliable permutation program π
to rearrange input vectors. The tester then sets up a source relation 〈b1, b2, . . . , bm〉 =
π(〈a1, a2, . . . , am〉) to select a follow-up test case 〈b1, b2, . . . , bm〉 from any source test
case 〈a1, a2, . . . , am〉. Thus, the tester can define a metamorphic relation for the hash
function as follows:

MRhash: If 〈b1, b2, . . . , bm〉 = π(〈a1, a2, . . . , am〉),
then ∑k

i=1 f (〈b1, b2, . . . , bm〉)[i] = ∑k
i=1 f (〈a1, a2, . . . , am〉)[i],

where [i] refers to the i-th index of the array.

3.3 Metamorphic Testing

We also adapt the definition of metamorphic testing from [8] as follows:

This [metamorphic] relation must be satisfied when we replace f by P;
otherwise P will not be a correct implementation of f .

Definition 2 (Metamorphic Testing). [8] Let P be an implementation of a target
function f . The metamorphic testing of metamorphic relation

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim), xk+1, xk+2, . . . , xn),
then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).

involves the following steps: (1) Given a series of source test cases 〈x1, x2, . . . , xk〉 and
their respective results 〈P(x1), P(x2), . . . , P(xk)〉, select a series of follow-up test cases
〈xk+1, xk+2, . . . , xn〉according to the relation r(x1, x2, . . . , xk, P(xi1), P(xi2), . . . , P(xim),
xk+1, xk+2, . . . , xn) over the implementation P. (2) Check the relation r′(x1, x2, . . . , xn,
P(x1), P(x2), . . . , P(xn)) over P. If r′ is false, then the metamorphic testing of MR reveals
a failure.

Let us use the above hash function example for an illustration. Suppose the
input vector 〈1, 2, 3〉 is hashed to 〈−1234, 98, 36〉, and the input vector 〈3, 2, 1〉,
constructed according to the implementation of the above source relation, is hashed
to 〈36, 98, 1234〉 by the implementation under test. A test driver will then compute the
sum of −1234, 98, and 36, which is −1100. It will also compute the sum of 36, 98, and
1234, which is 1368. Since the two resultant values differ, the metamorphic relation is
violated. The two test cases collaboratively reveal a failure.
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4 Our Approach

In this section, we first clarify its relationship with metamorphic testing. Next, we
discuss the software environment in which the notion of metamorphic testing can be
adapted to reveal functional and non-functional problems of an application. Section 4.3
gives an example application scenario, and describes the types of fault. Finally, we shall
illustrate the use of our approach to identify these faults in Section 4.4.

4.1 Relationship with Metamorphic Testing

Consider a program P under test that supposedly implements a target function f .
Metamorphic testing, as reviewed in the last section, relies on the formulation of a
necessary condition of f . It ignores the software environment of P. On the other hand,
we observe that the deployment of P in different environments has substantial impacts
on its non-functional properties. Putting P on a low-voltage platform, for example,
may cause the power consumption to be different from that on a standard PC platform.
We suggest that the software environment should also be taken into consideration for
necessary conditions related to non-functional properties.

In addition, the generic notion of metamorphic testing needs to be enhanced to
address at least the following two areas in the testing of WSN applications: (a) How to
implement a metamorphic relation in wireless sensor networks? (b) Where to evaluate
the test results, since most WSN nodes have very limited storage, memory, bandwidth,
and so on?

In the rest of this section and Section 5, we shall investigate and elaborate on our
proposal to address these concerns and beyond.

4.2 Software Environment

In this section, we present an overview of our test model of WSN software applications.
A WSN is modeled as a set of nodes. We assume that one software component is
deployed in each node. 4 Hence, one may refer to a software component by simply
referring to a node. In the sequel, we shall use the terms “node” and “software
component” interchangeably unless otherwise stated.

Each software component has its own function. We have studied a variety of
third-party TinyOS [4] applications as well as the tutorial applications of TinyOS
to come up with the following observation. We note that each software component
will accept an input, complete the required processing, and output a result before
accepting another input. Furthermore, in nesC applications, for instance, there are sub-
components within a software component such that the output of one sub-component
is piped to another sequentially. We maintain the concept of sequential programs in
our model because typical sensor nodes have little resources, and concurrency models
found in conventional operating systems are still poorly developed in, say, TinyOS
and nesC [3]. Thus, a temperature sensor node may behave as follows: It obtains the

4 It is not difficult to extend our model to allow more than one software component to be
deployed in a node.
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P, Q : sensor nodes. 
∑P : a data aggregation node
Client: client to use the aggregated data

: ad hoc communication link to relay messages          
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∑Q

Client
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∑P

Client
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9

P

Fig. 1. Example scenario of software application of wireless sensor network, which monitors
whether there is any wildfire

current and voltage readings from its temperature sensor and computes the value of the
temperature. It then identifies its surrounding nodes and sends the computed value to a
destination node such as a data aggregation node or a base station.

We assume the following network property based on the characteristic that nodes in
a wireless sensor network are deployed in large scale for a particular application, such
as temperature monitoring in a nontrivial area zone.

Assumption: Every node has at least one adjacent node whose software
component performs the same function as the node itself.

Since energy is a critical resource for WSN nodes, each node is equipped with a
residual energy-level scan function. We model it as a utility function that returns the
instant energy level of the node. Hence, a test driver may inquire about the energy level of
a node before and after the execution of a software component in a software environment
and determine the energy φ consumed by the execution of a test case. From this, software
testers can track the energy spent on the execution of one test case in one particular node.

4.3 Example Software Application Scenario

We describe an example temperature monitoring application that aims to identify
incidents of wildfire and forward alerts to the clients concerned. Figure 1 depicts a
blueprint of the application.

Description of the software application. A cluster of wireless sensor nodes is deployed
in a fire control zone. Some of them, such as nodes 1 and 5, are deployed with the same
software component P that computes the ambient temperature. These nodes determine
a raw temperature reading as follows: The resistance of the conductor in a sensor
normally varies with temperature, causing changes in current and voltage according
to Ohm’s Law plus or minus detailed practical deviations.
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For the ease of discussion, let us assume that the change in resistance is directly
proportional to the change in temperature under the operational conditions of the sensor
nodes. Thus, by comparing the instant current and voltage readings from the sensors
with those of reference temperatures, program logic can be implemented to estimate
the present temperature from the current and voltage readings.

Suppose a wildfire breaks out near sensor nodes 1 and 5, as shown in Figure 1. The
ambient temperature rises and, hence, triggers these nodes to gauge the environment.
As described above, the software component P will interpret the current temperature
based on the readings.

Each of the two nodes will send the computed temperature values to their respective
adjacent nodes, which will relay the values to the data aggregation device, node 7, for
further data summarization. In Figure 1, the computed temperature value from node 1
is forwarded to node 7 via nodes 2, 3, and 4, while that from node 5 is routed via nodes
6 and 7. (We note that nodes 4 and 7 are aliases of each other.)

Data aggregation is essential for wireless sensor networks [10]. It merges duplicated
data from distinct sources to save energy in data transmission. This is mostly
application-oriented. In other words, data consolidation criteria should have been
implemented in WSN applications to cater for resource constraints. In our example,
the data from nodes 1 and 5 are consolidated at node 7, so that clients at nodes 8 and 9
will receive a consolidated result.

Program. Embedded system developers frequently implement their software to meet
resource-stringent constraints. They use application-specific heuristics to develop the
program logic.

In the example application, the temperature sensors attached to nodes 1 and 5 have
the following specific property: In certain temperature ranges, the current or voltage
reading has a linear relationship with the temperature. See, for instance, the linear
portions of the two sample plots in Figure 2. On the other hand, the temperature range
applicable to the linear portion of the current-temperature plot may not overlap with the
temperature range applicable to that of the voltage-temperature plot [1]. Furthermore,
the relationship among temperature, current, and voltage may be non-linear and much
more complex outside these temperature ranges.

Thus, when a program finds that it cannot determine the temperature value using
a simple calculation based on the instant current reading, it will try to compute the
temperature based on the instant voltage reading. When both approaches are not
applicable, it will use a more sophisticated and computationally expensive formula.
This three-way policy serves to save energy. There is also some environment-specific
calibration in the program to initialize the temperature variable.

Consider the following annotated self-explanatory example code fragment of
software component P to compute the temperature. 5

5 The data types of the variables are integers instead of floating point numbers, because floating-
point calculation is expensive and seldom used in embedded system computations. For the ease
of presentation, a current of “I mA” is written as “10000×I” in the sample code. The treatment
of voltage V is similar. We also show numbers in the format of, say, “53 − 48” instead of “5”,
to enable readers to cross-reference with the example code fragment.
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Current (mA)

Temperature 

Voltage (volts)

Temperature

53
48

49
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0.03 0.05 0.04 1.20.11  0.115
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27

Fig. 2. Example plots of variations in temperature against variations in current (left) and voltage.
(Not to scale.)

P (clb_I, clb_V: integer) { // environmental specific calibrations
// for current and voltage.

V, I, T: integer; // voltage, current, and temperature
T = 300; // environment-specific initialization
...
V = sensor_channel1( );
I = sensor_channel2( );
...
if (I >= 300 and I <= 500)

s0: T = 53 - (( I - 300 ) * (53 - 48)) / (500 - 300) + clb_I;
else if (I >= 1100 and I <= 1150)

// [Hard] Fault (a): The correct version should be:
// T = 27 - (( I - 1100 ) * (27 - 13)) / (1150 - 1100) + clb_I;

s1: T = 27 - (( I - 1150 ) * (53 - 48)) / (1150 - 1100) + clb_I;
// [Soft] Fault (b): The "else" keyword is missing.
// The correct version should be:
// else if (V >= 400 and V < 12000) ...
if (V >= 400 and V < 12000)

s2: T = 49 - (( V - 400 ) * (49 - 25)) / (12000 - 400) + clb_V;
else ...

// the general and sophisticated approach to compute T.
return T;

}

In the code fragment above, clb_I and clb_V are the input parameters of the program
P, denoting calibrations of voltage and current. Since the qualities of the hardware of
different nodes may vary, these parameters are used to offset the differences.

Faults. Two faults occur in the above program. Fault (a) affects the correctness of the
program. For instance, if clb_I is 0 and I is 1100, the faulty statement s1 will compute
T to be 13 instead of the expected value of 27. Fault (b) will cause statement s2 to
re-compute T (after being computed once by statement s0 or s1) if the voltage reading
fulfills the guard condition. Suppose that each of statements s0, s1, and s2 consumes
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Table 1. Example test cases, their test outputs, and MT results that indicate failures

Input components of 
test case 

Test 
case 

At 
node 

Temperature 
of 

environment Sensed I Sensed V

Computed 
result of 
P(0, 0) 

Expected 
result of 
P(0, 0) 

Computed 
by  

Metamorphic testing result that indicates 
failure 

t1 1 27 0.110 mA – 13 27 s1 
t2 5 27 – 1.15 V 27 27 s2 

“MRA: If r(T1, T2), then ≈P(T1, T2)” is 
violated because 13 ≠ 27. 

t3 1 49 0.047 mA 0.04 V 49 49 s0, s2 
t4 5 49 0.060 mA 0.05 V 49 49 s2 

“MRB: If r(T3, T4) ∧ ≈P(T3, T4), then φ3 = φ4” 
is violated because 2ω ≠ ω. 

the same amount of energy ω, and that the energy for queries and condition checking
is negligible. Then, we have different energy consumptions of the sensor node although
the functional correctness of the program is not affected. We should add that, in practice,
the code is much more complex than the statements s0, s1, and s2 in the example.

To help readers follow our illustration, we note that many physical events have life
cycles, in which an event initializes, occurs, evolves, and then fades out. Different
sensors may simultaneously observe the same event at the same stage in their life cycles,
probably with slight differences in reading, which will be used as input parameters to
the WSN applications such as the example program above. For similar input parameters,
if two executions of the same program consume excessively different amounts of
energy, it may indicate an anomaly in the program.

4.4 An Illustration of Our Testing Approach

To adapt metamorphic testing to software applications on wireless sensor networks,
testers should determine a source relation r and the encompassing metamorphic
relation. In the sequel, we first illustrate them using the example application scenario.
Next, we will describe how to use them to detect faults (a) and (b).

Source relation. The use of isotropic physical conditions as metamorphic relations has
been proposed by Tse et al. [17]. For the testing of WSN applications, however, we need
to determine how to obtain such physical conditions. Consider again our application
scenario, where a wildfire sends heat to sensors nearby. As sensor nodes are typically
deployed in a massive scale, readings sensed by adjacent nodes or nodes in proximity,
such as nodes 1 and 5 in Figure 3, should be close enough to be considered equivalent.
As we shall explain in the next paragraph, a sense of equivalence is determined by the
application itself and we propose to use this important feature of WSN applications as
the basis for metamorphic relations.

As shown in the column “Temperature of environment” in Table 1, for example, the
temperatures at nodes 1 and 5 are equivalent during the first two scenarios (T1 and T2

as depicted in Figure 3), and again equivalent during the last two scenarios. Testers
can control their test cases by controlling the location of the fire and the locations
of the sensor nodes. In this way, nodes can be set up to monitor the same physical
phenomenon. This source relation is represented by r(T1, T2) above the dotted line
linking nodes 1 and 5 in Figure 3.

Metamorphic relations. Two metamorphic relations are proposed:
Data aggregation is essential to software applications for wireless sensor networks [10].
As we have explained in Section 4.2, a major property of data aggregators is to eliminate
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Fig. 3. Example metamorphic testing in wireless sensor network.

duplicated data. A data aggregator may have a data consolidation criterion ≈P( ) to
determine whether two data sets resemble each other. In our example, since any two
sensory inputs fulfilling the isotropic physical condition r should trigger the program
under test to give “equivalent” estimated temperatures, the data consolidation criterion
should decide whether two estimated temperatures are close enough to be treated as
duplicated data. For the ease of illustration, we shall use simple identity as the data
consolidation criterion for the equivalence of temperatures. The resulting metamorphic
relation is as follows, and if a pair of test cases and their execution results do not satisfy
MRA, it indicates a functional failure.

MRA: If r(T1, T2), then ≈P (T1, T2).

Let us now consider non-functional testing. In the absence of a test oracle, we cannot
isolate functionally passed test cases from failed ones. We resolve to make use of test
cases that do not indicate functional failures in terms of metamorphic relations such as
MRA. Since equivalent temperature values are determined from the application-specific
data consolidation criterion ≈P( ) based on an isotropic physical condition r, if they
need non-equivalent amounts of power for computation, it should indicate a failure. We
express this idea as a metamorphic relation.

MRB: If r(T1, T2) and ≈P (T1, T2), then φ1 = φ2.

Testing. In defining the above metamorphic relations, we recommended to make use of
the data consolidation criteria of data aggregation supplied by the application, together
with the isotropic physical conditions of sensor nodes in close proximity. A sketch of
the scheme is depicted in Figure 3.

We propose to place the task of test result evaluations in the data aggregator
component of the application, because the data consolidation criteria constitute part
of the logic of the data aggregator. This also relieves sensor nodes from having to
evaluate the test results, which would deplete the batteries faster than the original
plan of the application designers. Moreover, by utilizing the implementation provided
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by the application, any failure detected via our approach will indeed indicate a fault
in the application. In the sequel, we shall illustrate the usefulness of our proposal in
identifying such failures.

To identify a failure due to fault (a), let us consider test cases t1 and t2 in Table 1. 6

Suppose that the input current and voltage calibrations are both zero as indicated in the
column captioned “Computed result of P(0 ,0)” in the table. Test case t1 causes P to
output 13 via the statement s1 (as indicated in the column captioned “Computed by”)
while test case t2 cause P to output 27 via the statement s2. Since 13 and 27 are not
equivalent, it violates the metamorphic relation MRA and, hence, reveals a failure. The
column captioned “Expected result of P(0, 0)” shows the expected result of the test
case for readers’ reference.

To identify a failure due to fault (b), let us consider the test cases t3 and t4 in Table 1.
Test case t3 executes both statements s0 and s2, each of which suffices to give the
correct result; however, the amount of energy consumed by the test case is 2ω. Test
case t4 executes statement s2 only and, hence, the energy consumed is ω. As a result,
they consume different amounts of energy. According to MRB, this indicates a failure
related to the energy consumption of the temperature monitoring software application.

5 Discussions

In our model, we place the implementation of a metamorphic relation in a data
aggregation node. There may be other alternatives. In general, one may deploy a piece
of software to a resource-stringent existing node (or cluster), to an existing node (or
cluster) with ample resources, or to a new node (or cluster). Our approach lies with the
first option.

The second option further routes the data to a device with an ample amount of
resources, such as the server or a client workstation. However, the data communication
will consume a lot of energy. Sending all the test verdicts from a massive number of
devices to a specific monitoring device may exhaust the batteries of the devices easily.
It is, therefore, a less attractive approach.

One may suggest using simulations such as TOSSIM [13] for TinyOS applications,
so that simulated batteries can be replenished easily for simulated data communications
whenever necessary. However, simulators need profile settings in order to emulate
various initial testing conditions. The effort to set up testing profiles to cover different
test cases and the respective simulation results would be nontrivial.

The third option requires setting up a new device (or cluster) that may communicate
with the existing wireless sensor network. Since existing devices would discover and
communicate with the new device (or cluster), this may affect, say, the scheduling and
routing of the existing network and, hence, the original configuration to be verified.
Our proposal also suffers from a similar limitation, but intuitively to a lesser extent.
The impact of these issues warrants further investigation.

Our current proposal does not support streaming data, and has not explored
the potential of using other generic characteristics of WSN applications to define

6 Source test cases can be generated randomly or via test case selection methods. Discussions
on test case generation are beyond the scope of this paper.
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metamorphic relations. We are identifying representative applications for case studies
and further investigation.

6 Concluding Remarks

We share the view of other researchers that there is a mega-trend in computing that many
computational units will be shifted to pervasive devices. Software applications running
on top of wireless sensor networks are emerging. It is a fast changing field where a
mature software development methodology is yet to be defined. This is particularly the
case for the testing of such applications, which must be carefully conducted before
deployment in real life. Our work is the first research attempt to adapt a testing
technique to the wireless sensor network environment.

Unlike their counterparts in conventional computing, wireless sensor networks
applications are subject to additional non-functional constraints (such as energy
constraint) that may have critical impacts on the behaviors of the software. For example,
a functionally correct execution can still be anomalous if it consumes an abnormal
amount of energy. In this paper, we have studied the correctness issue in the presence of
power-awareness concerns. We have investigated techniques to apply test cases and
verify test results related to power-awareness in a WSN environment. In short, our
testing technique has been strategically designed to blend in with the special features of
the WSN environment.

A sensory node reports readings by gauging the environment. It is, therefore, intuitive
to apply test cases in sensory nodes. However, these nodes are typically resource-
stringent, such as being equipped with limited amounts of memory and battery power.
Executing all the test activities in sensory nodes is impractical. This paper proposes to
execute automated test result evaluations in data aggregation nodes instead. The power-
aware transmissions of intermediate and final test data are supported directly by WSN
programs. Since the data aggregation feature of WSN programs should be power-aware,
it further makes our technique attractive.

Our technique takes advantages of such built-in functionality of data aggregation. We
believe in the design rationale held by software engineers when they implement the data
aggregation functionality onto WSN nodes in their applications. As such, we propose
to use the data consolidation criteria of data aggregators to verify the test results of
isotropic physical phenomena of WSN applications in nodes in close proximity to such
data aggregation nodes. Since either the original application code or the built-in equality
check of the programming language is used to implement metamorphic relations, any
failure revealed should be due to a fault in the WSN application under test.

We use a temperature monitoring application scenario to illustrate how to formulate
metamorphic relations based on the data consolidation criteria, and to tackle both
functional faults and power-related faults. We have taken an initial step to extend the
notion of metamorphic testing to deal with non-functional quality aspects. We have also
discussed the limitations and alternative approaches in the paper. Future work includes
the study of test case selection techniques, further optimization of oracle checks, and
the debugging of software applications. We shall report such findings and conduct more
empirical evaluations in the future.
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