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Coverage-based fault localization (CBFL) techniques contrast the execution spectra of a pro-
gram entity to assess the extent of how much a program entity is being related to faults.

However, di®erent test cases may result in similar executions, which further make the execution

spectra of program entities be indistinguishable among similar executions. As a consequence,

most of the current CBFL techniques are impacted by the noise of indistinguishable spectra. To
alleviate the impact of execution similarity and improve the e®ectiveness of CBFL techniques,

we propose a general fault localization framework. This framework is general to current
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execution spectra based CBFL techniques, which could synthesize a fault localization technique
based on a given base technique. To synthesize the new technique, we use the concept of

coverage vector to model execution spectra and capture the execution similarity, then reduce

the impact of execution similarity by counting distinct coverage vectors, and ¯nally assess the
suspiciousness of basic blocks being related to faults with the spectra of distinct coverage

vectors. We adopt four representative fault localization techniques as base techniques, use seven

Siemens programs and three median-sized real-life UNIX utility programs as subject programs,

to conduct an experimental study on the e®ectiveness of our framework. The empirical evalu-
ation shows that our framework can e®ectively alleviate the impact of execution similarity and

generate more e®ective fault localization techniques based on existing ones.

Keywords: Fault localization; coverage vector; execution similarity.

1. Introduction

Software has been extensively used in the government sectors, research institutes,

commercial companies, and so on. Not only such organizations but also our daily life

fundamentally relies on software. However, software defects are still hard to be

completely avoided in software releases. As a result, software failures caused by defects

lead to the loss of private properties, huge costs to business plans, and even serious

disasters. How to improve the quality of software and reduce the chance of software

failures is always a realistic but challenging task in software engineering research.

Many software failures are caused by program faults [1], which are mistakenly

imported into software by developers. To detect and ¯x such program faults, soft-

ware debugging is a signi¯cant and practical process [2–4]. Typically, a debugging

task involves at least three steps [5, 6]: (1) locate the faults, (2) ¯x the located faults,

(3) and regressively test the repaired program. During this process, fault localization

has been recognized as the most di±cult, tedious, and time-consuming step [7, 8].

Using an automatic and e®ective technique to assist fault localization is promising to

alleviate the problem.

Many kinds of fault localization techniques have been proposed in the past dec-

ades. For example, by isolating failure-inducing input components and analyzing

program state changes during a failed execution against a successful one, delta

debugging [9–11] produces cause-e®ect chains and locates suspicious statements.

Dynamic slicing based fault localization techniques narrow down the suspicious

statements using backward slicing approach [12]. Gupta et al. [13] combine the delta

debugging, use both the forward and backward slicing to narrow down statements.

However, delta debugging and dynamic slicing may not be e®ective for large scale

software due to the complicated state propagation [14].

Coverage-based fault localization (CBFL) techniques [15, 16, 3, 17, 18] are a

popular family of fault localization techniques. Previous studies showed that CBFL

techniques are e®ective in locating faults [8]. The key insight behind CBFL is that

dynamic features (such as execution spectra) of fault-relevant program entities (such

as statements, blocks, and predicates) are more sensitive to the di®erences between

the set of failed executions and the set of passed executions [15, 16, 3, 19]. By
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applying a statistical approach to correlate program entities with failures, and for-

mulating a comparison function to contrast the dynamic features of program entities

between passed and failed executions, CBFL techniques can locate the program

entities, which are strongly correlated to the observed execution failures.

There are several representative CBFL techniques, such as Tarantula [15, 8],

CBI [3, 20], SBI [21], Ochiai [22], Jaccard [22], and so on. For each statement,

Tarantula [15, 8] calculates the ratio of failed executions exercising the statement

and the ratio of passed executions exercising it, and uses the ratio of the former to the

sum of the former and the latter to assess the extent of how much that statement is

related to faults. CBI [3, 20] compares the probability that a program fails when a

predicate is ever evaluated to be true with the probability that the program fails

when the predicate is ever evaluated, and use the former subtracted from the latter to

assesses the possibility of the predicate being related to faults. Yu et al. [21] modify

CBI to a statement-level technique SBI. For each statement, SBI calculates the

number of failed executions exercising the statement and the number of passed

executions exercising it, and uses the ratio of the former to the sum of the former and

latter to assess the extent of how much each statement being related to faults. Abreu

et al. [22] adopt the Ochiai and Jaccard coe±cient factors to design the comparison

formula and evaluate the suspiciousness scores of statements. There are some other

similar techniques [23, 24], which employ di®erent heuristics to assess the suspi-

ciousness of a program entity being related to faults and sort the program entities

into a list in the descending order of the calculated suspiciousness scores.

During software testing, test cases should be designed to cover di®erent branches

or paths, so as to manifest more program states [25, 26]. However in practice, it is

common that test cases may not always be generated to satisfy some coverage cri-

teria, and there is no guarantee that the test suite reduction task is always conducted

before testing to eliminate similar executions. As a result, di®erent executions still

have chance to generate similar or even identical execution spectra [21, 27]. In pre-

vious CBFL techniques, most of them ignore the execution similarities, but such

similar or even identical execution spectra can be indistinguishable, in terms of

program coverage, which may bring negative impact on the e®ectiveness of fault

localization techniques [6, 48, 28]. For example, Hao et al. [6] show that the similarity

may harm the e®ectiveness of CBFL techniques. Wong et al. [48] demonstrate the

contribution of di®erent test cases for CBFL techniques. It is suggested that for a

CBFL technique, similar execution spectra should not have as much contribution to

the e®ectiveness of fault localization as others. On the other hand, when a passed

execution and a failed execution share the same execution path, coincidental cor-

rectness may have occurred [28]. In coincidental correctness cases, the fault-relevant

program entity is exercised in both passed and failed executions, and thus becomes

di±cult to be recognized via contrasting the corresponding execution spectra. In one

word, the execution similarity could have negative impact on the e®ectiveness of

previous fault localization techniques or even make them lose e®ect. Previous study

also shows that such execution similarity is a frequent phenomenon in realistic [29].
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In our previous work [30], we have proposed a novel CBFL approach to measure

execution similarity, an approach to eliminate test cases associating with similar

execution, and a fault localization technique with similarity reduction. However, our

previous approach is limited by a speci¯c comparison function to assess the fault

related program entities. Since most previous CBFL techniques shall be impacted by

execution similarity, we are interested in the problems that how to capture the

similarity and whether previous CBFL techniques could be improved.

In this paper, we propose a general framework named PAFL to address the

problem that execution similarity may reduce the e®ectiveness of fault localization.

In our framework, we mainly focus on two research questions: (1) how to evaluate the

execution similarity, and (2) how to alleviate the impact of execution similarity on

fault localization. Our framework is designed to synthesize a new fault localization

technique from a base one. In our framework, we ¯rst use the concept of coverage

vector to count distinct execution paths and capture the presence of execution

similarity. Then based on the base technique, we calculate the failing extent of each

distinct coverage vector, and mark it as a failed or passed distinct coverage vector

according to whether it is ever exercised in a failed execution or not. Next, for each

basic block, we evaluate the suspiciousness score of that basic block using the exe-

cution statistics of distinct coverage vectors. At last, we sort all the basic blocks in

the descending order of their computed suspiciousness scores.

We select four representative techniques, Ochiai [22], Jaccard [22], Tarantula [15],

and SBI [21], as base techniques, use seven Siemens programs and three median-sized

real-life UNIX utility programs to evaluate our framework. The empirical evaluation

results show that our framework can synthesize a fault localization technique that is

more e®ective than the base one, thus alleviates the impact of execution similarity on

the selected subject techniques and programs. We further compare the e®ectiveness of

the best synthesized technique in our framework with existing related work SAFL [6]

and ICST10 [31], which also have the concept of eliminating similar executions, and

¯nd that the best technique synthesized in our framework is more promising than

SAFL and ICST10 in locating faults, in the case of the presence of execution similarity.

The contributions of this paper are two-fold. (1) We propose a general framework

to synthesize new fault localization techniques from base ones, in order to address the

problem of execution similarity; (2) We adopt four representative fault localization

techniques as base techniques, use seven Siemens programs and three median-sized

real-life UNIX utility programs as subject programs, to conduct an experimental

study on the e®ectiveness of our framework. The empirical evaluation shows that our

framework can alleviate the impact of execution similarity, and synthesize more

e®ective fault localization techniques based on existing ones.

We organize the rest of this paper as follows. Section 2 uses a concrete example to

demonstrate previous techniques and motivate our idea. Section 3 elaborates on our

framework and illustrates it using the example in Sec. 2. Section 4 presents the

controlled experiment and analyzes the results. Sections 5 and 6 review related work

and conclude the paper, respectively.
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2. Motivation

In this section, we use an example to demonstrate previous techniques and motivate

our idea.

2.1. Motivating example

The code excerpt in Fig. 1 ¯nds the middle value in three given numbers. A fault

exists in statement s12, which mistakenly accesses the variable x instead of m. As an

unexpected result, the program may output incorrect results because the program

B
locks

Statements

Test cases Previous techniques 

t1 t2 t3 t4 t5 t6 t7 t8 t9

Ochiai Jaccard Tarantula SBI 

(1,2,3)
(3,1,2)
(3,2,3)
(1,3,2)  
(1,3,3)
(1,1,1)
(2,3,2)
(2,1,3)
(3,4,1)

F F P F P P P P P score rank score rank score rank score rank

b1
s1

Mid() {
 int x, y, z, m;
 read ("Enter:", x, y, z); • • • • • • • • • 0.58 4 0.33 4 0.5 5 0.33 5 

s2  m=z; 

s3  if (y<z){ 

b2 s4    if (x<y) • • • • 0.58 4 0.4 1 0.67 2 0.5 2 
b3 s5       m=y; • 0.58 4 0.33 4 1.0 1 1.0 1 
b4 s6    else if (x<z) • • • 0.33 5 0.2 5 0.5 5 0.33 5 
b5 s7

     m=x;
 } • 0.0 9 0.0 9 0.0 9 0.0 9 

b6 s8  else if (x>y) • • • • • 0.26 7 0.14 7 0.33 7 0.2 7 
b7 s9      m=y;

b8 s10  else if (x>z) • • • • • 0.26 7 0.14 7 0.33 7 0.2 7 
b9 s11      m=x; • 0.0 9 0.0 9 0.0 9 0.0 9 
b10 s12  printf("The middle is:", x); 

 /* a mutant of m */
}

• • • • • • • • • 0.58 4 0.33 4 0.5 5 0.33 5 

Code examining effort to locate fault: 40% 40% 50% 50%

B
locks

Distinct paths Our approaches

p1 p2 p3 p4 p5   on 
Ochiai 

on
Jaccard  

on
Tarantula 

on
SBIt1 t2 t3 t4 t5 t6 t7 t8 t9

F F F P P score rank score rank score rank score rank

b1 • • • • • 0.77 2 0.6 2 0.5 4 0.6 4 

b2 • •  • 0.67 3 0.5 3 0.57 2 0.67 2 
b3 •  0.58 4 0.33 4 1.0 1 1.0 1 
b4 •  •  0.41 7 0.25 7 0.4 7 0.5 7 
b5 • 0.0 9 0.0 9 0.0 9 0.0 9 
b6  • • 0.41 7 0.25 7 0.4 7 0.5 7 
b7

b8 • • 0.41 7 0.25 7 0.4 7 0.5 7 
b9 • 0.0 9 0.0 9 0.0 9 0.0 9 

b10 • • • • • 0.77 2 0.6 2 0.5 4 0.6 4 

Code examining effort to locate fault: 20% 20% 40% 40%

Fig. 1. The motivating example and execution spectra.

A Fault Localization Framework to Alleviate the Impact of Execution Similarity 967

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

3.
23

:9
63

-9
98

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 Z
ha

ng
 Z

he
ny

u 
Z

ha
ng

 o
n 

05
/1

0/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



should output the value of m instead of x. We know that the faulty statement (s12)

and the faulty basic block (b10) will be exercised in every run. However, when we look

at the execution results of nine test cases, we ¯nd that this program can still output

correct results for six among the nine test cases. Apparently, coincidental correct-

ness [28, 31, 29] happens frequently in this program. When coincidental correctness

occurs, it is di±cult for programmers to recognize a passed program execution [31,

29], which exercises the faults.

There are 9 test cases in Fig. 1, named t1 to t9. Each test case refers to a triple of

3 numbers, and these 3 numbers are the values of x, y, z, respectively. For the 9 test

cases, we use the mark \�" in the cell to indicate that a statement is exercised in the

program execution with respect to a test case. The execution results (P for pass and

F for fail) are shown in the table header. The execution spectra for each basic block

can be calculated through the marked \�" and execution results. For example, b1 is

exercised in each of the three failed executions and each of the six passed execu-

tions. We use failedðb1Þ ¼ 3 and passedðb1Þ ¼ 6 to denote these two numbers,

respectively.

2.2. Previous techniques

We apply four previous techniques Ochiai [22], Jaccard [22], Tarantula [15], and

SBI [21] to locate the fault (statement s12 or basic block b10) in this example. All

these four techniques are representative CBFL techniques, which are always

employed as subject techniques in Sec. 4 of this paper.

The suspiciousness scores and rankings of blocks are also shown in Fig. 1. Let us

take b1 and the technique Tarantula for illustration. The formula of Tarantula [15] is
%failedðb1Þ

%failedðb1Þþ%passedðb1Þ, where%failedðb1Þ is the ratio of failed executions that exercise b1
to the total number of failed executions, and %passedðb1Þ is the ratio of passed

executions that exercise b1 to the total number of passed executions. In the example,

the total numbers of failed executions and passed executions are 3 and 6, respec-

tively. Therefore, %failedðb1Þ ¼ 1 and %passedðb1Þ ¼ 1. As a result, Tarantula

assigns the suspiciousness score 0.5 to b1. Larger suspiciousness score means that the

block is more suspicious to contain faults.

In previous studies, programmers are suggested to search for faults by examining

the basic blocks in descending order of their suspiciousness scores. The percentage of

basic blocks examined before reaching a fault is regarded as the code examining

e®ort, known as the expense evaluation metrics, to locate the fault using that

technique. In Fig. 1, the order of a block to be examined is also given, named as rank.

Take the result of Tarantula for illustration, b3 has the highest suspiciousness score

and thus be ranked as no. 1. For the faulty block, b10, the suspiciousness score is no

larger than other 5 blocks, and thus b10 is ranked as no. 5. With such an evaluation

metric, programmers ¯nally need to examine 50% of all code to locate the fault, when

applying Tarantula. The results of Ochiai, Jaccard, and SBI can be similarly

explained.
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Unfortunately, the results of these four techniques are not as good as expected

and the code examining e®orts to locate the fault are huge (e.g, 50%). By checking

the computation of these techniques, we have the following ¯ndings. For example,

Tarantula and SBI give b3 the highest suspiciousness score, and this makes Tarantula

and SBI somehow ine®ective to locate the fault. The reason that b3 gets the highest

suspiciousness score is that it is only exercised in one failed execution and none

passed execution. Tarantula and SBI calculate the suspiciousness score 1 to such

trivial execution spectra. On the other hand, Ochiai and Jaccard have addressed such

a common problem by decreasing the suspiciousness scores for basic blocks having

such execution spectra. As a result, b3 is not assigned the highest suspiciousness score

by Ochiai and Jaccard, which ¯nally need less code examining e®ort to locate the

fault. Since the task of this example is not to explain how Ochiai and Jaccard manage

to do that, let us continue our investigation on how to improve the e®ectiveness of

the four techniques.

2.3. Questioning the reasons

The faulty statement s12 or basic block b10 happens to be exercised in all passed and

failed executions, so it is hard to assess its suspiciousness being related to faults from

execution spectra. On the other hand, b4 is given higher suspiciousness score than b6
and b8 because the latter happens to be exercised in relatively more passed executions

than the former. In details, b4 is exercised in one failed execution (t2) and two passed

executions (t3 and t8), while b6 and b8 are exercised in one failed execution (t4) and

four passed executions (t5, t6, t7, and t9). Among the three test cases (t2, t3, and t8)

which exercise b4, 33% of them are failed, while only 20% of the test cases that

exercise b6 and b8 are failed. According to the basic insight of CBFL, executions

exercising b4 are more likely to fail. Therefore, b4 is deemed more suspicious than b6
and b8.

In addition, we also observe that coincidental correctness may have occurred in

the program executions of test cases t3, t5, t6, and t7, because t2 and t4 are failed

test cases while they have the same execution path with t3, t6, t7 and t8. In this

example, it seems that there are some clues to identify the occurring of coincidental

correctness.

When looking at the executions for test cases t4, t5, t6, and t7, we ¯nd that they

have identical coverage in terms of program execution. It is not strange because of

the existence of coincidental correctness issue. To escape from the complicated

reason of coincidental correctness cases, let we use the term \execution similarity"

to name such a phenomenon. That is, when some test cases generate identical

program execution, we observe similar execution and name such a phenomenon as

\execution similarity". Previous studies have shown that execution similarity can be

frequently observed in realistic programs [6, 27, 21]. To alleviate the impact of

execution similarity, we use the execution spectra of paths to measure the execution

similarity.

A Fault Localization Framework to Alleviate the Impact of Execution Similarity 969
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2.4. Our approaches

Since execution similarity is observed on t4, t5, t6, and t7 (t4 ¯nally reveals a failure),

we know that it is not safe to mark t5, t6, and t7 as passed test cases to continue

computation. It is because that we now have evidence (from t4) that the faulty

statement must have been exercised in the program execution of t5, t6, and t7. To

play safe, we adopt a conservative strategy. We count the distinct coverage among

executions for all test cases, and mark a distinct coverage as a \failed coverage" if it is

ever associated with a failed test case as shown in Fig. 1. On the contrary, we mark a

distinct coverage as a \passed coverage" if it is never associated with a failed test

case. To ease our presentation, we also use the intuitive name \distinct path" to refer

to such a \distinct coverage". The distinct paths are shown in the lower part of

Fig. 1. By such marking, we know that distinct paths p1, p2, and p3 are failed ones,

distinct paths p4 and p5 are passed ones.

By such a transformation, we believe that we have alleviated the impact of co-

incidental correctness since we conservatively mark each failure-causing distinct path

as failed. We use such distinct path as program unit, and apply a base CBFL

technique to calculate suspiciousness for them. For example, we adopt the formula of

Jaccard failed 0ðbiÞ
passed 0ðbiÞþð#total of failed distinct pathsÞ to estimate the suspiciousness of a basic

block being related to faults, where failed 0ðbiÞ stands for the number of failed distinct

paths that exercise bi, and passed 0ðbiÞ stands for the number of passed distinct paths

that exercise bi. For example, for b1, we calculate its suspiciousness score as
3

2þ3 ¼ 0:6.

Finally, we ¯nd that we need only 20% code examining e®ort to locate the fault.

Further, in the motivating example, it seems that we have found a way to gen-

eralize the idea to apply other kind of techniques. This time, suppose we adopt the

formula of Ochiai failed 0ðbiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfailed 0ðbiÞþpassed 0ðbiÞÞð#total of failed distinct pathsÞ

p to estimate the sus-

piciousness of a basic block, where failed 0ðbiÞ stands for the number of failed distinct

paths that exercising bi, and passed 0ðbiÞ stands for the number of passed distinct

paths that exercising bi. Take b1 for illustration again, its suspiciousness score is

calculated 3ffiffiffiffiffiffi
5�3

p ¼ 0:77. Finally, we ¯nd that we need only 20% code examining e®ort

to locate the fault. Again, the e®ectiveness of Ochiai is also improved. Even when we

move to Tarantula and SBI, we ¯nd that with such a transformation, their e®ec-

tiveness can be improved.

2.5. Challenges

The above example has interestingly demonstrated that previous techniques may not

be e®ective when coincidental correctness happens, while our approach has the po-

tential to partially address the problem. However, we also foresee some challenges.

For example, how to formally de¯ne a \failed distinct path"? Is there any other

technique on which our approach can be applied? Can our approach be generalized

and apply on di®erent CBFL techniques? Will our approach also work well on
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di®erent CBFL techniques? In the next sections, we will elaborate on our model and

answer these questions.

3. Our Framework

In this section, we give the problem settings, illustrate the whole picture of our

framework, give preliminaries and de¯nitions, and elaborate on our fault localization

framework, which is named PAFL.

3.1. Problem settings

Let P be a program containing faults. We use P ¼ fb1; b2; . . . ; bng to denote that

program P has n basic blocks (b1 to bn). We further use T ¼ ft1; t2; . . .g to denote the
set of test cases.

We further use the term P ðtiÞ to denote the execution of P over ti. We use the

term failedðtiÞ to denote the failed execution of P over ti, and the term passedðtiÞ to
denote the passed execution of P over ti. Our aim is to estimate the extent of how

much each basic block bi of P is related to faults. In this paper, we also use the term

suspiciousness score of a basic block to denote such a value. We sort the basic blocks

into a list in descending order of their calculated suspiciousness scores. Programmers

may search along such a list to locate faults in programs [15, 4].

In Fig. 1, P ¼ fb1; b2; . . . ; b10g is the Mid method. T ¼ ft1; t2; . . . ; t9g is the set of

the nine test cases.

3.2. Preliminaries and de¯nitions

To ease our presentation, we involve in the de¯nition of \coverage vector" to for-

mally describe the concept of \distinct path" used in Sec. 2.

De¯nition 1. An original coverage vector ocvi ¼ hb1; b2; . . . ; bniðbj 2 f0; 1g for

j ¼ 1; 2; . . . ;n) of program execution P ðtiÞ (P 's execution over ti) is a tuple.

We use ocviðbjÞ to retrieve the jth element in the tuple, where ocviðbjÞ ¼ 1 means

the basic block bj is exercised in the execution, ocviðbjÞ ¼ 0 means bi is not exercised

in the execution. For the coverage vector ocvi with respect to execution P ðtkÞ, we also
say P ðtkÞ covers ocvi, and denote it as ocvi 2 P ðtkÞ.

In Fig. 1, there are nine original coverage vectors. The coverage vector with

respect to test case t1 is ocv1 ¼ h1; 1; 1; 0; 0; 0; 0; 0; 0; 1i.
Apparently, di®erent executions (even both passed executions and failed execu-

tions) may have identical original coverage vectors. So let us move to the next

de¯nition.

De¯nition 2. The set of distinct coverage vector set CV ¼ fcv1; cv2; . . .g is the

distinct set (with no repeating elements) of all original coverage vectors ocvi with

respect to the program execution P ðtkÞ of each test case tk. Each element cvi 2 CV is
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called a coverage vector. Similarly, we use cviðbjÞ to retrieve the jth element in the

tuple of cvi.

By such de¯nition, we know that we have cvi 6¼ cvj for any two coverage vectors cvi
and cvjð1 � i < jÞ. In Fig. 1, there are ¯ve distinct coverage vectors, namely,

cv1 ¼ h1; 1; 1; 0; 0; 0; 0; 0; 0; 1i, cv2 ¼ h1; 1; 0; 1; 0; 0; 0; 0; 0; 1i, cv3 ¼ h1; 0; 0; 0; 0; 1; 0; 1;
0; 1i, cv4 ¼ h1; 1; 0; 1; 1; 0; 0; 0; 0; 1i, and cv5 ¼ h1; 0; 0; 0; 0; 1; 0; 1; 1; 1i.

3.3. A whole picture of our framework

We recall that our aim is to estimate the extent of how much each basic block is

related to faults, considering the impact of execution similarity. The main steps

include: (1) how to estimate the execution similarity, and (2) how to evaluate the

suspiciousness scores of basic blocks in case of presence of execution similarity. Our

approach mainly addresses the two problems and a whole picture of our framework is

shown in Fig. 2.

As shown in Fig. 2, when some executions reveal failures, we know that there must

exist some faults in the program. The execution statistics are inputs of our fault

localization framework. To capture the execution similarity, we make use of the

coverage vector as a kind of program entity, and calculate its execution spectra.

Executions with identical coverage vector are deemed similar. After that, we cal-

culate the failing extent for each distinct coverage vector. For each distinct coverage

vector, if there is a failed execution exercising it, that indicates that executions

covering it ever reveal failures. If all executions exercising this coverage vector are

passed ones, it indicates that among all executions covering this coverage vector, no

one reveals failure. As demonstrated in the motivation section, we mark the coverage

vectors which are ever exercised in a failed execution as failed coverage vectors, and

mark the coverage vectors which are never exercised in a failed executions as passed

coverage vectors. For each block, we next estimate the suspiciousness score by

contrasting the execution spectra of the coverage vectors associated with it. Finally,

Run test cases
over program

Log execution 
information

E l

Use base techniques to synthesize 
new technique in our framework

The PAFL framework Section 3 5

Collect
Employ a

base technique

Employ a
base technique 

to compute 
suspiciousness 

scores
Generate
ki li f

Definition 1

The PAFL framework Section 3.5

Section 3.1

coverage
vector

base technique
to calculate 

failing extent

Compute tie-
breaking values

ranking list of
basic blocks

Definition 2

Section 3.4 Later Section 3.5

Fig. 2. A whole picture of our framework.
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we generate a ranked list of basic blocks in descending order of their calculated

suspiciousness scores. For tie-cases, we also have a tie-breaking strategy.

In our framework, we work on base techniques to synthesize new fault localization

techniques. Compared with other fault localization frameworks (such as [32]), our

framework is di®erent in that it is designed to alleviate the impact of execution

similarity. Compared with other CBFL techniques, the techniques synthesized in our

framework calculate suspiciousness scores of blocks according to the execution

spectra of coverage vectors, rather than statements or blocks. In addition, we do not

limit the technique employed to calculate the failing extent and suspiciousness

scores. Previous studies [18] introduce a general formula

ST ðbiÞ ¼ fT ðanpðbiÞ; anfðbiÞ; aepðbiÞ; aefðbiÞÞ
to represent the calculation of suspiciousness scores, where the four parameter

anpðbiÞ, anfðbiÞ, aepðbiÞ, and aefðbiÞ stand for the number of passed executions that do

not exercise bi, the number of failed executions that do not exercise bi, the number of

passed executions that exercise bi, and the number of failed executions that exercise

bi, respectively. They form a general problem setting for CBFL techniques, and 33

existing techniques have been expressed using such a setting [18, 19]. Since we also

based on such a setting to propose our framework, our approach is a general

framework for fault localization, in which many popular techniques can be applied.

In our framework, the computation include two steps, the calculation of failing

extent and suspiciousness scores.

To ease the presentation, we use

FT ¼ fT ðanpðtj; cviÞ; anfðtj; cviÞ; aepðtj; cviÞ; aefðtj; cviÞÞ
to stand for the core formula of failing extent using a base fault localization technique

T , where anpðtj; cviÞ, anfðtj; cviÞ, aepðtj; cviÞ, and aefðtj; cviÞ are four parameters about

the execution statistics of the coverage vector cvi. In this formula, anpðtj; cviÞ stands for
the number of passed executions that do not exercise cvi, anfðtj; cviÞ stands for the
number of failed executions that do not exercise cvi, aepðtj; cviÞ stands for the number

of passed executions exercising cvi, aefðtj; cviÞ stands for the number of failed execu-

tions exercising cvi, and FT calculates the failing extent for the coverage vector cvi.

We use

ST ¼ fT ðanpðcvj; biÞ; anfðcvj; biÞ; aepðcvj; biÞ; aefðcvj; biÞÞ
to stand for the core formula of suspiciousness scores when applying a base fault

localization technique T , where anpðcvj; biÞ, anfðcvj; biÞ, aepðcvj; biÞ, and aefðcvj; biÞ
are four parameters about the execution spectra of basic block bi. In this for-

mula, anpðcvj; biÞ stands for the number of passed coverage vectors that do not cover

bi, anfðcvj; biÞ stands for the number of failed coverage vectors that do not cover bi,

aepðcvj; biÞ stands for the number of passed executions covering bi, aefðcvj; biÞ stands
for the number of failed executions covering bi, and ST calculates the suspiciousness

score for the block bi.
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The general method to apply a base technique in our framework are introduced in

the next two sections, which elaborate on FT and ST .

3.4. Calculation of failing extent

In our framework, we use the failing extent of a coverage vector to estimate the

execution similarity.

There may be several coverage vectors that are covered by di®erent failed

executions, and a coverage vector may be covered by both passed executions and

failed executions. For example, in Sec. 2, the coverage vector cv3 ¼ h1; 0; 0; 0; 0; 1; 0;
1; 0; 1i is covered by one failed execution (t4) and three passed executions (t5, t6, and

t7). We use the term \failing extent of a coverage vector" to capture the extent of an

execution (which covers a speci¯c coverage vector) failing. In the following, the

failing extent of a coverage vector is denoted as F ðcviÞ.
When employing a base technique to synthesize a fault localization technique in

our framework, we adapt FT ðcviÞ to calculate the failing extent of a coverage vector.

The failing extent of a coverage vector cvi is calculated as Eq. (1).

FT ðcviÞ ¼ fT ðanpðtj; cviÞ; anfðtj; cviÞ; aepðtj; cviÞ; aefðtj; cviÞÞ: ð1Þ

In Eq. (1), fT is the formula of the base technique T , anpðtj; cviÞ stands for the

number of passed executions that do not exercise cvi, anfðtj; cviÞ stands for the

number of failed executions that do not exercise cvi, aepðtj; cviÞ stands for the number

of passed executions exercising cvi, and aefðtj; cviÞ stands for the number of failed

executions exercising cvi.

For example, if we use the equation of SBI [21] as the base technique, the failing

extent is calculated using the formula of SBI TSBIðbiÞ ¼ aef ðtj;biÞ
aef ðtj;biÞþaepðtj;biÞ as Eq. (2).

FSBIðcviÞ ¼
aefðtj; cviÞ

aefðtj; cviÞ þ aepðtj; cviÞ
: ð2Þ

In Eq. (2), aefðtj; cviÞ and aepðtj; cviÞ respectively refer to the number of failed

executions and passed executions that cover cvi. They are calculated using Eqs. (3)

and (4).

aefðtj; cviÞ ¼ jftj j cvi 2 failedðtjÞgj ð3Þ
aepðtj; cviÞ ¼ jftj j cvi 2 passedðtjÞgj: ð4Þ

According to Eq. (2), for the coverage vectors in the motivating example in

Sec. 2, the failing extent is calculated as FSBIðcv1Þ ¼ 1:00, FSBIðcv2Þ ¼ 0:50,

FSBIðcv3Þ ¼ 0:25, FSBIðcv4Þ ¼ 0:00, and FSBIðcv5Þ ¼ 0:00, respectively. Since cv1, cv2,

and cv3 have ever been exercised in a failed execution, thus these three coverage

vectors are failed coverage vectors. On the contrary, cv4 and cv5 are passed coverage

vectors.
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3.5. Calculation of suspiciousness scores

Following the popular fault localization manner, in our framework, we use the sus-

piciousness score of a basic block to estimate the extent of a basic block being related

to faults. In this paper, we denote the suspiciousness score of the block bi as SðbiÞ.
When employing a base technique to synthesize a fault localization technique in

our framework, we adapt ST ðbiÞ to calculate the suspiciousness score. The suspi-

ciousness score of a basic block bi is calculated as Eq. (5).

ST ðbiÞ ¼ fT ðanpðcvj; biÞ; anfðcvj; biÞ; aepðcvj; biÞ; aefðcvj; biÞÞ: ð5Þ
In Eq. (5), fT is the formula of the base technique T , anpðcvj; biÞ, anfðcvj; biÞ,

aepðcvj; biÞ, and aefðcvj; biÞ mean the number of passed coverage vectors that do not

cover bi, the number of failed coverage vectors that do not cover bi, the number of

passed coverage vectors that cover bi, and the number of failed coverage vectors that

cover bi, respectively.

For example, if we use SBI as the base technique, we can adopt the formula of SBI

to calculate the suspiciousness score. It is shown as Eq. (6).

SSBIðbiÞ ¼
aefðcvj; biÞ

aefðcvj; biÞ þ aepðcvj; biÞ
: ð6Þ

Here, SðbiÞ represents the extent of how much a basic block is related to faults.

The greater the value, the more the basic block will be related to faults. Let us recall

the motivating example in Sec. 2 and revisit the suspiciousness scores calculated in

Sec. 2. According to Eq. (6), the suspiciousness scores for b1 and b10 are calculated as
3

3þ2 ¼ 0:60. The suspiciousness score for b2 is calculated as 2
2þ1 ¼ 0:67. The suspi-

ciousness score for b3 is calculated as 1
1þ0 ¼ 1:00. The suspiciousness scores for b4, b6

and b8 are calculated as 1
1þ1 ¼ 0:50. The suspiciousness scores for b5 and b9 are

calculated as 0
0þ1 ¼ 0:00.

Till now, we have assigned a suspiciousness score to each basic block. We then

sort all the basic blocks in descending order of their suspiciousness scores, to form a

ranked list of all basic blocks. All the basic blocks not exercised in any execution will

be grouped to form a new basic block, which is added to the end of the ranked list.

After all the blocks are sorted according to their suspiciousness of being related to

faults and form a list, programmers may search along the generated list for the fault.

Particularly, when some basic blocks have identical suspiciousness scores, we use

Eq. (7) to break tie.

CðbiÞ ¼
P

cvjðbiÞ¼1½FT ðcvjÞ�
jfcvj jFT ðcvjÞ > 0 ^ cvjðbiÞ ¼ 1gj : ð7Þ

Equation (7) calculates the average failing extent of the coverage vectors that

exercising basic block bi. The rationale is that for two basic blocks having identical

probability of causing failure, we deem the one whose appearance in a path having

higher chance to reveal failures as more fault-relevant.
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Table 1. The 34 statement-level fault-localization techniques.

Name Failing extent of coverage vectors Suspiciousness scores of blocks

Jaccard [33] tef=ðtnf þ tef þ tepÞ cef=ðcnf þ cef þ cepÞ
Anderberg [34] tef=ðtef þ 2ðtnf þ tepÞÞ cef=ðcef þ 2ðcnf þ cepÞÞ
Sørensen-

Dice [35]
tef=ðtef þ tnf þ tepÞ cef=ðcef þ cnf þ cepÞ

Dice [36] 2tef=ðtef þ tnf þ tepÞ 2cef=ðcef þ cnf þ cepÞ
Kulczynskil [37] tef=ðtnf þ tepÞ cef=ðcnf þ cepÞ
Kulczynski2 [37] 1

2

tef
tefþtnf

þ tef
tefþtep

� �
1
2

cef
cefþcnf

þ cef
cefþcep

� �

Russell and

Rao [38]

tef=ðtef þ tnf þ tep þ tnpÞ cef=ðcef þ cnf þ cep þ cnpÞ

Hamann [37] ðtef þ tnp � tnf � tepÞ=ðtef þ tnf

þ tep þ tnpÞ
ðcef þ cnp � cnf � cepÞ=ðcef þ cnf

þ cep þ cnpÞ
Simple

Matching [39]
ðtef þ tnpÞ=ðtef þ tnf þ tep þ tnpÞ ðcef þ cnpÞ=ðcef þ cnf þ cep þ cnpÞ

Sokal [37] 2ðtef þ tnpÞ=ð2tef þ 2tnp þ tnf þ tepÞ 2ðcef þ cnpÞ=ð2cef þ 2cnp þ cnf þ cepÞ
M1 [40] ðtef þ tnpÞ=ðtnf þ tepÞ ðcef þ cnpÞ=ðcnf þ cepÞ
M2 [40] tef=ðtef þ tnp þ 2tnf þ 2tepÞ cef=ðcef þ cnp þ 2cnf þ 2cepÞ
Rogers and

Tanimoto [41]

ðtef þ tnpÞ=ðtef þ tnf þ 2tnf þ 2tepÞ ðcef þ cnpÞ=ðcef þ cnf þ 2cnf þ 2cepÞ

Goodman [42] ð2tef � tnf � tepÞ=ð2tef þ tnf þ tepÞ ð2cef � cnf � cepÞ=ð2cef þ cnf þ cepÞ
Hamming [43] tef þ tnp cef þ cnp
Euclid [44]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tef þ tnp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cef þ cnp

p
Ochiai [45] tefffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtefþtnf ÞðtefþtepÞ
p cefffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcefþcnf ÞðcefþtepÞ
p

Overlap [44] tef=minðtef ; tnf ; tepÞ cef=minðcef ; tnf ; cepÞ
Tarantula [15] tef=ðtefþtnf Þ

tef=ðtefþtnf Þþtep=ðtepþtnpÞ
cef=ðcefþcnf Þ

cef=ðcefþcnf Þþcep=ðcepþcnpÞ
Zoltar [46] tef

tefþtnfþtepþ
10000tnf tep

tef

cef

cefþcnfþcepþ
10000cnf cep

cef

Ample [47] tef
tefþtnf

� tep
tepþtnp

���
��� cef

cefþcnf
� cep

cepþtnp

���
���

Wong1 [48] tef cef
Wong2 [48] tef � tep cef � cep

Wong3 [48] tef �
tep tep � 2

2þ 0:1ðtep � 2Þ 2 � tep � 10

2:8þ 0:001ðtep � 10Þ tep � 10

8><
>:

cef �
cep cep � 2

2þ 0:1ðcep � 2Þ 2 � cep � 10

2:8þ 0:001ðcep � 10Þ cep � 10

8><
>:

Ochiai2 [39] tef tnpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtefþtepÞðtnpþtnf Þðtefþtnf ÞðtepþtnpÞ

p cef cnpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcefþcepÞðcnpþcnf Þðcefþcnf ÞðcepþcnpÞ

p
Geometric

Mean [49]

tef tnp�tnf tepffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtnpþtepÞðtnpþtnf Þðtefþtnf ÞðtepþtnpÞ

p cef cnp�cnf cepffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcefþcepÞðcnpþcnf Þðcefþcnf ÞðcepþcnpÞ

p

Harmonic

Mean [50]

ðtef tnp�tnf tepÞððtefþtepÞðtnpþtnf Þþðtefþtnf ÞðtepþtnpÞÞ
ðtefþtepðciÞÞðtnpþtnf Þðtefþtnf ÞðtepþtnpÞ

ðcef cnp�cnf cepÞððcefþcepÞðcnpþcnf Þþðcefþcnf ÞðcepþcnpÞÞ
ðcefþcepðbjÞÞðcnpþcnf Þðcefþcnf ÞðcepþcnpÞ

Arithmetic

Mean [50]

2tef tnp�2tnf tep
ðtefþtepÞðtnpþtnf Þþðtefþtnf ÞðtepþtnpÞ

2cef cnp�2cnf cep
ðcefþcepÞðcnpþcnf Þþðcefþcnf ÞðcepþcnpÞ

Cohen [51] 2tef tnp�2tnf tep
ðtefþtepÞðtnpþtnf Þþðtefþtnf ÞðtepþtnpÞ

2cef cnp�2cnf cep
ðcefþcepÞðcnpþcnf Þþðcefþcnf ÞðcepþcnpÞ

Scott [52] 4tef tnp�4tnf tep�ðtnf�tepÞ2
ð2tefþtnfþtepÞð2tnpþtnfþtepÞ

4cef cnp�4cnf cep�ðcnf�cepÞ2
ð2cefþcnfþcepÞð2cnpþcnfþcepÞ

Fleiss [53] 4tef tnp�4tnf tep�ðtnf�tepÞ 2
ð2tefþtnfþtepÞþð2tnpþtnfþtepÞ

4cef cnp�4cnf cep�ðcnf�cepÞ2
ð2cefþcnfþcepÞþð2cnpþcnfþcepÞ

Rogot1 [50] 1
2

tef
2tefþtnfþtep

þ tnp
2tnpþtnfþtep

� �
1
2

cef
2cefþcnfþcep

þ cnp
2cnpþcnfþcep

� �

Rogot2 [50] 1
4

tef
tefþtep

þ tef
tefþtnf

þ tnp
tnpþtep

þ tnp
tnpþtnf

� �
1
4

cef
cefþcep

þ cef
cefþcnf

þ cnp
cnpþcep

þ cnp
cnpþcnf

� �

SBI [21] tef=ðtef þ tepÞ cef=ðcef þ cepÞ
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For example, in Fig. 1, basic blocks b1 and b10 form a tie. With the base techniques

of SBI, we calculate that Cðb1Þ ¼ Cðb10Þ ¼ 1þ0:5þ0:25
3 ¼ 0:58. As a result, the tie still

cannot be break, and thus b1 and b10 are evaluated as a whole. Finally, we need to

examine 40% of all code to locate the fault.

3.6. More illustrations

In Table 1, we list out how to apply the 34 existing techniques (SBI and the 33

techniques listed in [18, 19]) in out framework (on calculation of failing extent and

suspiciousness scores).

In Fig. 3, due to the literal limitation, we use tnp, tnf , tep, and tef to stand for the

four parameters anpðtj; cviÞ, anfðtj; cviÞ, aepðtj; cviÞ, and aefðtj; cviÞ, respectively. We

use cnp, cnf , cep, and cef to stand for the four parameters anpðcvj; biÞ, anfðcvj; biÞ,
aepðcvj; biÞ, and aefðcvj; biÞ, respectively.

4. Empirical Evaluation

In this section, we conduct a controlled experiment to evaluate the e®ectiveness of

our framework, and compare the synthesized techniques with base techniques and

peer techniques on fault localization e®ectiveness, over di®erent programs.

4.1. Subject programs

In this paper, we use the seven Siemens programs and three median-sized real-life

UNIX utility programs to evaluate our framework. Each of the ten programs is

attached with several faulty versions (each contains one fault) and a test pool (both

downloaded from the Software-artifact Infrastructure Repository, also SIR for ab-

breviation [54]). All these subjects have been used in previous studies [4, 6, 55].

Table 2 shows the statistics of the subject programs used in the experiments. Take

the program °ex for example, there are 20 di®erent faulty versions, and 567 test cases

attached with it.

Table 2. Statistics of subject programs.

Type Programs Faulty versions Test cases Description

Siemens print tokens 7 4130 lexical analyzer

print tokens2 10 4115 lexical analyzer

replace 29 5542 pattern replacement
schedule 9 2650 priority scheduler

schedule2 9 2650 priority scheduler

tcas 40 1578 altitude separation

tot info 23 1054 information measure

UNIX °ex 56 567 lexical parser

grep 21 809 text processor

gzip 18 213 compressor
in total 222
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4.2. Subject techniques

In Table 3, all the 34 existing techniques could be used as base techniques. In our

experiment, we only select four techniques Ochiai [22], Jaccard [22], Tarantula [15],

and SBI [21] as base techniques to validate our framework, because these four

techniques are more representative and widely used as peer techniques in previous

studies. For example, Ochiai and Jaccard are evaluated to be very e®ective in pre-

vious studies [22], Tarantula is one of the pioneer and well-known technique and has

a lot of variants [8, 21], the original technique of SBI [21] (CBI [3]) is a classical

predicate-level technique and we are interested in comparing our framework with

those of predicate-based techniques.

Hao et al. [6] propose a similarity-aware fault localization technique SAFL, which

takes test cases as fuzzy set to deal with the similarities among test cases, and

calculates suspiciousness scores based on the probability theory. Masri and Assi [31]

propose a technique, denoted as ICST10, to cleans test suites from coincidental

correctness and further enhance the fault localization. These approaches are close, in

terms of basic idea, to our approach. Since they cannot be included into the ST ðanp;
anf ; aep; aefÞ settings, we compare the best technique synthesized in our framework

with them, on fault localization e®ectiveness.

4.3. Evaluation metrics

In previous studies, the evaluation metrics is often de¯ned as the ratio of the

statements (program lines) examined before reaching a fault [48, 4], when searching

along the list of program entities with the decreasing order of suspiciousness scores.

Table 3. The mean code examining e®ort to locate a fault for each of the 16 approaches.

Code examining e®ort

Approaches 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FOchiai-SOchiai 0.0% 43.7% 53.7% 61.1% 66.1% 70.4% 71.7% 73.1% 75.7% 77.1% 100%
FJaccard-SOchiai 0.0% 43.7% 53.7% 61.1% 66.1% 70.4% 71.7% 73.1% 75.7% 77.1% 100%

FTarantula-SOchiai 0.0% 43.7% 53.7% 61.1% 65.3% 69.9% 71.7% 73.1% 75.4% 77.1% 100%

FSBI-SOchiai 0.0% 43.7% 53.7% 61.1% 65.3% 69.9% 71.7% 73.1% 75.4% 77.1% 100%

FOchiai-SJaccard 0.0% 41.2% 50.3% 58.9% 63.8% 67.1% 69.5% 72.1% 75.7% 75.9% 100%
FJaccard-SJaccard 0.0% 41.2% 50.3% 58.9% 63.8% 67.1% 69.5% 72.1% 75.7% 75.9% 100%

FTarantula-SJaccard 0.0% 41.2% 50.3% 58.9% 63.8% 66.5% 69.5% 72.1% 75.7% 75.9% 100%

FSBI-SJaccard 0.0% 41.2% 50.3% 58.9% 63.8% 66.5% 69.5% 72.1% 75.7% 75.9% 100%

FOchiai-STarantula 0.0% 30.9% 45.0% 54.5% 59.1% 65.2% 69.3% 72.3% 72.7% 72.9% 100%
FJaccard-STarantula 0.0% 31.1% 44.8% 54.5% 59.1% 65.2% 69.3% 72.3% 72.7% 72.7% 100%

FTarantula-STarantula 0.0% 30.0% 44.3% 54.0% 58.7% 65.2% 69.3% 72.3% 72.7% 72.7% 100%

FSBI-STarantula 0.0% 30.0% 44.3% 54.0% 58.7% 65.2% 69.3% 72.3% 72.7% 72.7% 100%
FOchiai-SSBI 0.0% 30.8% 44.8% 54.4% 59.1% 65.2% 69.3% 72.3% 72.7% 72.9% 100%

FJaccard-SSBI 0.0% 30.9% 44.6% 54.3% 58.9% 65.0% 69.3% 72.1% 72.7% 72.9% 100%

FTarantula-SSBI 0.0% 29.8% 44.2% 53.8% 58.5% 64.8% 68.9% 72.1% 72.4% 72.4% 100%

FSBI-SSBI 0.0% 29.8% 44.2% 53.8% 58.5% 65.0% 69.2% 72.1% 72.7% 72.7% 100%
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Execution spectra is represented as the coverage of execution traces, and the

coverage information indicated which statements are executed. Since statements in a

basic block will always (in some rare cases not) share identical execution spectra,

they are indistinguishable one another, at the view point of a CBFL technique. For

these reasons, statements may not be always a proper unit for fault localization. In

our study, we use basic block as the natural program unit, calculate suspiciousness

scores for them, generate a ranked list for them, and search along the ranked list of

them for faulty basic blocks (which containing the faulty statements). In our study,

the e®ectiveness metrics is de¯ned as the ratio of the basic block checked before

reaching a faulty one. It is also referred to as the code examining e®ort in the rest of

the paper.

4.4. Experiment setup

We set up our experiments on the platform of ubuntu 10.4. The compiler is gcc-4.4.1

and the component gcov is used to collect the execution spectra. In our experiment,

we follow previous studies [48, 8, 4] to exclude those faulty versions whose fault

cannot be manifested with all test cases in the test suite. Further, we exclude those

program annotations, blank lines, function declarations, variable declarations and so

on statements because they are not executable and cannot be processed by CBFL

techniques [4]. Besides, for faults on a non-executable statement or a statement of

which the execution spectra cannot be collected, such as a macro de¯nition or a

statement-omission fault, we take after previous work [19] to mark the directly

a®ected or closest adjacent executable statement as the fault and evaluate the ef-

fectiveness of locating its belonging basic block.

In our framework, the equation to calculate the failing extent of a coverage vector

and the equation to calculate the suspiciousness score of a block are determined

according to the base techniques speci¯ed. In our controlled experiments, we select

the formulas which are used in Ochiai, Jaccard, Tarantula, and SBI to calculate the

failing extent and suspiciousness score. We use FT and ST to denote the formulas of

using technique T (T 2 fOchiai; Jaccard;Tarantula; SBIg) to calculate failing extent
and suspiciousness scores, respectively. Section 4.5 shows the result of these four

approaches.

Since the failing extent and suspiciousness scores are calculated separately, we do

not limit to apply same formula for them. For example, we are also interested to see

the result of employing SBI to calculate failing extent and employing Jaccard to

calculate the suspiciousness score in our framework. Thus we can generate 16 dif-

ferent combinations for FT and ST 0 where T ;T 0 2 fOchiai; Jaccard;Tarantula; SBIg.
The corresponding results are shown in Sec. 4.6.

From the previous tests, we can decide the best technique synthesized in our

framework. Recall that we also consider two close related work SAFL and ICST10,

yet they cannot be used as base techniques of our framework and thus cannot be

evaluated in the previous tests. We further compare the best technique synthesized
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in our framework with SAFL and ICST10, on the fault localization e®ectiveness, in

Sec. 4.7.

4.5. Results on four base techniques

In this section, we compare the techniques synthesized in our framework with the

base techniques. We select four base techniques, Ochiai, Jaccard, Tarantula, and

SBI, in this test. For example, when using Ochiai as the base technique, the formula

for calculating failing extent and suspiciousness scores are denoted as FOchiai and

SOchiai. We use FOchiai-SOchiai to denote such an approach.

We apply four base techniques to synthesize four approaches, FOchiai-SOchiai,

FJaccard-SJaccard, FTarantula-STarantula, and FSBI-SSBI, in our framework. We respectively

compare their fault localization results with the results of Ochiai, Jaccard, Taran-

tula, and SBI. To ease the explanation, we also denote FOchiai-SOchiai as PAFL

(Ochiai), FJaccard-SJaccard as PAFL(Jaccard), FTarantula-STarantula as PAFL(Tarantu-

la), and FSBI-SSBI as PAFL(SBI). The experiment results are shown in Fig. 3.

In Fig. 3, there are four plots, which represent the comparisons between

PAFL(Ochiai) and Ochiai, PAFL(Jaccard) and Jaccard, PAFL(Tarantula) and
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Fig. 3. Comparison between techniques synthesized into PAFL with base techniques.
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Tarantula, PAFL(SBI) and SBI. Take the ¯rst plot to illustrate, the X-coordinate

shows the code examining e®ort, the Y-coordinate shows the faults located within

the given (by X) code examining e®ort. For example, in the ¯rst plot, the point

ð10%; 43:7%Þ is on the curve of PAFL(Ochiai). It shows that when examining 10%

basic blocks (in the suggested ranked list order generated by the PAFL(Ochiai)

approach) in each of the faulty version, faulty blocks in 43:7% of the 222 faulty

versions in total can be reached. For the curve of Ochiai, the corresponding point is

ð10%; 42:9%Þ. It means that within the same code examining e®ort, Ochiai can locate

42:9% of the 222 faults.

We ¯rst focus on the two state-of-the-art base techniques Ochiai and Jaccard.

From Plot (a), we have the observation that the curve of PAFL(Ochiai) is always

above or overlap the curve of Ochiai (except the region of ð40%; 60%Þ). It means that

the fault localization e®ectiveness of PAFL(Ochiai) is always higher than that of

Ochiai (except a small code examining region). From Plot (b), we have similar

observation, and know that the fault localization e®ectiveness of PAFL(Jaccard) is

always higher than that of Jaccard (except a small code examining region). When we

move to the other two base techniques Tarantula and SBI, we observe from Plot(c)

and Plot(d) that PAFL(Tarantula) and PAFL(SBI) have a comparable e®ectiveness

with Tarantula and SBI, respectively.

Our preliminary observation is that our framework is very e®ective in synthe-

sizing a more e®ective fault localization technique on Ochiai and Jaccard, while

cannot improve much on Tarantula and SBI. We summarize our observation in this

test as \our framework is more e®ective on more e®ectiveness fault localization

techniques".

4.6. Results on mixed usage of four base techniques

In the previous section, we have investigated the results of FOchiai-SOchiai, FJaccard-

SJaccard, FTarantula-STarantula, and FSBI-SSBI in our framework. In each of these four

approaches, the calculation of failing extent and suspiciousness scores use the core

formula of the base technique adopted. Further, we are also interested in the mixed

usage of the four base techniques when calculating failing extent and suspiciousness

scores. For example, what will the result of FJaccard-SOchiai looks like, when comparing

with FJaccard-SJaccard and FOchiai-SOchiai? In this section, we will show the results of

employing di®erent base techniques to calculate the failing extent and suspiciousness

scores.

The calculation of failing extent and suspiciousness scores can be conducted in-

dependently. Since we have four di®erent base techniques to employ in the calcu-

lation of failing extent and suspiciousness scores, there will be 16 di®erent

combinations. For di®erent approaches, Fig. 4 shows the percentage of faults located

within di®erent code examining e®ort, averaging results over di®erent programs. To

do that, we use the e®ectiveness metrics to evaluate the fault localization e®ective-

ness of a synthesized technique in locating faults in every faulty versions, calculate
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the percentage of faults located within speci¯c code examining e®ort for every pro-

grams, and generate the in average percentage of faults located with speci¯c code

examining e®ort. We do that because such averaging may alleviate the bias from

speci¯c programs.

The 16 approaches in Fig. 4 are denoted in a form of FT -ST 0 . FT and ST 0 refer to

the formulas adopted to calculate the failing extent and the suspiciousness scores,

respectively. Take the FSBI � STarantula for illustration. It means that we adopt the

formula of SBI to calculate the failing extent, and the formula of Tarantula to

calculate the suspiciousness scores. Other approaches can be explained similarly.

From Fig. 4, we can observe that applying di®erent base techniques to calculate

failing extent or suspiciousness scores can result in di®erent fault localization e®ec-

tiveness. For example, when examining up to 10% basic blocks, FJaccard-SOchiai,

FTarantula-SOchiai, FJaccard-SSBI, and FTarantula-SSBI can locate faults in 43.7%, 43.7%,

30.9%, and 29.8% faulty versions, respectively. Further, when using a speci¯c

technique to calculate the suspiciousness score, applying di®erent base techniques to

calculate the failing extent can result in di®erent fault localization e®ectiveness. For

example, when using Ochiai to calculate the suspiciousness score, applying Ochiai or

Jaccard to calculate the failing extent is more promising than applying Tarantula or

SBI. On the other hand, when using a speci¯c technique to calculate the failing

extent, applying di®erent base techniques to calculate the suspiciousness score can

also result in di®erent fault localization e®ectiveness. For example, when using

Ochiai to calculate the failing extent, applying Ochiai or Jaccard to calculate the

suspiciousness score is more promising than applying Tarantula or SBI.

Another observation is that the calculation of suspiciousness scores has more

impact on the fault localization e®ectiveness than the calculation of failing extent

does. For example, when applying Ochiai to calculate the suspiciousness score,
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Fig. 4. The mean code examining e®ort to locate a fault for each of the 16 approaches.

982 L. Zhao et al.

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

3.
23

:9
63

-9
98

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 Z
ha

ng
 Z

he
ny

u 
Z

ha
ng

 o
n 

05
/1

0/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



whatever a technique is chosen to calculate the failing extent, the corresponding

approach can locate faults in at least 43.7% faulty versions, within the 10% code

examining e®ort. With the same code examining e®ort, when applying SBI to cal-

culate the suspiciousness score, whatever a technique is chosen to calculate the failing

extent, the corresponding approach can locate faults in at most 30.9% faulty ver-

sions. Further, a trend is that generally, applying Ochiai to calculate suspiciousness

scores can be more promising than applying Jaccard, and in turn more promising

than applying Tarantula and SBI, whatever a technique is used to calculate the

failing extent. Another trend is that when applying a speci¯c technique to calculate

suspiciousness scores, applying Ochiai to calculate failing extent is mostly more

promising than applying Jaccard, and in turn more promising than applying

Tarantula and SBI.

To con¯rm our observation on the dominant e®ect of using di®erent techniques to

calculate suspiciousness score, we further use Fig. 4 to investigate. Figure 4 shows the

mean code examining e®ort to locate a fault for each of the 16 approaches. From this

¯gure, the dominant e®ect of using di®erent techniques to calculate suspiciousness

scores can be clearly observed.

As a summary, we claim that both the calculation of failing extent and suspi-

ciousness scores have impact on the fault localization e®ectiveness of the techniques

synthesized using our framework, while the latter has a dominant e®ect. Further,

either on calculation of failing extent or on calculation of suspiciousness scores,

applying Ochiai is more promising than applying Jaccard, and in turn more prom-

ising than applying Tarantula and SBI. As a result, FOchiai-SOchiai, PAFL(Ochiai) for

short, is the best technique synthesized in our framework. In the next section, we will

compare PAFL(Ochiai) with other peer techniques.

4.7. Results comparison of PAFL(Ochiai), SAFL, and ICST10

In this section, we compare the fault localization e®ectiveness of PAFL(Ochiai),

PAFL in short in particular for this section, which means applying Ochiai as the base

technique to synthesize a new fault localization technique in our framework, with

SAFL [6] and ICST10 [31].

We ¯rst compare the overall e®ectiveness of the three techniques in Fig. 5. In the

plots of Fig. 5, the X-coordinate means the code examining e®ort in each faulty

version, the Y-coordinate shows the percentage of faulty versions, faults in which can

be located within the code examining e®ort speci¯ed by the X-coordinate. Note that

in the plots, all the curves start from the (0%, 0%) point and end at the (100%, 100%)

point. It means that when examining no code, none of the faults can be located; while

all faults can be located when examining all the code. From Plot (a) of Fig. 5, we

observe that at every checkpoints, PAFL is always more e®ective than the other

techniques. For example, on average, by examining up to 5% of all the code in each

faulty version, PAFL can locate faults in 36.1% of all faulty versions, SAFL can

locate 6.1%, and ICST10 can locate 26.0% accordingly. By examining up to 10% of
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all the code, PAFL can locate faults in 43.7% of all faulty versions, SAFL can locate

9.5%, and ICST10 can locate 39.9% accordingly. It shows that PAFL has an overall

better e®ectiveness than the other techniques studied.

At the same time, since previous study has pointed out that the top 20% code

examining range is more important than the others [56], we also zoom in the results

to the [0%, 20%] range and show it in Plot (b) of Fig. 5. Plot (b) shows a similar

phenomenon as Plot (a). In the whole range of [0%, 20%], the e®ectiveness of PAFL

is always better than those of SAFL and ICST10. For example, on average, by

examining up to 1% of the code in all the faulty versions, PAFL can locate faults in

13.6% of all faulty versions, while SAFL can locate 0%, and ICST10 can locate 9.3%

accordingly. By examining up to 3% of the code, PAFL can locate faults in 26.6% of

all faulty versions, while SAFL can locate 2.5%, and ICST10 can locate 18.8%

accordingly.

To su±ciently compare di®erent techniques, we further use a popular statistics

metrics, box-whisker plot, to percent the results. The box-whisker plot of the e®ec-

tiveness of each technique is shown in Fig. 6. In Fig. 6, each box-whisker stands for
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Fig. 6. The box-whisker plot for overall e®ectiveness.
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Fig. 5. Overall results in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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e®ectiveness statistics of a technique (PAFL, SAFL, and ICST10). The height of the

box spans the central 50% of the data and its upper bound and lower bound mark the

upper (75% percentile) and lower (25% percentile) quartiles, respectively. The

middle line in the box represents the median value of fault localization e®ectiveness.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
fa

ul
t 

lo
ca

te
d

code examining effort

PAFL

SAFL

ICST10

(a)

0%

20%

40%

60%

80%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

%
 o

f 
fa

ul
t 

lo
ca

te
d

code examining effort

PAFL

SAFL

ICST10

(b)

Fig. 7. Results on print tokens in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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Fig. 8. Results on print tokens2 in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
fa

ul
t 

lo
ca

te
d

code examining effort

PAFL

SAFL

ICST10

(a)

0%

20%

40%

60%

80%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

%
 o

f 
fa

ul
t 

lo
ca

te
d

code examining effort

PAFL

SAFL

ICST10

(b)

Fig. 9. Results on replace in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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The top of the upper whisker and the bottom of the lower whisker indicate the worst

case and best case of locating faults, respectively. From Fig. 6, we have the obser-

vation that PAFL performs better than SAFL and ICST10 at most aspects. For

example, when we checking the mean case, PAFL takes in average 13.9% code

examining e®ort to locate a fault, while SAFL and ICST10 needs 45.6%, and 20.5%,
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Fig. 10. Results on schedule in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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Fig. 11. Results on schedule2 in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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Fig. 12. Results on tcas in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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respectively. Also, PAFL outperforms the other two in the best case and at the 25%

percentile measurement. An exception is that at the 75% percentile measurement

ICST10 catches up with PAFL (the code examining e®orts for PAFL and ICST10 at

the 75% percentile are 61.5% and 59.5%, respectively).
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Fig. 14. Results on flex in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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Fig. 15. Results on grep in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
fa

ul
t 

lo
ca

te
d

code examining effort

PAFL

SAFL

ICST10

(a)

0%

20%

40%

60%

80%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

%
 o

f 
fa

ul
t 

lo
ca

te
d

code examining effort

PAFL

SAFL

ICST10

(b)

Fig. 13. Results on tot info in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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Till now, we have compared the overall e®ectiveness of the techniques studied.

We are also interested in the e®ectiveness on each individual program.

Figures 7 to 16 show the results on the ten programs, both in the full range and

the [0%, 20%] zoomed-in range. From Figs. 7 to 16, we observe that in the full range,

PAFL is more e®ective than the other techniques in the plots of print tokens,

print tokens2, and tot info, °ex, grep, and gzip. In the plots of replace, schedule,

schedule2, and tcas, PAFL is less e®ective than some of other techniques in some

regions.

We also use Table 4 to assemble the mean e®ectiveness of these techniques on

each di®erent program. The mean e®ectiveness is Table 4 refers to the average code

examination percentage to locate faults. That is, the technique is more e®ectiveness

with lower mean e®ectiveness. This table shows that for these programs, PAFL is

always (except on schedule) the best among the three techniques. For example,

PAFL takes on average 16.8% code examining e®ort to locate a fault in the faulty

versions of program print tokens2, while SAFL and ICST10 need to examine 54.9%

and 23.6% code, respectively. From the individual results on each program, we have

also the consistent observation that the most e®ective technique synthesized in our

framework is mostly more e®ective, or at least as e®ective as, the two peer techniques

SAFL and ICST10.

Table 4. Mean e®ectiveness on individual programs.

Types Subjects PAFL SAFL ICST10

Siemens print tokens 72.5% 84.2% 73.7%

print tokens2 16.8% 54.9% 23.6%

replace 19.6% 36.6% 20.8%
schedule 25.1% 52.8% 24.3%

schedule2 81.5% 82.5% 83.8%

tcas 50.3% 66.5% 51.5%

tot info 34.3% 64.3% 42.9%

UNIX °ex 27.2% 44.5% 29.5%

grep 20.6% 34.1% 23.2%

gzip 11.6% 17.6% 14.3%
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Fig. 16. Results on gzip in (a) full range [0%, 100%] and (b) zoom-in range of [0%, 20%].
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4.8. A case study on multi-fault programs

In this section, we construct a case study to validate the e®ectiveness of PAFL on

multi-fault programs. Since the test suites of programs in Siemens contain more

similar test cases, we select from Siemens and make replace as the subject program.

replace has 29 faulty versions and we try to inject each fault into the multi-fault

version of replace. Note that, the faults in some faulty versions could exist in the

same statements or expressions, in such cases, we only inject the fault with lower

version number. After all, we inject 14 faults into the multi-fault version of replace.

To evaluate the e®ectiveness of PAFL, we employ di®erent CBFL techniques to

work on the multi-fault version of replace, and then compare the expense of tech-

niques to locate every faults. The results are shown in Table 5.

As shown in Table 5, we list the statistical of di®erent techniques, which include

the minimum values of code examining e®orts to locate the 14 faults, the 25%

percentile values, the median values, the 75% percentile values, the average values

and the maximum values. We observe that the results of PAFL are better than other

techniques, expect the minimum and 75% percentile value. To some extent, it shows

that PAFL could also perform better on multi-fault programs.

4.9. Threats to validity

We use the UNIX tool gcov to collect the execution spectra and generate coverage

vectors. The limitation of the tool gcov prevents the crashed program executions

from being processed, and thus causes incomplete data collection. Powerful instru-

mentation tools are expected to improve the e®ectiveness of related techniques.

The coverage vectors are used to count the distinct paths, but vectors and paths

are not equal. If two coverage vectors are identical, the corresponding paths may be

still di®erent. We choose to use coverage vector to capture the path information

because only in such a way can we fairly compare our approach with a popular family

of fault localization techniques, which also use coverage information as input.

We use seven Siemens programs and three median-sized real-life UNIX utilities as

subject programs to evaluate the studied techniques. Though these programs are

extensively used in previous studies, using other large-sized programs or programs

containing real faults may also be good choices.

Table 5. Expenses of di®erent techniques on the multi-fault version of replace.

PAFL Ochiai Jaccard Tarantula SBI ICST10 SAFL

Minimum 16.4 17.2% 17.2% 12.7% 12.7% 12.7% 18.4%

25% percentile 41.8% 46.3% 46.2% 50.2% 50.2% 50.2% 48.2%

Median 63.5% 70.5% 68.9% 77.5% 77.5% 77.5% 80.5%
75% percentile 89.2% 90.6% 90.0% 85.9% 85.9% 85.9% 93.1%

Average 64.4% 66.8% 66.4% 67.5% 67.5% 67.5% 68.5%

Maximum 100% 100% 100% 100% 100% 100% 100%
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We download test pool from SIR for each program. Since those test cases are

generated to satisfy di®erent coverage criteria, such a generation strategy somehow

implies that there is less execution similarity. Adopting some other test case gener-

ation strategies may a®ect the experiment results.

E®ectiveness metrics also causes threat to the validity of the experiment. Dif-

ferent from some of previous work, in our experiment, we calculate the code exa-

mining e®ort as the percentage of basic blocks examined before reaching a fault. The

reason we do so has been explained in Sec. 4.3. When there exist some basic blocks

that form a tie case and cannot be break, our strategy is to examine them as a whole

and count the code examining e®ort. Adopting other strategies (e.g., examine them

in their appearance order in the program or suppose the best case scenario where the

faulty basic block is examined instead of the whole tie) may generate di®erent results.

5. Related Work

In this section, we review related work on fault localization research.

5.1. Program slicing

Program slicing is ¯rst proposed by Weiser [57], and these techniques include static

[57] and dynamic slicing [12, 58]. Slicing techniques, especially dynamic slicing, are

widely used to support software debugging [59, 13, 60].

A slice refers to a set of statements in a program that may a®ect the computed

values at some location. In general, by slicing statements which are related to the

observed failure variables or failure inducing inputs, programmers can ¯lter out

statements for fault localization and debugging. Static slicing techniques analyze the

semantic relationship with observed variables, but it need to explorer the whole

program states space, which may lead to the heavyweight and time-consuming

computation. To address this problem, lots of approaches have been proposed to

optimize the computation. For example, Ottenstein [61] develops a program de-

pendence graph (PDG) to reduce the computation of static slices of a sequential

program to a reach ability problem in PDG. Horwitz et al. [62] extend the technique

to inter-procedural slicing. However, previous studies also show that the size of a

static slice for a program can be one-third of the program [14]. During program

debugging or fault localization, it is still very hard for programmers to inspect and

look for faulty statements.

For a dynamic execution of the program with a given input, dynamic slicing

focuses on the statements which are executed in the program run, and through

execution indexing, dynamic slicing can further record the dynamic dependency. By

doing these, dynamic slicing can reduce the size of sliced statements, which are

widely used to support program debugging in recent years. Chen and Cheung [63]

propose dynamic dicing and the related strategies to construct dynamic dices. Gupta

et al. [13] propose to use both forward and backward dynamic slicing to narrow down
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slices. Zhang et al. [60] propose to prune statements with con¯dence by slicing

statements according di®erent observed program outputs. By comparing the failed

execution with a passed execution, Johnson et al. [64] propose a ¯ne-grained slicing

approach, di®erential slicing. Slicing techniques analyze both the failed outputs and

failure inducing inputs, whereas CBFL techniques mainly focus the execution spectra

of executions. These two kinds of techniques can be integrated to improve the ef-

fectiveness of fault localization and fault ¯xing assistant. Since they use di®erent

information as inputs, we do not compare them in this paper.

5.2. Coverage based fault localization techniques

Agrawal et al. [65] propose the coverage based fault localization technique �Slice. By

comparing the execution spectra between two executions (one is passed and the other

is failed), this approach ¯lters out the statements which are only exercised in the

failed executions for further inspection. This idea is further developed by Renieris

and Reiss [24], who propose the Nearest Neighborhood (NN) technique. Using sta-

tistical approach, Jones and Harrold [15, 8] propose Tarantula to rank every state-

ment according to its fault suspiciousness. Abreu et al. [22] adopt two statistical

approaches to propose the Ochiai and Jaccard techniques, which are used for com-

parison in our paper. Abreu et al. [16] further show empirically that a technique can

achieve almost the same fault localization accuracy by using a few failed executions.

Several other approaches use statistical measures for behaviors related to program

failures. Jones et al. [66] further extend Tarantula so that it can be applied when

multiple developers are available to debug the program independently. Observing

that individual executions of the same statement may have di®erent contributions to

indicate faulty statements when they are used together, Wong et al. [48] propose to

use a utility function to calibrate the contribution of each passed execution when

computing the fault relevance of executed statements. This work proposes that the

contribution of all the successful test cases to program debugging should not be

treated equally, of which the basic idea inspired our work. However, our framework

uses coverage vector to estimate the execution similarity whereas Wong et al. [48]

uses the execution spectra of statements. They further de¯ne a series of heuristics

based on di®erent marginal contributions of additional failed executions and passed

executions [67]. Debroy and Wong [68] propose a cross-tab method to compute the

fault suspiciousness of statements and focus on programs having multiple faults.

Harrold et al. [69] evaluate nine kinds of program features, including path counts,

data-dependency counts, and execution traces. Later studies show, however, that by

applying a proper contrast step, the usage of data-dependency counts can be more

e®ective than that of control-dependency counts [70]. CBI [3, 20] and SOBER [56, 17]

are two representative techniques that relate to control-dependency information.

More speci¯cally, they make use of the execution spectra information of program

predicates set in branch statements and so on, and hence we call them predicate

based CBFL techniques. CBI compares the probability that a program fails when a
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predicate is ever evaluated to be true with the probability that the program fails

when the predicate is ever evaluated. The technique uses this di®erence as the pri-

mary program feature to identify the positions of the predicates related to faults.

SOBER further proposes to use the actual probability that a predicate is evaluated

to be true, which they call the evaluation bias, as the program feature. It contrasts

the evaluation biases of each predicate in passed and failed executions to locate

predicates that are related to faults. After locating suspicious predicates, these

methods recommend programmers to search for faults around the located suspicious

predicates in the program. In this paper, we compare with four representative of

these techniques.

5.3. Other fault localization techniques

Delta debugging [9, 11] simpli¯es the failed test cases and yet preserves the failures,

producing cause-e®ect chains and linking them to suspicious statements.

Arumuga Nainar et al. [71] further extend CBI to address compound Boolean

expressions. They show that the accuracy of CBI changes signi¯cantly when com-

pound Boolean expressions are involved. Zhang et al. [5, 72] conduct an empirical

study to show that the short-circuit rules in evaluating boolean expressions in pre-

dicates a®ect the e®ectiveness of fault-localization techniques, and that the results of

CBI can be improved using evaluation sequences information in the form of evalu-

ation sequences. Chilimbi et al. [73] propose HOLMES, which uses fragments of

paths rather than individual predicates to locate faults iteratively. Zhang et al. [74]

¯nd empirically that the evaluation biases of many predicates are not distributed

normally. They further [19] propose a generic framework of predicate based fault

localization techniques, apply many non-parametric, parametric, and debugging

speci¯c hypothesis testing methods to generate predicate-based fault localization

techniques, and empirically evaluate them.

Based on the suspiciousness estimation obtained from a contrast step, CP [4]

constructs a probabilistic control °ow graph and a propagation model for the faulty

program with a view to capturing the propagation of infected states extracted from

the given set of program executions to locate faults.

Jiang and Su [75] use clustering to obtain fault predictors with the biggest fault

proneness and generate the execution paths traversing these predicates to re°ect how

the failure occurs. Baah et al. [76] presents an innovative model of a program's

internal behavior over a set of test inputs, called the probabilistic program depen-

dence graph (PPDG), that facilitates probabilistic analysis and reasoning about

uncertain program behavior, particularly that associated with faults. Many other

methodologies, such as training a neural network [23]. However, comparing with

these techniques exceeds the scope of this paper.

Hao et al. [6] propose a similarity-aware fault localization technique SAFL. In

SAFL, the similarity of test cases is evaluated based the fuzzy set and the coverage

intersection of test cases. However, it is not always stand to make all executions that
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have coverage intersection as similar, because executions are generally have more or

less coverage intersections. Compared with SAFL, the similarity evaluation is much

stricter in PAFL.

5.4. Integrating fault localization, test cases generation,

and test suite reduction

There are also some studies focusing on the test suite reduction to enhance fault

localization, which are related to our work.

Some techniques aim to minimum the similar test cases to satisfy some coverage

criteria, while our framework aims to alleviate the impact of execution similarity

when locating faults. Hao et al. [27] focus on optimizing the size of test inputs to

facilitate e®ective fault localization. Jiang et al. [55] point out that test suites prio-

ritized by coverage-based strategies are better than those from other strategies in

terms of the e®ectiveness of fault localization. Artzi et al. [77] adopt the dynamic

symbolic execution technique to generate test cases for statistical fault localization.

Their study shows that the path-constraint based technique can generate the

smallest test suites with the same excellent fault-localization characteristics as test

suites generated by other techniques. Baudry et al. [78] observe that some statements

are always executed by the same set of executions. They propose the dynamic basic

blocks and use the execution spectra of dynamic basic blocks to improve the test

suite, empirical studies show that their approach requires fewer test cases to achieve

the same fault localization e®ectiveness. These studies either focus on the test suite

reduction for e®ective fault localization, or how to generate test cases for statistical

fault localization. In this paper, our framework aims to improve the e®ectiveness of

fault localization if the test suite is not optimized and there may be similar test cases

in the test suite.

In [21], Yu et al. propose test cases reduction approaches based on coverage

vectors, which is similar with the similarity evaluation in PAFL. The di®erence is the

program scope, and PAFL further evaluates the failing extent of coverage vectors for

tie-braking.

6. Conclusion

In this paper, we demonstrate that frequently occurred execution similarity may

a®ect the e®ectiveness of existing techniques and propose a general framework to

synthesize new fault localization techniques from base ones, to address the problem

of execution similarity. In our framework, we ¯rst use the concept of coverage vectors

to count distinct execution paths and model execution spectra, compare coverage

vectors to capture the execution similarity. We then calculate the failing extent of

each distinct coverage vector, and mark it as a failed or passed distinct coverage

vector according to whether it is ever exercised in a failed execution or not. Next, for

each basic block, we evaluate the suspiciousness score of that basic block, using the
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execution statistics of distinct coverage vectors. At last, we sort all the basic blocks in

the descending order of their computed suspiciousness scores.

We adopt four representative fault localization techniques as base techniques, use

seven Siemens programs and three median-sized real-life UNIX utility programs as

subject programs, to conduct an experimental study on the e®ectiveness of our

framework. The empirical evaluation shows that our framework can alleviate the

impact of execution similarity, and synthesize more e®ective fault localization

techniques based on existing ones.
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