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Abstract — Debugging is a difficult and time-consuming task in 
software engineering. To locate faults in programs, a statistical 
fault localization technique makes use of program execution 
statistics and employs a suspiciousness function to assess the 
relation between program elements and faults. In this paper, 
we develop a novel localization technique by using a 3D surface 
to visualize previous suspiciousness functions and using fault 
patterns to enhance such a 3D surface. By clustering realistic 
faults, we determine various fault patterns and use 3D points 
to represent them. We employ spline method to construct a 3D 
surface from those 3D points and build our suspiciousness 
function. Empirical evaluation on a common data set, Siemens 
suite, shows that the result of our technique is more effective 
than four existing representative such techniques. 

Keywords — data visualization, fault localization, data 
mining 

I.  INTRODUCTION 
Although software is widely used in our daily life, it is 

far from bug-free. Software bugs in the famous Microsoft 
product, Xbox 360, have cost Microsoft more than USD 1 
billion in the last years. 

Software debugging is always an important but costly 
task in software engineering. Conventionally, debugging 
consists of three phases, that is, fault localization, fault repair, 
and re-test of corrected program. Many studies show that 
among the three phases, fault localization is the most 
difficult and time-consuming [10][12].  

To locate faults in programs, statistical methods are used 
in previous studies [1][3][12][15]. They, so called statistical 
fault localization techniques, analyze program execution 
information, to assess the suspiciousness of a program 
element to be a fault. For example, if a statement is always 
exercised (covered) in failed executions, but never exercised 
in passed executions, it is very likely to be related to fault (or 
even, it is the fault). In a statistical fault localization 
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framework, a suspiciousness function is often used to 
evaluate the relations among program elements and faults. 

We find that in the fault localization problem settings, the 
values of the suspiciousness function is only related to two 
variables, the number of failed executions that exercise a 
program element and the number of passed executions that 
exercise a program element. We therefore use a 3D surface 
representation to visualize the suspiciousness function and 
employ it to investigate the properties of previous fault 
localization techniques. We find that realistic faults often 
have some fault patterns and such fault patterns can be used 
to enhance suspiciousness functions. For example, many 
faults existing in assignment statements are close to the main 
procedure and function entrance. Such statements are 
exercised in almost all the passed executions and all the 
failed executions. However, in the 3D surface, the 
corresponding region was given lower suspiciousness values 
in previous techniques. Calibrating the shape of the surface 
in this region may make a technique particularly effective for 
a majority of such kind of faults. 

We cluster realistic faults according to their execution 
characteristics to find potential fault patterns. For each fault 
pattern, we calculate the mean execution characteristics, 
count the frequency of faults for that pattern, and generate a 
central point representing that pattern. Using spline method, 
we work out a 3D surface through all the central points, and 
use it to build our statistical fault localization technique. 

We use a common data set, Siemens suite, to conduct 
cross validation test to evaluate the effectiveness of our 
model and compare the result of our technique with four 
existing representative techniques, Tarantula [10], Jaccard 
[2], Ochiai [2], and SBI [15]. The empirical results show that 
our technique is more effective than the other techniques, on 
the Siemens suite. 

The rest of the paper is organized as follows. Section II 
gives related work. Section III introduce statistical fault 
localization framework, then use a 3D surface representation 
to visualize the suspiciousness function used in previous 
such techniques.  Section IV discuss the properties of 
previous techniques, motivates our work, and elaborate on 
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our model. Section V gives empirical evaluation. Section VI 
concludes this paper. 

II. RELATED WORK

Comparing program execution information to facilitate 
fault localization is a frequently used strategy of fault 
localization. For example, Delta Debugging [3][4] considers 
program execution as a sequence of states. It compares 
passed execution and failed execution to shorten the 
suspicious region, and traces back to locate the failure cause. 

Tarantula [10] counts the chance of a statement being 
exercised in failed executions and that in passed executions. 
It then uses such two chances to assess the suspiciousness of 
that statement of being a fault. Jaccard [2], Ochiai [2], and 
SBI [15] are similar statement-level such techniques. 

Statistical fault localization can be also conducted at 
predicate-level. Such work includes CBI [11] and SOBER 
[12]. They accordingly evaluate the suspiciousness of a 
predicate statement being related to fault. A metrics t-score is 
proposed in a previous study Nearest Neighbor [13], to 
evaluate the effectiveness of these techniques.

There are also other kind of fault localization techniques. 
Value Replacement [8] varies each variable to all possible 
values, to find those ones which trigger may change a failed 
execution to a passed execution, and use such method to 
locate fault around the key variable found. It is also very 
effective. However, its efficiency is relatively lower than the 
other statistical techniques. CP [17] makes use of control-
flow information to enhance fault localization. Comparing 
with Tarantula, Jaccard, Ochiai, and SBI, it involves 
additional input information.  

Instead of locating single fault in programs, Jones et al. 
[9] investigate locating multiple faults in parallel. Different 
from those techniques that focus on more precise fault 
position prediction, Wang et al. [14] alter the quality of 
executions in view of coverage, to improve the effectiveness 
of fault localization. 

III. SURFACE REPRESENTATION

In this section, we first recall current statistical fault 
localization framework and existing popular statistical fault 
localization techniques. We then employ a 3D surface 
representation to visualize the core suspiciousness function 
of those techniques.  

A. Statistical Fault Localization Framework 
Previous statistical fault localization techniques, such as 

Tarantula [10], Ochiai [2], Jaccard [2], CBI [11], SOBER 
[12], SBI [15], use a suspiciousness function to evaluate the 
suspiciousness of a statement being related to fault. They 
then rank all suspicious program elements according to their 
thus calculated suspiciousness value, and generate a ranked 
list of program elements. Such a list is helpful for 
programmer to debug [13]. Programmers check statements in 
the list, from the most suspicious (top of the list) to the least 
suspicious (tail of the list), to locate a fault. And the position 
of the faulty statement found in the list is used as a 
measurement of the effectiveness of a statistical fault 
localization technique. 

In the next section, we use four previous representative 
statistical fault localization techniques to illustrate previous 
studies in above framework. 

B. Statistical Fault Localization Techniques 
Given a set of executions (e.g., m failed executions and 

m’ passed executions), Tarantula’s suspiciousness function 
RTarantula(si) for statement si is shown as below. The terms 
failed(si) and passed(si) are respectively the number of failed 
and passed executions that exercise statement si. 

݈ܽݑݐ݊ܽݎܴܽܶ  (݅ݏ) =
(݅ݏ)݈݂݀݁݅ܽ  ݉⁄

(݅ݏ)݈݂݀݁݅ܽ  ݉⁄ + (݅ݏ)݀݁ݏݏܽ  ݉′⁄  (1) 

 
For comparison purpose, we also list out the

suspiciousness functions of Jaccard, Ochiai, and SBI, as 
follows. 

݀ݎܽܿܿܽܬܴ  (݅ݏ) =
݉(݅ݏ)݈݂݀݁݅ܽ + ℎܱܴ݅ܽ݅ܿ (2) (݅ݏ)݀݁ݏݏܽ (݅ݏ) =
ඥ݉(݅ݏ)݈݂݀݁݅ܽ × (݅ݏ)݀݁ݏݏܽ) + ܫܤܴܵ (3) ((݅ݏ)݈݂݀݁݅ܽ (݅ݏ) =
(݅ݏ)݈݂݀݁݅ܽ(݅ݏ)݈݂݀݁݅ܽ +  (4) (݅ݏ)݀݁ݏݏܽ

 

Note that the difference among these four techniques is 
their suspiciousness functions, and the ranking order of two 
statements si1 and si2 is determined by the suspiciousness 
function used in each technique. Suppose we use technique 
T1 and get the ranking order RT1(si1) > RT1(si2), it means that 

(a) RTarantula (si) for Tarantula (b) RJaccard (si) for Jaccard (c) ROchiai (si) for Ochiai (d) RSBI (si) for SBI 

Figure 1. 3D surface representation of suspiciousness functions.
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the statement si1 is deemed to be more suspicious than the 
statement si2, when using technique T1 to evaluate. 

In next section, we show how we visualize these 
suspiciousness functions to give an intuitive understanding.  

C. Surface Representation of Suspiciousness Function 
We notice that when given a set of executions (e.g., m 

failed executions and m’ passed executions), the value of the 
suspiciousness for statement si is function (e.g., RTarantula(si))  
of variables failed(si) and passed(si), which are respectively 
the number of failed and passed executions that exercise 
statement si. Therefore, we use a 3D surface to represent the 
suspiciousness function. The depth, horizontal, and vertical 
coordinates stand for failed(si), passed(si), and RTx(si), 
respectively. Here failed(si) {1, m}, passed(si) {1, m’}, 
RTx(si) {0, 1}, and Tx = TTarantula, TJaccard, TOchiai, or TSBI. 

We plot suspiciousness functions of Tarantula, Jaccard, 
Ochiai, and SBI in Fig. 1(a), Fig. 1(b), Fig. 1(c), and Fig. 
1(d), respectively. In each plot, variable failed(si) varies in 
range [1, 65], which means that m is specified as 65; variable 
passed(si) varies in range [1, 1953], which means that m’ is 
specified as 1953. We choose these magic numbers to 
demonstrate because they are calculated as the mean number 
of passed executions and mean number of failed executions 
of the well-known common data set, Siemens suite. In each 
plot, the horizontal axis shows the value of variable 
passed(si), the depth axis shows the value of variable 
failed(si), and the vertical axis shows the value of 
suspiciousness function. The higher the vertical coordinates, 
the higher suspiciousness function results are.  

IV. OUR FAULT LOCALIZATOIN MODEL 
In this section, we first investigate the properties of 

previous fault localization techniques, using the 3D surface 
representation of suspiciousness functions. After that and 
motivated by properties of previous techniques, we propose 
our model and elaborate on our fault localization technique. 

A. Properties of Previous Techniques 
From Fig. 1, we notice that in each plot, the function 

value increases with the increasing of variable failed(si), 
when variable passed(si) is fixed. On the other hand, the 
function value decrease with the increasing of variable 
passed(si), when variable failed(si) is fixed. Formally, our 
observation is that all of these four suspiciousness functions 
satisfy the following two properties. The straightforward 
proof is not given in this paper. 

 

[Property 1: Monotonically increasing] The value of 
suspiciousness function RTx(si) is a monotonically increasing 
function of variable failed(si), i.e., ∀si1, (1݅ݏ)݈݂݀݁݅ܽ,2݅ݏ (1݅ݏ)݀݁ݏݏܽ ⋀ (2݅ݏ)݈݂݀݁݅ܽ≤ = (2݅ݏ)݀݁ݏݏܽ ⟹ (si1)ݔܴܶ ≥
RTx (si2). 

[Property 2: Monotonically decreasing] The value of 
suspiciousness function RTx(si) is a monotonically decreasing 
function of variable passed(si) , i.e., ∀si1, (1݅ݏ)݈݂݀݁݅ܽ,2݅ݏ (1݅ݏ)݀݁ݏݏܽ ⋀ (2݅ݏ)݈݂݀݁݅ܽ= ≥ (2݅ݏ)݀݁ݏݏܽ ⟹ (si1)ݔܴܶ ≤
RTx (si2). 
 

Property 1 is explained as follows. For two statements si1 
and si2 that are exercised in identical number of the passed 
executions, we turn to the failed executions to distinguish 
their suspiciousness, and regard the one exercised in more 
failed executions as more suspicious. That is because that the 
more a statement is exercised by failed executions, the more 
probable it may be the cause of those failed executions. 

Similarly, property 2 is explained as follows. For two 
statements si1 and si2 that are exercised in identical number of 
the failed executions, we turn to the passed executions to 
distinguish their suspiciousness, and regard the one exercised 
in more passed executions as less suspicious. That is because 
that the more a statement is exercised in passed executions, 
the more safe (less suspicious) it may not cause a failed 
execution. 

These two properties seem intuitive for a statistical fault 
localization technique. However, strictly following them do 
not result in best effectiveness on realistic programs and 
faults. We will give a motivation in next section. 

B. Fault Pattern in Realistic Programs 
In realistic programs, faults do not evenly appear 

everywhere. On the contrary, realistic faults may highly 
related to special program structures or seldom appear in 
specific procedures. As a result, if we blindly assess the 
suspiciousness of program elements according to their 
corresponding failed(si) value and passed(si) value, the 
distribution information of realistic faults are missing. 

 

[Case 1: Main module and function entrance] In 
realistic programs, many faults are related to assignment 
statements in main modules and function entrance. 
According to previous studies [6], among various C 
programs, 22.8% faults are of such a type. Since the main 
module or function entrance of a program are exercised by 
almost all the executions, both failed(si) and passed(si) have 
greatest values. Program elements in such cases have 
relatively low suspiciousness value (calculated as about 0.5 
by Tarantula, less than 0.2 by Ochiai, and close to 0 by 
Jaccard and SBI), however, they should be given much more 
attention. To locate such a majority of faults effectively, the 
simplest strategy is to increase the value of suspiciousness 
function in the corresponding range of the 3D surface.  

[Case 2: Function exit and return statement] In 
realistic faults, only limited faults exist in function exit and 
return statements. According to previous studies [6], among 
variant C programs, only about 7.8% faults are of such a type. 
Since an incorrect function exit or wrong return statement 
may immediately cause a failure, failed(si) have greatest 
value, but passed(si) is very low. Program elements in such 
cases have relatively high suspiciousness value (calculated as 
greater than 0.8 by each technique), however, their intrinsic 
suspiciousness are not that high. To save effort on such a 
minority of faults, the simplest strategy is to decrease the 
value of suspiciousness function in the corresponding range 
of the 3D surface. 
 

We next elaborate on how we recognize fault patterns 
and construct an effective 3D surface. 
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C. Our Model 
In our model, we apply the previous framework and 

construct a 3D surface for the suspiciousness function to 
formulate our technique. 

The construction of the 3D surface consists of three steps. 
To determine the shape of 3D surface and make an effective 
suspiciousness function for realistic programs, we learn fault 
patterns from realistic faults first. We cluster the faulty 
statements of each faulty version in the training set, to cluster 
the faults into various fault patterns. In each of the clusters, 
we calculate a central point to stand for the characteristics of 
that fault pattern. After that, we use spline method to 
construct a 3D surface through the central points. 

 

[Step 1: Cluster] In this step, we collect tuple of 
<failed(si), passed(si), RTx(si)> for faulty statement in each 
faulty version. In subsection B, we observe that most fault 
patterns can be recognized by characteristics on the values of 
failed(si) and passed(si). Therefore, we deem each value pair 
of <failed(si), passed(si)> as a 2D point and employ cluster 
techniques to cluster the tuples by such 2D points. After such 
a clustering, we deem that each cluster maps to a different 
fault pattern.  

[Step 2: Centralize] In this step, we calculate a central 
point for each cluster. The values of coordinates ݂݈ܽ݅݁݀(݅ݏ)തതതതതതതതതതതതത 
and (݅ݏ)݀݁ݏݏܽതതതതതതതതതതതതതത  of the central point capture the execution 
characteristics of that fault pattern. The value of coordinate ܴܶ(݅ݏ)ݔതതതതതതതതത captures the suspiciousness value designed to given 
to statements in that fault pattern. For each cluster, they are 
calculated using the following formulas, where s1, s2, …, sn 
means the faulty statements clustered in that class. In these 
formulas, the value of ݂݈ܽ݅݁݀(݅ݏ)തതതതതതതതതതതതത  and (݅ݏ)݀݁ݏݏܽതതതതതതതതതതതതതത  are 
calculated using the mean of corresponding values. 
തതതതതതതതതതതതത(݅ݏ)݈݂݀݁݅ܽ  =

1݊ൣ݂݈ܽ݅݁݀൫݆ݏ ൯൧݊
݆=1

 (5) 

തതതതതതതതതതതതതത(݅ݏ)݀݁ݏݏܽ =
1݊ൣ݀݁ݏݏܽ൫݆ݏ ൯൧݊
݆=1

 (6) 

തതതതതതതതത(݅ݏ)ݔܴܶ = ݊ ×
1݊ൣܴܶݔ൫݆ݏ ൯൧݆=1

= ൣܴܶݔ൫݆ݏ ൯൧݆=1

 (7) 
 

The value of ܴܶ(݅ݏ)ݔതതതതതതതതത  is calculated as n (cluster size) 
times the mean value of corresponding values. So the larger 
the scale of the cluster is, the more suspiciousness will be 
given to it. On the contrary, the smaller the scale of the 
cluster is, the less effort will be put on it. For clusters of 
identical scale, the one having a larger mean suspiciousness 
value will be given higher suspiciousness values. 

 [Step 3: Spline] In this step, we use spline method to 
construct a 3D surface through the generated central points. 
We use such a 3D surface to build suspiciousness function 
for our statistical fault localization technique.  
 

Note that we do not limit the use of cluster and spline 
method, and in fact, any cluster and spline method can be 
used in our model. In next section, we will introduce the 

model settings and the experiment results of our fault 
localization technique. 

V. EMPIRICAL EVALUATION 
In this section, we first introduce the experiment settings, 

and then give the empirical results and related discussions. 

A. Experiment Settings 
In this experiment, we compare the effectiveness of our 

technique with four previous representative techniques. They 
are Tarantula [10], Jaccard [2], Ochiai [2], and SBI [15]. 
These four techniques are all statement-level fault 
localization techniques. For space reason, we do not adapt 
our technique to predicate-level to compare with other 
predicate-level techniques. 

The subject programs used in our experiment is the 
widely used common data set, Siemens suite [5]. Siemens 
suite was developed to support debugging and testing studies 
and was frequently used in previous studies 
[4][7][10][11][12][13]. It includes seven programs; each 
program has several faulty versions. In each faulty version, 
there is a fault. A generated set of executions is attached with 
each program. Table I shows the statistics of Siemens suite. 
Let us take the first row as example. It says that the program 
“print_tokens” has seven faulty versions, each of which has 
one fault. These faulty versions have 341 to 342 lines of code. 
Among the given set of executions, about 1.7% of them are 
failed executions. Note that some faulty versions are not 
feasible [12], so we exclude them. Some other faulty 
versions are not compatible with the instrumentation tool 
gcov [10], so we also exclude them. 

For each faulty version, we follow previous studies [12] 
to collect execution information for the given set of 
executions. We randomly separate the 126 faulty versions 
into two parts, that is, training set and data set. After that, we 
apply Tarantula, Jaccard, Ochiai, SBI, and our technique to 
get the suspiciousness value for each statement and sort them 
to form a ranked list. We check along the generated list from 
top (most suspicious statement) to tail (least suspicious 
statement) to search for fault, and use the position of fault in 
the list as the effectiveness for comparison. For example, in 
the generated list of 341 statements, suppose the faulty 
statement is finally ranked at the 23rd position in the 
generated list. Therefore, the effort to locate this fault is 
calculated as 23 / 341 × 100%  6.7%, which means we 
need to examine 6.7% statements in the resultant list to reach 
the fault. We further use 1 – 6.7% = 93.3% to evaluate the 

TABLE I.  SUBJECT PROGRAMS – SIEMENS SUITE [5]. 

Programs Number of 
statements 

Number of 
faulty versions 

Percentage of 
failed executions 

print_tokens 341 – 342 7 1.7% 
print_tokens2 350 – 354 10 5.4% 
replace 508 – 515 31 2.0% 
schedule 291 – 294 5 3.2% 
scheudule2 261 – 263 9 1.0% 
tcas 133 – 137 41 2.4% 
tot_info 272 – 274 23 5.6% 
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effectiveness; the greater, the better. Formally, the 
effectiveness is calculated as follows. 

 ൬1 − position of faulty statement in list
number of statements in list

൰ × 100% (8) 

B. Model Settings 
In the experiment, we use the original k-nearest neighbor 

method [16] for clustering in our model. The parameter K is 
chosen as 4; Euclidean distance is used. Since the number of 
passed execution and that of failed execution may not be 
equal. We first normalize failed(si) and passed(si) to 
failed(si)/m and passed(si)/m’ respectively, before applying 
the Euclidean distance. The B-spline method [16] is used to 
construct surface from 3D points. 

C. Experiment Results 
Fig. 2 shows the box plot of effectiveness comparison 

results for the five techniques. In this figure, effectiveness 
statistics for each technique on the 126 Siemens faulty 
versions is shown as a box. The top and bottom of the box 
respectively mean the 75% and 25% percentiles in the set of 
126 effectiveness values. The band near the middle means 
the 50% percentile (median). The top and bottom ends of the 
whisker mean the 90% and 10% percentiles, respectively.  

From the results, we observe that the effectiveness of our 
technique over Siemens suite is better than those of the other 
techniques. For example, the median effectiveness of our 
technique is 92.6%, while the median effectiveness of 
Tarantula, Jaccard, Ochiai, and SBI are 84.5%, 84.6%, 
84.7%, and 84.3%, respectively. 

D. Discussions 
Though our technique seems to show some advantage to 

the other techniques, we also find that the standard deviation 
for Tarantula, Jaccard, Ochiai, SBI, and our techniques are 
14.4%, 14.3%, 14.3%, 14.3%, and 17.5%, respectively. It 
means that our technique has relatively worse stability. 

Faults in Siemens suite are seeded manually. Other 
realistic programs may be used to evaluate our technique to 
further strengthen the validity of experiment. 

VI. CONCLUSION 
Fault localization is a time-consuming task in software 

engineering. By analyzing program execution information, 
previous statistical fault localization techniques make use of 
suspiciousness function to assess the suspiciousness of each 
program element of being fault. In this paper, we use a 3D 
surface representation to investigate the property of previous 
techniques. We cluster faults from execution characteristics 
to find potential fault patterns, and optimize suspiciousness 
function by constructing a 3D surface for representative 
fault patterns. The empirical results show that our method 
outperforms previous representative techniques on the 
common data set, Siemens suite. Future work may include 
developing the technique to fit fault localization in 
concurrent programs. 
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Figure 2. Box plot of effectiveness comparison. 
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