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Abstract 
Recent techniques for fault localization leverage code 

coverage to address the high cost problem of debugging. 
These techniques exploit the correlations between pro-
gram failures and the coverage of program entities as the 
clue in locating faults. Experimental evidence shows that 
the effectiveness of these techniques can be affected ad-
versely by coincidental correctness, which occurs when a 
fault is executed but no failure is detected. In this paper, 
we propose an approach to address this problem. We re-
fine code coverage of test runs using control- and data- 
flow patterns prescribed by different fault types. We con-
jecture that this extra information, which we call context 
patterns, can strengthen the correlations between pro-
gram failures and the coverage of faulty program entities, 
making it easier for fault localization techniques to locate 
the faults. To evaluate the proposed approach, we have 
conducted a mutation analysis on three real world pro-
grams and cross-validated the results with real faults. The 
experimental results consistently show that coverage re-
finement is effective in easing the coincidental correctness 
problem in fault localization techniques. 1 

1. Introduction 

Debugging is a tedious and expensive activity in soft-
ware maintenance. As a major part in debugging, fault 
localization consumes the most amounts of time and effort 
[27]. To reduce the expense of fault localization, re-
searchers have proposed automatic fault localization tech-
niques. Among them, one promising approach is to locate 
faults using code coverage information, that is, the set of 
program entities (e.g., statements or branches) executed in 
each test run. This approach is generally referred to as 
coverage-based fault localization (CBFL) [29]. Examples 
of CBFL techniques include Tarantula [18], Ochiai [1], 
and χDebug [31]. Studies [18][19] show that these tech-
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niques can be effective in finding faults in programs. 
In general, CBFL techniques collect code coverage 

from both failed test runs (each of which detects a failure) 
and passed test runs (where no program failure is de-
tected). They then search for program entities whose cov-
erage strongly correlates with program failures. These 
program entities are regarded as the likely faulty locations.  

Despite the correlation-based fault localization strategy 
of CBFL has delivered promising results in previous ex-
periments (e.g., [5][19][21]), in practice its effectiveness 
can be affected by many factors. One such factor is coin-
cidental correctness, which occurs when “no failure is 
detected, even though a fault has been executed” [26]. 
Previously, coincidental correctness has been perceived as 
a problem and attracted many research interests (e.g., [14] 
[15][23][26]) because studies show that it can adversely 
affect the effectiveness of testing [11]. Recent experimen-
tal evidence shows that it is undesirable to CBFL tech-
niques as well. For example, Jones and colleagues [18] 
noticed that Tarantula fails to highlight faulty statements 
in the initialization code or main program path (e.g., code 
in the “main” function of a C program). They suggested 
that coincidental correctness may be the culprit and called 
for further investigation. Such adverse cases were also 
found by other researchers (e.g., [5][32]). In our experi-
ment (reported in Section 6), we observed that the effec-
tiveness of CBFL declines significantly when the occur-
rence of coincidental correctness increases. These obser-
vations are of concern because coincidental correctness 
can be very common (as shown in empirical studies on 
coverage testing [17] and our experiment).  

The goal of this work is to reduce the vulnerability of 
CBFL to coincidental correctness. This goal is challenging 
because we do not know where the faults reside and have 
no way of directly identifying passed test runs where 
coincidental correctness has occurred. To address this 
challenge, our approach is to transform the code coverage 
in a way that will strengthen the correlations between 
program failures and the coverage of faulty program enti-
ties. We refer to such an approach as coverage refinement. 

Our approach is inspired by backward (dynamic) slic-
ing [2], which is a possible way of coverage refinement. 
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The idea is to exclude the coverage of those program enti-
ties whose execution does not affect the output. The intui-
tion is that a faulty program entity cannot trigger the fail-
ure unless the output is dynamically dependent on its ex-
ecution. This intuition is valid for faults involving wrong 
arithmetic or Boolean expressions. However, it is invalid 
for many others. For example, backward slicing cannot 
handle faults involving code omission [33]. Such faults are 
arguably more difficult to debug [33] and more common 
in practice than faults related to wrong code construct (e.g., 
64% vs. 33% [13]). 

This suggests that coverage refinement using backward 
slicing alone is inadequate. To address this problem, we 
observe that when the execution of faults triggers the fail-
ure, the dynamic control flows and data flows before and 
after their execution usually match certain patterns. We 
refer to these patterns as context patterns. Indeed, cover-
age refinement with backward slicing exploits one such 
pattern that features the existence of a dynamic program 
dependence chain from the fault execution to the output. 
However, this context pattern is invalid for other types of 
faults, notably those related to code omission. We conjec-
ture that context patterns for common fault types can be 
derived and used for coverage refinement purpose. 

To validate our conjecture, we have conducted a case 
study on the fault types identified in recent field study [13] 
(dominated by code omission faults) and derived context 
patterns for each of them. To investigate how effectively 
the coverage refinement approach addresses the coinci-
dental correctness problem in CBFL, we conducted a mu-
tation analysis [4] on three real-world programs with these 
fault types and context patterns involved in the case study. 
For cross validation purpose, we also repeated the expe-
riment with real faults. The results consistently show that 
the use of context patterns is highly effective in address-
ing the coincidental correctness problem and reducing the 
effort programmers spent on fault localization. 

This paper makes the following main contributions: 
1) The introduction of context patterns to refine 

code coverage, alleviating the coincidental cor-
rectness problem in CBFL.  

2) A case study that investigates the feasibility of 
deriving context patterns for common fault types. 

3) Empirical investigation on the effects of coinci-
dental correctness upon CBFL, and how effective 
coverage refinement with context patterns ad-
dresses this problem. 

The rest of this paper is organized as follows. Section 2 
summarizes automatic fault localization techniques. Sec-
tion 3 uses an example to discuss the coincidental cor-
rectness problem and introduces our approach of coverage 
refinement with context patterns. Section 4 presents how 
to specify and match context patterns. Section 5 and 6 
report the evaluation results. Finally, Section 7 concludes.  

2. Background and related work  
Coverage-Based Fault Localization Techniques 

Many CBFL techniques have been proposed. They take 
code coverage as input and produce a set of likely faulty 
program entities as output. In principle, any kind of code 
coverage can be used. However, in the literature they are 
mainly applied to statement coverage. We follow this 
convention and use statements as program entities.  

Agrawal and colleagues [3] are among the first to use 
code coverage for automatic fault localization purpose. 
Their technique, called χSlice, collects coverage from a 
failed test run and a passed test run. The dice of them, that 
is, the set of statements executed only in the failed test run, 
is reported as the likely faulty statements. Therefore, their 
fault localization strategy is to search for statements 
whose coverage strictly correlates with program failures. 
This idea is further developed by Renieris and Reiss [25]. 
Their technique, called Nearest Neighborhood (NN), fea-
tures an extra step of passed test run selection.  

Jones and colleagues [18] proposed a different CBFL 
technique called Tarantula. Unlike that of χSlice, the fault 
localization strategy of Tarantula is to search for state-
ments whose coverage has a relatively strong (but not 
necessarily strict) correlation with program failures. Ta-
rantula defines a color scheme to measure the correlation. 
Since we do not use visualization here, we find it more 
appropriate to rename the measurement as fail-
ure-correlation. For each statement S executed in at least 
one test run, this measurement is defined as: 

failure-correlation(S)  (F1) 

, where %failed(S) is the percentage of failed test runs 
executing S, and %passed(S) is percentage of passed test 
runs executing S. The value of failure-correlation ranges 
from 0 to 1. Higher failure-correlation value suggests that 
S is more likely to be faulty. When two statements have 
the same failure-correlation value, another measurement: 

Confidence = max(%failed(S), %passed(S)) (F2) 
is used as a tie-breaker. Jones and Harrold [19] empirical-
ly compared Tarantula with χSlice and NN. Their result 
shows that Tarantula performs the best among them. 

Recently, researchers have proposed new CBFL tech-
niques, such as Ochiai [1] and χDebug [31]. These tech-
niques are similar to Tarantula except that they use dif-
ferent formulas to compute failure-correlation (see [29] 
for a survey). As Tarantula is representative, we use it in 
our discussion for the rest of this work. 
Other Automatic Fault Localization Approaches  

Statistical debugging [21][22] instruments predicates 
in the program (for examples, the comparison between 
two variables or the sign of function return value) and 
locates faults by comparing the evaluation results of pre-
dicates in failed test runs with those in all test runs. In 
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certain sense, predicates can be regarded as another way 
of coverage refinement by exploiting the program state 
information. This is different from our approach, which 
use control flow and data flow information. We note, 
however, that these two approaches are complementary 
and can be combined. In the future, we shall conduct stu-
dies to investigate whether such a combination can further 
improve the effectiveness of CBFL. 

Delta debugging [8][34] grafts values from a failed test 
run to a passed test run. This is systematically tried for 
different program locations and variables. When one such 
trial duplicates the failure observed in the failed test run, 
the variable and the program location under scrutiny could 
help locating faults. Delta debugging has been shown to 
be useful in revealing many real world faults. However, 
the cost of repeating the trials can be expensive [33]. Be-
sides, existing experiment results (e.g., [19]) show that 
when multiple test runs are available, the performance of 
CBFL is better than that of delta debugging. 

3. Research problem and our approach 
In this section, we use a working example to discuss 

the coincidental correctness problem in CBFL, and moti-
vate the concepts of coverage refinement and context pat-
tern. Formal treatment of them is given in Section 4. 

Figure 1(a) shows a program with an assignment 
statement intentionally commented out to simulate a 
missing assignment fault. This kind of faults related to 
code omission is common [13]. For this kind of faults, we 
follow the convention adopted by Jones and Harrold [18], 
and consider the statement preceding the missing one (S0 
in this example) to be faulty because this statement would 
direct programmers attention to the omission place. 
Coincidental Correctness Problem in CBFL 

Suppose that programmers use Tarantula to locate the 
fault in this program. To collect coverage, this program is 
executed by five test runs, each of which corresponds to 
one row in Figure 1(b). For each test run, we give its input, 
test outcome, and statement coverage. Each column can 
be regarded as a 0-1 vector with dots representing ‘1’s. 
The ‘1’s in the test outcome vector represent failures, 
while those in coverage vectors indicate that the corres-
ponding statement is executed in the test run. 

From Figure 1(b), we observe that coincidental cor-
rectness occurs in all passed test runs. By formula (F1), 
the faulty statement S0 will be assigned with a medium 
failure-correlation value 0.5 (box A). As half of the state-
ments in the program have the same or higher fail-
ure-correlation value, S0 has not been accurately isolated.  
Coverage Refinement and Context Patterns 

For clarity in what follows, we denote the faulty state-
ment as Sf, the test outcome vector as o, and the coverage 
vector of Sf as cf.  

The example in Figure 1(a) shows that the occurrence 

of the failure depends not only on the execution of Sf, but 
also on the control flows and data flows before and after 
the execution of Sf. We call the latter factor the execution 
context of Sf.  

Now suppose that p is a pattern of execution context 
that satisfies the following two criteria: 

� If Sf has been executed in a test run r but its ex-
ecution did not trigger the failure, then p is never 
matched by the execution contexts of Sf in r. 

� If Sf has been executed in a test run r and its ex-
ecution triggered the failure, then p is matched at 
least once by the execution contexts of Sf in r. 

Then, by removing the ‘1’s in cf that correspond to test 
runs where Sf’s execution contexts never match p, we thus 
transform cf into another vector cf' that is identical to o 
(also a vector). With this refined coverage vector, Sf can 
be more accurately isolated because by formula (F1), it 
will have the maximal failure-correlation value 1.0. 

In applying this basic idea, there are three issues: 
1) How to obtain the context pattern p? At this point, 

let us suppose that we know the type of faults in the pro-
gram. Then one approach to deriving p is to capture the 
mechanism of how faults of this type trigger the failures. 
Such mechanism for different fault types has been exten-
sively studied both analytically (e.g., the RELAY model 
[26]) and empirically (e.g., [11]).  

For example, missing assignment triggers the failure 
only when the obsolete value propagates to the output [28]. 
This mechanism is captured by the pattern shown in Fig-
ure 1(c). In this figure, nodes represent statements and 

Failure-correlation
(by formula (F1) )
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Figure 1: Example illustrating the coincidental correctness 

problem in CBFL and coverage refinement 
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edges represent “executed before” relations. This pattern 
has an attribute v, which corresponds to the variable 
whose assignment is absent.  

Note that patterns derived in this way might not strictly 
satisfy the above-mentioned two criteria. For example, 
when the absent assignment is redundant, the execution of 
Sf may not trigger any failure, yet the pattern shown in 
Figure 1(c) is still matched. Coverage refinement can still 
be effective at increasing the failure correlation of Sf if the 
pattern satisfies the two criteria in most of the cases. 
However, this conjecture needs empirical evaluation. 

2) Sf and cf are unknown. As the faulty statement Sf is 
unknown, our approach refines the coverage vectors of all 
statements with the context pattern p. In doing so, we need 
to validate the assumption that p acts on non-faulty state-
ments in a random fashion, and few of them will have 
their failure-correlation values dramatically increased. 

Figure 1(d) shows the coverage of S0-S9 refined with 
the pattern depicted in Figure 1(c). A statement now spans 
multiple coverage vectors, each of which corresponds to a 
context pattern matched on its execution context with an 
instantiation of pattern attributes. As shown in the figure, 
the faulty statement S0 (box B) is one of the three state-
ments that have the maximal failure correlation value 1.0. 
Therefore, S0 is more accurately isolated.  

3) The types of fault in the program are unknown. In 
the above discussion, we derive the context pattern based 
on the fault type information. However, in reality the 
types of fault in the program are unknown. A related issue 
is that the program might contain multiple types of fault.  

While the precise fault types in a specific faulty pro-
gram are unknown, programmers might still have infor-
mation on the range of possible fault types. This informa-
tion can come from field studies (e.g., [13]) or experiences 
on the project development history (e.g., [20]). Our ap-
proach assumes the availability of fault types from these 
sources and refines the coverage with their corresponding 
context patterns simultaneously. Of course, the conjec-
tured fault types do not necessarily include the real fault 
types. To avoid misleading the programmers by decreas-
ing the failure-correlation of faulty statements, we can 
enlist a “null” pattern that matches any execution context.  
Review and Research Questions 

Figure 2 summarizes the above discussion and gives 
the overview of our approach. In our approach, test runs 
are modeled as sequences of control flow and data flow 
events. Context patterns are matched against these se-
quences (Section 4 discusses the details of context pattern 
definition and matching). The matching results are com-
bined into refined coverage, which is the same as state-
ment coverage except that the coverage unit changes from 
“statement” to “statement + context pattern”. Finally, 
CBFL techniques work on this refined coverage and pro-
duce the fault localization result. 

Having introduced our approach, we next consider re-

search questions regarding to its practical implication: 
RQ1: Is there a way to derive effective context patterns 

for common fault types? In above discussion, we outlined 
an approach to deriving context patterns by capturing the 
mechanism of how faults trigger failures. Whether context 
patterns can capture such mechanisms for common fault 
types should be investigated in a case study. 

RQ2: How severe is the coincidental correctness prob-
lem in CBFL? While researchers have found adverse cases 
(e.g., [5][18]), it is still unclear whether such cases are 
common. Investigation of this issue helps understand the 
practical significance of our coverage refinement ap-
proach. Especially, we are interested in how often coinci-
dental correctness occurs (RQ2.1), and how severely its 
occurrence affects the effectiveness of CBFL (RQ2.2). 

RQ3: How effectively does coverage refinement help 
isolating faulty statements when coincidental correctness 
occurs frequently? Despite coverage refinement can in-
crease the failure correlation of faulty statements, it might 
increase that of non-faulty statements at the same time. 
Coverage refinement is helpful only when the former ef-
fect supersedes the latter effect (as we hope). Therefore, 
the benefit of coverage refinement is not immediately ob-
vious and needs empirical investigation. 

In Section 5, we investigate RQ1 in a case study. In 
Section 6, we investigate RQ2 and RQ3 through con-
trolled experiments. To lay the necessary foundation for 
these investigations, we describe how we specify and 
match context patterns in the next section. 

4. Specifying and matching context patterns 
In this section, we first briefly summarize event ex-

pression [6], and then present how we use it to specify 
context patterns and its matching algorithm.  

4.1 Preliminary: event expression 
A context pattern matches a sequence of control flow 

or data flow events with specific relations. In our study, 
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we choose event expression to describe context patterns, 
because event expression is formal and simple in syntax. 
Furthermore, it is capable of describing a wide variety of 
patterns [6]. In the following, we briefly introduce its 
syntax. Its semantics is in Appendix A.  

Figure 3 shows an event expression that matches the 
propagation of an assignment to the output. Each event 
expression consists of two clauses. The PATTERN clause 
is similar to a regular expression. It consists of several 
pairs of event type and event variable connected by one of 
the following operators:   
� A,B and A;B (Sequential): A and B are matched on 

the event sequence in tandem. “A;B” requires that 
their matches are contiguous, while “A,B” does not. 

� A&B (Concurrency): A and B are matched indepen-
dently on the event sequence. 

� A|B (Choice): either A or B is matched on the event 
sequence. 

� A+ (Kleene closure): A is matched on the event se-
quence at least once. 

� ~A (Negation): A is not matched on the event se-
quence.  

Next, the SATISFY clause specifies the relation be-
tween attributes of event variables. It is essentially a Boo-
lean expression with common relational and logic opera-
tors used in C. Event variables that appear in a Kleene 
closure, such as y in Figure 3, can be applied with several 
built-in functions. Take y for example, the possible func-
tions and their meanings are: 
� y: the whole closure. 
� first(y): the first event in the closure. 
� last(y): the last event in the closure. 
� next(y): the whole closure except for the first event. 
� prev(y): the whole closure except for the last event.  
� len(y): the number of events in the closure. 

The above functions can be used with relational opera-
tors. For example, the expression next(y).dep_stmt 
==prev(y).stmt means that the attribute dep_stmt of 
the i-th event in next(y) is equal to the attribute stmt of 
the i-th events in prev(y), where i�[1, len(y)-1]. 

4.2 Context pattern description 

Besides event expression, the description of a context 
pattern requires an event model of program execution and 
directives for the generation of refined coverage. 

Event model: To evaluate our approach, we have de-
fined a compact event model for C programs (Table 1), 
which captures the essential dynamic control flow and 

data flow information. This model is not intended to de-
scribe all aspects of program execution. Yet it allows us to 
specify many interesting context patterns. 

In this event model, the execution of a statement is de-
composed into one or more events with different types. 
For example, the execution of an assignment is decom-
posed into zero or more events with type use, followed by 
zero or more events with type kill, and then followed by 
one event with type asgn. Each event has a fixed set of 
attributes. Two common attributes stmt and func are con-
tained by every event type. The attribute stmt specifies the 
statement execution instance that generates this event, and 
the attribute func specifies the function execution instance 
in which the event occurs. Other event attributes specify 
details of the statement execution and have straightfor-
ward meanings. 

Refined coverage generation directives: We add to 
event expression two simple clauses to specify how to 
generate the refined coverage when the pattern is matched. 
The REFINE clause specifies the line number of the 
statement whose coverage is refined. The ATTRS clause 
specifies the pattern attributes.  

4.3 Matching context patterns 

Given an event expression, we translate it into an ex-
tended finite state machine (EFSM) [7] and then execute 
this EFSM on event sequences. EFSM is an extension of 
finite state machine (FSM) with three enhancements. 
� A set of registers representing the “external state” 

of the finite state machine. 
� A set of enabling conditions, each of which labels 

a transition and specifies the condition under 
which this transition is allowed to fire. 

� A set of update actions, each of which labels a 
transition and specifies how registers are updated 
when this transition is fired. 

Figure 4 illustrates the EFSM translated from the event 

PATTERN asgn x, (use y)+, output z 
SATISFY   first(y).dep_stmt == x.stmt && 
       next(y).dep_stmt == prev(y).stmt, 
        z.stmt == last(y).stmt 

Figure 3: An example of event expression 

Table 1: The event model for our study 
Type Attributes Description 

asgn 
stmt, func, var_name, val-
ue, asgn_type:{formal_in, 
formal_out, local, global} 

A variable (var_name) is 
assigned with a value. 

use 
stmt, func, type:{asgn,  
bran, output}, dep_stmt, 
dep_type:{data, control}, 

stmt is dynamic control or 
data dependent on 
dep_stmt. 

kill stmt, func, var_name A variable is overwritten, 
or it leaves the scope. 

bran stmt, func, direction:{T, F} A branching is taken. 
bran_exit stmt, func A branch is left. 
entry, 
return stmt, func, caller, callsite A function is entered or left.

call_lib_ 
func 

stmt, func, lib_func_name, 
handle 

A library function is called 
with handle as argument. 

output stmt, func, var_name A variable is outputted. 
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expression shown in Figure 3. The full translation algo-
rithm is presented in [30]. States s0-s3 and transitions 
t0-t3 are determined from the PATTERN clause in a way 
similar to that of determining FSM states from a regular 
expression. Transitions tchk0 and tchk1 detect the condition 
under which the matching cannot continue (e.g., waiting 
for the use of a definition that is already been killed) and 
trigger backtracking. Transitions tign0 and tign1 model non-
determinism introduced by the sequential operator. Regis-
ters x, y, y_len, and z are determined from event variables. 
They are updated when an incoming event (represented as 
e) is matched. Finally, the enabling conditions of transi-
tions are determined from the SATISFIY clause.  

The time complexity of EFSM execution is O(L�B), 
where L is the length of event sequence and B is the num-
ber of backtracking. It can be shown that the upper bound 
of B is exponential to n�w + v – n, where v is the total 
number of event variables, n is the number of event va-
riables in Kleene closures, and w is the maximal repetition 
count of Kleene closures. For efficiency reason, we 
bounded the value of w in our experiment. 

Having discussed how to specify and match context pat-
terns, we next present our studies on the research questions. 

5. Study of RQ1 
In Section 3, we have outlined an approach to deriving 

context patterns by capturing the mechanism of how the 
execution of faults triggers failures. To evaluate whether 
this approach is feasible, we conducted a case study on 
common fault types. 

The first step of our study is to identify a set of com-
mon fault types. To this end, we refer to a recent field 
study reported by Durães and Madeira [13]. They inves-
tigated 12 open source C programs ranging from user 
software (like vi) to system software (like RDBMS en-
gine), and classified in total 668 real world faults using 
the Orthogonal Detect Classification (ODC). In Table 2, 
we summarize their results and enumerate 13 most com-
mon fault types reported in their study. These fault types 
cover about 90% of the real world faults reported in [13] 
and serve as the subjects of our case study. 

The next step of our study is to investigate whether we 
can specify context patterns for these fault types based on 
the mechanism of how their execution triggers failures. 
Twelve context patterns for these 13 fault types were 
identified. A couple of similar fault types are covered by 
one pattern. Due to space limitation, we only report the 
results of the four patterns that involve missing statements 
in this paper. Readers are referred to [30] for the discus-
sion of all the 12 context patterns. 
Results on Missing Statement Faults 

A1: Missing assignment. Voas and Miller [28] showed 
that for the omission of v=E to result in a failure, the ob-
solete value of v should be used after the omission place 
and before it is killed. Besides, the obsolete value of v 
shall propagate to the output. We can use the following 
pattern to capture this failure-triggering mechanism: 
NAME    MISSING_ASGN 
PATTERN asgn x, any y, (use z)+, output w 
SATISFY first(z).dep_stmt == x.stmt&& 
        next(z).dep_stmt == prev(z).stmt&& 
        w.stmt == last(z).stmt 
REFINE  line_number(y.stmt) 
ATTRS x.var_name 

In this pattern, x matches the previous definition of v; 
y matches the statement preceding the omitted assignment 
on v; z and w match the propagation of the obsolete value. 

I2: Missing return. Faults of this type result in extra-
neous statement executions after the position where a “re-
turn” statement is omitted. For these faults to trigger the 
failures, the result of these extraneous executions must 
affect the output. This failure-triggering mechanism is 
captured in the following context pattern.  
NAME    MISSING_RET 
PATTERN entry x, any y; bran_exit z, asgn w 
  (return p) & ((use q)+, output r) 
SATISFY z.func == x.func && p.func == x.func &&  

                                                           
2 The data in Table 2 is normalized to exclude the 41 faults involving 

design or requirement changes. 

s1t0: asgn

tign0: any

trans enabling condition update action
t0 True x:=e
t1 e.use_stmt=x.stmt y:=e, y_len:=y_len+1
t2 e.use_stmt=y.stmt y:=e, y_len:=y_len+1
t3 e.stmt=y.stmt z:=e

tchk0 Cchk0:   ¬ is_alive(y.def_stmt) -
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Figure 4: EFSM for the event expression in Figure 3 

Table 2: Important fault types for C programs [13]2 
ODC class Fault type % 

Assignment 
(22.8%) 

A1: Missing assignment 43% 
A2: Wrong/extraneous assignment 37% 
A3: Wrong assigned variable 11% 
A4: Wrong data types or conversion 7% 

Check 
(26.6%) 

C1: Missing OR-term/AND-term  47% 
C2: Wrong logic or relational operators 32% 
C3: Missing branching around statements 20% 

Interface 
(7.8%) 

I1: Wrong actual parameter expression 63% 
I2: Missing return 18% 
I3: Wrong return expression 14% 

Algorithm 
(42.7%) 

G1: Missing the whole “if” statement 40% 
G2: Missing function call 26% 
G3: Wrong function call 8% 
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        first(q).dep_stmt == w.stmt && 
        next(q).dep_stmt == prev(q).stmt && 
        r.stmt == last(q).stmt 
REFINE  line_number(y.stmt) 

In this pattern, x matches the entry of the function 
missing the “return” statement; y matches the statement 
preceding the absent “return” statement. As the absent 
“return” statement must be at the end of a conditional 
branch, y must be immediately followed by a branch exit, 
which is matched by z. After that, w matches the extrane-
ous assignment before the function returns to its caller; 
and z and w match the propagation path of this extraneous 
assignment to the output. 

G1: Missing “if” statement. As suggested in [24], this 
type of code omission is usually caused by: (1) forgetting 
to check buffer boundary, (2) forgetting to handle special 
function return code, or (3) forgetting to handle special 
value of the function parameter. Faults of the first reason 
can be located with a boundary checker and might not 
need CBFL. Faults of the second reason trigger a failure if 
the return value of the callee function is same as a certain 
constant value that necessitates the execution of the absent 
branch, and the omission of this execution affects the 
output. While we are still investigating techniques to cap-
ture the latter part of this mechanism, the former part can 
be captured in the following pattern: 
NAME    MISSING_RET_CHECK 
PATTERN asgn x, return y, ~(use z) 
SATISFY x.asgn_type == formal_out && 
         y.func==x.func && z.dep_stmt==x.stmt 
REFINE location(y. callsite) 
ATTRS x.value 

In this pattern, x and y match the return statement of the 
callee function and x.value represents the return value. 
The negation expression ~(use z) specifies that this 
return value is never used.  

The context pattern for faults of the third reason is de-
rived in a similar way. Interested readers can find it in [30]. 

G2: Missing function call. As observed by Dallmeier 
and colleagues [9], faults of this type usually trigger the 
failures through a sequence of function calls related to the 
absent function call. For example, missing the call to 
“open” triggers the failure only when calls to “read” or 
“write” are followed. Library functions are usually re-
lated by a system handle. User-defined functions, however, 
require static code analysis to discover their relationships. 
Here we show a context pattern that captures the fail-
ure-trigger mechanism of missing library function call.  
NAME    MISSING_LIB_CALL 
PATTERN (call_lib_func x)+, any y, 

(call_lib_func z)+ 
SATISFY next(x).handle == prev(x).handle &&  

first(z).handle==first(y).handle && 
        next(z).handle == prev(z).handle && 

  len(x)<=5 && len(z)<=5 
REFINE location(y.stmt) 
ATTRS x.lib_func_name, z.lib_func_name 

In this pattern, y matches the statement preceding the 
absent library function call; x and z match the sequence of 
library function calls before and after the absent call, re-
spectively. In the pattern, the attribute handle refers to the 
system handle used as an argument to the library function 
call. Besides, we follow the decision made in [9] to re-
strict the length of interested function call sequences via 
limiting the lengths of x and z. 
Discussion 

The results of our case study provide initial evidence 
that the failure-triggering mechanism of common fault 
types can be captured in the format of context patterns. 
Nevertheless, we refrain from drawing a strong conclusion 
because our study only involves limited types of fault. In 
the future, other common fault types, such as those related 
to concurrency, will be investigated. 

As the results of our case study shows that the cover-
age refinement approach is applicable, we proceed to 
study its relevance and effectiveness. 

6. Controlled experiments for RQ2 and RQ3 
The goal of our experiments is to empirically investi-

gate research questions RQ2 and RQ3 stated in Section 3: 
RQ2.1: How often does coincidental correctness occur?  
RQ2.2: How severely does the occurrence of coincidental 
correctness affect the effectiveness of CBFL? 
RQ3: How effectively does coverage refinement address 
the coincidental correctness problem in CBFL? 

In this section, we first describe the experiment setup 
and the threats to validity, and then present the results of 
the experiments. We conclude this section with our expe-
rience on real faults. 

6.1 Empirical setup 
Implementation 

We have developed a prototype tool for coverage re-
finement. This tool contains three components: event in-
strumentation layer, EFSM executor, and CBFL technique 
(we chose Tarantula). The event instrumentation layer 
builds upon the ATAC dataflow analysis tool [4] and de-
composes a test run into a sequence of events defined in 
Table 1. The EFSM executor matches the 12 context pat-
terns we identified in the case study against event se-
quences. As shown in Section 4.3, the time complexity of 
pattern matching is mainly determined by the maximal 
repetition count of Kleene closures. For efficiency reason, 
we set the bound of this count as 10. In our experiments, 
we also used scripts from the SIR infrastructure [12] to 
automate test execution and code coverage collection.  

All experiments reported in this section are conducted 
in a Sun Linux cluster with 20 nodes running CentOS 5, 
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x86_64 edition. The time overhead of event instrumenta-
tion and pattern matching is approximately 300 times to 
the program execution.  
Subject Programs 

For our study, we used three real world C programs 
space, grep(2.0), and bc(1.06) as the subjects. Table 3 
provides their basic information. For each program, we 
list the lines of executable code (second column) and the 
number of available test cases (third column). space and 
grep were obtained from SIR [12], while bc was down-
loaded from the website of Liu [22]. 

These three subject programs are intended to represent 
three different kinds of C programs. space is a parser for 
the Array Definition Language [17]. It mainly involves 
operations on dynamically allocated structures. grep is a 
command line text search utility. It mainly involves oper-
ations on strings. bc is an interpreter for an arbitrary pre-
cision numeric processing language used in scientific 
computation. It mainly involves numerical computation. 
We believe that these three programs represent a wide 
range of real world C programs.  
Faults Generation 

To generate faults for our experiment, we first confi-
gured Proteum [10] to generate all possible program mu-
tants with fault types listed in Table 2. We then executed 
these mutants using the whole test pool and excluded 
those without failure. Next, for each program, we ran-
domly sampled 1000 mutants in proportion to the occur-
rence frequency of their fault types in Table 2. For exam-
ple, according to Table 2, missing single assignment takes 
up 9.8% of the cases. Therefore, we randomly selected 98 
mutants from those versions with such fault.  

Table 3 summarizes the detail of our experiment sub-
jects and mutants. For each program, we list the number 
of generated mutants (fourth column), mutants with fail-
ure (fifth column), and the average failure rate among 
mutants with failure (sixth column).  
Metric of Fault Localization Effectiveness 

CBFL techniques help programmers locate the faults 
by directing their attention to a set of likely faulty state-
ments. To evaluate their effectiveness, a straightforward 
metric is to measure how often the set of likely faulty 
statements they suggest contains the real faulty statements. 
Following the convention in information retrieval research, 
we refer to this measurement as recall. 

To measure the effectiveness of Tarantula with recall, 
we assume that programmers can afford to examine up to 

k percentage of total statements, and they follow the de-
creasing order of failure-correlation values when they 
examine the statements. Therefore, given a set of faulty 
programs, the recall of Tarantula is computed by: 

 

To avoid the boundary effect, we choose four different 
values of k as 1, 5, 10, and 15. These should be reasonable 
values in real world debugging scenarios. Due to space 
limitation, we only reported the result for k=1 and k=5, 
the complete result can be found in [30]. 
Experiment Design 

To investigate RQ2.1, we instrumented mutants using 
gcov and executed them on all available test cases. We 
judged the test outcome of each test run by comparing the 
output with that produced by running the correct program 
on the same test case. Passed test runs where coincidental 
correctness occurs were identified by checking whether 
the known faulty statements have been executed.  

To investigate RQ2.2, we constructed test sets with 
varying concentration of coincidental correctness, that is, 
the percentage of passed test cases in a test set that induce 
coincidental correctness. We employed 11 levels of con-
centration 0%, 10%, …, 100%, and thus generated 11 test 
sets for each mutant. Following common empirical setup 
for mutation analysis (e.g. [4]), we choose 100 as the size 
of test set. Besides, the number of failed test cases is con-
trolled as 10, which is consistent with the average failure 
rate shown in Table 3. The three kinds of test cases (failed, 
passed with/without inducing coincidental correctness) 
were randomly sampled from the test pool. After test sets 
were constructed, we then ran Tarantula on each of them 
and computed the recall at each level of concentration.  

To investigate RQ3, we reused all the test sets that 
have been constructed. We computed the recall of Taran-
tula in the same way as we did for RQ2, except that we 
applied all the 12 context patterns derived in our case 
study (Section 5) to produce the refined coverage for Ta-
rantula. Note that a statement can have multiple entries in 
the fault localization result on refined coverage. To per-
form a fair comparison, for each statement, we only retain 
the coverage entries with the highest failure-correlation.  

6.2 Threats to validity 
A threat to the validity of our experiment result is that 

we only generated mutants with limited types of faults. To 
address the threat, we have covered the fault types that 
have been identified as the most common types in a recent 
field study [13]. Besides, we also cross-validated our re-
sult using real faults (see Section 6.4). Thus, the results 
are still of practical importance. Another possible threat is 
that we only used three programs. However, we have 
carefully selected them in order to cover different types of 

Table 3: Subject programs 

Program 
Lines of Ex- 

ecutable Code 
Test 
cases 

Generated 
Mutants 

Mutants 
with failure 

Failure 
rate 

space 6,218 13585 40241 35008 12.4% 
grep 8,164 613*8 # 52140 24588 11.7% 
bc 5,381 5000 29725 15548 9.63% 

#: We applied the 613 RE patterns from SIR on eight different text files. 
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programs. And these programs have been used in many 
studies (e.g., [8][17][18][19][22][25]). Finally, we only 
generate mutants with single fault. In practice, a faulty 
program can contain multiple faults. This issue should be 
addressed in future experiments. 

6.3 Result and discussion 

In this section, we present the experiment results and 
discuss how they address the three research questions. 
RQ 2.1: The Frequency of Coincidental Correctness 

Figure 5 shows the frequency distribution of coinciden-
tal correctness for each program. The horizontal axis 
shows the range of occurrence frequency of coincidental 
correctness, and the vertical axis shows the percentage of 
mutants whose occurrence frequency of coincidental cor-
rectness falls into each range. For example, for grep, 
there are 31% of the mutants for which coincidental cor-
rectness occurs in 80%-100% of the passed test runs. 

By inspecting Figure 5, we can observe that coinciden-
tal correctness is common. Take space for example, on 
average it occurs in 28.6% of the passed test runs. Besides, 
there are a considerable number of mutants (15% for 
space, 31% for grep, 35% for bc) for which coinci-
dental correctness occurs very frequently (over 80%). 
RQ 2.2: The Impact of Coincidental Correctness 

Figure 6 illustrates the impact of coincidental correct-
ness on Tarantula when statement coverage is used for 
computing the failure-correlation value. The horizontal 
axis shows the concentration of coincidental correctness 
in the test set, and the vertical axis shows the recall, that is, 
the percentage of mutants whose fault is among the top k% 
likely faulty statements ranked by Tarantula using the 
failure-correlation values. For each program, we con-
ducted the experiment twice with the value of k being 1 
and 5, respectively. The data corresponds to the gray 
curves marked with boxes in Figure 6. As code omission 
faults are of special interest, we also show the result for 
this sub-category in Figure 7. 

The result of the experiment shows that coincidental 
correctness can be harmful to CBFL. From Figure 6, we 
can observe that the effectiveness of Tarantula declines 
significantly when the occurrences of coincidental cor-

rectness increase. This is consistent with the observation 
made by Jones and colleagues [18] that CBFL has diffi-
culty locating faults in the main program path and initia-
lization code — in fact, we found these faults induce the 
most occurrences of coincidental correctness. 
RQ3: The Effectiveness of Coverage Refinement 

Let us examine the third research question. To investi-
gate how effectively coverage refinement alleviates the 
problem of coincidental correctness on CBFL, we have 
reused the test sets constructed for RQ2, and applied the 
refined coverage rather than the original statement cover-

 
Figure 5: How often coincidental correctness occurs 

Figure 6: RQ2.2 and RQ3, Overall Results 
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Figure 7: RQ2.2 and RQ3, Code Omission Faults 
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age to Tarantula for locating faults. The data corresponds 
to the black curves that are marked with circles in Figure 6 
and Figure 7. 

From Figure 6, we observe that coverage refinement 
considerably improves the effectiveness of CBFL. In the 
top-5% case, even when coincidental correctness occurs in 
all the passed test runs, Tarantula can still locate the fault 
in 35-42% of the studied cases if refined coverage is used. 
By contrast, using the original statement coverage, Taran-
tula mostly fails to locate the fault in such situation.  

Let us look closer at the data. One observation is, al-
though the improvement in the case of grep is still sig-
nificant, it becomes only noticeable in the case of space 
or bc. We conjectured that this is due to the bound of 
Kleene closure in our implementation of EFSM executor. 
As grep handles strings, the data propagation path in it is 
considerably longer than that in space or bc. Therefore, 
the bound on the repetition count of Kleene closure might 
result in inaccuracy. In the future, we should conduct stu-
dies to investigate this trade-off. Another observation is 
that when coincidental correctness occurs in few passed 
test runs (e.g., < 20% of the total passed test runs), the 
improvement of coverage refinement on Tarantula, if any, 
is marginal. However, from Figure 5, we can observe that 
for around half of the faults, coincidental correctness oc-
curs in more than 20% of passed test runs. For these faults, 
coverage refinement is useful. 
6.4 Experiences on real faults 

Having conducted the experiments with mutants, we 
further validated the results using 38 faulty versions of 
space (also obtained from SIR) containing real faults. 
For each of them, we randomly sampled ten fail-
ure-revealing test sets of size 100 from the test pool. 
These test sets are intended to simulate the random test 
sets that programmers use for debugging in the real world. 
Using these test sets, we compared the performance of 
Tarantula on statement coverage and refined coverage. 

Table 4 reports the result for faulty versions with the 
lowest, medium, and the highest likelihood of coincidental 
correctness. In this table, the column “%COR” presents 
the percentage of coincidentally passed test cases in the 
test pool. The column “failure correlation” presents the 
average failure-correlation value of the faulty statement. 
The column “higher (equal)” presents the average number 

of non-faulty statements whose failure-correlation value is 
higher than or equal to that of the faulty statement.  

From the result, we observe that coverage refinement 
significantly improves the performance of Tarantula when 
coincidental correctness frequently occurs. As a repre-
sentative example, the following faulty version of space 
shows how this improvement is achieved. 

Version 14:  
int unifamp(…){ 

8801: error=0; 
 /*Missing: error= */  
8805:  GetKeyword(Keywords[88], curr_ptr); 
8807:  if (error != 0) { …… }; 

The fault in this case is equivalent to missing the “if” 
statement at line 8807, which triggers the failure only 
when the return value of GetKeyword is one (indicating 
that the keyword is found). The context pattern MISS-
ING_RET_CHECK shown in Section 4.2 captures this fail-
ure-triggering mechanism and strengthens the correlation 
between program failures and the coverage of faulty 
statement (line 8805). This results in significant reduction 
in effort to examine the code before locating this fault 
(186.3 vs. 28.5) by a developer. 
7. Conclusion 

Coverage-based fault localization (CBFL) techniques 
exploit the correlation between program failures and the 
coverage of faulty statements to locate faults. The occur-
rence of coincidental correctness can adversely affect their 
effectiveness. In this paper, we have proposed an ap-
proach to address this problem. We observe when the 
execution of faults triggers failures; some control flow and 
data flow patterns would appear. Such patterns can be 
derived empirically or analytically and used across differ-
ent programs. With these patterns, we refine code cover-
age to strengthen the correlation between program failures 
and the coverage of faulty statements, making it easier for 
CBFL techniques to locate faults. We have evaluated the 
feasibility and effectiveness of our approach through em-
pirical investigations. The results show that coverage re-
finement with context patterns is a promising approach to 
address the coincidental correctness problem in CBFL. 
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Appendix A: Semantics of event expression 
Let e[1,...,n] be a sequence of events e1, e2 …., en. The seman-

tics of event expression is described as follows: 
Base case: The expression “T x” matches e[1,...,n] if and only 

if n=1 and the type of e1 is T. 
Sequential: “E1, E2” matches e[1,...,n] if and only if there 

exist two integers i and j (1 i<j n) such that E1 matches e[1,...,i] 
and E2 matches e[j,...,n]. “E1;E2” matches e[1,...,n] if and only 
if there exist an integer i (1 i<n) such that E1 matches e[1,...,i] 
and E2 matches e[i+1,...,n]. 

Kleene Closure: “E+” matches e[1,...,n] if and only if there 
are k (k ) subsequences e[a1,..,a2], e[a3,..,a4]…, e[a2k+1,.., a2k+2] 
(1=a1 a2< a3 a4 … a2k+1 n) of e[1,...,n] such that E matches 
each of them. 

Concurrency: “E1 & E2” matches e[1,...,n] if and only if there 
exists an integer i (1 i n) such that either E1 matches e[1,...,n] 
and E2 match e[i,...,n], or E1 matches e[i,...,n] and E2 match 
e[1,...,n]. 

Choice: “E1|E2” matches e[1,...,n] if and only E1 matches 
e[1,...,n] or E2 matches e[1,...,n]. 

Negation: “E1,~E,E2” matches e[1,...,n] if and only if there 
exist two integers i and j (1 i<j n) such that E1 matches e[1,...,i], 
E2 matches e[j,...,n], and E does not match e[i+1,...,j-1]. “E1,~E” 
and “~E,E1” are similarly defined. 
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