
ReTestDroid: Towards Safer Regression Test
Selection for Android Application*

Bo Jiang, Yu Wu, Yongfei Zhang
School of Computer Science and Engineering

Beihang University
Beijing, China

{jiangbo,yuwu,yfzhang}@buaa.edu.cn

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software,
Chinese Academy of Sciences

Beijing, China
zhangzy@ios.ac.cn

W.K. Chan†
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Abstract—Mobile applications are widely used in our daily
life and Android is the most popular open source mobile
operating system. Because mobile applications update frequently,
it is important developers to perform regression testing to ensure
their quality. Modeling the control flow of an android application
based on the activity lifecycle model only is imprecise for
regression testing. Because many Android applications use
asynchronous tasks, fragments, and native code frequently,
which must be considered during change impact analysis.
Otherwise, regression test selection techniques may miss some
failure-revealing test cases, compromising the safety of these
techniques. In this work, we propose a novel approach to model
asynchronous task invocations, fragment-based activity lifecycle,
and native code within the control flow graph of an Android
application. Furthermore, we designed a regression test selection
tool ReTestDroid based on our graph model. Our experiments on
five real-life Android applications showed that our approach
could enable much safer regression test selection while
significantly saving regression-testing time.

Keywords—Test Case Selection; Android; Regression Testing;
Impact Analysis

I. INTRODUCTION
With the prevalence of smart phones and mobile operating

system (e.g., iOS & Android), mobile applications are
becoming an indispensable part of our life. From the point of
view of the mobile application developers, those mobile
applications serve as a crucial interface of their business
services to end-users. Many popular mobile applications (e.g.,
Facebook and Wechat) have hundreds of millions of active end
users, which is the key to the business success of the company.
Indeed, a low quality mobile application will seriously impact
user experiences. Thus, mobile developers strive to ensure the
quality of their mobile applications to avoid user loss.†

A key characteristic of such a mobile application is that
their software components undergo rapid evolutions [2]. In

* This research is supported in part by the National Natural Science Foundation of China
(project no. 61772056), the Key Research Fund of the MIIT of China (project no. MJ-Y-
2012-07), the General Research Fund of Research Grants Council of Hong Kong SAR
(project numbers: 125113, 11200015, 11201114, and 11214116), and the research
funding of the State Key Laboratory of Virtual Reality Technology and Systems.
† Correspondence author

another word, newer versions of the same mobile application
are released frequently. For instance, Firefox is planned with
tens of official releases (versions 45.8 to 52.7) and another tens
of developer releases (versions 53.0 to 62.0) in 2017.
Furthermore, a survey on Android Play store [41] reports that
such a period is around 10 days for apps with more than 100K+
downloads. Therefore, in such a short period, not only the
source code of an app is modified but also all the testing should
be completed toward the release of the new version.

Regression testing is the activity of testing changed
software to provide confidence that the changed parts of the
software behaves as expected and that the unchanged parts of
the software have not been adversely affected [23]. There are
many regression-testing techniques studied in the literature.
One important technique is Regression Test Selection (RTS),
which selects a subset of test cases (denoted as test suite A) for
regression testing, rather than re-testing all these test cases
(denoted as test suite B), on a newer version [29][32] based on
some notions of equivalence. For instance, if test cases in A
and B both pass through the same set of edges in the same
control flow graph of a version of an app (called the original
version in RTS), then test suite A may be selected to test a new
version of the app for the regression testing. Furthermore, if the
control flow graphs of the two app versions are available, then
the set of nodes (i.e., program statements) and the edges of the
control flow graph of the original version can be labeled to
indicate that these nodes and edges are impacted by changes
between the two control flow graphs. The test suite A can be
further reduced to merely include test cases that pass through
these edges impacted by change. This process is known as
change impact analysis.

To realize such change impact analyses, a key issue is to
construct a control flow graph that precisely models the
application. For Android applications, the state of the art
technique [2] is to model the control flow based on the source
code while also incorporating the activity lifecycle model. Each
lifecycle model is a graph where a node represents an activity
state and an edge represents a transition between two activity
states. Nonetheless, many Android applications uses fragment
class to build modularized user interfaces. A fragment
represents a behavior or a portion of user interface in an
Activity. When fragment class is used, the event handlers of

235

2018 42nd IEEE International Conference on Computer Software & Applications

0730-3157/18/$31.00 ©2018 IEEE
DOI 10.1109/COMPSAC.2018.00037

the fragment class are used instead of event handlers of the
Activity class. However, the ICFGs built on top of the Activity
lifecycle have no place to accommodate fragment event
handlers. When changes happen in those fragment event
handlers, using such a less precise graph may lead to the
omission of failure-revealing test cases, which is undesirable.
Furthermore, the asynchronous task is frequently used on
Android for parallel processing and native code is used in
Android for improving efficiency. These two programming
features are also not reflected in the control flow graph of
existing work [2].

Although there are many existing works on RTS
[4][9][15][18][20][27][32][35][36], they exclusively focus on
individual programming languages (e.g., Java) and individual
programming models. Nonetheless, for Android apps, we argue
that effective change impact analysis for RTS requires handling
asynchronous tasks, fragments, and native code appropriately,
which we will address in this work.

In this paper, we propose a novel Inter-Procedural Control
Flow Graph (ICFG) to support regression testing of Android-
application with asynchronous tasks, fragment-based activity
lifecycles as well as native code. Our approach not only models
transitions at the activity fragment levels, but also handles
native code and asynchronous task invocations. As such, our
graph model is more precise in detecting code changes between
versions of the same application. Consequently, with our
control flow abstraction, change impact analysis for regression
testing is also more precise. To show the feasibility of our
approach, we have implemented it as a Regression Test
selection system for AnDroid applications (ReTestDroid). We
have conducted experimentation to evaluate ReTestDroid in
regression testing scenarios on five real-world applications.
The results show that the interprocedural control flow graph
proposed by ReTestDroid is effective to support safer
regression test selection. Furthermore, ReTestDroid can
significantly reduce the test suite size as well as the overall
regression testing time, which is promising for practical use.

The contribution of our work is twofold. It is the first work
to propose precise Interprocedural Control Flow Graph (ICFG)
for Android application by handling asynchronous task,
fragment, and native code in supporting effective RTS. Second,
this paper presents the first experimental study on large real-
life Android applications (e.g., Mozilla FireFox Mobile, K9-
Mail) to evaluate the safety of the regression test selection
system.

The rest of this paper is organized as follows. Section II
presents the background relevant to our work. In Section III,
we present our regression test selection system ReTestDroid,
which includes the overall system workflow, the ICFG
construction for Android apps, and the impact analysis
algorithms. Section IV provides our experimental study on
real-life Android apps. Finally, Section V reviews related work
and Section VI concludes the paper.

II. BACKGROUND
In this section, we present the preliminaries and the

background on graph representations of programs for control
flow analysis as well as the regression test selection problem.

A. Graph Representations of Programs for Control Flow
Analysis
A Control Flow Graph (CFG) for a method M contains a

node for each simple or conditional statement in M. The edges
between nodes represent the flow of control between
statements. Usually, intraprocedural control flow analysis is
performed on one method at a time. When connecting the static
call graph with the control flow graphs of all the procedures in
an application P, we can build an Interprocedural Control
Flow Graph (ICFG) [42] of the whole application.
Specifically, an ICFG for a program P is composed of the
CFGs for each method in P. Each call site in P is represented
by a pair of call and return nodes. The call node is connected to
the entry node of the called method by a call edge, and each
exit node in the called method is connected to the return node
of the calling method by a return edge.

For applications written in Object-Oriented (OO)
programming languages such as Java or C++, existing works
extended the ICFG to the Java Interclass Graph (JIG) [32] or
Class Control Flow Graph (CCFG) [36] to handle the OO
features such as inheritance, polymorphism as well as
framework programming features. The construction of JIG
enables a more precise control flow analysis on the whole Java
application for regression testing purpose, which is significant.

FlowDroid [2] provides a solution for constructing Inter-
Procedural Control Flow Graph (ICFG) of Android apps. It
then uses its ICFG to perform static taint analyses and applies it
for detecting leaks of sensitive user data. The ICFG built by
FlowDroid accommodates the activity lifecycle of Android
apps, inserts the events handling callbacks defined by the
Android framework, connects multiple entry points of Android
components (Activity, Service, Broadcast Receiver, and
Content Provider) within a dummy main function, and handles
the Object-Oriented features of Android programming such as
inheritance and polymorphism.

However, as mentioned in Section 1, the state-of-the-art
ICFG built by FlowDroid is limited in at least three aspects
necessary for safer regression testing with change impact
analysis: It does not handle the call to Android framework
APIs related to asynchronous tasks, it does not model Fragment
lifecycle, and it does not handle native code. In this work, we
address these three limitations in our ICFG construction
process so that the ICFG can be precise for change impact
analysis from the control flow perspective.

B. The Safe Regression Test Selection Problem
In regression testing research, the retest-all strategy [24] is

to execute all the test cases in an existing regression test suite
over the modified software. Regression Test Selection (RTS) is
to select a subset of test cases from a given test suite (T). The
regression test selection essentially consists of two major
activities [7]:

1) Impact Analysis: Identification of the unmodified
parts of the program that are affected by the
modifications.

2) Test Case Selection: Identification of a subset of test
cases from the initial test suite T which can effectively

236

test the affected parts identified by the previous
activity.

Rothermel and Harrold [32] formally defined the regression
test selection problem as follows: Let P be an application
program and P’ be a modified version of P. Let T be the test
suite developed initially for testing P. RTS technique selects a
subset of test cases T’ of T to be executed on P’, such that
every error detected when P’ is executed with T is also detected
when P’ is executed with T’.

A test case t of T is considered modification-revealing [33]
for P and P’, if and only if it produces different outputs for P
and P’. A test case t of T is said to be modification-traversing
for P and P’ if and only if the execution traces of t on P and P’
are different. If traces are the same, then the outputs will be the
same. They define a test case selection algorithm as safe if it
selects all test cases that are modification revealing. In this
work, we consider a test case selection technique safe if all
failure-revealing test cases have been selected for a program
version. Furthermore, we consider one RTS technique is safer
than the other if the former can select more failure-revealing
test cases than the later on a program version.

III. RETESTDROID: OUR REGRESSION TEST SELECTION
SYSTEM

The regression test case selection strategy stated at the end
of last section implies that if an ICFG used for RTS omits some
essential nodes or edges that reflect the program control flow,
regression test selection cannot be safe. As we have discussed
in Section I, it is exactly the case on the ICFG generated by
FlowDroid. In this section, we present our regression test
selection system ReTestDroid for Android apps. We first
present the overall workflow of our ReTestDroid framework,
and then describe how we build a more precise ICFG for
Android app to address the three limitations stated in the last
section. After that, we show the regression test selection
algorithms. Finally, we discuss the limitations of ReTestDroid.

A. Workflow of ReTestDroid

In this section, we present the workflow of our regression
test selection system (ReTestDroid), which is shown in Fig. 1.

Fig. 1 The Workflow of ReTestDroid

Given an Android app with two versions P and P’ as well
as a test suite T, ReTestDroid statically build two ICFGs Gp
and Gp’ for P and P’, respectively. After that, ReTestDroid

performs change impact analysis on Gp and Gp’ to label a set of
edges on Gp as dangerous. Then, ReTestDroid executes P over
T to generate the coverage matrix of T on P with respect to Gp
to indicate which edges in Gp have been exercised by which
test cases in T. This coverage information is usually collected
after the testing of previous program versions in practice.
Finally, ReTestDroid selects a subset T’ from T based on the
coverage matrix and the labeled dangerous edges. Note each
edge in the ICFG of P that is modified in P’ is called a
dangerous edge.
B. Construction of the Interprocedural Control Flow Graph

(ICFG) for Android Apps
The ICFG constructed by ReTestDroid significantly

enhances the ICFG built by FlowDroid [1]. As discussed in
previous sections, an ICFG built by FlowDroid includes the
modeling of component lifecycles, callback edges, multiple
entry points, as well as the Object-Oriented features of the
Android apps under analysis. The ICFG of FlowDroid provides
a solid yet basic framework for static analysis. ReTestDroid
further enhances the ICFG built by FlowDroid with the
following improvements: 1) it handles the calls to Android
framework APIs related to asynchronous tasks. 2) its ICFG
handles the lifecycle of Fragments; 3) it handles the native
code built with Android NDK. In our preliminary study, these
features are frequently used in Android application
programming. In the next three subsections, we present how
ReTestDroid achieves these improvements.

1) Handing Asynchronous Tasks

Fig. 2 Sub-ICFG Modeling Asynchronous Tasks

An asynchronous task is used by an Android app to
perform background operations and publish results on the UI
thread without having to use threads or handlers [45]. It is in
fact the recommended way in Android for multi-threading. For
asynchronous tasks, ReTestDroid connects the execute()
method of each AsyncTask module with the doInBackground()
callbacks implemented by that AsyncTask module. The
doInBackground() method may optionally call the
publishProgress() method, which will lead to the invocation of
onProgressUpdate(). When doInBackground() returns,
onPostExecute() will be called. ReTestDroid added all these
edges within the lifecycle of AsyncTask in its ICFG. An
exemplified sub-ICFG modeling the asynchronous tasks is

Execute T on P /
Record coverage

Program P
Coverage Matrix

Select
Test Cases

Build
ICFG

Program P

Program P’

ICFG Gp

ICFG Gp’
Change
Impact

Analysis

Dangerous Edges

Test Suite
T’

Test Suite T

Test Suite T

���������	
�

����
������
�����	
�

�����
��������
�	
�

�
�����������	
�

������ ��������	
�

�
��������!�����	
�

��

237

shown in Fig. 2 where p is a predicate in the graph. All these
sub-ICFGs are incorporated into the ICFG of ReTestDroid to
enable precise impact analysis on application code with
asynchronous tasks.

2) Handling Life Cycles of Fragments

In Android, a Fragment is a module of code that holds part
of the behavior and/or UI of an Activity [9][13] and is
subservient to an Activity. Fig. 3 (a) shows the relationship of
Fragment lifecycle and its containing Activity state. Each
invocation of each callback method of the containing Activity
triggers an invocation of the corresponding callback method of
an underlying Fragment module (e.g., onStart, onResume,
onPaused, onStop, onDestroy) [13]. For instance, the
onActivityCreated() callback of a Fragment module is invoked
when the onCreate() method of its containing Activity module
is returned. Different Fragment modules may invoke different
callbacks of other Android components in different lifecycle
method invocations.

The lifecycle of a Fragment is dependent on the Activity
containing it. To model it, ReTestDroid inserts the call to the
callbacks of Fragments right after each call to the
corresponding callback of its belonging Activity. For example,
when the onCreate() method of an activity is put into the ICFG,
the onActivityCreated() methods of its dependent fragments
will be inserted right after it. Other life-cycle methods of
fragments are inserted into the ICFGs similarly.

Most importantly, those event handlers of the Fragment are
also inserted into the ICFGs in between the lifecycle method of
onResume() and onPause(). For example, for the class
ListFragment, the onListItemClick() method will be added into
the ICFGs. In contrast, in the ICFGs of FlowDroid where the
Fragment class is not modeled, the fragment event handler is
nowhere to go. If changes happen in those fragment related
event handlers, those modification-revealing test cases
covering them will not be selected since the change is not
reflected anywhere in the ICFGs of FlowDroid. However, with
the ICFGs of ReTestDroid, the problem is addressed.

Fig. 3 (b) shows a sub-ICFG modeling an example Activity
with two Fragments generated by ReTestDroid. The
a.sendMessage() represents arbitrary fragment related event
handlers realized in the application.

3) Handing Native Code

The Android platform supports programming in native code
(C and C++) using Android Native Development Kit (NDK)
[44]. Precise analysis of Android apps written with native code
is nontrivial. Since the SOOT framework used by FlowDroid is
targeted at analyzing Java bytecode, we have to adopt a static
analysis framework for C/C++ programs to perform the
required analysis. To the best of our knowledge, existing
analysis framework on Android application only handles the
Java code and treats all calls to the native code as a system call
symbol in their graph model.

(a)

(b)

Fig. 3 (a) Relationship of Fragment lifecycle and its containing Activity state. (b) Part of a sample Fragment-aware control flow graph
generated by ReTestDroid.

238

TABLE 1. THE IMPACT ANALYSIS ALGORITHM

 Inputs: N : entry node in the ICFG for original program P
 N': entry node in the ICFG for modified program P'
 Output E: a global set of dangerous edges for P
 methodStatus: has status ("unSelected", "selectsAll") to represent

method impact info.
 methodTable: is a global map (methodName, methodStatus) which

contain methods status.
 procedure compare(N, N')
 begin

1 mark N as "N'-visited"
2 foreach(call edge or virtual edge e' in N'.leavingEdges){
3 e = N.match(e') //get edge e with the same property as e’
4 m and m' are entry nodes of the targets method of e and e'
5 if (m exist and not in methodTable)
6 compareMethod(m, m')
 } //foreach

7 if(All target methods of N are already set "selectsAll")
8 return //No more analysis is need for the current method
9 foreach (normal edge e in N'.leavingEdges){

10 e = N.match(e') //get edge which has same property
11 if(e!=null){ //compare target nodes of edges
12 c = e.getTarget()
13 c' = e'.getTarget()
14 if(!e.equals(e')){
15 E = E�e
16 } //add edge to set E
17 else{
18 compare(c, c')
19 } //iterate compare next nodes
20 } //end if (e' != null)
21 } //end foreach
22 foreach(edge e in N.leavingEdges and e has no matched e'){
23 E = E�e //e can be any types edge
24 } //foreach

 end

 procedure compareMethod(N, N')
 Input: N, N': entry nodes of two methods
 begin

25 m is the method name for node N
26 put m in methodTable and set methodStatus ("unSelected")
27 compare(N, N')
28 if (None of the exit nodes of m is visited)
29 set methodStatus ("selectsAll") for m

 end

Therefore, ReTestDroid first generates an ICFG for the
native code portion. Then it connects this ICFG for the native
code to the ICFG for the Java code portion to construct a
combined ICFG. To generate an ICFG for the native code
portion, ReTestDroid generate the call graph of the whole
native code written in C/C++ as well as the intraprocedural
control flow graph of each function with LLVM compiler
framework. Then it connects the call graph to all the
Intraprecedural CFGs of all the functions to build the ICFG of
the native code portion. Finally, ReTestDroid identifies each

Java Native Interface (JNI) call site in the ICFG of the Java
code portion and adds an edge from that call site to the ICFG
of the native code.

C. The Regression Test Selection Algorithm for Android
Application

The idea of the impact analysis algorithm realized by
ReTestDroid is an adaptation of the efficient algorithm for
procedural program proposed by Rothermel et al. [34] to
Obejct-Oriented program. They both try to avoid further
traversal beyond a call node if all tests become modification-
traversal if analyzed within the called method. However, the
efficient algorithm in [34] is just for procedural programs, it
takes no consideration of the OO features such as
polymorphism. In contrast, our algorithm accommodates the
virtual calls appropriately, which are frequently used in OO
and Android application.

As shown in Table 1, this efficient algorithm caches the
"selectsAll" tag to skip unnecessary impact analysis of follow-
up nodes after a called node is analyzed. The flag "selectsAll"
represents that all its successor nodes are impacted and there is
no need to traverse more. Both methodStatus and methodTable
are hash tables to keep the impact analysis status for a method.
The efficient impact analysis algorithm starts by invoking
compare(), and its core idea is to handle different types of
nodes in different ways (lines 2 to 6). If a node N has any call
edges or virtual edges, their target node must be an entry node
of a method, and so it invokes compareMethod() to perform
impact analysis on that method (lines 6). If every target
methods of N are marked as "selectsAll", then no more analysis
is needed for the current method (line 7 and 8). Apart from call
and virtual edges, node N may also have ordinary edges.

It then iterates each edge of N' with a matched edge of N,
and checks whether their target nodes are equal or not (line 11
to line 14). If their target nodes match, this algorithm will
recursively invoke compare() to traverse the two graphs (line
18). Otherwise, a dangerous edge is identified and added to the
set E (initially an empty set). Finally, a loop finds whether
there is any leaving edge e of N that does not have any matched
edge e' of N' and adds every such edge e to set E (line 22 to
24). This algorithm ends after traversing the whole ICFG of P.

 The method compareMethod() accepts the two entry nodes
of two methods, it records the method status into methodTable
(line 26) and traverses the CFG by recursively invoking
compare() (line 27). Only if none of the exit nodes of a method
is visited, this method is set as "selectsAll" (lines 28 to 29).

The test case selection process is intuitive. We first recall
that by executing the program P over the test suite T, the set of
edges on the ICFG exercised by each test case is recorded,
which forms a coverage matrix. As shown in Table 2, the test
case selection algorithm accepts the set of dangerous edges, the
coverage matrix, and the whole test suite as its inputs. It returns
the set of selected test cases for P’. Based on the coverage
matrix, it checks whether a test case covers any dangerous
edges identified by an impact analysis algorithm. If this is the
case, that test case is added to the set of selected test cases.

239

TABLE 2. THE TEST CASE SELECTION ALGORITHM

 Input: E: {e1, e2, ...} � dangerous edges from impact analysis
 C: {c1, c2, ...} � coverage matrix of the original program

T: {t1, t2, ...} is a set of test cases for P
Output: T': {t1, t2, ...} is a set of selected test cases for P’
begin

foreach(ci in C){
if (ti

 covers any ej
 in E based on ci){

T' = T'�ti
} //end if

} //foreach
end

D. Limitations
Our regression test selection algorithm is only safe under

certain assumptions. These assumptions are also called
regression bias in previous work [5]. In particular, if the
application under test uses reflection mechanism or if it has
non-deterministic execution behaviors, the ICFG or the test
coverage matrix will change, which will makes our tool fail to
be safe.

1) Reflection

Similar to the work on regression test selection on Java
[29][32], the ReTestDroid framework has not supported
reflection (used in any internal or external class). Similar to the
Java programming environment, Android also supports
reflection to access classes or their members by name. Such
reflective accesses are hard to analyze [25] using static
analysis: class and method names can be computed at runtime
or loaded from files that the static analysis does not have access
to. Since the runtime information on reflection usage on the
new version is unavailable, it is difficult to use this information
to facilitate call-graph analysis. It is an interesting work to
factor in reflection to achieve safe regression test selection.

2) Non-Deterministic Executions

Android apps may use both threads and asynchronous tasks
extensively for parallel processing. As a result, the execution
orders of instructions in an app over a test case are non-
deterministic due to scheduling non-determinism. Furthermore,
the execution of Android application is also affected by
environmental factors such as system-level events, network
state changes, and volatile sensor data. A complete record of all
such non-deterministic choices for deterministic replay is
beyond the scope of this work. Another workaround to handle
non-deterministic execution is to combine ReTestDroid with a
deterministic replay tool, which is an active topic in concurrent
testing research.

IV. EXPERIMENTAL STUDY
In this selection, we present an experimental study on five

real-life open-source Android applications to evaluate
ReTestDroid. We select both medium-scale and large-scale
Android apps as subjects to conduct our experiment. In this
way, we want to evaluate whether ReTestDroid is effective and
practical when applied on real-life Android applications.

A. Subjects
We selected five real-life open-source Android apps for

experimentation. K9-Mail is a popular email application. Music
is the built-in music application of the official Android system.
Open Sudoku is a game application. Tomdroid is a note
application. Mozilla Firefox Mobile is a popular mobile Web
browser. The descriptive statistics of the five applications are
shown in Table 3. The rows list the five subject programs. The
columns represent the name, description, number of program
versions, average line of code of each subject, and the features
used in the application related to our study. For example, K9-
Mail is an email application. It has 6 program versions used in
the experiment. It contains 24.5K lines of code. Finally, it uses
both the AsyncTask and Fragment features in its
implementation. The statistics of other subjects can be
interpreted similarly. For each subject, we treat the first version
as v0 and number the subsequent versions as v1, v2, v3, v4, v5, v6,
and v7.

TABLE 3. SUBJECT PROGRAMS

Subject Description Versions LoC Features

K9-Mail Mail 6 24.5K AsyncTask
Fragment

Music Music 6 11.9K AysncTask
Open Sudoku Game 6 3.4K AysncTask

Tomdroid Note 6 4.9K None
Mozilla

Firefox Mobile Browser 8 86.9K AysncTask,
Fragment, Native

B. Research Questions
We aim to answer the following two research questions in

this experimental study.
Research Question 1 (RQ1): Can the improved ICFG of
ReTestDroid enable safer regression test selection?

Research Question 2 (RQ2): Is the ReTestDroid tool effective
in reducing the regression test suite size for Android
application?

C. Experiment Setup
In this section, we present the setup details of our

experimental study.
1) Test suites and Program Versions

To construct the test suite for each program, we used the
Monkey tool shipped with Android 4.4.4 for test case
generation. For each test suite, we generated 10 groups of test
cases, and each group contains 20 test cases. The test cases of
the same group had the same number of events and the number
of events in each group was defined as 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, and 5000. To avoid generating
repetitive test cases, we used different random seeds for
Monkey for each of the 200 test cases. For each application, the
corresponding test suite contains 200 test cases. Moreover, on
average, it takes around 400 minutes to execute the test suite on
a program version.

As stated above, all the subjects we chose were open source
applications. In our experiment, we first download natural
versions from their respective software repositories. K9-mail

240

had 6 versions ranges from 3.910 to 4.000. Music has 6
versions. The first version was cm-10.1, and the follow-up
versions were subsequent commit versions. All 6 versions of
Open Sudoku were commit versions starting from version
1558f8bda545d408ab3b0700aa298b8aa5205ec2. Tomdroid has 6
versions ranging from 0.6.0 to 0.7.5. Finally, Firefox Mozilla
Mobile has 8 versions starting from
FIREFOX_AURORA_47_BASE.

However, the problem of using those natural versions in our
experiment is that the randomly generated test cases can hardly
trigger any failures on them. This is partially attributed to the
fact that these versions are relatively stable versions and
partially due to fault detection ability of the random test suite.
Since we want to evaluate the safety of the ReTestDroid tool in
selecting test cases, we need failure-triggering test cases. So we
further manually inject mutants (i.e., mutation faults) into those
natural program versions to create faulty versions. The
mutation bugs injected including null pointer bugs, ANR bug
with a busy UI thread, and intent bugs triggering
ActivityNotFound exception. Finally, with a postmortem
analysis, we measured the percentage of failed test cases for
each program version of each subject, and the failure rate
ranges from 3% to 12%.

2) Collecting code coverage information

The test case selection algorithm requires the code coverage
matrix of the test cases on previous program version. In the
experiment, we use the EMMA [48] tool to help collect code
coverage information of the test cases for Java code. For each
project, we add and realize an Instrumentation test class to help
start the Monkey tool with predetermined number of events and
seed to test the application, collect coverage information
generated by EMMA periodically, and write the coverage
information into the SD Card. For native code, we use the gcov
tool extension for Android [51] to generate code coverage
information. After executing the instrumented program, we use
lcov to collect code coverage information. Finally, we parse the
code coverage file generated by EMMA and lcov to generate
the coverage matrix of each test case for each program version
for test case selection.

3) Experiment Procedure

We use a device model of Meizu MX3 running on Android
4.4.4 to perform the experiment. The testing host is a
workstation with i7 quad-core processor and 16GB of
memories.

Each subject had 6 or 8 natural program versions. Thus, in
the experiment, we had 5 or 7 pairs of consecutive program
versions (as <P, P’>): <v0, v1>, <v1, v2>, <v2, v3>, <v3, v4>,
<v4, v5>, etc. For each subject program, and for each program
version P, we executed each test suite against P to record its
execution results and its coverage matrix. For RQ1, we first
construct the ICFGs for each pair of P and P’ with both
FlowDroid and ReTestDroid. Then we perform impact analysis
and regression test selection with the same algorithms realized
in ReTestDroid on the two ICFGs, respectively. Then we
measure the number of selections that are safe for each subject,
(i.e., whether all failure revealing test cases are all selected).

For RQ2, we measured the percentage of a test suite that was
selected by ReTestDroid over each pair of program versions.

D. Results and Analysis
In this section, we present the results of our experimental

study as well as the detailed analysis.

1) Answering RQ1

In this section, we want to answer whether the improved
ICFG of ReTestDroid enable safer regression test selection
than directly using the ICFG of FlowDroid.

Fig. 4. Comparison of the Percentage of Safe RTS Versions

As shown in Fig. 4, for each subject program, we measured
the percentage of program versions where RTS is safe based on
the ICFGs of ReTestDroid, and the percentage of program
versions where RTS is safe based on the ICFGs of FlowDroid.
We can see that in general, the ICFGs of ReTestDroid can
enable safer regression test selection than that of FlowDroid.
For 4 out of the 5 subject programs, ReTestDroid is safe on
100% of the program versions. In contract, RTS on the ICFG
of FlowDroid is only 100% safe on all versions of Tomdroid.
In fact, only 50%, 83%, 83% of the versions are safe when
performing RTS on ICFG of FlowDroid for K9-Mail, Music,
and Open Sudoku. We analyzed the subject program versions
and the test suites selected, and we found the asynchronous
task and fragment features lead to the unsafe RTS selection on
FlowDroid. On Tomdroid, the RTS on the ICFG of both
ReTestDroid and FlowDroid are safe, which is as expected
since Tomdroid is a relatively simple application without much
features.

On the other hand, Firefox mobile is the only application on
which the RTS on both ICFGS of ReTestDroid and FlowDroid
are unsafe. If we examine the versions carefully, RTS is safe
on 6 out of the 8 programs versions based on the ICFGs of
ReTestDroid. We checked the test cases carefully, and found
the non-deterministic execution lead to the unsafe selection on
these two versions by ReTestDroid. In contrast, the RTS based
on the ICFGs of FlowDroid is only safe on 50% of the versions
of Firefox mobile. After a close examination of the artifacts,
we found the RTS on the ICFGs of FlowDroid is not only
affected by non-deterministic executions, but is also affected
by AsynTask, Fragment, and native code features.

���

����

����

����

����

	���

���

����

����

���

�����

������������ ���������� ������������ ���������� ������������ ���������� ������������ ���������� ������������ ����������

�
� ������ ���� �� ��!������ ����"�#�
$�

��
�%

�&
'�

��
"��

&"
��
��

��
(�

��
��
%�
�

��)*����$��'�&!��

241

Therefore, we can answer RQ1 that the ICFGs of
ReTestDroid can enable safer regression test selection than that
of the FlowDroid.

2) Answering RQ2

In this section, we want to answer whether our ReTestDroid
system is effective in reducing the regression test suite size for
Android application.

The percentages of test cases selected for each pair of
program versions are shown in Fig. 5. In the plot, each bar is
associated with a version. For example, v1 of K9 means that
percentage of test cases selected for the pair <v0, v1> of K9-
mail. Other bars can be interpreted similarly.

We can see that the percentage of the test cases selected
ranges from 12% to 72% across the subject programs. The
average percentages of test cases selected are 44.8%, 39.4%,
44.3%, 40.9%, and 27.4% for the 5 subjects, respectively. It
shows that our ICFGs are sensitive to changes so that many
test cases that are modification revealing can be identified. The
saving in terms of the percentage of test cases not selected is
high. Therefore, we can answer RQ2 that the ReTestDroid
system is effective in reducing the size of a given test suite for
regression testing of Android applications.

Fig. 5 Percentage of Test Cases Selected for Each Version

 We further measured the overall regression testing time for
ReTestDroid. We found the time for impact analysis was much
shorter than the time for test case execution. As a result, there
is significant timesaving in terms of total regression testing
time with regression test case selection.

3) Threats to Validity

In our experimental study, we use only Monkey tool to
generate random test suites for regression testing. A further
study on regression test suites generated by other test case
generation tools or designed by human testers will further
strengthen the validity of our study. Another factor affecting
the threat to validity is the correctness of our platform. We
used Java and C to implement our ReTestDroid system for
experimental study. We have carefully performed code review
and testing on our platform to ensure their correctness.

We used 5 open source applications to evaluate our
ReTestDroid platform. While they cover some types of
Android application, a thorough study on more types of
popular Android applications will also improve the validity of
our study.

V. RELATED WORK
In this section, we systematically present the closely related

works.

The Regression Test Selection (RTS) techniques are
originally studied for procedural programs [21][23] and then
are targeted at Object-Oriented programs [6][27] and domain
specific programs [39]. When classified based on the program
analysis technique used, RTS techniques can fall into the
dataflow analysis based techniques, the control flow based
techniques, firewall-based techniques, and differencing-based
techniques, etc.

Dataflow analysis-based RTS techniques detect definition-
use pairs for variables to describe program modifications and
select test cases that cover the paths impacted by modified
variables. Harrold and Soffa [30][31] extended data flow
testing to guide the selection and execution of test cases, their
study can be applied to analyze changes across multiple
procedures.

Control flow analysis-based techniques [21][4] analyze
control flow models of the input programs. Rothermel and
Harrold proposed a safe, efficient regression test selection
technique [35]. Their algorithms construct control flow graphs
for a program and its modified version and use these graphs to
select tests that execute impacted code from the original test
suite, and these algorithms are safe under certain constraints.
Rothermel et al. [36] proposed a control flow analysis-based
technique for C++ programs. The Inter-procedural Control
Flow Graph (ICFG) and Class Control Flow Graph (CCFG) are
proposed to model programs. These algorithms select relevant
regression test cases by comparing graph models of the original
and the modified program. And these authors have also
presented several other works on control flow analysis-based
RTS techniques [32][33][34]. Ball et al. [4] focus on the
application of control flow analysis and control flow coverage
to the regression test selection problem, considering how the
type of coverage information collected can affect the precision
of regression test selection algorithms. They reformulated
Rothermel and Harrold's regression test selection algorithm and
presented three new algorithms.

Leung and White [21] proposed a firewall-based RTS
technique, and the firewall-based approach presents regression
testing of modules where dependencies due to both control
flow and data flow are taken into consideration. Kung et al.
[18][19][20] proposed the firewall-based RTS technique for
object-oriented programs. They used three models to represent
the dependencies of a C++ program: Object Relation Diagram
(ORD), Block Branch Diagram (BBD), and Object State
Diagram (OSD). Jang et al. [16] also proposed a RTS
algorithm for C++ programs. Their change impact analysis
approach constructs a method-level firewall and aims at
identifying all affected methods efficiently.

TestTube is a system that combines static and dynamic
analyses to perform selective retesting of software systems
written in C. It uses the Differencing-Based Technique to select
test cases [9]. Vokolos and Frankl also proposed a
differencing-based technique that was based on a textual
differencing of two programs. This technique converts a

0%

10%

20%

30%

40%

50%

60%

70%

80%

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v6 v7

Pe
rc

en
ta

ge
 o

f T
es

t C
as

es
 S

el
ec

te
d

Subject Programs

Music

K9� Opensudoku� Mozilla�Tomdroid�

242

program to a canonical form, which can avoid trivial
differences between programs and compares canonical versions
to detect modifications.

There are also RTS techniques for domain specific
application. Regression test selection techniques for database
applications face challenges that database applications are not
stateless and test cases may affect each other. Willmor and
Embury [39] proposed a safe selection algorithm for database
applications by extending the control flow analysis-based
algorithm of Rothermel and Harrold [35]. They introduced the
concept of database dependencies to select database-dependent
test cases with respect to the database state.

Different from the above works, ReTestDroid addresses the
safe regression test selection challenges raised by the Android
programming model.

In [13], Do et al. proposed a similar regression test
selection approach for Android application. Our work differs
from them in two aspects. First, our approach proposes a more
precise ICFG for android application to accommodate Android
features such as fragment, native code, and asynchronous tasks.
Second, we perform a comprehensive experimental study to
compare the safety of ReTestDroid with existing approach. The
results show ReTestDroid is safer for effective regression test
selection.

There are many works on testing techniques for Android
apps. Monkey [53] is the most frequently used tool for
performing random testing on Android application. It randomly
generates UI events and considers the app as black-box.
Dynodroid [27] also uses a random event generation strategy
but is more efficient when compared to Monkey. It can
generate system events and implements the traversal strategy in
a smarter way. Other Android test case generation tools like
GUIRipper [1] and SwiftHand [10] et al. use Model-based
exploration strategy to generate events and explore the
behavior of the application systematically. They usually build
models dynamically and iteratively to explore states triggered
from a discovered one. In this work, we focus on the safe
regression test selection problem for Android apps rather than
the test case generation problem.

VI. CONCLUSION AND FUTURE WORK
When a mobile application is changed, testers can conduct

regression testing to ensure the changes made to the application
have no adverse effect. In this work, we have proposed a
regression test selection system ReTestDroid for Android
application. Building on top of the interprocedural control flow
graph generated by FlowDroid, ReTestDroid constructs a novel
interprocedural control flow graph for Android apps to
accommodate important distinct features of Android
programming model, including Fragment lifecycle, native
code, asynchonrous background tasks. Our experimental results
on 5 real-life Android applications have shown that the
improved ICFG proposed by ReTestDroid are effective to
support safer regression test selection. Furthermore, our
ReTestDroid tool can also significantly reduce test suite size
and regression testing time, which can be practical for use.

REFERENCES
[1] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S.,

Memon, A. M. Using GUI Ripping for Automated Testing of Android
Applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, pages 258–
261, New York, NY, USA, 2012.

[2] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon,
Y., Octeau, D., McDaniel, P.FlowDroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for Android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI '14). ACM, New York,
NY, USA, 259-269, 2014.

[3] Bacon, D. F., Sweeney, P. F. Fast static analysisof C++ virtual function
calls. In Proceedings of the11th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 324-341,
Oct. 1996.

[4] Ball, T. On the limit of control flow analysis for regression test
selection. In ACM Internationl Symposium on Software Testing and
Analysis, pages 134-142, 1998.

[5] Bible, J., Rothermel, G., Rosenblum, D. A comparative study of coarse-
and fine-grained safe regression test selection. ACM Transactions on
Software Engineering and Methodology, 10(2):149-183, 2001.

[6] Binder, R. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 1999.

[7] Biswas, S., Mall, R., Satpathy, M., Sukumaran, S. Regression Test
Selection Techniques: A Survey. Informatica (Slovenia) 35(3): 289-321,
2011.

[8] Cheatham, T., Mellinger, L. Testing object-orientedsoftware systems. In
Proceedings of the Computer Science Conference, pages 161-165, 1990.

[9] Chen, Y. F., Rosenblum, D. S., Vo, K. P. TestTube: A system for
selective regression testing. In Proceedings of the 16th International
Conference on Software Engineering, pages 211-222, 1994.

[10] Choi, W., Necula, G., Sen, K. Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA ’13), pages
623–640, New York, NY, USA, 2013.

[11] Cooper, B. F., Lee, H. B., Zorn, B. G. Profbuilder: A package for rapidly
building JAVA execution profilers. Technical report, University of
Colorado.

[12] Dean, J., Grove, D., Chambers, C. Optimizationsof object-oriented
programs using static class hierarchyanalysis. In European Conference
on Object-Oriented Programming, pages 77-101, 1995.

[13] Quan Chau Dong Do, Guowei Yang, Meiru Che, Darren Hui, and
Jefferson Ridgeway. Redroid: A Regression Test Selection Approach for
Android Applications. In Proceedings of The 28th International
Conference on Software Engineering and Knowledge Engineering,
Redwood City, San Francisco Bay, USA, pages 486-491, 2016.

[14] Graves, T., Harrold, M. J., Kim, J.-M., Porter, A., Rothermel, G. An
empirical study of regression test selection techniques. In Proceedings of
the International Conference on Software Engineering, pages 188-197,
1998.

[15] Hsia, P., Li, X., Kung, D., Hsu, C-T., Li, L., Toyoshima, Y., Chen, C.: A
technique for the selective revalidation of OO software. Software
Maintenance: Research and Practice, 9:217-233, 1997.

[16] Jang, Y., Munro, M., Kwon, Y. An improved method of selecting
regression tests for C++ programs. Journal of Software Maintenance:
Research and Practice, 13(5):331–350, 2001.

[17] Kim, J.-M., Porter, A., Rothermel, G. An empiricalstudy of regression
test application frequency. In Proceedings of the 22nd International
Conference on Software Engineering, pages 126-135, 2000.

[18] Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., Kim, Y-S., Song,
Y-K. Developing an object-orientedsoftware testing and maintenance
environment. Communications of the ACM, 38(10):75-87, 1995.

[19] Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., Chen, C. On
regression testing of object-oriented programs. The Journal of Systems
and Software, 32(1):21-40, 1996.

[20] Kung, D., Gao, J., Hsia, P., Wen, Y., Toyoshima, Y. Change impact
identification in object-oriented software maintenance. In Proceedings of
the International Conference on Software Maintenance, pages 202-211,
1994.

243

[21] Laski, J., Szermer, W. Identification of program modifications and its
applications in software maintenance. In Proceedings of the Conference
on Software Maintenance, pages 282–290, 1992.

[22] Leung, H. K. N., White, L. J. A study of integrationtesting and software
regression at the integration level. In Proceedings of the Conference on
Software Maintenance, pages 290-300, 1990.

[23] Leung, H. K. N., White, L. J. Insights into testingand regression testing
global variables. Journal of Software Maintenance: Research and
Practice, 2:209-222,1990.

[24] Leung, H. K. N., White, L. J. A cost model to compare regression test
strategies, In Proceedings of International Conference on Software
Maintenance, Sorrento, 1991, pp. 201-208.

[25] Lam, P., Bodden, E., Hendren, L. The Soot framework for Java program
analysis: a retrospective. In Cetus Users and Compiler Infrastructure
Workshop (CETUS 2011), 2011.

[26] Liang, D., Pennings, M., Harrold, M. J. Extendingand evaluating flow-
insensitive and context-insensitivepoints-to analyses for JAVA. In
Proceedings of the ACM Workshop on Program Analyses for Software
Tools andEngineering, 2001.

[27] Machiry, A., Tahiliani, R., Naik, M. Dynodroid: An Input Generation
System for Android Apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 224–
234, New York, NY, USA, 2013.

[28] McGregor, J., Sykes, D. A Practical Guide to Testing Object-Oriented
Software. Addison-Wesley, 2001.

[29] Harrold, M. J., Jones J.A., Li, T., Liang, D., Orso, A., Pennings, M.,
Sinha, S., Spoon, A., Gujarathi, A. Regression test selection for Java
software. In Proceedings of the 16th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications
(OOPSLA '01). ACM, New York, NY, USA, 312-326, 2001.

[30] Harrold, M., Soffa, M. Interprocedural data flow testing. In Proceedings
of the ACM SIGSOFT ’89 third symposium on Software testing,
analysis, and verification, pages 158–167, 1989.

[31] Harrold, M., Soffa, M. An incremental approach to unit testing during
maintenance. In Proceedings of the International Conference on
Software Maintenance, pages 362–367, October 1988.

[32] Rothermel, G., Harrold, M. J. Selecting regression tests for object-
oriented software. In International Conference on Software
Maintenance, pages 358-367, 1993.

[33] Rothermel, G., Harrold, M. J. Analyzing regression test selection
techniques. IEEE transactions on Software Engineering, 22(8):529-551,
1996.

[34] Rothermel, G., Harrold, M. J. A safe, efficient regression test selection
technique. ACM Transactions onSoftware Engineering and
Methodology, 6(2):173-210, 1997.

[35] Rothermel, G., Harrold, M. J. Empirical studies of a safe regression test
selection technique. IEEE Transactions on Software Engineering,
24(6):401-419, Jun.1998.

[36] Rothermel, G., Harrold, M. J., Dedhia, J. Regression test selection for
C++ software. Journal of Software Testing,Verication, and Reliability,
10(6):77-109, 2000.

[37] Rothermel, G., Harrold, M. J. Analyzing regression test selection
techniques. IEEE Transactionson Software Engineering, 22(8):529-551,
1996.

[38] Tip, F., Palsberg, J. Scalable propagation-based callgraph construction
algorithms. In Proceedings of theConference on Object-Oriented
Programming Systems, Languages, and Applications, 281-293, Oct.
2000.

[39] Willmor, D., Embury, S. A safe regression test selection technique for
database-driven applications. In Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 421–430.
IEEE Computer Society, 2005.

[40] Yoo, S., Harman, M. Regression testing minimization, selection and
prioritization: a survey. SoftwareTesting, Verification and Reliability,
1(1):121–141, 2010.

[41] Android application updates frequency.
https://www.nowsecure.com/blog/2015/06/09/understanding-android-s-
application-update-cycles/

[42] Harvard Univeristy. Interprocedural Analysis.
http://www.seas.harvard.edu/courses/cs252/2011sp/slides/Lec05-
Interprocedural.pdf

[43] After update - chrome keeps crashing.
https://productforums.google.com/forum/#!topic/chrome/bGsPLTKmBpM

[44] Android NDK. https://developer.android.com/ndk/index.html
[45] AsyncTask.

https://developer.android.com/reference/android/os/AsyncTask.html
[46] Building a Dynamic UI with Fragments.

https://developer.android.com/training/basics/fragments/index.html
[47] Contacts app crashing after OTA update 23.3.24.

http://forums.androidcentral.com/motorola-droid-maxx/465113-
contacts-app-crashing-after-ota-update-23-3-24-a.html

[48] Emma. http://emma.sourceforge.net/
[49] Fragments.

https://developer.android.com/guide/components/fragments.html
[50] Graphviz. http://www.graphviz.org/Download.php
[51] Locv extension for Android. https://github.com/spbnick/lcov-android/
[52] LLVM's Analysis and Transform Passes.

http://llvm.org/releases/2.5/docs/Passes.html
[53] The Monkey UI android testing tool.

http://developer.android.com/tools/help/monkey.htm

244

