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Abstract—In continuous integration, a tight integration of test 
case prioritization techniques and fault-localization techniques 
may both expose failures faster and locate faults more effec-
tively. Statistical fault-localization techniques use the execution 
information collected during testing to locate faults. Executing 
a small fraction of a prioritized test suite reduces the cost of 
testing, and yet the subsequent fault localization may suffer. 
This paper presents the first empirical study to examine the 
impact of test case prioritization on the effectiveness of fault 
localization. Among many interesting empirical results, we find 
that coverage-based techniques and random ordering can be 
more effective than distribution-based techniques in support-
ing statistical fault localization. Furthermore, the integration 
of random ordering for test case prioritization and statistical 
fault localization can be effective in locating faults quickly and 
economically.  

Keywords—Continuous integration; software process inte-
gration;  test case prioritization;  fault localization 

I.  INTRODUCTION 
Continuous Integration (CI) [11] refers to a software 

process, in which developers integrate their software 
artifacts with a CI agent frequently, such as many times a 
day. CI helps shorten the development cycle and lower the 
development cost [6]. Each integration is known as a build, 
in which code compilation is followed by regression testing. 
Multiple developers may submit their artifacts to the CI 
agent at various chosen times, resulting in one or more 
integrations within each period. During a busy period, 
multiple developers may concurrently submit their code and 
every developer expects the CI agent to run the regression 
test suite of the same baseline version to verify their 
individual submissions. The overall integration process is 
thus heavily loaded. It is, therefore, necessary to optimize 
this activity. 

CI is conducted in stages [10][11]. Figure 1 depicts a 
typical scenario. After a developer has submitted a set of 
artifacts to a CI agent, the latter first conducts a commit 
build, which runs a fraction of a regression test suite to 
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verify a target application. In case any failure is revealed, 
the developer may debug the artifacts based on the bug 
report generated [21]. CI may include the results of fault-
localization techniques in the bug reports to assist develop-
ers to locate faults and fix them [2][14][23]. The second 
stage runs the remaining regression test cases to resume the 
verification of the application, and hence it often takes 
longer time and more resources than a commit build. This 
second stage is not executed as frequently as the commit 
build. As commit builds are frequently invoked, regression 
testing has been reported to be a major bottleneck [11]. 
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Figure 1: A scenario of continuous integration. 

On one hand, the time available for regression testing in 
a commit build may be limited. Using a smaller number of 
test cases will reduce the time required to complete the build 
and let the concerned developers receive the feedback 
quickly. It would be attractive to select test cases that can, 
for example, detect failures faster. This is generally known 
as the test case prioritization problem [8][17][20][24][25]. 

On the other hand, developers would like as much 
information as possible to debug the artifacts in CI. For 
instance, to assist debugging, statistical fault-localization 
techniques may require the code coverage information of a 
variety of test cases to assess the suspiciousness of program 
statements [1][16][21][22]. 
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Thus, we face a dilemma. Using a smaller high-priority 
test suite for a commit build helps shorten the response time 
of a CI agent in each micro-cycle (such as a single loop in 
Figure 1). However, such a test suite may carry less infor-
mation to facilitate fault-localization techniques to iron out 
the root causes of the failures. It may make fault localization 
less effective, and hence lengthen the next micro-cycle. 
Figure 2, for instance, shows a scenario of three test cases 
(t1, t2, and t3) ordered by two test case prioritization tech-
niques, where different fractions of the prioritized test suite 
are fed to a statistical fault-localization technique to find the 
fault in statement s3. A smaller Expense in the figure 
indicates less effort to conduct fault localization (marked as 
debugging in the figure). Using an appropriate test case 
prioritization technique (such as random ordering), we can 
use fewer test cases (2 in this illustration) to locate faults, 
while the value of Expense (66) is not much worse than the 
case of using the entire test suite (50). 

Test Case

Statement t1 t2 t3

s1 •

s2 • • less testing effort more

s3 (faulty) • • more   debugging effort      less

s4 • • Size of the test suite used

Test Outcome × 1 2 3

Total Stmt (TS) 1st 2nd 3rd 100 100 50

Random (R) 3rd 1st 2nd 100 66 50

Test case prioritization technique 
(see Section II-A)

Expense (see Section III-E) achieved 
by Tarantula (see Section II-B)

Figure 2: Testing/debugging dilemma. 

How well does a small high-priority test suite support 
(statistical) fault localization? Is there any efficient strategy 
to generate effective test suites? Knowing the answers to 
these questions is critical toward a tight integration of 
development activities. 

This paper conducts an empirical study to examine these 
important questions. The study employs nine representative 
test case prioritization techniques, four statistical fault-
localization techniques, and seven popular subject 
programs. It broadly studies the extent to which test case 
prioritization techniques affect the effectiveness of fault-
localization techniques in multiple dimensions, including 
granularity, prioritization strategy, and percentage of priori-
tized test suites used. 

The main contribution of the paper is threefold. (i) We 
report the first empirical study to evaluate the impact of test 
case prioritization techniques on statistical fault-localization 
techniques. (ii) The empirical results interestingly show that 
the coverage-based test case prioritization strategy is less 

sensitive than the other studied strategies in supporting such 
integration. It also shows that the additional-statement (AS) 
technique is the least sensitive to changes in the percentage 
of prioritized test suits applied to statistical fault-localization 
techniques. (iii) Surprisingly, random ordering of test cases, 
which is less sensitive than the distribution-based tech-
niques in the study, is found to be a good candidate. The 
low-cost and objective nature of random prioritization 
(despite its relatively low effectiveness in the speed to detect 
regression faults) shows that black-box regression testing 
techniques can be promising to integrate with fault-
localization techniques. 

This paper will be organized as follows: Section II re-
visits selected test case prioritization techniques and fault-
localization techniques. Section III describes the empirical 
study, followed by its results in Section IV. Section V 
reviews related work. We conclude the paper in Section VI. 

II.  TECHNIQUES REVISITED 
This section describes the test case prioritization 

techniques and fault-localization techniques to be used in our 
empirical study. 

A. Test Case Prioritization Techniques 
We study two dimensions in test case prioritization 

techniques. The first is granularity. We follow [8] to use 
statement coverage to represent a finer granularity and use 
functional coverage to represent a coarser granularity. The 
second dimension is the prioritization strategy. We study 
coverage-based techniques and distribution-based tech-
niques in this dimension. The coverage-based techniques are 
greedy algorithms [5][7][8][25], which can be further 
subdivided into the total and the additional strategies. For 
distribution-based techniques, we study those proposed in 
[3][18][19]. Furthermore, coverage information on each test 
case is obtained from the test execution on the previous 
(baseline) version of the program. 

1) Coverage-based techniques. 
The total statement (TS) test case prioritization technique 

sorts test cases in descending order of the total number of 
statements covered by each test case in the previous version. 
In case of a tie, it randomly orders the test cases involved. 
The total function (TF) test case prioritization technique is 
the same as TS, except that it uses function coverage 
information instead of statement coverage information. 

The additional statement (AS) test case prioritization 
technique is like TS, except that it selects the test case that 
covers the maximum number of statements not yet covered 
in each round. When no remaining test case can further 
improve the statement coverage, the technique will reset all 
the statements to “not covered” and reapply AS on the 
remaining test cases. When more than one test case covers 
the same number of statements not yet covered, it just picks 
one such test case randomly. The additional function (AF) 
test case prioritization technique is the same as AS, except 
that it uses function coverage information instead of state-
ment coverage information. 
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2) Distribution-based techniques. 
Leon et al. [18] propose distribution-based techniques 

for test case filtering, which prioritize test cases based on 
the distribution of their execution profiles via dissimilarity 
metrics [3][18]. The dissimilarity metrics define the 
distances between pairs of test cases. We use two 
dissimilarity metrics, namely the count metric and the 
proportional binary metric [3][18][19]. We strictly follow 
[18][19] to use the hierarchical agglomerative clustering 
algorithm with one-per-cluster sampling [12] in our 
empirical study. 

Suppose a program consists of m statements. Each test 
case is represented by an m-dimensional vector. Each 
element in the vector holds the execution count of every 
statement.  

The count metric between a pair of test cases is the 
Euclidean distance between two m-dimensional vectors. 

The proportional binary metric (pbm) is a modified 
Euclidean distance formula. It aims to balance between 
coverage information and distribution information [19]. Let 
us define Ci,j as the number of times that statement j has 
been exercised by test case i (represented by the j-th element 
of the vector for test case i). Suppose we have k test cases in 
total. We further define mink{Ci,j} as the minimum Ci,j 
among the k test cases, and maxk{Ci,j} as the maximum of 
Ci,j among the test cases. Following [19], we define the 
distance between two test cases u and v as ܦ௨,௩ ൌ ඨ෍ሺ ௨ܲ,௞ െ ௩ܲ,௞ሻଶ ൅ |௞ ௨,௞ܤ െ  |௩,௞ܤ
where ݑ, ݒ ൌ 1, 2, … , ݇,   ௜ܲ,௝ ൌ ஼೔,ೕି௠௜௡ೖሼ஼ೖ,ೕሽ௠௔௫ೖሼ஼ೖ,ೕሽି௠௜௡ೖሼ஼ೖ,ೕሽ,   and ܤ௜,௝ ൌ ൜0  ݂݅ ௜ܲ,௝ ൌ  which models whether the execution of ,݁ݏ݅ݓݎ݄݁ݐ݋  01
statement i covers statement j. 

We use the clustering algorithm with count metric at 
statement level (CS) to illustrate how to apply the 
distribution-based test case prioritization techniques. (i) For 
each test case in a test suite, we create a vector containing 
the execution count for every statement in the program. (ii) 
Using the count metric, we compute a distance matrix 
containing the distances (dissimilarity values) between pairs 
of test cases. (iii) We strictly follow [3][18][19] to use 1, 
2.5, 5, 10, 15, 25, and 30 percents of a test suite as cluster 
count parameters. Using the hierarchical agglomerative 
clustering algorithm, we merge the nearest two test cases in 
each step until we obtain the required cluster count. 
(iv) Following one-per-cluster sampling, we randomly select 
one test case from each cluster every time. We repeat this 
selection process until all test cases have been selected. 

The clustering algorithm with count metric at function 
level (CF) is the same as CS, except that it uses the 
statistical counts of function executions rather than those of 
statement executions. The clustering algorithm with the 
proportional binary metric at statement level (PBS) is the 
same as CS, except that it uses the proportional binary 

metric. The clustering algorithm with the proportional 
binary metric at function level (PBF) is the same as PBS, 
except that it uses the statistical counts of function execu-
tions rather than those of statement executions. 

We also compare the above techniques with the random 
test case prioritization “technique” [8]. We summarize the 
properties of all the nine techniques in Table 1. 

B. Fault-Localization Techniques 
Researchers have proposed several techniques to help 

developers locate faults. We revisit four such techniques 
used in our empirical study. 

1) Tarantula. 
Jones et al. [16] propose the Tarantula technique, which 

was used initially for the visualization of testing information. 
To rank program statements, Tarantula computes two 
metrics, suspiciousness and confidence, according to the 
coverage information on passed and failed test cases. 

The suspiciousness of a statement s is given by 
 

suspiciousnessT(s) = %failed(s) 
%passed(s) + %failed(s) 

 

The function %failed tallies the percentage of failed test 
cases that execute statement s (among all the failed test 
cases in the test suite). The function %passed is similarly 
defined. The suspiciousness is 0 when statement s is least 
suspicious, or 1 when s is most suspicious. 

A confidence metric, computed as follows, indicates the 
degree of confidence on a suspiciousness value: 

confidence(s) = max(%failed(s), %passed(s)) 
Tarantula ranks all the statements in a program in 

descending order of suspiciousness and uses the confidence 
values to resolve ties. 

2) Statistical Bug Isolation (SBI) 
Liblit et al. [21] propose Statistical Bug Isolation (SBI) 

for computing the suspiciousness of a predicate P in a 
program, thus: 
 

Failure(P) = failed(P) 
passed(P) + failed(P) 

 

TABLE 1.  PRIORITIZATION TECHNIQUES

Acronym

Strategy Category Granularity 
Coverage Distribution 

Statement Function
Total Additional Count Metric pbm 

R random 
TS     
AS     
TF     
AF     
CS      

PBS      
CF      

PBF      
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The function failed (passed, respectively) tallies the number 
of test cases for which P is evaluated to be false (true).  

For ease of comparison with other fault-localization 
techniques, Yu et al. [29] adapt the equation to calculate the 
suspiciousness of a statement s as follows: 
 

suspiciousnessS(s) = failed(s) 
passed(s) + failed(s) 

 

The function failed (passed, respectively) tallies the 
number of test cases for which s is evaluated to be false 
(true). 

3) Jaccard. 
Abreu et al. [1] propose a Jaccard metric as the 

suspiciousness formula instead of that in Tarantula. The 
equation for Jaccard is given by 
 

suspiciousnessJ(s) = failed(s) 
totalfailed + failed(s) 

 

The functions failed and passed have the same meaning 
as those in SBI. The variable totalfailed is the number of 
failed test cases in the test suite. The technique ranks the 
statements similarly to Tarantula. 

4) Ochiai. 
Abreu et al. [1] also propose to use the Ochiai metric as 

another suspiciousness formula. The equation for Ochiai 
(from [1]) is given by 
 

suspiciousnessO(s) = failed(s) 
sqrt(totalfailed * (failed(s)+passed(s)))

 
where passed, failed, and totalfailed have the same mean-
ings as those in Jaccard. The technique also ranks the 
statements similarly to Jaccard. 

III.  EMPIRICAL STUDY 

A. Research Questions 
The empirical study addresses the following research 

questions: 
RQ1: To what extent will a fault-localization technique be 

affected if it only uses a fraction of a prioritized test 
suite as input? 

RQ2: When reordering test suites with a view to faster 
localization of faults, are there any particularly 
outstanding strategies or granularities for test case 
prioritization? 

RQ3: Can random test case prioritization outperform other 
prioritization techniques for faster localization of 
faults? 

RQ1 studies whether commit builds may help fault 
localization effectively. If RQ1 indicates that test case 
prioritization may help, RQ2 answers whether there are test 
case prioritization strategies that are particularly attractive 
or unattractive for continuous integration. RQ3 studies 
whether random ordering, commonly considered to be 

ineffective for prioritizing test cases, may be a good 
technique to help developers locate faults in programs. 

B. Subject Programs and Test Pools 
We used the Siemens programs as the subjects for the 

empirical study. We obtained them from the Software-
artifact Infrastructure Repository (SIR) [4] available at 
http://sir.unl.edu (last accessed in April 2009). Table 2 
shows the descriptive statistics of the subject programs. The 
Faulty Versions column lists the number of faulty versions 
for each subject program. The column LOC shows the 
variations in the numbers of executable lines of code for the 
faulty versions of each program. The column Test Pool Size 
represents the total number of available test cases in the test 
pool for each program. 

Following previous work [5][8], we excluded those 
versions whose faults cannot be revealed by any test case. 
We followed [9] to remove the versions whose faults are too 
evident (such that more than 25% of the test cases in the pool 
can detect them). We use the standard coverage tool gcov in 
conjunction with gcc to collect coverage information of 
program executions, and hence we also excluded those 
versions that gcov cannot handle owing to segmentation 
faults. Finally, we used all the remaining 121 faulty versions 
in our data analysis. 

C. Experimental Setup 
This section presents the experiment setup for the 

empirical study. 
For each faulty version, we selected test cases randomly 

from the test pools provided by SIR to eliminate any bias 
due to a particular test case generation strategies. More 
specifically, we repeatedly selected one random test case at 
a time from a given test pool (without replacement and 
without considering its test outcome) until we obtained the 
desired number (n) of test cases in a test suite. We chose n = 
50, 100, 200, 300, 400, and 500. We repeated this test suite 
construction procedure 100 times. In short, we created 600 
test suites per faulty version. We then applied each of the 
nine test case prioritization techniques to prioritize every 
test suite. For each prioritized test suite, we took the top-
most percentage (m%) of the test cases and input them to 
each of the fault-localization techniques. We chose m = 10, 
30, 50, 70, 90, and 100. 

TABLE 2.  SUBJECT PROGRAMS 

Subject Faulty 
Versions LOC Test Pool Size 

tcas 41 133−137 1608 
schedule 9 291−294 2650 
schedule2 10 261−263 2710 
tot_info 23 272−274 1052 
print_tokens 7 341−342 4130 
print_tokens2 10 350−354 4115 
replace 32 508−515 5542 
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D. Experimental Environment 
We carried out the empirical study on a Dell PowerEdge 

2950 server run under Solaris UNIX. The server has 2 Xeon 
5430 (2.66 Hz, 4 core) processors with 4 GBytes of physical 
memory. 

E. Metrics 
To measure the effectiveness of fault localization, we 

follow [13][15][29] to use the Expense metric. For a ranked 
list produced by a fault-localization technique, Expense 
measures the percentage of statements in a program that 
must be examined to locate the fault (the lower, the better). 
We adopt the following definition proposed by [13][15][29]: 
 

Expense = rank of faulty statement 
number of executable statements 

 

We further use the notation Expense(m) to represent the 
percentage of statements examined when only the topmost m 
percent of a given test suite is used. For instance, 
Expense(100) refers to the percentage of statements 
examined when the entire test suite is used for fault localiza-
tion. 

Since we are interested in how test suites of different 
sizes may affect the values of Expense in a fault-localization 
technique, we further define a Relative Expense metric as 
follows: 

 

Relative Expense(m) = Expense(m) – Expense(100) 
Expense(100) 

IV.  DATA ANALYSIS AND DISCUSSIONS 

A. Empirical Results 
In this section, we first present the raw results, and then 

analyze them to answer the research questions RQ1, RQ2, 
and RQ3.  

Figure 3 depicts the respective mean Expense of the four 
fault-localization techniques when they use different 
percentages of prioritized test suites to locate faults. There 
are nine points in each plot, representing, from left to right, 
the prioritization techniques CF, PBF, CS, PBS, AF, AS, R, 
TF, and TS. There are six plots in each row, representing, 
from left to right, the results when 10, 30, 50, 70, 90, and 
100 percents of the prioritized test suite is used. For instance, 
the leftmost point in the leftmost plot of the Tarantula row 
represents the mean Expense of Tarantula using the first 10% 
of the prioritized test suite generated by CF to locate a fault. 

 

1) Answering RQ1: To what extent will a fault-
localization technique be affected if it only uses a fraction of 
a prioritized test suite as input?  

We first observe that, across the plots in the same 
column, the corresponding points are quite close to one 
another in terms of Expense. It indicates that different fault-
localization techniques may be affected to a similar extent. 
We have applied ANalysis Of VAriance (ANOVA) hypo-
thesis testing to confirm this observation. The results also 

show that there is no significant difference.1 For simplicity 
of presentation, therefore, we will only discuss the typical 
empirical results acrosss techniques for research question 
RQ1, unless a particular technique warrants specific 
highlights. 

Across the plots in different columns with the same 
technique, the changes in Expense at the corresponding 
points are very noticeable. For instance, the leftmost point 
of the Tarantula row is 0.705, which is very different from 
the corresponding points on the other five plots, namely 
(from left) 0.487, 0.366, 0.323, 0.294, and 0.274. 
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Figure 3.  Mean effectiveness of fault-localization techniques on the use of 
fractions of the test suites produced by test case prioritization techniques. 

 
We also observe from these plots that, even when half of 

a test suite prioritized by AS is used for commit build, the 
effectiveness of fault localization will not deteriorate much. 
The empirical results of Tarantula show that, for the AS 
prioritization techniques, developers only need to examine 
7% more code to locate the fault when using the topmost 
50% of a test suite (as compared with the use of the whole 
test suite). 

In other scenarios such as the PBF points of the Jaccard 
plots, however, developers would need to examine 15% 
more code to locate the fault when using the topmost 50% of 
a test suite. A further reduction of the test suite may cause 
the developer to examine significantly more code. For 
instance, the developer would need to examine 10% more 
code if another 20% of test suite is not used in a commit 

                                                           
1 Owing to space limitation, we omit the ANOVA results in this paper. 
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build. The empirical results also show that the differences in 
effectiveness according to the use of different fractions of 
test suites are generally significant. 

In summary, with respect to research question RQ1, we 
find that fault-localization techniques exhibit better effective-
ness when they use only a fraction of the prioritized test suite. 
In other words, such techniques can indeed prioritize test 
cases to help fault localization. 

 

2) Answering RQ2: When reordering test suites with a 
view to faster localization of faults, are there any particu-
larly outstanding strategies or granularities for test case 
prioritization? 

To study the overall effect of test case prioritization on 
fault localization using different percentages of a test suite, 
we further analyze the entire dataset for RQ1 via the mean 
Relative Expense of the four fault-localization techniques. 
For instance, for the AS row, we sum up (0.625–0.274) / 
0.274 from the Tarantula plots, (0.672–0.288) / 0.288 from 
the SBI plots, (0.668–0.281) / 0.281 from the Jaccard plots, 
and (0.662–0.261) / 0.261 from the Ochiai plots. We then 
divide the sum by four. Other means can be computed in the 
same manner. Table 3 shows the results. 
 

TABLE 3.  MEAN RELATIVE EXPENSE 

 m 10 30 50 70 90 100 

D
is

tr
ib

ut
io

n-
ba

se
d 

CF 164% 86% 39% 20% 7% 0% 

PBF 177% 102% 59% 33% 9% 0% 

CS 164% 86% 41% 21% 7% 0% 

PBS 176% 102% 59% 33% 9% 0% 

R
an

do
m

 

R 140% 70% 39% 19% 7% 0% 

C
ov

er
ag

e-
ba

se
d 

AF 140% 73% 43% 22% 7% 0% 

AS 139% 64% 36% 17% 5% 0% 

TF 128% 70% 45% 26% 8% 0% 

TS 139% 66% 45% 22% 8% 0% 

 
We observe from Table 3 that, irrespective of the 

granularity level or the prioritization strategy, distribution-
based techniques have been affected more adversely than 
coverage-based techniques. Furthermore, the results of 
using proportional binary metrics (PBF and PBS) are the 
worst in terms of their effects on Expense (or the percentage 
of statements examined). It indicates that the fault-
localization techniques are most adversely affected by the 
sizes of the prioritized test suites when the ordering is 
conducted via PBF or PBS. On the other hand, fault-
localization techniques are generally least affected when the 
test suites are generated by AS. 

In summary, with respect to research question RQ2, we 
find the additional statement (AS) technique to be consis-

tently outstanding in the effectiveness of fault localization 
and the early detection of faults. We are going to further 
study AS in Section 3) below. 

 

3) Answering RQ3: Can random test case prioritization 
outperform other prioritization techniques for faster locali-
zation of faults? 

To study random test case prioritization, we further 
compute the ratio of a cell in a column of Table 3 to the cell 
for R in the same column. The resultant value indicates how 
a prioritization technique makes an impact on the changes in 
Relative Expense for a fault-localization technique (as com-
pared with random ordering). Table 4 shows the results. 
Informally, a value above 1 (below 1, respectively) in a cell 
means that, using only a fraction of the prioritized test cases, 
the technique is more (less) adversely affected than random 
ordering. 
 

TABLE 4.  MEAN EFFECTIVENESS RELATIVE TO RANDOM ORDERING 

 m 10 30 50 70 90 100 

D
is

tr
ib

ut
io

n-
ba

se
d 

CF 1.168 1.222 0.986 1.025 0.913 1.000 

PBF 1.258 1.450 1.502 1.715 1.252 1.000 

CS 1.172 1.232 1.029 1.073 0.947 1.000 

PBS 1.255 1.449 1.501 1.713 1.250 1.000 

R
an

do
m

 

R 1.000 1.000 1.000 1.000 1.000 1.000 

C
ov

er
ag

e-
ba

se
d 

AF 0.997 1.043 1.084 1.126 0.887 1.000 

AS 0.994 0.911 0.908 0.907 0.624 1.000 

TF 0.913 0.996 1.129 1.326 1.048 1.000 

TS 0.990 0.947 1.133 1.149 1.077 1.000 

 
Interestingly, irrespective of the granularity level or the 

prioritization strategy, every distribution-based technique is 
worse than random ordering. This result further strengthens 
the finding in Section 2) that test suites generated by 
distribution-based test case prioritization techniques may 
not integrate well with statistical fault-localization tech-
niques. 

In particular, the only examined technique that can 
consistently outperform random prioritization is AS. Com-
bined with the result in Section 2), we find that AS can be 
promising in providing effective test case prioritization as 
well as supporting statistical fault localization. 

Furthermore, random prioritization even outperforms AF 
at times (see the highlighted cells of the AF rows in Table 4). 
It indicates that its granularity level (even for the additional 
test case prioritization strategy) is insufficient for generating 
prioritized test suites that assist developers to debug pro-
grams better than random ordering. The total test case 
prioritization strategy also suffers from a similar problem. 
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In summary, with respect to research question RQ3, we 
find that random prioritization is a cost effective technique 
for fault localization. It can perform as good as (if not better 
than) all other prioritization techniques except the AS 
technique. 

B. Threats to Validity 
We use the Siemens programs as subjects in the study. 

All of them are small-sized programs with seeded faults. 
Further empirical studies on larger programs with multiple 
faults may further strengthen the external validity of our 
findings. In practice, although redundancy in test suites used 
in practice may exist, not all test suites may fully satisfy 
certain testing criteria. To address this issue, we use test 
suites that are randomly constructed. Still, random test 
suites from the test pool are limited by the contents of the 
original pool. However, a study of whether the test pool of 
the Siemens suite represents a realistic setting is beyond the 
scope of this paper. 

We only choose C programs in our empirical study. A 
further investigation of subject programs written in other 
programming languages may help generalize our findings. 

Another threat to validity is the correctness of our 
experimentation tools. We have measured the Average 
Percentage of Faults Detected (APFD) of the prioritization 
techniques, and find that our APFD values are almost the 
same as these published in the literature such as [8][19]. We 
believe the minor difference is due to the choice of different 
test suites between the empirical study reported in this paper 
and those in [8][19]. 

We use Expense as a metric in our empirical study. 
Expense may indicate a conservative way of locating faults. 
In practice, when developers examine a particular statement 
s1, they may spot problems in another statement s2 close to 
s1. Statement s2 may have a much lower rank. This 
indicates that a less amount of code can be examined to 
locate faults than what Expense may indicate. 

Coverage-based techniques are a kind of greedy approach 
that selects test cases based on the coverage information on a 
previous version of the program. On the other hand, the 
execution profile of a test suite may sometimes change 
drastically across two different versions of the same program. 
Thus, the result that AS is more effective than other tech-
niques may not necessarily be generalized. It would be inter-
esting to find the characteristics of changes that would favor 
(or disfavor) the application of coverage-based techniques. 

V.  RELATED WORK 
This section reviews related work that has not been 

discussed in previous sections. 
Wong et al. [28] proposed an approach that combines 

test suite minimization and prioritization to select cases 
according to the cost per additional coverage. Srivastava et 
al. [26] developed a binary matching technique to calculate 
the changes in program at the basic block level and 
prioritize test cases to optimally cover the affected program 

changes. Walcott et al. [27] studied a time-aware test suite 
prioritization technique based on genetic algorithms to order 
test cases under testing time constraints. Li et al. [20] 
evaluated various search algorithms for test case prioritiza-
tion. 

Apart from distribution-based techniques, Leon and 
colleagues [3][18][19] also proposed a family of failure-
pursuit sampling techniques. They select one initial sample 
per cluster and, when a failure is found, k nearest neighbors 
are selected and checked. If additional failures are found, 
the process will be repeated. We do not evaluate this 
technique because it requires the outcomes of test cases on 
the modified version and is, therefore, not suitable for 
continuous integration, in which fast turnaround is required. 

Yu et al. [29] conduct an empirical study of the effect of 
test-suite reduction on fault-localization techniques. They 
find that the effectiveness of fault localization varies 
according to different test-suite reduction strategies. The 
focus of the study, however, is mainly on test-suite reduction 
from the viewpoint of test-suite composition. 

VI.  CONCLUSION 
In continuous integration, the total time allowed for 

testing and fault localization is limited. Thus, it is desirable 
to use both test case prioritization and fault localization to 
help developers detect and locate the faults. In this paper, 
we conduct an empirical study to explore the impact of test 
case prioritization on statistical fault localization. We find 
that test suites prioritized by coverage-based strategies are 
better than those from other strategies in terms of the 
effectiveness of fault localization. Although random order-
ing can be less effective than the additional statement tech-
nique, no other technique can outperform random ordering. 
In particular, random prioritization is even better than 
distribution-based techniques in terms of Relative Expense. 
Our result provides a strong piece of evidence to clear the 
misconception on random prioritization ⎯ random ordering 
can indeed be effective in supporting such integration.  

In the future, we would like to examine the underlying 
reasons why random prioritization is better than 
distribution-based techniques, with a view to further 
developing better variants of the random strategy. For 
instance, it will be interesting to study the effectiveness of 
applying adaptive randomness (in the sense of adaptive 
random testing) for test case prioritization in CI. We also 
wish to study how to achieve a tighter integration between 
regression testing and debugging techniques. 
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