
How Well Do Test Case Prioritization Techniques
Support Statistical Fault Localization

*

Bo Jiang, Zhenyu Zhang, T.H. Tse

†
The University of Hong Kong

Pokfulam, Hong Kong
{bjiang, zyzhang, thtse}@cs.hku.hk

T. Y. Chen
Swinburne University of Technology
Hawthorn, Victoria 3122, Australia

tychen@swin.edu.au

Abstract—In continuous integration, a tight integration of test
case prioritization techniques and fault-localization techniques
may both expose failures faster and locate faults more effec-
tively. Statistical fault-localization techniques use the execution
information collected during testing to locate faults. Executing
a small fraction of a prioritized test suite reduces the cost of
testing, and yet the subsequent fault localization may suffer.
This paper presents the first empirical study to examine the
impact of test case prioritization on the effectiveness of fault
localization. Among many interesting empirical results, we find
that coverage-based techniques and random ordering can be
more effective than distribution-based techniques in support-
ing statistical fault localization. Furthermore, the integration
of random ordering for test case prioritization and statistical
fault localization can be effective in locating faults quickly and
economically.

Keywords—Continuous integration; software process inte-
gration; test case prioritization; fault localization

I. INTRODUCTION
Continuous Integration (CI) [11] refers to a software

process, in which developers integrate their software
artifacts with a CI agent frequently, such as many times a
day. CI helps shorten the development cycle and lower the
development cost [6]. Each integration is known as a build,
in which code compilation is followed by regression testing.
Multiple developers may submit their artifacts to the CI
agent at various chosen times, resulting in one or more
integrations within each period. During a busy period,
multiple developers may concurrently submit their code and
every developer expects the CI agent to run the regression
test suite of the same baseline version to verify their
individual submissions. The overall integration process is
thus heavily loaded. It is, therefore, necessary to optimize
this activity.

CI is conducted in stages [10][11]. Figure 1 depicts a
typical scenario. After a developer has submitted a set of
artifacts to a CI agent, the latter first conducts a commit
build, which runs a fraction of a regression test suite to

* This research is supported in part by the General Research Fund of

the Research Grants Council of Hong Kong (project nos. 716507 and
717308) and a Discovery Grant of the Australian Research Council.

† All correspondence should be addressed to Prof. T. H. Tse at
Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong. Tel: (+852) 2859 2193. Email: thtse@cs.hku.hk.

verify a target application. In case any failure is revealed,
the developer may debug the artifacts based on the bug
report generated [21]. CI may include the results of fault-
localization techniques in the bug reports to assist develop-
ers to locate faults and fix them [2][14][23]. The second
stage runs the remaining regression test cases to resume the
verification of the application, and hence it often takes
longer time and more resources than a commit build. This
second stage is not executed as frequently as the commit
build. As commit builds are frequently invoked, regression
testing has been reported to be a major bottleneck [11].

CI
agent

Regression
Testing

Technique

Debugging
Technique

integrate
artifacts

prioritize
test cases

get high-priority
test cases

do commit
build

generate
suspicious
location list

bug report
commit
build report

do second-stage
build

loop

Figure 1: A scenario of continuous integration.

On one hand, the time available for regression testing in
a commit build may be limited. Using a smaller number of
test cases will reduce the time required to complete the build
and let the concerned developers receive the feedback
quickly. It would be attractive to select test cases that can,
for example, detect failures faster. This is generally known
as the test case prioritization problem [8][17][20][24][25].

On the other hand, developers would like as much
information as possible to debug the artifacts in CI. For
instance, to assist debugging, statistical fault-localization
techniques may require the code coverage information of a
variety of test cases to assess the suspiciousness of program
statements [1][16][21][22].

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.23

99

Thus, we face a dilemma. Using a smaller high-priority
test suite for a commit build helps shorten the response time
of a CI agent in each micro-cycle (such as a single loop in
Figure 1). However, such a test suite may carry less infor-
mation to facilitate fault-localization techniques to iron out
the root causes of the failures. It may make fault localization
less effective, and hence lengthen the next micro-cycle.
Figure 2, for instance, shows a scenario of three test cases
(t1, t2, and t3) ordered by two test case prioritization tech-
niques, where different fractions of the prioritized test suite
are fed to a statistical fault-localization technique to find the
fault in statement s3. A smaller Expense in the figure
indicates less effort to conduct fault localization (marked as
debugging in the figure). Using an appropriate test case
prioritization technique (such as random ordering), we can
use fewer test cases (2 in this illustration) to locate faults,
while the value of Expense (66) is not much worse than the
case of using the entire test suite (50).

Test Case

Statement t1 t2 t3

s1 •

s2 • • less testing effort more

s3 (faulty) • • more debugging effort less

s4 • • Size of the test suite used

Test Outcome × 1 2 3

Total Stmt (TS) 1st 2nd 3rd 100 100 50

Random (R) 3rd 1st 2nd 100 66 50

Test case prioritization technique
(see Section II-A)

Expense (see Section III-E) achieved
by Tarantula (see Section II-B)

Figure 2: Testing/debugging dilemma.

How well does a small high-priority test suite support
(statistical) fault localization? Is there any efficient strategy
to generate effective test suites? Knowing the answers to
these questions is critical toward a tight integration of
development activities.

This paper conducts an empirical study to examine these
important questions. The study employs nine representative
test case prioritization techniques, four statistical fault-
localization techniques, and seven popular subject
programs. It broadly studies the extent to which test case
prioritization techniques affect the effectiveness of fault-
localization techniques in multiple dimensions, including
granularity, prioritization strategy, and percentage of priori-
tized test suites used.

The main contribution of the paper is threefold. (i) We
report the first empirical study to evaluate the impact of test
case prioritization techniques on statistical fault-localization
techniques. (ii) The empirical results interestingly show that
the coverage-based test case prioritization strategy is less

sensitive than the other studied strategies in supporting such
integration. It also shows that the additional-statement (AS)
technique is the least sensitive to changes in the percentage
of prioritized test suits applied to statistical fault-localization
techniques. (iii) Surprisingly, random ordering of test cases,
which is less sensitive than the distribution-based tech-
niques in the study, is found to be a good candidate. The
low-cost and objective nature of random prioritization
(despite its relatively low effectiveness in the speed to detect
regression faults) shows that black-box regression testing
techniques can be promising to integrate with fault-
localization techniques.

This paper will be organized as follows: Section II re-
visits selected test case prioritization techniques and fault-
localization techniques. Section III describes the empirical
study, followed by its results in Section IV. Section V
reviews related work. We conclude the paper in Section VI.

II. TECHNIQUES REVISITED
This section describes the test case prioritization

techniques and fault-localization techniques to be used in our
empirical study.

A. Test Case Prioritization Techniques
We study two dimensions in test case prioritization

techniques. The first is granularity. We follow [8] to use
statement coverage to represent a finer granularity and use
functional coverage to represent a coarser granularity. The
second dimension is the prioritization strategy. We study
coverage-based techniques and distribution-based tech-
niques in this dimension. The coverage-based techniques are
greedy algorithms [5][7][8][25], which can be further
subdivided into the total and the additional strategies. For
distribution-based techniques, we study those proposed in
[3][18][19]. Furthermore, coverage information on each test
case is obtained from the test execution on the previous
(baseline) version of the program.

1) Coverage-based techniques.
The total statement (TS) test case prioritization technique

sorts test cases in descending order of the total number of
statements covered by each test case in the previous version.
In case of a tie, it randomly orders the test cases involved.
The total function (TF) test case prioritization technique is
the same as TS, except that it uses function coverage
information instead of statement coverage information.

The additional statement (AS) test case prioritization
technique is like TS, except that it selects the test case that
covers the maximum number of statements not yet covered
in each round. When no remaining test case can further
improve the statement coverage, the technique will reset all
the statements to “not covered” and reapply AS on the
remaining test cases. When more than one test case covers
the same number of statements not yet covered, it just picks
one such test case randomly. The additional function (AF)
test case prioritization technique is the same as AS, except
that it uses function coverage information instead of state-
ment coverage information.

100

2) Distribution-based techniques.
Leon et al. [18] propose distribution-based techniques

for test case filtering, which prioritize test cases based on
the distribution of their execution profiles via dissimilarity
metrics [3][18]. The dissimilarity metrics define the
distances between pairs of test cases. We use two
dissimilarity metrics, namely the count metric and the
proportional binary metric [3][18][19]. We strictly follow
[18][19] to use the hierarchical agglomerative clustering
algorithm with one-per-cluster sampling [12] in our
empirical study.

Suppose a program consists of m statements. Each test
case is represented by an m-dimensional vector. Each
element in the vector holds the execution count of every
statement.

The count metric between a pair of test cases is the
Euclidean distance between two m-dimensional vectors.

The proportional binary metric (pbm) is a modified
Euclidean distance formula. It aims to balance between
coverage information and distribution information [19]. Let
us define Ci,j as the number of times that statement j has
been exercised by test case i (represented by the j-th element
of the vector for test case i). Suppose we have k test cases in
total. We further define mink{Ci,j} as the minimum Ci,j
among the k test cases, and maxk{Ci,j} as the maximum of
Ci,j among the test cases. Following [19], we define the
distance between two test cases u and v as ܦ௨,௩ ൌ ඨ෍ሺ ௨ܲ,௞ െ ௩ܲ,௞ሻଶ ൅ |௞ ௨,௞ܤ െ |௩,௞ܤ
where ݑ, ݒ ൌ 1, 2, … , ݇, ௜ܲ,௝ ൌ ஼೔,ೕି௠௜௡ೖሼ஼ೖ,ೕሽ௠௔௫ೖሼ஼ೖ,ೕሽି௠௜௡ೖሼ஼ೖ,ೕሽ, and ܤ௜,௝ ൌ ൜0 ݂݅ ௜ܲ,௝ ൌ which models whether the execution of ,݁ݏ݅ݓݎ݄݁ݐ݋ 01
statement i covers statement j.

We use the clustering algorithm with count metric at
statement level (CS) to illustrate how to apply the
distribution-based test case prioritization techniques. (i) For
each test case in a test suite, we create a vector containing
the execution count for every statement in the program. (ii)
Using the count metric, we compute a distance matrix
containing the distances (dissimilarity values) between pairs
of test cases. (iii) We strictly follow [3][18][19] to use 1,
2.5, 5, 10, 15, 25, and 30 percents of a test suite as cluster
count parameters. Using the hierarchical agglomerative
clustering algorithm, we merge the nearest two test cases in
each step until we obtain the required cluster count.
(iv) Following one-per-cluster sampling, we randomly select
one test case from each cluster every time. We repeat this
selection process until all test cases have been selected.

The clustering algorithm with count metric at function
level (CF) is the same as CS, except that it uses the
statistical counts of function executions rather than those of
statement executions. The clustering algorithm with the
proportional binary metric at statement level (PBS) is the
same as CS, except that it uses the proportional binary

metric. The clustering algorithm with the proportional
binary metric at function level (PBF) is the same as PBS,
except that it uses the statistical counts of function execu-
tions rather than those of statement executions.

We also compare the above techniques with the random
test case prioritization “technique” [8]. We summarize the
properties of all the nine techniques in Table 1.

B. Fault-Localization Techniques
Researchers have proposed several techniques to help

developers locate faults. We revisit four such techniques
used in our empirical study.

1) Tarantula.
Jones et al. [16] propose the Tarantula technique, which

was used initially for the visualization of testing information.
To rank program statements, Tarantula computes two
metrics, suspiciousness and confidence, according to the
coverage information on passed and failed test cases.

The suspiciousness of a statement s is given by

suspiciousnessT(s) = %failed(s)
%passed(s) + %failed(s)

The function %failed tallies the percentage of failed test
cases that execute statement s (among all the failed test
cases in the test suite). The function %passed is similarly
defined. The suspiciousness is 0 when statement s is least
suspicious, or 1 when s is most suspicious.

A confidence metric, computed as follows, indicates the
degree of confidence on a suspiciousness value:

confidence(s) = max(%failed(s), %passed(s))
Tarantula ranks all the statements in a program in

descending order of suspiciousness and uses the confidence
values to resolve ties.

2) Statistical Bug Isolation (SBI)
Liblit et al. [21] propose Statistical Bug Isolation (SBI)

for computing the suspiciousness of a predicate P in a
program, thus:

Failure(P) = failed(P)
passed(P) + failed(P)

TABLE 1. PRIORITIZATION TECHNIQUES

Acronym

Strategy Category Granularity
Coverage Distribution

Statement Function
Total Additional Count Metric pbm

R random
TS
AS
TF
AF
CS

PBS
CF

PBF

101

The function failed (passed, respectively) tallies the number
of test cases for which P is evaluated to be false (true).

For ease of comparison with other fault-localization
techniques, Yu et al. [29] adapt the equation to calculate the
suspiciousness of a statement s as follows:

suspiciousnessS(s) = failed(s)
passed(s) + failed(s)

The function failed (passed, respectively) tallies the
number of test cases for which s is evaluated to be false
(true).

3) Jaccard.
Abreu et al. [1] propose a Jaccard metric as the

suspiciousness formula instead of that in Tarantula. The
equation for Jaccard is given by

suspiciousnessJ(s) = failed(s)
totalfailed + failed(s)

The functions failed and passed have the same meaning
as those in SBI. The variable totalfailed is the number of
failed test cases in the test suite. The technique ranks the
statements similarly to Tarantula.

4) Ochiai.
Abreu et al. [1] also propose to use the Ochiai metric as

another suspiciousness formula. The equation for Ochiai
(from [1]) is given by

suspiciousnessO(s) = failed(s)
sqrt(totalfailed * (failed(s)+passed(s)))

where passed, failed, and totalfailed have the same mean-
ings as those in Jaccard. The technique also ranks the
statements similarly to Jaccard.

III. EMPIRICAL STUDY

A. Research Questions
The empirical study addresses the following research

questions:
RQ1: To what extent will a fault-localization technique be

affected if it only uses a fraction of a prioritized test
suite as input?

RQ2: When reordering test suites with a view to faster
localization of faults, are there any particularly
outstanding strategies or granularities for test case
prioritization?

RQ3: Can random test case prioritization outperform other
prioritization techniques for faster localization of
faults?

RQ1 studies whether commit builds may help fault
localization effectively. If RQ1 indicates that test case
prioritization may help, RQ2 answers whether there are test
case prioritization strategies that are particularly attractive
or unattractive for continuous integration. RQ3 studies
whether random ordering, commonly considered to be

ineffective for prioritizing test cases, may be a good
technique to help developers locate faults in programs.

B. Subject Programs and Test Pools
We used the Siemens programs as the subjects for the

empirical study. We obtained them from the Software-
artifact Infrastructure Repository (SIR) [4] available at
http://sir.unl.edu (last accessed in April 2009). Table 2
shows the descriptive statistics of the subject programs. The
Faulty Versions column lists the number of faulty versions
for each subject program. The column LOC shows the
variations in the numbers of executable lines of code for the
faulty versions of each program. The column Test Pool Size
represents the total number of available test cases in the test
pool for each program.

Following previous work [5][8], we excluded those
versions whose faults cannot be revealed by any test case.
We followed [9] to remove the versions whose faults are too
evident (such that more than 25% of the test cases in the pool
can detect them). We use the standard coverage tool gcov in
conjunction with gcc to collect coverage information of
program executions, and hence we also excluded those
versions that gcov cannot handle owing to segmentation
faults. Finally, we used all the remaining 121 faulty versions
in our data analysis.

C. Experimental Setup
This section presents the experiment setup for the

empirical study.
For each faulty version, we selected test cases randomly

from the test pools provided by SIR to eliminate any bias
due to a particular test case generation strategies. More
specifically, we repeatedly selected one random test case at
a time from a given test pool (without replacement and
without considering its test outcome) until we obtained the
desired number (n) of test cases in a test suite. We chose n =
50, 100, 200, 300, 400, and 500. We repeated this test suite
construction procedure 100 times. In short, we created 600
test suites per faulty version. We then applied each of the
nine test case prioritization techniques to prioritize every
test suite. For each prioritized test suite, we took the top-
most percentage (m%) of the test cases and input them to
each of the fault-localization techniques. We chose m = 10,
30, 50, 70, 90, and 100.

TABLE 2. SUBJECT PROGRAMS

Subject Faulty
Versions LOC Test Pool Size

tcas 41 133−137 1608
schedule 9 291−294 2650
schedule2 10 261−263 2710
tot_info 23 272−274 1052
print_tokens 7 341−342 4130
print_tokens2 10 350−354 4115
replace 32 508−515 5542

102

D. Experimental Environment
We carried out the empirical study on a Dell PowerEdge

2950 server run under Solaris UNIX. The server has 2 Xeon
5430 (2.66 Hz, 4 core) processors with 4 GBytes of physical
memory.

E. Metrics
To measure the effectiveness of fault localization, we

follow [13][15][29] to use the Expense metric. For a ranked
list produced by a fault-localization technique, Expense
measures the percentage of statements in a program that
must be examined to locate the fault (the lower, the better).
We adopt the following definition proposed by [13][15][29]:

Expense = rank of faulty statement
number of executable statements

We further use the notation Expense(m) to represent the
percentage of statements examined when only the topmost m
percent of a given test suite is used. For instance,
Expense(100) refers to the percentage of statements
examined when the entire test suite is used for fault localiza-
tion.

Since we are interested in how test suites of different
sizes may affect the values of Expense in a fault-localization
technique, we further define a Relative Expense metric as
follows:

Relative Expense(m) = Expense(m) – Expense(100)
Expense(100)

IV. DATA ANALYSIS AND DISCUSSIONS

A. Empirical Results
In this section, we first present the raw results, and then

analyze them to answer the research questions RQ1, RQ2,
and RQ3.

Figure 3 depicts the respective mean Expense of the four
fault-localization techniques when they use different
percentages of prioritized test suites to locate faults. There
are nine points in each plot, representing, from left to right,
the prioritization techniques CF, PBF, CS, PBS, AF, AS, R,
TF, and TS. There are six plots in each row, representing,
from left to right, the results when 10, 30, 50, 70, 90, and
100 percents of the prioritized test suite is used. For instance,
the leftmost point in the leftmost plot of the Tarantula row
represents the mean Expense of Tarantula using the first 10%
of the prioritized test suite generated by CF to locate a fault.

1) Answering RQ1: To what extent will a fault-
localization technique be affected if it only uses a fraction of
a prioritized test suite as input?

We first observe that, across the plots in the same
column, the corresponding points are quite close to one
another in terms of Expense. It indicates that different fault-
localization techniques may be affected to a similar extent.
We have applied ANalysis Of VAriance (ANOVA) hypo-
thesis testing to confirm this observation. The results also

show that there is no significant difference.1 For simplicity
of presentation, therefore, we will only discuss the typical
empirical results acrosss techniques for research question
RQ1, unless a particular technique warrants specific
highlights.

Across the plots in different columns with the same
technique, the changes in Expense at the corresponding
points are very noticeable. For instance, the leftmost point
of the Tarantula row is 0.705, which is very different from
the corresponding points on the other five plots, namely
(from left) 0.487, 0.366, 0.323, 0.294, and 0.274.

m=10 30 50 70 90 100

Ta
ra

nt
ul

a
SB

I
Ja

cc
ar

d

0
0.25

0.5

0.75
1

0
0.25

0.5

0.75
1

0
0.25

0.5
0.75

1

0

0.25

0.5

0.75

1

O
ch

ia
i

Figure 3. Mean effectiveness of fault-localization techniques on the use of
fractions of the test suites produced by test case prioritization techniques.

We also observe from these plots that, even when half of

a test suite prioritized by AS is used for commit build, the
effectiveness of fault localization will not deteriorate much.
The empirical results of Tarantula show that, for the AS
prioritization techniques, developers only need to examine
7% more code to locate the fault when using the topmost
50% of a test suite (as compared with the use of the whole
test suite).

In other scenarios such as the PBF points of the Jaccard
plots, however, developers would need to examine 15%
more code to locate the fault when using the topmost 50% of
a test suite. A further reduction of the test suite may cause
the developer to examine significantly more code. For
instance, the developer would need to examine 10% more
code if another 20% of test suite is not used in a commit

1 Owing to space limitation, we omit the ANOVA results in this paper.

103

build. The empirical results also show that the differences in
effectiveness according to the use of different fractions of
test suites are generally significant.

In summary, with respect to research question RQ1, we
find that fault-localization techniques exhibit better effective-
ness when they use only a fraction of the prioritized test suite.
In other words, such techniques can indeed prioritize test
cases to help fault localization.

2) Answering RQ2: When reordering test suites with a
view to faster localization of faults, are there any particu-
larly outstanding strategies or granularities for test case
prioritization?

To study the overall effect of test case prioritization on
fault localization using different percentages of a test suite,
we further analyze the entire dataset for RQ1 via the mean
Relative Expense of the four fault-localization techniques.
For instance, for the AS row, we sum up (0.625–0.274) /
0.274 from the Tarantula plots, (0.672–0.288) / 0.288 from
the SBI plots, (0.668–0.281) / 0.281 from the Jaccard plots,
and (0.662–0.261) / 0.261 from the Ochiai plots. We then
divide the sum by four. Other means can be computed in the
same manner. Table 3 shows the results.

TABLE 3. MEAN RELATIVE EXPENSE

 m 10 30 50 70 90 100

D
is

tr
ib

ut
io

n-
ba

se
d

CF 164% 86% 39% 20% 7% 0%

PBF 177% 102% 59% 33% 9% 0%

CS 164% 86% 41% 21% 7% 0%

PBS 176% 102% 59% 33% 9% 0%

R
an

do
m

R 140% 70% 39% 19% 7% 0%

C
ov

er
ag

e-
ba

se
d

AF 140% 73% 43% 22% 7% 0%

AS 139% 64% 36% 17% 5% 0%

TF 128% 70% 45% 26% 8% 0%

TS 139% 66% 45% 22% 8% 0%

We observe from Table 3 that, irrespective of the

granularity level or the prioritization strategy, distribution-
based techniques have been affected more adversely than
coverage-based techniques. Furthermore, the results of
using proportional binary metrics (PBF and PBS) are the
worst in terms of their effects on Expense (or the percentage
of statements examined). It indicates that the fault-
localization techniques are most adversely affected by the
sizes of the prioritized test suites when the ordering is
conducted via PBF or PBS. On the other hand, fault-
localization techniques are generally least affected when the
test suites are generated by AS.

In summary, with respect to research question RQ2, we
find the additional statement (AS) technique to be consis-

tently outstanding in the effectiveness of fault localization
and the early detection of faults. We are going to further
study AS in Section 3) below.

3) Answering RQ3: Can random test case prioritization
outperform other prioritization techniques for faster locali-
zation of faults?

To study random test case prioritization, we further
compute the ratio of a cell in a column of Table 3 to the cell
for R in the same column. The resultant value indicates how
a prioritization technique makes an impact on the changes in
Relative Expense for a fault-localization technique (as com-
pared with random ordering). Table 4 shows the results.
Informally, a value above 1 (below 1, respectively) in a cell
means that, using only a fraction of the prioritized test cases,
the technique is more (less) adversely affected than random
ordering.

TABLE 4. MEAN EFFECTIVENESS RELATIVE TO RANDOM ORDERING

 m 10 30 50 70 90 100

D
is

tr
ib

ut
io

n-
ba

se
d

CF 1.168 1.222 0.986 1.025 0.913 1.000

PBF 1.258 1.450 1.502 1.715 1.252 1.000

CS 1.172 1.232 1.029 1.073 0.947 1.000

PBS 1.255 1.449 1.501 1.713 1.250 1.000

R
an

do
m

R 1.000 1.000 1.000 1.000 1.000 1.000

C
ov

er
ag

e-
ba

se
d

AF 0.997 1.043 1.084 1.126 0.887 1.000

AS 0.994 0.911 0.908 0.907 0.624 1.000

TF 0.913 0.996 1.129 1.326 1.048 1.000

TS 0.990 0.947 1.133 1.149 1.077 1.000

Interestingly, irrespective of the granularity level or the

prioritization strategy, every distribution-based technique is
worse than random ordering. This result further strengthens
the finding in Section 2) that test suites generated by
distribution-based test case prioritization techniques may
not integrate well with statistical fault-localization tech-
niques.

In particular, the only examined technique that can
consistently outperform random prioritization is AS. Com-
bined with the result in Section 2), we find that AS can be
promising in providing effective test case prioritization as
well as supporting statistical fault localization.

Furthermore, random prioritization even outperforms AF
at times (see the highlighted cells of the AF rows in Table 4).
It indicates that its granularity level (even for the additional
test case prioritization strategy) is insufficient for generating
prioritized test suites that assist developers to debug pro-
grams better than random ordering. The total test case
prioritization strategy also suffers from a similar problem.

104

In summary, with respect to research question RQ3, we
find that random prioritization is a cost effective technique
for fault localization. It can perform as good as (if not better
than) all other prioritization techniques except the AS
technique.

B. Threats to Validity
We use the Siemens programs as subjects in the study.

All of them are small-sized programs with seeded faults.
Further empirical studies on larger programs with multiple
faults may further strengthen the external validity of our
findings. In practice, although redundancy in test suites used
in practice may exist, not all test suites may fully satisfy
certain testing criteria. To address this issue, we use test
suites that are randomly constructed. Still, random test
suites from the test pool are limited by the contents of the
original pool. However, a study of whether the test pool of
the Siemens suite represents a realistic setting is beyond the
scope of this paper.

We only choose C programs in our empirical study. A
further investigation of subject programs written in other
programming languages may help generalize our findings.

Another threat to validity is the correctness of our
experimentation tools. We have measured the Average
Percentage of Faults Detected (APFD) of the prioritization
techniques, and find that our APFD values are almost the
same as these published in the literature such as [8][19]. We
believe the minor difference is due to the choice of different
test suites between the empirical study reported in this paper
and those in [8][19].

We use Expense as a metric in our empirical study.
Expense may indicate a conservative way of locating faults.
In practice, when developers examine a particular statement
s1, they may spot problems in another statement s2 close to
s1. Statement s2 may have a much lower rank. This
indicates that a less amount of code can be examined to
locate faults than what Expense may indicate.

Coverage-based techniques are a kind of greedy approach
that selects test cases based on the coverage information on a
previous version of the program. On the other hand, the
execution profile of a test suite may sometimes change
drastically across two different versions of the same program.
Thus, the result that AS is more effective than other tech-
niques may not necessarily be generalized. It would be inter-
esting to find the characteristics of changes that would favor
(or disfavor) the application of coverage-based techniques.

V. RELATED WORK
This section reviews related work that has not been

discussed in previous sections.
Wong et al. [28] proposed an approach that combines

test suite minimization and prioritization to select cases
according to the cost per additional coverage. Srivastava et
al. [26] developed a binary matching technique to calculate
the changes in program at the basic block level and
prioritize test cases to optimally cover the affected program

changes. Walcott et al. [27] studied a time-aware test suite
prioritization technique based on genetic algorithms to order
test cases under testing time constraints. Li et al. [20]
evaluated various search algorithms for test case prioritiza-
tion.

Apart from distribution-based techniques, Leon and
colleagues [3][18][19] also proposed a family of failure-
pursuit sampling techniques. They select one initial sample
per cluster and, when a failure is found, k nearest neighbors
are selected and checked. If additional failures are found,
the process will be repeated. We do not evaluate this
technique because it requires the outcomes of test cases on
the modified version and is, therefore, not suitable for
continuous integration, in which fast turnaround is required.

Yu et al. [29] conduct an empirical study of the effect of
test-suite reduction on fault-localization techniques. They
find that the effectiveness of fault localization varies
according to different test-suite reduction strategies. The
focus of the study, however, is mainly on test-suite reduction
from the viewpoint of test-suite composition.

VI. CONCLUSION
In continuous integration, the total time allowed for

testing and fault localization is limited. Thus, it is desirable
to use both test case prioritization and fault localization to
help developers detect and locate the faults. In this paper,
we conduct an empirical study to explore the impact of test
case prioritization on statistical fault localization. We find
that test suites prioritized by coverage-based strategies are
better than those from other strategies in terms of the
effectiveness of fault localization. Although random order-
ing can be less effective than the additional statement tech-
nique, no other technique can outperform random ordering.
In particular, random prioritization is even better than
distribution-based techniques in terms of Relative Expense.
Our result provides a strong piece of evidence to clear the
misconception on random prioritization ⎯ random ordering
can indeed be effective in supporting such integration.

In the future, we would like to examine the underlying
reasons why random prioritization is better than
distribution-based techniques, with a view to further
developing better variants of the random strategy. For
instance, it will be interesting to study the effectiveness of
applying adaptive randomness (in the sense of adaptive
random testing) for test case prioritization in CI. We also
wish to study how to achieve a tighter integration between
regression testing and debugging techniques.

ACKNOWLEDGMENT
We are most grateful to Dr. W. K. Chan of City Univer-

sity of Hong Kong for his excellent inputs to the paper.

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the

accuracy of spectrum-based fault localization. In Proceedings
of the Testing: Academic and Industrial Conference: Practice

105

And Research Techniques (TAICPART-MUTATION 2007),
pages 89–98. IEEE Computer Society Press, Los Alamitos,
CA, 2007.

[2] H. Cleve and A. Zeller. Locating causes of program failures.
In Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005), pages 342–351. ACM
Press, New York, NY, 2005.

[3] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In
Proceedings of the Joint 8th European Software Engineering
Conference and 9th ACM SIGSOFT International Sympo-
sium on Foundation of Software Engineering (ESEC 2001/
FSE-9), pages 246–255. ACM Press, New York, NY, 2001.

[4] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: an infra-
structure and its potential impact. Empirical Software
Engineering, 10 (4): 405–435, 2005.

[5] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit test
cases: an empirical assessment and cost-benefits analysis.
Empirical Software Engineering, 11: 33–70, 2006.

[6] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integra-
tion: Improving Software Quality and Reducing Risk. Addison
Wesley, Upper Saddle River, NJ, 2007.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. ACM SIGSOFT
Software Engineering Notes, 25 (5): 102–112, 2000.

[8] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE Trans-
actions on Software Engineering, 28 (2): 159–182, 2002.

[9] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G.
Malishevsky. Selecting a cost-effective test case prioritization
technique. Software Quality Control, 12 (3): 185–210, 2004.

[10] D. Farley. The Development Pipeline. http://studios.
thoughtworks.com/assets/2007/5/11/The-Deployment-
Pipeline-by-Dave-Farley-2007.pdf. Last accessed 2008.

[11] M. Fowler. Continuous Integration. http://martinfowler.com/
articles/continuousIntegration.html. Last accessed 2008.

[12] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Upper Saddle River, NJ, 1988.

[13] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using
value replacement. In Proceedings of the 2008 ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2008), pages 167–178. ACM Press, New
York, NY, 2008.

[14] J. A. Jones and M. J. Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. In Pro-
ceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), pages 273–282.
ACM Press, New York, NY, 2005.

[15] J. A. Jones, M. J. Harrold, and J. F. Bowring. Debugging in
parallel. In Proceedings of the 2007 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA
2007), pages 16–26. ACM Press, New York, NY, 2007.

[16] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the
24th International Conference on Software Engineering
(ICSE 2002), pages 467–477. ACM Press, New York, NY,
2002.

[17] J.-M. Kim and A. Porter. A history-based test prioritization
technique for regression testing in resource constrained

environments. In Proceedings of the 24th International Con-
ference on Software Engineering (ICSE 2002), pages 119–
129. ACM Press, New York, NY, 2002.

[18] D. Leon, W. Masri, and A. Podgurski. An empirical
evaluation of test case filtering techniques based on exercising
complex information flows. In Proceedings of the 27th
International Conference on Software Engineering (ICSE
2005), pages 412–421. ACM Press, New York, NY, 2005.

[19] D. Leon and A. Podgurski. A comparison of coverage-based
and distribution-based techniques for filtering and prioritizing
test cases. In Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering (ISSRE 2003),
pages 442–453. IEEE Computer Society Press, Los Alamitos,
CA, 2003.

[20] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering, 33 (4): 225–237, 2007.

[21] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2005), pages 15–26. ACM
Press, New York, NY, 2005.

[22] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
statistical model-based bug localization. In Proceedings of the
Joint 10th European Software Engineering Conference and
13th ACM SIGSOFT International Symposium on
Foundation of Software Engineering (ESEC 2005/FSE-13),
pages 286–295. ACM Press, New York, NY, 2005.

[23] M. Renieris and S. P. Reiss. Fault localization with nearest
neighbor queries. In Proceedings of the 18th IEEE Interna-
tional Conference on Automated Software Engineering (ASE
2003), pages 30–39. IEEE Computer Society Press, Los
Alamitos, CA, 2003.

[24] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: an empirical study. In Proceedings of the
15th IEEE International Conference on Software Mainten-
ance (ICSM ’99), pages 179–188. IEEE Computer Society
Press, Los Alamitos, CA, 1999.

[25] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE Trans-
actions on Software Engineering, 27 (10): 929–948, 2001.

[26] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In Proceedings of the 2002
ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2002), pages 97–106. ACM Press, New
York, NY, 2002.

[27] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. TimeAware test suite prioritization. In Proceedings of
the 2006 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA 2006), pages 1–12. ACM
Press, New York, NY, 2006.

[28] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In Proceed-
ings of the 8th International Symposium on Software
Reliability Engineering (ISSRE ’97), pages 264–274. IEEE
Computer Society Press, Los Alamitos, CA, 1997.

[29] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study of
the effects of test-suite reduction on fault localization. In
Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), pages 201–210. ACM Press, New
York, NY, 2008.

106

