

Enhance Fault Localization using a 3D Surface Representation*

Qiong Shi
School of Electronics and Computer Science and Technology

North University of China
Taiyuan, China

Joan.ShiQ@gmail.com

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

Zhifang Liu
School of Computer Science and Technology

Beihang University
Beijing, China

iuma29@gmail.com

Xiaopeng Gao
School of Computer Science and Technology

Beihang University
Beijing, China

gxp@buaa.edu.cn

Abstract — Debugging is a difficult and time-consuming task in
software engineering. To locate faults in programs, a statistical
fault localization technique makes use of program execution
statistics and employs a suspiciousness function to assess the
relation between program elements and faults. In this paper,
we develop a novel localization technique by using a 3D surface
to visualize previous suspiciousness functions and using fault
patterns to enhance such a 3D surface. By clustering realistic
faults, we determine various fault patterns and use 3D points
to represent them. We employ spline method to construct a 3D
surface from those 3D points and build our suspiciousness
function. Empirical evaluation on a common data set, Siemens
suite, shows that the result of our technique is more effective
than four existing representative such techniques.

Keywords — data visualization, fault localization, data
mining

I. INTRODUCTION
Although software is widely used in our daily life, it is

far from bug-free. Software bugs in the famous Microsoft
product, Xbox 360, have cost Microsoft more than USD 1
billion in the last years.

Software debugging is always an important but costly
task in software engineering. Conventionally, debugging
consists of three phases, that is, fault localization, fault repair,
and re-test of corrected program. Many studies show that
among the three phases, fault localization is the most
difficult and time-consuming [10][12].

To locate faults in programs, statistical methods are used
in previous studies [1][3][12][15]. They, so called statistical
fault localization techniques, analyze program execution
information, to assess the suspiciousness of a program
element to be a fault. For example, if a statement is always
exercised (covered) in failed executions, but never exercised
in passed executions, it is very likely to be related to fault (or
even, it is the fault). In a statistical fault localization

*This research is supported by the National High Technology Research
and Development Program of China (project no. 2007AA01Z145).

framework, a suspiciousness function is often used to
evaluate the relations among program elements and faults.

We find that in the fault localization problem settings, the
values of the suspiciousness function is only related to two
variables, the number of failed executions that exercise a
program element and the number of passed executions that
exercise a program element. We therefore use a 3D surface
representation to visualize the suspiciousness function and
employ it to investigate the properties of previous fault
localization techniques. We find that realistic faults often
have some fault patterns and such fault patterns can be used
to enhance suspiciousness functions. For example, many
faults existing in assignment statements are close to the main
procedure and function entrance. Such statements are
exercised in almost all the passed executions and all the
failed executions. However, in the 3D surface, the
corresponding region was given lower suspiciousness values
in previous techniques. Calibrating the shape of the surface
in this region may make a technique particularly effective for
a majority of such kind of faults.

We cluster realistic faults according to their execution
characteristics to find potential fault patterns. For each fault
pattern, we calculate the mean execution characteristics,
count the frequency of faults for that pattern, and generate a
central point representing that pattern. Using spline method,
we work out a 3D surface through all the central points, and
use it to build our statistical fault localization technique.

We use a common data set, Siemens suite, to conduct
cross validation test to evaluate the effectiveness of our
model and compare the result of our technique with four
existing representative techniques, Tarantula [10], Jaccard
[2], Ochiai [2], and SBI [15]. The empirical results show that
our technique is more effective than the other techniques, on
the Siemens suite.

The rest of the paper is organized as follows. Section II
gives related work. Section III introduce statistical fault
localization framework, then use a 3D surface representation
to visualize the suspiciousness function used in previous
such techniques. Section IV discuss the properties of
previous techniques, motivates our work, and elaborate on

Second International Conference on Computer Research and Development

978-0-7695-4043-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCRD.2010.165

720

our model. Section V gives empirical evaluation. Section VI
concludes this paper.

II. RELATED WORK

Comparing program execution information to facilitate
fault localization is a frequently used strategy of fault
localization. For example, Delta Debugging [3][4] considers
program execution as a sequence of states. It compares
passed execution and failed execution to shorten the
suspicious region, and traces back to locate the failure cause.

Tarantula [10] counts the chance of a statement being
exercised in failed executions and that in passed executions.
It then uses such two chances to assess the suspiciousness of
that statement of being a fault. Jaccard [2], Ochiai [2], and
SBI [15] are similar statement-level such techniques.

Statistical fault localization can be also conducted at
predicate-level. Such work includes CBI [11] and SOBER
[12]. They accordingly evaluate the suspiciousness of a
predicate statement being related to fault. A metrics t-score is
proposed in a previous study Nearest Neighbor [13], to
evaluate the effectiveness of these techniques.

There are also other kind of fault localization techniques.
Value Replacement [8] varies each variable to all possible
values, to find those ones which trigger may change a failed
execution to a passed execution, and use such method to
locate fault around the key variable found. It is also very
effective. However, its efficiency is relatively lower than the
other statistical techniques. CP [17] makes use of control-
flow information to enhance fault localization. Comparing
with Tarantula, Jaccard, Ochiai, and SBI, it involves
additional input information.

Instead of locating single fault in programs, Jones et al.
[9] investigate locating multiple faults in parallel. Different
from those techniques that focus on more precise fault
position prediction, Wang et al. [14] alter the quality of
executions in view of coverage, to improve the effectiveness
of fault localization.

III. SURFACE REPRESENTATION

In this section, we first recall current statistical fault
localization framework and existing popular statistical fault
localization techniques. We then employ a 3D surface
representation to visualize the core suspiciousness function
of those techniques.

A. Statistical Fault Localization Framework
Previous statistical fault localization techniques, such as

Tarantula [10], Ochiai [2], Jaccard [2], CBI [11], SOBER
[12], SBI [15], use a suspiciousness function to evaluate the
suspiciousness of a statement being related to fault. They
then rank all suspicious program elements according to their
thus calculated suspiciousness value, and generate a ranked
list of program elements. Such a list is helpful for
programmer to debug [13]. Programmers check statements in
the list, from the most suspicious (top of the list) to the least
suspicious (tail of the list), to locate a fault. And the position
of the faulty statement found in the list is used as a
measurement of the effectiveness of a statistical fault
localization technique.

In the next section, we use four previous representative
statistical fault localization techniques to illustrate previous
studies in above framework.

B. Statistical Fault Localization Techniques
Given a set of executions (e.g., m failed executions and

m’ passed executions), Tarantula’s suspiciousness function
RTarantula(si) for statement si is shown as below. The terms
failed(si) and passed(si) are respectively the number of failed
and passed executions that exercise statement si.

݈ܽݑݐ݊ܽݎܴܽܶ (݅ݏ) =
(݅ݏ)݈݂݀݁݅ܽ ݉⁄

(݅ݏ)݈݂݀݁݅ܽ ݉⁄ + (݅ݏ)݀݁ݏݏܽ ݉′⁄ (1)

For comparison purpose, we also list out the

suspiciousness functions of Jaccard, Ochiai, and SBI, as
follows.

݀ݎܽܿܿܽܬܴ (݅ݏ) =
݉(݅ݏ)݈݂݀݁݅ܽ + ℎܱܴ݅ܽ݅ܿ (2) (݅ݏ)݀݁ݏݏܽ (݅ݏ) =
ඥ݉(݅ݏ)݈݂݀݁݅ܽ × (݅ݏ)݀݁ݏݏܽ) + ܫܤܴܵ (3) ((݅ݏ)݈݂݀݁݅ܽ (݅ݏ) =
(݅ݏ)݈݂݀݁݅ܽ(݅ݏ)݈݂݀݁݅ܽ + (4) (݅ݏ)݀݁ݏݏܽ

Note that the difference among these four techniques is
their suspiciousness functions, and the ranking order of two
statements si1 and si2 is determined by the suspiciousness
function used in each technique. Suppose we use technique
T1 and get the ranking order RT1(si1) > RT1(si2), it means that

(a) RTarantula (si) for Tarantula (b) RJaccard (si) for Jaccard (c) ROchiai (si) for Ochiai (d) RSBI (si) for SBI

Figure 1. 3D surface representation of suspiciousness functions.

1

65

0

1

1
1953

1

65
0

1

1
1953

1

65

0

1

1
1953

1

65
0

1

1
1953

721

the statement si1 is deemed to be more suspicious than the
statement si2, when using technique T1 to evaluate.

In next section, we show how we visualize these
suspiciousness functions to give an intuitive understanding.

C. Surface Representation of Suspiciousness Function
We notice that when given a set of executions (e.g., m

failed executions and m’ passed executions), the value of the
suspiciousness for statement si is function (e.g., RTarantula(si))
of variables failed(si) and passed(si), which are respectively
the number of failed and passed executions that exercise
statement si. Therefore, we use a 3D surface to represent the
suspiciousness function. The depth, horizontal, and vertical
coordinates stand for failed(si), passed(si), and RTx(si),
respectively. Here failed(si) {1, m}, passed(si) {1, m’},
RTx(si) {0, 1}, and Tx = TTarantula, TJaccard, TOchiai, or TSBI.

We plot suspiciousness functions of Tarantula, Jaccard,
Ochiai, and SBI in Fig. 1(a), Fig. 1(b), Fig. 1(c), and Fig.
1(d), respectively. In each plot, variable failed(si) varies in
range [1, 65], which means that m is specified as 65; variable
passed(si) varies in range [1, 1953], which means that m’ is
specified as 1953. We choose these magic numbers to
demonstrate because they are calculated as the mean number
of passed executions and mean number of failed executions
of the well-known common data set, Siemens suite. In each
plot, the horizontal axis shows the value of variable
passed(si), the depth axis shows the value of variable
failed(si), and the vertical axis shows the value of
suspiciousness function. The higher the vertical coordinates,
the higher suspiciousness function results are.

IV. OUR FAULT LOCALIZATOIN MODEL
In this section, we first investigate the properties of

previous fault localization techniques, using the 3D surface
representation of suspiciousness functions. After that and
motivated by properties of previous techniques, we propose
our model and elaborate on our fault localization technique.

A. Properties of Previous Techniques
From Fig. 1, we notice that in each plot, the function

value increases with the increasing of variable failed(si),
when variable passed(si) is fixed. On the other hand, the
function value decrease with the increasing of variable
passed(si), when variable failed(si) is fixed. Formally, our
observation is that all of these four suspiciousness functions
satisfy the following two properties. The straightforward
proof is not given in this paper.

[Property 1: Monotonically increasing] The value of
suspiciousness function RTx(si) is a monotonically increasing
function of variable failed(si), i.e., ∀si1, (1݅ݏ)݈݂݀݁݅ܽ,2݅ݏ (1݅ݏ)݀݁ݏݏܽ ⋀ (2݅ݏ)݈݂݀݁݅ܽ≤ = (2݅ݏ)݀݁ݏݏܽ ⟹ (si1)ݔܴܶ ≥
RTx (si2).

[Property 2: Monotonically decreasing] The value of
suspiciousness function RTx(si) is a monotonically decreasing
function of variable passed(si) , i.e., ∀si1, (1݅ݏ)݈݂݀݁݅ܽ,2݅ݏ (1݅ݏ)݀݁ݏݏܽ ⋀ (2݅ݏ)݈݂݀݁݅ܽ= ≥ (2݅ݏ)݀݁ݏݏܽ ⟹ (si1)ݔܴܶ ≤
RTx (si2).

Property 1 is explained as follows. For two statements si1
and si2 that are exercised in identical number of the passed
executions, we turn to the failed executions to distinguish
their suspiciousness, and regard the one exercised in more
failed executions as more suspicious. That is because that the
more a statement is exercised by failed executions, the more
probable it may be the cause of those failed executions.

Similarly, property 2 is explained as follows. For two
statements si1 and si2 that are exercised in identical number of
the failed executions, we turn to the passed executions to
distinguish their suspiciousness, and regard the one exercised
in more passed executions as less suspicious. That is because
that the more a statement is exercised in passed executions,
the more safe (less suspicious) it may not cause a failed
execution.

These two properties seem intuitive for a statistical fault
localization technique. However, strictly following them do
not result in best effectiveness on realistic programs and
faults. We will give a motivation in next section.

B. Fault Pattern in Realistic Programs
In realistic programs, faults do not evenly appear

everywhere. On the contrary, realistic faults may highly
related to special program structures or seldom appear in
specific procedures. As a result, if we blindly assess the
suspiciousness of program elements according to their
corresponding failed(si) value and passed(si) value, the
distribution information of realistic faults are missing.

[Case 1: Main module and function entrance] In
realistic programs, many faults are related to assignment
statements in main modules and function entrance.
According to previous studies [6], among various C
programs, 22.8% faults are of such a type. Since the main
module or function entrance of a program are exercised by
almost all the executions, both failed(si) and passed(si) have
greatest values. Program elements in such cases have
relatively low suspiciousness value (calculated as about 0.5
by Tarantula, less than 0.2 by Ochiai, and close to 0 by
Jaccard and SBI), however, they should be given much more
attention. To locate such a majority of faults effectively, the
simplest strategy is to increase the value of suspiciousness
function in the corresponding range of the 3D surface.

[Case 2: Function exit and return statement] In
realistic faults, only limited faults exist in function exit and
return statements. According to previous studies [6], among
variant C programs, only about 7.8% faults are of such a type.
Since an incorrect function exit or wrong return statement
may immediately cause a failure, failed(si) have greatest
value, but passed(si) is very low. Program elements in such
cases have relatively high suspiciousness value (calculated as
greater than 0.8 by each technique), however, their intrinsic
suspiciousness are not that high. To save effort on such a
minority of faults, the simplest strategy is to decrease the
value of suspiciousness function in the corresponding range
of the 3D surface.

We next elaborate on how we recognize fault patterns
and construct an effective 3D surface.

722

C. Our Model
In our model, we apply the previous framework and

construct a 3D surface for the suspiciousness function to
formulate our technique.

The construction of the 3D surface consists of three steps.
To determine the shape of 3D surface and make an effective
suspiciousness function for realistic programs, we learn fault
patterns from realistic faults first. We cluster the faulty
statements of each faulty version in the training set, to cluster
the faults into various fault patterns. In each of the clusters,
we calculate a central point to stand for the characteristics of
that fault pattern. After that, we use spline method to
construct a 3D surface through the central points.

[Step 1: Cluster] In this step, we collect tuple of
<failed(si), passed(si), RTx(si)> for faulty statement in each
faulty version. In subsection B, we observe that most fault
patterns can be recognized by characteristics on the values of
failed(si) and passed(si). Therefore, we deem each value pair
of <failed(si), passed(si)> as a 2D point and employ cluster
techniques to cluster the tuples by such 2D points. After such
a clustering, we deem that each cluster maps to a different
fault pattern.

[Step 2: Centralize] In this step, we calculate a central
point for each cluster. The values of coordinates ݂݈ܽ݅݁݀(݅ݏ)തതതതതതതതതതതതത
and (݅ݏ)݀݁ݏݏܽതതതതതതതതതതതതതത of the central point capture the execution
characteristics of that fault pattern. The value of coordinate ܴܶ(݅ݏ)ݔതതതതതതതതത captures the suspiciousness value designed to given
to statements in that fault pattern. For each cluster, they are
calculated using the following formulas, where s1, s2, …, sn
means the faulty statements clustered in that class. In these
formulas, the value of ݂݈ܽ݅݁݀(݅ݏ)തതതതതതതതതതതതത and (݅ݏ)݀݁ݏݏܽതതതതതതതതതതതതതത are
calculated using the mean of corresponding values.
തതതതതതതതതതതതത(݅ݏ)݈݂݀݁݅ܽ =

1݊ൣ݂݈ܽ݅݁݀൫݆ݏ ൯൧݊
݆=1

 (5)

തതതതതതതതതതതതതത(݅ݏ)݀݁ݏݏܽ =
1݊ൣ݀݁ݏݏܽ൫݆ݏ ൯൧݊
݆=1

 (6)

തതതതതതതതത(݅ݏ)ݔܴܶ = ݊ ×
1݊ൣܴܶݔ൫݆ݏ ൯൧݆=1

= ൣܴܶݔ൫݆ݏ ൯൧݆=1

 (7)

The value of ܴܶ(݅ݏ)ݔതതതതതതതതത is calculated as n (cluster size)
times the mean value of corresponding values. So the larger
the scale of the cluster is, the more suspiciousness will be
given to it. On the contrary, the smaller the scale of the
cluster is, the less effort will be put on it. For clusters of
identical scale, the one having a larger mean suspiciousness
value will be given higher suspiciousness values.

 [Step 3: Spline] In this step, we use spline method to
construct a 3D surface through the generated central points.
We use such a 3D surface to build suspiciousness function
for our statistical fault localization technique.

Note that we do not limit the use of cluster and spline
method, and in fact, any cluster and spline method can be
used in our model. In next section, we will introduce the

model settings and the experiment results of our fault
localization technique.

V. EMPIRICAL EVALUATION
In this section, we first introduce the experiment settings,

and then give the empirical results and related discussions.

A. Experiment Settings
In this experiment, we compare the effectiveness of our

technique with four previous representative techniques. They
are Tarantula [10], Jaccard [2], Ochiai [2], and SBI [15].
These four techniques are all statement-level fault
localization techniques. For space reason, we do not adapt
our technique to predicate-level to compare with other
predicate-level techniques.

The subject programs used in our experiment is the
widely used common data set, Siemens suite [5]. Siemens
suite was developed to support debugging and testing studies
and was frequently used in previous studies
[4][7][10][11][12][13]. It includes seven programs; each
program has several faulty versions. In each faulty version,
there is a fault. A generated set of executions is attached with
each program. Table I shows the statistics of Siemens suite.
Let us take the first row as example. It says that the program
“print_tokens” has seven faulty versions, each of which has
one fault. These faulty versions have 341 to 342 lines of code.
Among the given set of executions, about 1.7% of them are
failed executions. Note that some faulty versions are not
feasible [12], so we exclude them. Some other faulty
versions are not compatible with the instrumentation tool
gcov [10], so we also exclude them.

For each faulty version, we follow previous studies [12]
to collect execution information for the given set of
executions. We randomly separate the 126 faulty versions
into two parts, that is, training set and data set. After that, we
apply Tarantula, Jaccard, Ochiai, SBI, and our technique to
get the suspiciousness value for each statement and sort them
to form a ranked list. We check along the generated list from
top (most suspicious statement) to tail (least suspicious
statement) to search for fault, and use the position of fault in
the list as the effectiveness for comparison. For example, in
the generated list of 341 statements, suppose the faulty
statement is finally ranked at the 23rd position in the
generated list. Therefore, the effort to locate this fault is
calculated as 23 / 341 × 100% 6.7%, which means we
need to examine 6.7% statements in the resultant list to reach
the fault. We further use 1 – 6.7% = 93.3% to evaluate the

TABLE I. SUBJECT PROGRAMS – SIEMENS SUITE [5].

Programs Number of
statements

Number of
faulty versions

Percentage of
failed executions

print_tokens 341 – 342 7 1.7%
print_tokens2 350 – 354 10 5.4%
replace 508 – 515 31 2.0%
schedule 291 – 294 5 3.2%
scheudule2 261 – 263 9 1.0%
tcas 133 – 137 41 2.4%
tot_info 272 – 274 23 5.6%

723

effectiveness; the greater, the better. Formally, the
effectiveness is calculated as follows.

 ൬1 − position of faulty statement in list
number of statements in list

൰ × 100% (8)

B. Model Settings
In the experiment, we use the original k-nearest neighbor

method [16] for clustering in our model. The parameter K is
chosen as 4; Euclidean distance is used. Since the number of
passed execution and that of failed execution may not be
equal. We first normalize failed(si) and passed(si) to
failed(si)/m and passed(si)/m’ respectively, before applying
the Euclidean distance. The B-spline method [16] is used to
construct surface from 3D points.

C. Experiment Results
Fig. 2 shows the box plot of effectiveness comparison

results for the five techniques. In this figure, effectiveness
statistics for each technique on the 126 Siemens faulty
versions is shown as a box. The top and bottom of the box
respectively mean the 75% and 25% percentiles in the set of
126 effectiveness values. The band near the middle means
the 50% percentile (median). The top and bottom ends of the
whisker mean the 90% and 10% percentiles, respectively.

From the results, we observe that the effectiveness of our
technique over Siemens suite is better than those of the other
techniques. For example, the median effectiveness of our
technique is 92.6%, while the median effectiveness of
Tarantula, Jaccard, Ochiai, and SBI are 84.5%, 84.6%,
84.7%, and 84.3%, respectively.

D. Discussions
Though our technique seems to show some advantage to

the other techniques, we also find that the standard deviation
for Tarantula, Jaccard, Ochiai, SBI, and our techniques are
14.4%, 14.3%, 14.3%, 14.3%, and 17.5%, respectively. It
means that our technique has relatively worse stability.

Faults in Siemens suite are seeded manually. Other
realistic programs may be used to evaluate our technique to
further strengthen the validity of experiment.

VI. CONCLUSION
Fault localization is a time-consuming task in software

engineering. By analyzing program execution information,
previous statistical fault localization techniques make use of
suspiciousness function to assess the suspiciousness of each
program element of being fault. In this paper, we use a 3D
surface representation to investigate the property of previous
techniques. We cluster faults from execution characteristics
to find potential fault patterns, and optimize suspiciousness
function by constructing a 3D surface for representative
fault patterns. The empirical results show that our method
outperforms previous representative techniques on the
common data set, Siemens suite. Future work may include
developing the technique to fit fault localization in
concurrent programs.

REFERENCES
[1] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical

debugging using compound Boolean predicates”, in ISSTA ’07, ACM
Press, 2007, pp. 5–15.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization”, in TAICPART-MUTATION ’07,
IEEE Computer Society, 2007, pp. 89–98.

[3] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to
support debugging with Tarantula”, in ISSRE ’07, IEEE Computer
Society, 2003, pp. 137–146.

[4] H. Cleve and A. Zeller. “Locating causes of program failures”, in
ICSE ’05, ACM Press, 2005, pp. 342–351.

[5] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: an infrastructure and its
potential impact”, Empirical Software Engineering: An International
Journal, 10(4): 405–435, 2005.

[6] J. A. Durães and H. S. Madeira, “Emulation of software faults: a field
data study and a practical approach”, IEEE TSE, 32(11):849–867,
2006.

[7] S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky,
“Selecting a cost-effective test case prioritization technique”,
Software Quality Journal, 12(3): 185–210, 2004.

[8] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value
replacement”, in ISSTA ’08, ACM Press, 2008, pp. 167–178.

[9] J. A. Jones, J. F. Bowring, and M. J. Harrold, “Debugging in parallel”,
in ISSTA ’07, ACM Press, 2007, pp. 16–26.

[10] J. A. Jones and M. J. Harrold, “Empirical evaluation of the Tarantula
automatic fault-localization technique”, in ASE ’05, ACM Press,
2005, pp. 273–282.

[11] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation”, in PLDI ’05, ACM Press, 2005,
pp. 15–26.

[12] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical
debugging: a hypothesis testing-based approach”, IEEE TSE,
32(10):831–848, 2006.

[13] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries”, in ASE ’03, IEEE Computer Society, 2003, pp. 30–39.

[14] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang, “Taming
coincidental correctness: coverage refinement with context to
improve fault localization”, in ICSE ’09, IEEE Computer Society
Press, 2009, pp. 45–55.

[15] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study of the
effects of test-suite reduction on fault localization”, in ICSE ’08,
ACM Press, 2008, pp. 201–210.

[16] D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics,
Jones and Bartlett Publishers, 2006.

[17] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang, “Capturing
propagation of infected program states”, in FSE ’09, ACM Press,
2009, pp. 43–52.

Figure 2. Box plot of effectiveness comparison.

50%
60%
70%
80%
90%

100%

Our Tarantula Jaccard Ochiai SBI

ef
fe

ct
iv

en
es

s

724

