

Taming Coincidental Correctness: Coverage Refinement with
Context Patterns to Improve Fault Localization*

Xinming Wang
Dept. of Comp. Sci. & Eng.

HKUST
Hong Kong, China
rubin@cse.ust.hk

 S.C. Cheung§
Dept. of Comp. Sci. & Eng.

HKUST
Hong Kong, China

scc@cse.ust.hk

W.K. Chan
Dept. of Comp. Sci.

City Univ. of Hong Kong
Hong Kong, China

wkchan@cs.cityu.edu.hk

Zhenyu Zhang
Dept. of Comp. Sci.

HKU
Hong Kong, China
zyzhang@cs.hku.hk

Abstract
Recent techniques for fault localization leverage code

coverage to address the high cost problem of debugging.
These techniques exploit the correlations between pro-
gram failures and the coverage of program entities as the
clue in locating faults. Experimental evidence shows that
the effectiveness of these techniques can be affected ad-
versely by coincidental correctness, which occurs when a
fault is executed but no failure is detected. In this paper,
we propose an approach to address this problem. We re-
fine code coverage of test runs using control- and data-
flow patterns prescribed by different fault types. We con-
jecture that this extra information, which we call context
patterns, can strengthen the correlations between pro-
gram failures and the coverage of faulty program entities,
making it easier for fault localization techniques to locate
the faults. To evaluate the proposed approach, we have
conducted a mutation analysis on three real world pro-
grams and cross-validated the results with real faults. The
experimental results consistently show that coverage re-
finement is effective in easing the coincidental correctness
problem in fault localization techniques. 1

1. Introduction

Debugging is a tedious and expensive activity in soft-
ware maintenance. As a major part in debugging, fault
localization consumes the most amounts of time and effort
[27]. To reduce the expense of fault localization, re-
searchers have proposed automatic fault localization tech-
niques. Among them, one promising approach is to locate
faults using code coverage information, that is, the set of
program entities (e.g., statements or branches) executed in
each test run. This approach is generally referred to as
coverage-based fault localization (CBFL) [29]. Examples
of CBFL techniques include Tarantula [18], Ochiai [1],
and χDebug [31]. Studies [18][19] show that these tech-

* This work was partially supported by the Research Grants

Council of Hong Kong under grant numbers 612108, 111107,
123207; and RPC07/08.EG24.

§ Correspondence author.

niques can be effective in finding faults in programs.
In general, CBFL techniques collect code coverage

from both failed test runs (each of which detects a failure)
and passed test runs (where no program failure is de-
tected). They then search for program entities whose cov-
erage strongly correlates with program failures. These
program entities are regarded as the likely faulty locations.

Despite the correlation-based fault localization strategy
of CBFL has delivered promising results in previous ex-
periments (e.g., [5][19][21]), in practice its effectiveness
can be affected by many factors. One such factor is coin-
cidental correctness, which occurs when “no failure is
detected, even though a fault has been executed” [26].
Previously, coincidental correctness has been perceived as
a problem and attracted many research interests (e.g., [14]
[15][23][26]) because studies show that it can adversely
affect the effectiveness of testing [11]. Recent experimen-
tal evidence shows that it is undesirable to CBFL tech-
niques as well. For example, Jones and colleagues [18]
noticed that Tarantula fails to highlight faulty statements
in the initialization code or main program path (e.g., code
in the “main” function of a C program). They suggested
that coincidental correctness may be the culprit and called
for further investigation. Such adverse cases were also
found by other researchers (e.g., [5][32]). In our experi-
ment (reported in Section 6), we observed that the effec-
tiveness of CBFL declines significantly when the occur-
rence of coincidental correctness increases. These obser-
vations are of concern because coincidental correctness
can be very common (as shown in empirical studies on
coverage testing [17] and our experiment).

The goal of this work is to reduce the vulnerability of
CBFL to coincidental correctness. This goal is challenging
because we do not know where the faults reside and have
no way of directly identifying passed test runs where
coincidental correctness has occurred. To address this
challenge, our approach is to transform the code coverage
in a way that will strengthen the correlations between
program failures and the coverage of faulty program enti-
ties. We refer to such an approach as coverage refinement.

Our approach is inspired by backward (dynamic) slic-
ing [2], which is a possible way of coverage refinement.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 45

The idea is to exclude the coverage of those program enti-
ties whose execution does not affect the output. The intui-
tion is that a faulty program entity cannot trigger the fail-
ure unless the output is dynamically dependent on its ex-
ecution. This intuition is valid for faults involving wrong
arithmetic or Boolean expressions. However, it is invalid
for many others. For example, backward slicing cannot
handle faults involving code omission [33]. Such faults are
arguably more difficult to debug [33] and more common
in practice than faults related to wrong code construct (e.g.,
64% vs. 33% [13]).

This suggests that coverage refinement using backward
slicing alone is inadequate. To address this problem, we
observe that when the execution of faults triggers the fail-
ure, the dynamic control flows and data flows before and
after their execution usually match certain patterns. We
refer to these patterns as context patterns. Indeed, cover-
age refinement with backward slicing exploits one such
pattern that features the existence of a dynamic program
dependence chain from the fault execution to the output.
However, this context pattern is invalid for other types of
faults, notably those related to code omission. We conjec-
ture that context patterns for common fault types can be
derived and used for coverage refinement purpose.

To validate our conjecture, we have conducted a case
study on the fault types identified in recent field study [13]
(dominated by code omission faults) and derived context
patterns for each of them. To investigate how effectively
the coverage refinement approach addresses the coinci-
dental correctness problem in CBFL, we conducted a mu-
tation analysis [4] on three real-world programs with these
fault types and context patterns involved in the case study.
For cross validation purpose, we also repeated the expe-
riment with real faults. The results consistently show that
the use of context patterns is highly effective in address-
ing the coincidental correctness problem and reducing the
effort programmers spent on fault localization.

This paper makes the following main contributions:
1) The introduction of context patterns to refine

code coverage, alleviating the coincidental cor-
rectness problem in CBFL.

2) A case study that investigates the feasibility of
deriving context patterns for common fault types.

3) Empirical investigation on the effects of coinci-
dental correctness upon CBFL, and how effective
coverage refinement with context patterns ad-
dresses this problem.

The rest of this paper is organized as follows. Section 2
summarizes automatic fault localization techniques. Sec-
tion 3 uses an example to discuss the coincidental cor-
rectness problem and introduces our approach of coverage
refinement with context patterns. Section 4 presents how
to specify and match context patterns. Section 5 and 6
report the evaluation results. Finally, Section 7 concludes.

2. Background and related work
Coverage-Based Fault Localization Techniques

Many CBFL techniques have been proposed. They take
code coverage as input and produce a set of likely faulty
program entities as output. In principle, any kind of code
coverage can be used. However, in the literature they are
mainly applied to statement coverage. We follow this
convention and use statements as program entities.

Agrawal and colleagues [3] are among the first to use
code coverage for automatic fault localization purpose.
Their technique, called χSlice, collects coverage from a
failed test run and a passed test run. The dice of them, that
is, the set of statements executed only in the failed test run,
is reported as the likely faulty statements. Therefore, their
fault localization strategy is to search for statements
whose coverage strictly correlates with program failures.
This idea is further developed by Renieris and Reiss [25].
Their technique, called Nearest Neighborhood (NN), fea-
tures an extra step of passed test run selection.

Jones and colleagues [18] proposed a different CBFL
technique called Tarantula. Unlike that of χSlice, the fault
localization strategy of Tarantula is to search for state-
ments whose coverage has a relatively strong (but not
necessarily strict) correlation with program failures. Ta-
rantula defines a color scheme to measure the correlation.
Since we do not use visualization here, we find it more
appropriate to rename the measurement as fail-
ure-correlation. For each statement S executed in at least
one test run, this measurement is defined as:

failure-correlation(S) (F1)

, where %failed(S) is the percentage of failed test runs
executing S, and %passed(S) is percentage of passed test
runs executing S. The value of failure-correlation ranges
from 0 to 1. Higher failure-correlation value suggests that
S is more likely to be faulty. When two statements have
the same failure-correlation value, another measurement:

Confidence = max(%failed(S), %passed(S)) (F2)
is used as a tie-breaker. Jones and Harrold [19] empirical-
ly compared Tarantula with χSlice and NN. Their result
shows that Tarantula performs the best among them.

Recently, researchers have proposed new CBFL tech-
niques, such as Ochiai [1] and χDebug [31]. These tech-
niques are similar to Tarantula except that they use dif-
ferent formulas to compute failure-correlation (see [29]
for a survey). As Tarantula is representative, we use it in
our discussion for the rest of this work.
Other Automatic Fault Localization Approaches

Statistical debugging [21][22] instruments predicates
in the program (for examples, the comparison between
two variables or the sign of function return value) and
locates faults by comparing the evaluation results of pre-
dicates in failed test runs with those in all test runs. In

46

certain sense, predicates can be regarded as another way
of coverage refinement by exploiting the program state
information. This is different from our approach, which
use control flow and data flow information. We note,
however, that these two approaches are complementary
and can be combined. In the future, we shall conduct stu-
dies to investigate whether such a combination can further
improve the effectiveness of CBFL.

Delta debugging [8][34] grafts values from a failed test
run to a passed test run. This is systematically tried for
different program locations and variables. When one such
trial duplicates the failure observed in the failed test run,
the variable and the program location under scrutiny could
help locating faults. Delta debugging has been shown to
be useful in revealing many real world faults. However,
the cost of repeating the trials can be expensive [33]. Be-
sides, existing experiment results (e.g., [19]) show that
when multiple test runs are available, the performance of
CBFL is better than that of delta debugging.

3. Research problem and our approach
In this section, we use a working example to discuss

the coincidental correctness problem in CBFL, and moti-
vate the concepts of coverage refinement and context pat-
tern. Formal treatment of them is given in Section 4.

Figure 1(a) shows a program with an assignment
statement intentionally commented out to simulate a
missing assignment fault. This kind of faults related to
code omission is common [13]. For this kind of faults, we
follow the convention adopted by Jones and Harrold [18],
and consider the statement preceding the missing one (S0
in this example) to be faulty because this statement would
direct programmers attention to the omission place.
Coincidental Correctness Problem in CBFL

Suppose that programmers use Tarantula to locate the
fault in this program. To collect coverage, this program is
executed by five test runs, each of which corresponds to
one row in Figure 1(b). For each test run, we give its input,
test outcome, and statement coverage. Each column can
be regarded as a 0-1 vector with dots representing ‘1’s.
The ‘1’s in the test outcome vector represent failures,
while those in coverage vectors indicate that the corres-
ponding statement is executed in the test run.

From Figure 1(b), we observe that coincidental cor-
rectness occurs in all passed test runs. By formula (F1),
the faulty statement S0 will be assigned with a medium
failure-correlation value 0.5 (box A). As half of the state-
ments in the program have the same or higher fail-
ure-correlation value, S0 has not been accurately isolated.
Coverage Refinement and Context Patterns

For clarity in what follows, we denote the faulty state-
ment as Sf, the test outcome vector as o, and the coverage
vector of Sf as cf.

The example in Figure 1(a) shows that the occurrence

of the failure depends not only on the execution of Sf, but
also on the control flows and data flows before and after
the execution of Sf. We call the latter factor the execution
context of Sf.

Now suppose that p is a pattern of execution context
that satisfies the following two criteria:

� If Sf has been executed in a test run r but its ex-
ecution did not trigger the failure, then p is never
matched by the execution contexts of Sf in r.

� If Sf has been executed in a test run r and its ex-
ecution triggered the failure, then p is matched at
least once by the execution contexts of Sf in r.

Then, by removing the ‘1’s in cf that correspond to test
runs where Sf’s execution contexts never match p, we thus
transform cf into another vector cf' that is identical to o
(also a vector). With this refined coverage vector, Sf can
be more accurately isolated because by formula (F1), it
will have the maximal failure-correlation value 1.0.

In applying this basic idea, there are three issues:
1) How to obtain the context pattern p? At this point,

let us suppose that we know the type of faults in the pro-
gram. Then one approach to deriving p is to capture the
mechanism of how faults of this type trigger the failures.
Such mechanism for different fault types has been exten-
sively studied both analytically (e.g., the RELAY model
[26]) and empirically (e.g., [11]).

For example, missing assignment triggers the failure
only when the obsolete value propagates to the output [28].
This mechanism is captured by the pattern shown in Fig-
ure 1(c). In this figure, nodes represent statements and

Failure-correlation
(by formula (F1))

0.
8

foo(int a,int b,int c)
S0 int x=0, y=0;

//missing: x=b+c;
S1 if(a>0)
S2 y=1+x;
S3 if(b>0)
S4 if(c>0)
S5 output(b)
S6 else
S7 output(y)
S8 else
S9 output(1/(y-6))

(a) Errorenous program

0.
8

Test Outcome
Vector (o)

Te
st

 R
un

s

r1

r2

r3
r4

r5

S0 S1 S3

(b) Running Tarantula with
statement coverage

1, 1, 1
-1, 1, -1
-1, 1, 1

S2 S4

1, -1, -1
-1, -1, 1

S5

a, b, c 0.
5

0.
5

0.
8

0.
5

0.
0

0.
0

0.
0

0.
0

S6 S7 S8 S9

r1

r2

r3
r4

r5

S1
x

S1
y

S2
x

S3
x

(d) Running Tarantula with
refined coverage

S2
y

S3
y

S4
x

1.
0

0.
0

0.
0

1.
0

0.
0

0.
7

0.
0

0.
0

0.
0

S4
y

S5
x

S5
y

S6
x

S6
y

S7
y

S7
x

S8
x

S8
y

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
8

S0
x

S0
y

1.
0

0.
7

S9
x

S9
y

0.
0

0.
0

(c) Context pattern for
missing assignment

box-A (Coverage
Vector cf)

box-B

Instantiated pattern attributePattern attribute: v

Test Input

Sf

output

assign v

Propagation of v

c'f

Figure 1: Example illustrating the coincidental correctness

problem in CBFL and coverage refinement

47

edges represent “executed before” relations. This pattern
has an attribute v, which corresponds to the variable
whose assignment is absent.

Note that patterns derived in this way might not strictly
satisfy the above-mentioned two criteria. For example,
when the absent assignment is redundant, the execution of
Sf may not trigger any failure, yet the pattern shown in
Figure 1(c) is still matched. Coverage refinement can still
be effective at increasing the failure correlation of Sf if the
pattern satisfies the two criteria in most of the cases.
However, this conjecture needs empirical evaluation.

2) Sf and cf are unknown. As the faulty statement Sf is
unknown, our approach refines the coverage vectors of all
statements with the context pattern p. In doing so, we need
to validate the assumption that p acts on non-faulty state-
ments in a random fashion, and few of them will have
their failure-correlation values dramatically increased.

Figure 1(d) shows the coverage of S0-S9 refined with
the pattern depicted in Figure 1(c). A statement now spans
multiple coverage vectors, each of which corresponds to a
context pattern matched on its execution context with an
instantiation of pattern attributes. As shown in the figure,
the faulty statement S0 (box B) is one of the three state-
ments that have the maximal failure correlation value 1.0.
Therefore, S0 is more accurately isolated.

3) The types of fault in the program are unknown. In
the above discussion, we derive the context pattern based
on the fault type information. However, in reality the
types of fault in the program are unknown. A related issue
is that the program might contain multiple types of fault.

While the precise fault types in a specific faulty pro-
gram are unknown, programmers might still have infor-
mation on the range of possible fault types. This informa-
tion can come from field studies (e.g., [13]) or experiences
on the project development history (e.g., [20]). Our ap-
proach assumes the availability of fault types from these
sources and refines the coverage with their corresponding
context patterns simultaneously. Of course, the conjec-
tured fault types do not necessarily include the real fault
types. To avoid misleading the programmers by decreas-
ing the failure-correlation of faulty statements, we can
enlist a “null” pattern that matches any execution context.
Review and Research Questions

Figure 2 summarizes the above discussion and gives
the overview of our approach. In our approach, test runs
are modeled as sequences of control flow and data flow
events. Context patterns are matched against these se-
quences (Section 4 discusses the details of context pattern
definition and matching). The matching results are com-
bined into refined coverage, which is the same as state-
ment coverage except that the coverage unit changes from
“statement” to “statement + context pattern”. Finally,
CBFL techniques work on this refined coverage and pro-
duce the fault localization result.

Having introduced our approach, we next consider re-

search questions regarding to its practical implication:
RQ1: Is there a way to derive effective context patterns

for common fault types? In above discussion, we outlined
an approach to deriving context patterns by capturing the
mechanism of how faults trigger failures. Whether context
patterns can capture such mechanisms for common fault
types should be investigated in a case study.

RQ2: How severe is the coincidental correctness prob-
lem in CBFL? While researchers have found adverse cases
(e.g., [5][18]), it is still unclear whether such cases are
common. Investigation of this issue helps understand the
practical significance of our coverage refinement ap-
proach. Especially, we are interested in how often coinci-
dental correctness occurs (RQ2.1), and how severely its
occurrence affects the effectiveness of CBFL (RQ2.2).

RQ3: How effectively does coverage refinement help
isolating faulty statements when coincidental correctness
occurs frequently? Despite coverage refinement can in-
crease the failure correlation of faulty statements, it might
increase that of non-faulty statements at the same time.
Coverage refinement is helpful only when the former ef-
fect supersedes the latter effect (as we hope). Therefore,
the benefit of coverage refinement is not immediately ob-
vious and needs empirical investigation.

In Section 5, we investigate RQ1 in a case study. In
Section 6, we investigate RQ2 and RQ3 through con-
trolled experiments. To lay the necessary foundation for
these investigations, we describe how we specify and
match context patterns in the next section.

4. Specifying and matching context patterns
In this section, we first briefly summarize event ex-

pression [6], and then present how we use it to specify
context patterns and its matching algorithm.

4.1 Preliminary: event expression
A context pattern matches a sequence of control flow

or data flow events with specific relations. In our study,

passed
test cases

…use asgn

C
ov

er
ag

e
R

ef
ei

nm
en

t

Input Fault Localization Result

kill

……

C
B

FL
 te

ch
ni

qu
e

(e
.g

. T
ar

an
tu

la
) statement+context pattern

line 102, pattern2, true 0.9901
line 105, pattern1, y 0.9312
line 203, pattern1, x 0.8001
line 152, pattern3, y, 12 0.7098
line 102, null 0.5501
… …

failure
correlation

failed
test cases

Refined Coverage
statement+context pattern

line 102, null passed run 1
line 102, null passed run 5
line 102, pattern2, true failed run 2
line 152, pattern2, false passed run 2
line 152, pattern2, false failed run 3
line 203, pattern1, x failed run 1
line 512, pattern3, y, 12 passed run 1
line 512, pattern3, y, 12 passed run 2
… …

covered in
pattern1

pattern2

…bran asgn return

…kill asgn bran

passed run 1

passed run 2

failed run 2

……

Context Patterns

Figure 2: Overview of our approach

48

we choose event expression to describe context patterns,
because event expression is formal and simple in syntax.
Furthermore, it is capable of describing a wide variety of
patterns [6]. In the following, we briefly introduce its
syntax. Its semantics is in Appendix A.

Figure 3 shows an event expression that matches the
propagation of an assignment to the output. Each event
expression consists of two clauses. The PATTERN clause
is similar to a regular expression. It consists of several
pairs of event type and event variable connected by one of
the following operators:
� A,B and A;B (Sequential): A and B are matched on

the event sequence in tandem. “A;B” requires that
their matches are contiguous, while “A,B” does not.

� A&B (Concurrency): A and B are matched indepen-
dently on the event sequence.

� A|B (Choice): either A or B is matched on the event
sequence.

� A+ (Kleene closure): A is matched on the event se-
quence at least once.

� ~A (Negation): A is not matched on the event se-
quence.

Next, the SATISFY clause specifies the relation be-
tween attributes of event variables. It is essentially a Boo-
lean expression with common relational and logic opera-
tors used in C. Event variables that appear in a Kleene
closure, such as y in Figure 3, can be applied with several
built-in functions. Take y for example, the possible func-
tions and their meanings are:
� y: the whole closure.
� first(y): the first event in the closure.
� last(y): the last event in the closure.
� next(y): the whole closure except for the first event.
� prev(y): the whole closure except for the last event.
� len(y): the number of events in the closure.

The above functions can be used with relational opera-
tors. For example, the expression next(y).dep_stmt
==prev(y).stmt means that the attribute dep_stmt of
the i-th event in next(y) is equal to the attribute stmt of
the i-th events in prev(y), where i�[1, len(y)-1].

4.2 Context pattern description

Besides event expression, the description of a context
pattern requires an event model of program execution and
directives for the generation of refined coverage.

Event model: To evaluate our approach, we have de-
fined a compact event model for C programs (Table 1),
which captures the essential dynamic control flow and

data flow information. This model is not intended to de-
scribe all aspects of program execution. Yet it allows us to
specify many interesting context patterns.

In this event model, the execution of a statement is de-
composed into one or more events with different types.
For example, the execution of an assignment is decom-
posed into zero or more events with type use, followed by
zero or more events with type kill, and then followed by
one event with type asgn. Each event has a fixed set of
attributes. Two common attributes stmt and func are con-
tained by every event type. The attribute stmt specifies the
statement execution instance that generates this event, and
the attribute func specifies the function execution instance
in which the event occurs. Other event attributes specify
details of the statement execution and have straightfor-
ward meanings.

Refined coverage generation directives: We add to
event expression two simple clauses to specify how to
generate the refined coverage when the pattern is matched.
The REFINE clause specifies the line number of the
statement whose coverage is refined. The ATTRS clause
specifies the pattern attributes.

4.3 Matching context patterns

Given an event expression, we translate it into an ex-
tended finite state machine (EFSM) [7] and then execute
this EFSM on event sequences. EFSM is an extension of
finite state machine (FSM) with three enhancements.
� A set of registers representing the “external state”

of the finite state machine.
� A set of enabling conditions, each of which labels

a transition and specifies the condition under
which this transition is allowed to fire.

� A set of update actions, each of which labels a
transition and specifies how registers are updated
when this transition is fired.

Figure 4 illustrates the EFSM translated from the event

PATTERN asgn x, (use y)+, output z
SATISFY first(y).dep_stmt == x.stmt &&
 next(y).dep_stmt == prev(y).stmt,
 z.stmt == last(y).stmt

Figure 3: An example of event expression

Table 1: The event model for our study
Type Attributes Description

asgn
stmt, func, var_name, val-
ue, asgn_type:{formal_in,
formal_out, local, global}

A variable (var_name) is
assigned with a value.

use
stmt, func, type:{asgn,
bran, output}, dep_stmt,
dep_type:{data, control},

stmt is dynamic control or
data dependent on
dep_stmt.

kill stmt, func, var_name A variable is overwritten,
or it leaves the scope.

bran stmt, func, direction:{T, F} A branching is taken.
bran_exit stmt, func A branch is left.
entry,
return stmt, func, caller, callsite A function is entered or left.

call_lib_
func

stmt, func, lib_func_name,
handle

A library function is called
with handle as argument.

output stmt, func, var_name A variable is outputted.

49

expression shown in Figure 3. The full translation algo-
rithm is presented in [30]. States s0-s3 and transitions
t0-t3 are determined from the PATTERN clause in a way
similar to that of determining FSM states from a regular
expression. Transitions tchk0 and tchk1 detect the condition
under which the matching cannot continue (e.g., waiting
for the use of a definition that is already been killed) and
trigger backtracking. Transitions tign0 and tign1 model non-
determinism introduced by the sequential operator. Regis-
ters x, y, y_len, and z are determined from event variables.
They are updated when an incoming event (represented as
e) is matched. Finally, the enabling conditions of transi-
tions are determined from the SATISFIY clause.

The time complexity of EFSM execution is O(L�B),
where L is the length of event sequence and B is the num-
ber of backtracking. It can be shown that the upper bound
of B is exponential to n�w + v – n, where v is the total
number of event variables, n is the number of event va-
riables in Kleene closures, and w is the maximal repetition
count of Kleene closures. For efficiency reason, we
bounded the value of w in our experiment.

Having discussed how to specify and match context pat-
terns, we next present our studies on the research questions.

5. Study of RQ1
In Section 3, we have outlined an approach to deriving

context patterns by capturing the mechanism of how the
execution of faults triggers failures. To evaluate whether
this approach is feasible, we conducted a case study on
common fault types.

The first step of our study is to identify a set of com-
mon fault types. To this end, we refer to a recent field
study reported by Durães and Madeira [13]. They inves-
tigated 12 open source C programs ranging from user
software (like vi) to system software (like RDBMS en-
gine), and classified in total 668 real world faults using
the Orthogonal Detect Classification (ODC). In Table 2,
we summarize their results and enumerate 13 most com-
mon fault types reported in their study. These fault types
cover about 90% of the real world faults reported in [13]
and serve as the subjects of our case study.

The next step of our study is to investigate whether we
can specify context patterns for these fault types based on
the mechanism of how their execution triggers failures.
Twelve context patterns for these 13 fault types were
identified. A couple of similar fault types are covered by
one pattern. Due to space limitation, we only report the
results of the four patterns that involve missing statements
in this paper. Readers are referred to [30] for the discus-
sion of all the 12 context patterns.
Results on Missing Statement Faults

A1: Missing assignment. Voas and Miller [28] showed
that for the omission of v=E to result in a failure, the ob-
solete value of v should be used after the omission place
and before it is killed. Besides, the obsolete value of v
shall propagate to the output. We can use the following
pattern to capture this failure-triggering mechanism:
NAME MISSING_ASGN
PATTERN asgn x, any y, (use z)+, output w
SATISFY first(z).dep_stmt == x.stmt&&
 next(z).dep_stmt == prev(z).stmt&&
 w.stmt == last(z).stmt
REFINE line_number(y.stmt)
ATTRS x.var_name

In this pattern, x matches the previous definition of v;
y matches the statement preceding the omitted assignment
on v; z and w match the propagation of the obsolete value.

I2: Missing return. Faults of this type result in extra-
neous statement executions after the position where a “re-
turn” statement is omitted. For these faults to trigger the
failures, the result of these extraneous executions must
affect the output. This failure-triggering mechanism is
captured in the following context pattern.
NAME MISSING_RET
PATTERN entry x, any y; bran_exit z, asgn w
 (return p) & ((use q)+, output r)
SATISFY z.func == x.func && p.func == x.func &&

2 The data in Table 2 is normalized to exclude the 41 faults involving

design or requirement changes.

s1t0: asgn

tign0: any

trans enabling condition update action
t0 True x:=e
t1 e.use_stmt=x.stmt y:=e, y_len:=y_len+1
t2 e.use_stmt=y.stmt y:=e, y_len:=y_len+1
t3 e.stmt=y.stmt z:=e

tchk0 Cchk0: ¬ is_alive(y.def_stmt) -
tchk1 Cchk1: ¬ is_alive(y.def_stmt) -
tign0 ¬ Cchk0 -
tign1 ¬ Cchk1 -

Init state Final state

x y

y_len

z

Registers

t2 : use tign1: any

t3: outputt1: use s2

tchk0: ε
sD

Dead state
tchk1: ε

s0 s3

Figure 4: EFSM for the event expression in Figure 3

Table 2: Important fault types for C programs [13]2
ODC class Fault type %

Assignment
(22.8%)

A1: Missing assignment 43%
A2: Wrong/extraneous assignment 37%
A3: Wrong assigned variable 11%
A4: Wrong data types or conversion 7%

Check
(26.6%)

C1: Missing OR-term/AND-term 47%
C2: Wrong logic or relational operators 32%
C3: Missing branching around statements 20%

Interface
(7.8%)

I1: Wrong actual parameter expression 63%
I2: Missing return 18%
I3: Wrong return expression 14%

Algorithm
(42.7%)

G1: Missing the whole “if” statement 40%
G2: Missing function call 26%
G3: Wrong function call 8%

50

 first(q).dep_stmt == w.stmt &&
 next(q).dep_stmt == prev(q).stmt &&
 r.stmt == last(q).stmt
REFINE line_number(y.stmt)

In this pattern, x matches the entry of the function
missing the “return” statement; y matches the statement
preceding the absent “return” statement. As the absent
“return” statement must be at the end of a conditional
branch, y must be immediately followed by a branch exit,
which is matched by z. After that, w matches the extrane-
ous assignment before the function returns to its caller;
and z and w match the propagation path of this extraneous
assignment to the output.

G1: Missing “if” statement. As suggested in [24], this
type of code omission is usually caused by: (1) forgetting
to check buffer boundary, (2) forgetting to handle special
function return code, or (3) forgetting to handle special
value of the function parameter. Faults of the first reason
can be located with a boundary checker and might not
need CBFL. Faults of the second reason trigger a failure if
the return value of the callee function is same as a certain
constant value that necessitates the execution of the absent
branch, and the omission of this execution affects the
output. While we are still investigating techniques to cap-
ture the latter part of this mechanism, the former part can
be captured in the following pattern:
NAME MISSING_RET_CHECK
PATTERN asgn x, return y, ~(use z)
SATISFY x.asgn_type == formal_out &&
 y.func==x.func && z.dep_stmt==x.stmt
REFINE location(y. callsite)
ATTRS x.value

In this pattern, x and y match the return statement of the
callee function and x.value represents the return value.
The negation expression ~(use z) specifies that this
return value is never used.

The context pattern for faults of the third reason is de-
rived in a similar way. Interested readers can find it in [30].

G2: Missing function call. As observed by Dallmeier
and colleagues [9], faults of this type usually trigger the
failures through a sequence of function calls related to the
absent function call. For example, missing the call to
“open” triggers the failure only when calls to “read” or
“write” are followed. Library functions are usually re-
lated by a system handle. User-defined functions, however,
require static code analysis to discover their relationships.
Here we show a context pattern that captures the fail-
ure-trigger mechanism of missing library function call.
NAME MISSING_LIB_CALL
PATTERN (call_lib_func x)+, any y,

(call_lib_func z)+
SATISFY next(x).handle == prev(x).handle &&

first(z).handle==first(y).handle &&
 next(z).handle == prev(z).handle &&

 len(x)<=5 && len(z)<=5
REFINE location(y.stmt)
ATTRS x.lib_func_name, z.lib_func_name

In this pattern, y matches the statement preceding the
absent library function call; x and z match the sequence of
library function calls before and after the absent call, re-
spectively. In the pattern, the attribute handle refers to the
system handle used as an argument to the library function
call. Besides, we follow the decision made in [9] to re-
strict the length of interested function call sequences via
limiting the lengths of x and z.
Discussion

The results of our case study provide initial evidence
that the failure-triggering mechanism of common fault
types can be captured in the format of context patterns.
Nevertheless, we refrain from drawing a strong conclusion
because our study only involves limited types of fault. In
the future, other common fault types, such as those related
to concurrency, will be investigated.

As the results of our case study shows that the cover-
age refinement approach is applicable, we proceed to
study its relevance and effectiveness.

6. Controlled experiments for RQ2 and RQ3
The goal of our experiments is to empirically investi-

gate research questions RQ2 and RQ3 stated in Section 3:
RQ2.1: How often does coincidental correctness occur?
RQ2.2: How severely does the occurrence of coincidental
correctness affect the effectiveness of CBFL?
RQ3: How effectively does coverage refinement address
the coincidental correctness problem in CBFL?

In this section, we first describe the experiment setup
and the threats to validity, and then present the results of
the experiments. We conclude this section with our expe-
rience on real faults.

6.1 Empirical setup
Implementation

We have developed a prototype tool for coverage re-
finement. This tool contains three components: event in-
strumentation layer, EFSM executor, and CBFL technique
(we chose Tarantula). The event instrumentation layer
builds upon the ATAC dataflow analysis tool [4] and de-
composes a test run into a sequence of events defined in
Table 1. The EFSM executor matches the 12 context pat-
terns we identified in the case study against event se-
quences. As shown in Section 4.3, the time complexity of
pattern matching is mainly determined by the maximal
repetition count of Kleene closures. For efficiency reason,
we set the bound of this count as 10. In our experiments,
we also used scripts from the SIR infrastructure [12] to
automate test execution and code coverage collection.

All experiments reported in this section are conducted
in a Sun Linux cluster with 20 nodes running CentOS 5,

51

x86_64 edition. The time overhead of event instrumenta-
tion and pattern matching is approximately 300 times to
the program execution.
Subject Programs

For our study, we used three real world C programs
space, grep(2.0), and bc(1.06) as the subjects. Table 3
provides their basic information. For each program, we
list the lines of executable code (second column) and the
number of available test cases (third column). space and
grep were obtained from SIR [12], while bc was down-
loaded from the website of Liu [22].

These three subject programs are intended to represent
three different kinds of C programs. space is a parser for
the Array Definition Language [17]. It mainly involves
operations on dynamically allocated structures. grep is a
command line text search utility. It mainly involves oper-
ations on strings. bc is an interpreter for an arbitrary pre-
cision numeric processing language used in scientific
computation. It mainly involves numerical computation.
We believe that these three programs represent a wide
range of real world C programs.
Faults Generation

To generate faults for our experiment, we first confi-
gured Proteum [10] to generate all possible program mu-
tants with fault types listed in Table 2. We then executed
these mutants using the whole test pool and excluded
those without failure. Next, for each program, we ran-
domly sampled 1000 mutants in proportion to the occur-
rence frequency of their fault types in Table 2. For exam-
ple, according to Table 2, missing single assignment takes
up 9.8% of the cases. Therefore, we randomly selected 98
mutants from those versions with such fault.

Table 3 summarizes the detail of our experiment sub-
jects and mutants. For each program, we list the number
of generated mutants (fourth column), mutants with fail-
ure (fifth column), and the average failure rate among
mutants with failure (sixth column).
Metric of Fault Localization Effectiveness

CBFL techniques help programmers locate the faults
by directing their attention to a set of likely faulty state-
ments. To evaluate their effectiveness, a straightforward
metric is to measure how often the set of likely faulty
statements they suggest contains the real faulty statements.
Following the convention in information retrieval research,
we refer to this measurement as recall.

To measure the effectiveness of Tarantula with recall,
we assume that programmers can afford to examine up to

k percentage of total statements, and they follow the de-
creasing order of failure-correlation values when they
examine the statements. Therefore, given a set of faulty
programs, the recall of Tarantula is computed by:

To avoid the boundary effect, we choose four different
values of k as 1, 5, 10, and 15. These should be reasonable
values in real world debugging scenarios. Due to space
limitation, we only reported the result for k=1 and k=5,
the complete result can be found in [30].
Experiment Design

To investigate RQ2.1, we instrumented mutants using
gcov and executed them on all available test cases. We
judged the test outcome of each test run by comparing the
output with that produced by running the correct program
on the same test case. Passed test runs where coincidental
correctness occurs were identified by checking whether
the known faulty statements have been executed.

To investigate RQ2.2, we constructed test sets with
varying concentration of coincidental correctness, that is,
the percentage of passed test cases in a test set that induce
coincidental correctness. We employed 11 levels of con-
centration 0%, 10%, …, 100%, and thus generated 11 test
sets for each mutant. Following common empirical setup
for mutation analysis (e.g. [4]), we choose 100 as the size
of test set. Besides, the number of failed test cases is con-
trolled as 10, which is consistent with the average failure
rate shown in Table 3. The three kinds of test cases (failed,
passed with/without inducing coincidental correctness)
were randomly sampled from the test pool. After test sets
were constructed, we then ran Tarantula on each of them
and computed the recall at each level of concentration.

To investigate RQ3, we reused all the test sets that
have been constructed. We computed the recall of Taran-
tula in the same way as we did for RQ2, except that we
applied all the 12 context patterns derived in our case
study (Section 5) to produce the refined coverage for Ta-
rantula. Note that a statement can have multiple entries in
the fault localization result on refined coverage. To per-
form a fair comparison, for each statement, we only retain
the coverage entries with the highest failure-correlation.

6.2 Threats to validity
A threat to the validity of our experiment result is that

we only generated mutants with limited types of faults. To
address the threat, we have covered the fault types that
have been identified as the most common types in a recent
field study [13]. Besides, we also cross-validated our re-
sult using real faults (see Section 6.4). Thus, the results
are still of practical importance. Another possible threat is
that we only used three programs. However, we have
carefully selected them in order to cover different types of

Table 3: Subject programs

Program
Lines of Ex-

ecutable Code
Test
cases

Generated
Mutants

Mutants
with failure

Failure
rate

space 6,218 13585 40241 35008 12.4%
grep 8,164 613*8 # 52140 24588 11.7%
bc 5,381 5000 29725 15548 9.63%

#: We applied the 613 RE patterns from SIR on eight different text files.

52

programs. And these programs have been used in many
studies (e.g., [8][17][18][19][22][25]). Finally, we only
generate mutants with single fault. In practice, a faulty
program can contain multiple faults. This issue should be
addressed in future experiments.

6.3 Result and discussion

In this section, we present the experiment results and
discuss how they address the three research questions.
RQ 2.1: The Frequency of Coincidental Correctness

Figure 5 shows the frequency distribution of coinciden-
tal correctness for each program. The horizontal axis
shows the range of occurrence frequency of coincidental
correctness, and the vertical axis shows the percentage of
mutants whose occurrence frequency of coincidental cor-
rectness falls into each range. For example, for grep,
there are 31% of the mutants for which coincidental cor-
rectness occurs in 80%-100% of the passed test runs.

By inspecting Figure 5, we can observe that coinciden-
tal correctness is common. Take space for example, on
average it occurs in 28.6% of the passed test runs. Besides,
there are a considerable number of mutants (15% for
space, 31% for grep, 35% for bc) for which coinci-
dental correctness occurs very frequently (over 80%).
RQ 2.2: The Impact of Coincidental Correctness

Figure 6 illustrates the impact of coincidental correct-
ness on Tarantula when statement coverage is used for
computing the failure-correlation value. The horizontal
axis shows the concentration of coincidental correctness
in the test set, and the vertical axis shows the recall, that is,
the percentage of mutants whose fault is among the top k%
likely faulty statements ranked by Tarantula using the
failure-correlation values. For each program, we con-
ducted the experiment twice with the value of k being 1
and 5, respectively. The data corresponds to the gray
curves marked with boxes in Figure 6. As code omission
faults are of special interest, we also show the result for
this sub-category in Figure 7.

The result of the experiment shows that coincidental
correctness can be harmful to CBFL. From Figure 6, we
can observe that the effectiveness of Tarantula declines
significantly when the occurrences of coincidental cor-

rectness increase. This is consistent with the observation
made by Jones and colleagues [18] that CBFL has diffi-
culty locating faults in the main program path and initia-
lization code — in fact, we found these faults induce the
most occurrences of coincidental correctness.
RQ3: The Effectiveness of Coverage Refinement

Let us examine the third research question. To investi-
gate how effectively coverage refinement alleviates the
problem of coincidental correctness on CBFL, we have
reused the test sets constructed for RQ2, and applied the
refined coverage rather than the original statement cover-

Figure 5: How often coincidental correctness occurs

Figure 6: RQ2.2 and RQ3, Overall Results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
grep, top 5%

(Omission Fault)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
bc, top 5%

(Omission faults)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100% space, top 5%
(omission faults)

Figure 7: RQ2.2 and RQ3, Code Omission Faults

0%
5%

10%
15%
20%
25%
30%
35%
40%

0% 0%-20% 20%-40% 40%-60% 60%-80% 80%-100%

P
er

ce
nt

ag
e

of
 m

ut
an

ts

space (avg. 28.7%)

grep (avg. 42.9%)

bc (avg. 36.3%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

re
ca

ll

space, top 1%
Refined
Coverage
Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

re
ca

ll

space, top 5%
Refined
Coverage
Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

re
ca

ll

grep, top 1%
Refined
Coverage
Statement
Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

re
ca

ll

grep, top 5%
Refined
Coverage
Statement
Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

re
ca

ll

bc, top 1%
Refined
Coverage
Statement
Coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

re
ca

ll

bc, top 5%
Refined
Coverage
Statement
Coverage

Range of Occurrence Frequency

Concentration of coincidental correctness

53

age to Tarantula for locating faults. The data corresponds
to the black curves that are marked with circles in Figure 6
and Figure 7.

From Figure 6, we observe that coverage refinement
considerably improves the effectiveness of CBFL. In the
top-5% case, even when coincidental correctness occurs in
all the passed test runs, Tarantula can still locate the fault
in 35-42% of the studied cases if refined coverage is used.
By contrast, using the original statement coverage, Taran-
tula mostly fails to locate the fault in such situation.

Let us look closer at the data. One observation is, al-
though the improvement in the case of grep is still sig-
nificant, it becomes only noticeable in the case of space
or bc. We conjectured that this is due to the bound of
Kleene closure in our implementation of EFSM executor.
As grep handles strings, the data propagation path in it is
considerably longer than that in space or bc. Therefore,
the bound on the repetition count of Kleene closure might
result in inaccuracy. In the future, we should conduct stu-
dies to investigate this trade-off. Another observation is
that when coincidental correctness occurs in few passed
test runs (e.g., < 20% of the total passed test runs), the
improvement of coverage refinement on Tarantula, if any,
is marginal. However, from Figure 5, we can observe that
for around half of the faults, coincidental correctness oc-
curs in more than 20% of passed test runs. For these faults,
coverage refinement is useful.
6.4 Experiences on real faults

Having conducted the experiments with mutants, we
further validated the results using 38 faulty versions of
space (also obtained from SIR) containing real faults.
For each of them, we randomly sampled ten fail-
ure-revealing test sets of size 100 from the test pool.
These test sets are intended to simulate the random test
sets that programmers use for debugging in the real world.
Using these test sets, we compared the performance of
Tarantula on statement coverage and refined coverage.

Table 4 reports the result for faulty versions with the
lowest, medium, and the highest likelihood of coincidental
correctness. In this table, the column “%COR” presents
the percentage of coincidentally passed test cases in the
test pool. The column “failure correlation” presents the
average failure-correlation value of the faulty statement.
The column “higher (equal)” presents the average number

of non-faulty statements whose failure-correlation value is
higher than or equal to that of the faulty statement.

From the result, we observe that coverage refinement
significantly improves the performance of Tarantula when
coincidental correctness frequently occurs. As a repre-
sentative example, the following faulty version of space
shows how this improvement is achieved.

Version 14:
int unifamp(…){

8801: error=0;
 /*Missing: error= */
8805: GetKeyword(Keywords[88], curr_ptr);
8807: if (error != 0) { …… };

The fault in this case is equivalent to missing the “if”
statement at line 8807, which triggers the failure only
when the return value of GetKeyword is one (indicating
that the keyword is found). The context pattern MISS-
ING_RET_CHECK shown in Section 4.2 captures this fail-
ure-triggering mechanism and strengthens the correlation
between program failures and the coverage of faulty
statement (line 8805). This results in significant reduction
in effort to examine the code before locating this fault
(186.3 vs. 28.5) by a developer.
7. Conclusion

Coverage-based fault localization (CBFL) techniques
exploit the correlation between program failures and the
coverage of faulty statements to locate faults. The occur-
rence of coincidental correctness can adversely affect their
effectiveness. In this paper, we have proposed an ap-
proach to address this problem. We observe when the
execution of faults triggers failures; some control flow and
data flow patterns would appear. Such patterns can be
derived empirically or analytically and used across differ-
ent programs. With these patterns, we refine code cover-
age to strengthen the correlation between program failures
and the coverage of faulty statements, making it easier for
CBFL techniques to locate faults. We have evaluated the
feasibility and effectiveness of our approach through em-
pirical investigations. The results show that coverage re-
finement with context patterns is a promising approach to
address the coincidental correctness problem in CBFL.
8. References
[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, On the

accuracy of spectrum-based fault localization, In Testing:
Academic and Industrial Conference, Practice and
Research Techniques, Pages 89-98, Sep., 2007.

[2] H. Agrawal and J.R. Horgan, Dynamic program slicing, In
Proc. of PLDI’90 , Pages 246 - 256, Nov., 1990.

[3] H. Agrawal, J. Horgan, S., Lodon, and W. Wong, Fault
Localization using Execution Slices and Dataflow Tests, In
Proc. of ISSRE’95, Pages 143-151, Oct., 1995.

[4] J.H. Andrews, L.C. Briand, and Y. Labiche, Using Mu-
tation Analysis for Assessing and Comparing Testing
Coverage Criteria, IEEE TSE, 32(8):608-624, 2006.

Table 4: Results with real faults in space

Faulty
versions

%COR(in
test pool)

Statement Coverage Refined Coverage
failure

correlation higher (equal) failure
correlation higher (equal)

v12 0.15% 1.000 0 (17.0) 1.000 0 (82.1)
v18 0.15% 1.000 0 (45.3) 1.000 0 (55.6)
v15 55.09% 0.646 172.3 (25.3) 0.982 30.1 (15.9)
v14 72.23% 0.605 186.3 (17.0) 0.953 28.5 (11.3)
v3 95.04% 0.512 456.6 (57.4) 0.609 350.3(35.6)

v29 99.77% 0.503 905.6 (309.7) 1.000 0 (23.0)

54

[5] B. Baudry, F. Fleurey, and Y. Le Traon, Improving test
suites for efficient fault localization, In Proc.of ICSE’06,
Pages 82 - 91, May, 2006.

[6] P.C. Bates, Debugging Heterogeneous Distributed Systems
using Event-based Models of Behavior, ACM Transactions
on Computer Systems, 13(1): 1-31,1995.

[7] K.T. Cheng, and A.S. Krishnakumar, Automatic funct-
ional test generation using the extended finite state
machine model, In Proc. of DAC’93, Pages 86-91, 1993.

[8] H. Cleve, and A. Zeller, Locating Causes of Program
Failures, In Proc. of ICSE’05,Pages: 342 -351, May, 2005.

[9] V. Dallmeier, C. Lindig, and A. Zeller, Lightweight Detect
Localization for Java, In Proc. of ECOOP’05, Pages
528-550, Jul., 2005.

[10] M.E. Delamaro, and J.C. Maldonado, Proteum-A Tool for
the Assessment of Test Adequacy for C Programs, In Proc.
of PCS’96, Pages 79-95, Jul., 1996.

[11] M. Daran, Software Error Analysis: A Real Case Study
Involving Real Faults and Mutations, In Proc. Of ISSTA’96,
Pages: 158-171, Oct., 1996.

[12] H.S. Do, S.G. Elbaum, and G. Rothermel, Supporting
Controlled Experimentation with Testing Techniques: An
Infrastructure and its Potential Impact, Empirical . Softw.
Eng., 10(4):405-435, Oct., 2005.

[13] J.A. Durães, and H.S. Madeira, Emulation of Software
Faults: A Field Data Study and a Practical Approach, IEEE
TSE, 32(11):849-867, Nov., 2006.

[14] I. Forgács and A. Bertolino, Preventing untestedness in
data-flow testing, Softw. Test., Verif. Reliab. 12(1):29–58,
2002.

[15] R.M. Hierons, Avoiding coincidental correctness in
boundary value analysis, ACM Trans. Softw. Eng.
Methodol., 15(3): 227-241, Jul., 2006.

[16] J.R. Horgan, and S. London, Data flow coverage and the C
Language, In Proc. of ISSTA’91, Pages 87-97, Oct., 1991.

[17] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
Experiments of the Effectiveness of Dataflow and
Controlflow Based Test Adequacy Criteria, In Proc. of
ICSE’94, Pages 191 - 200, May, 1994.

[18] J.A. Jones, M.J. Harrold, and J. Stasko, Fault Local-
ization Using Visualization of Test Information, In Proc.
of ICSE’02, Pages 54-56, May, 2002.

[19] J.A. Jones, and M.J. Harrold, Empircal Evaluation of the
Tarantula Automatic Fault-Localization Technique, In
Proc. of ASE’05, Pages: 273-282, Nov., 2005.

[20] S.H. Kim, K. Pan, and E.E.J. Whitehead, Memories of Bug
Fixes, In Proc. of FSE’06, Pages: 35-45, Nov., 2006.

[21] B. Liblit, A. Aiken, A.X. Zheng, and M. I. Jordan, Bug
isolation via remote program sampling, In Proc. of
PLDI’03, Pages 141-154, Jun., 2003.

[22] C. Liu, L. Fei, X.F. Yan, J.W. Han, and S. Midkiff,
Statistical Debugging: a Hypothesis Testing-Based
Approach, IEEE TSE, 32(10):1-17, 2006.

[23] B. Marick, The Weak Mutation Hypothesis, In Proc. of
ISSTA’91, Page 190-199, Oct., 1991.

[24] B. Marick, Faults of Omission, Software Testing and
Quality Engineering Magazine, 2(1), 2000.

[25] M. Renieris, and S. Reiss, Fault Localization With Nearest
Neighbor Queries, In Proc. of ASE’03, Pages 30-39, Oct.,
2003.

[26] D, J. Richardson, and M.C. Thompson, An Analysis of
Test Selection Criterria Using the RELAY Model of Fault
Detection, IEEE TSE,19(60):533-553, 1993.

[27] I. Vessey, Expertise in Debugging Compute Programs,
Inter. J. of Man-Machine Studies, 23(5):459-494, 1985.

[28] J.M. Voas and K.W. Miller, Applying a Dynamic
Testability Technique to Debugging Certain Classes of
Software Faults, Software Quality Journal, 2:61-75, 1993.

[29] Y.B. Yu, J.A. Jones, and M.J. Harrold, An Empirical
Study of the Effects of Test-Suite Reduction on Fault
Localization, In Proc. of ICSE’08, Pages 201-210, 2008.

[30] X.M. Wang, S.C., Cheung, W.K. Chan, and Z.Y. Zhang,
Taming Coincidental Correctness: Refine Code Coverage
with Context Pattern to Improve Fault Localization,
HKUST-CS08-05, 2008.

[31] E. Wong, Y. Qi, L. Zhao, and K.Y. Cai, Effective Fault
Localization using Code Coverage, In Proc. of
COMPSAC’07, Pages 449-456, Jul., 2007.

[32] E. Wong, and Y. Qi, Effective program debugging based
on execution slices and inter-block data dependency,
Journal of Systems and Software, 79(2):891–903, 2006.

[33] X.Y. Zhang, S. Tallam, N. Gupta, R. Gupta, Towards
locating execution omission errors, In Proc of PLDI’07,
Jun., Pages: 415-424, 2007.

[34] A. Zeller, Isolating cause-effect chains from computer
programs, In Proc. of FSE’02, Pages: 1-10, Nov., 2002.

Appendix A: Semantics of event expression
Let e[1,...,n] be a sequence of events e1, e2 …., en. The seman-

tics of event expression is described as follows:
Base case: The expression “T x” matches e[1,...,n] if and only

if n=1 and the type of e1 is T.
Sequential: “E1, E2” matches e[1,...,n] if and only if there

exist two integers i and j (1 i<j n) such that E1 matches e[1,...,i]
and E2 matches e[j,...,n]. “E1;E2” matches e[1,...,n] if and only
if there exist an integer i (1 i<n) such that E1 matches e[1,...,i]
and E2 matches e[i+1,...,n].

Kleene Closure: “E+” matches e[1,...,n] if and only if there
are k (k) subsequences e[a1,..,a2], e[a3,..,a4]…, e[a2k+1,.., a2k+2]
(1=a1 a2< a3 a4 … a2k+1 n) of e[1,...,n] such that E matches
each of them.

Concurrency: “E1 & E2” matches e[1,...,n] if and only if there
exists an integer i (1 i n) such that either E1 matches e[1,...,n]
and E2 match e[i,...,n], or E1 matches e[i,...,n] and E2 match
e[1,...,n].

Choice: “E1|E2” matches e[1,...,n] if and only E1 matches
e[1,...,n] or E2 matches e[1,...,n].

Negation: “E1,~E,E2” matches e[1,...,n] if and only if there
exist two integers i and j (1 i<j n) such that E1 matches e[1,...,i],
E2 matches e[j,...,n], and E does not match e[i+1,...,j-1]. “E1,~E”
and “~E,E1” are similarly defined.

55

