
Information and Software Technology 56 (2014) 1076–1085
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A class loading sensitive approach to detection of runtime type errors
in component-based Java programs
http://dx.doi.org/10.1016/j.infsof.2014.04.005
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 10 62661583 630.
E-mail address: zhangwenbo@otcaix.iscas.ac.cn (W. Zhang).

1 http://www.osgi.org.

2 Also known as duplicated classes.
3 When we mention class name, we mean its fully qualified name, which
e name of the Java package containing the class.
Wenbo Zhang a,⇑, Xiaowei Zhou a,b, Jianhua Zhang a,b, Zhenyu Zhang a,c, Hua Zhong a,c

a Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
b Graduate University, Chinese Academy of Sciences, Beijing 100190, China
c State Key Laboratory of Computer Science, Beijing 100190, China

a r t i c l e i n f o
Article history:
Received 25 June 2013
Received in revised form 20 February 2014
Accepted 2 April 2014
Available online 26 April 2014

Keywords:
Runtime error detection
Class loading
Component-based
a b s t r a c t

Context: The employment of class loaders in component-based Java programs may introduce runtime
type errors, which may happen at any statement related to class loading, and may be wrapped into var-
ious types of exceptions raised by JVM. Traditional static analysis approaches are inefficient to detect
them.
Objective: Our previous work proposed a semi-static detection work based on points-to analysis to detect
such runtime type errors. In this paper, we extend previous work by referencing the information obtained
from class loading to detect runtime type errors in component-based Java programs, without the need to
running them.
Method: Our approach extends the typical points-to analysis by gathering the behavior information of
Java class loaders and figuring out the defining class loader of the allocation sites. By doing that, we
obtain the runtime types of objects a reference variable may point to, and make use of such information
to facilitate runtime type error detecting.
Results: Results on four case studies show that our approach is feasible, can effectively detect runtime
errors missed by traditional static checking methods, and performs acceptably in both false negative test
and scalability test.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

With the increasing adoption of component-based software
development (CBSD) as a mainstream approach of software engi-
neering [23], Java programs have been the most prevalent software
in Web world, such as Servlet/JSP, EJBs, OSGi1-based programs, and
so on. Error detections of Java programs are invaluable for their
comprehensive application, while type checking is one of such
detection mechanisms. Type checking for Java can be done statically
or dynamically. Type-related defects missed by Java compilers and
captured by JVM’s runtime type checking are conventionally named
runtime type errors [12]. Such errors are very common in Java
program, such those caused by unsafe casts [18].

Runtime type errors are usually apt to occur in component-based
Java programs for the following reasons. First, in component-based
Java programs, component containers, like web application servers
and OSGi frameworks, different custom class loaders are often
allowed, and classes are defined at runtime [14]. For example, in
OSGi-based programs, classes in each bundle (OSGi-compliant com-
ponent) are defined by the bundle’s class loader [21]. Nevertheless,
in Java web systems, classes of the web application and those of its
hosting application server are also defined by different class loaders.
The inconsistent of class loaders in classes loading contributes in the
majority of runtime errors in Java. In this paper, we will focus on
these scenarios and give our solution to detect this kind of runtime
errors.

Second, it is very common that in a component-based Java
program, components may contain same-named classes.2 For exam-
ple, JOnAS 5.2.0, an OSGi-based Java EE application server, has 77
bundles, which are active in execution, and there are 105 distinct
class names3 of which each is owned by more than one class.
Same-named classes usually result from the extensive use of appli-
cation frameworks and third-party libraries. The instance of a class
or its subclass created in one component may propagate to other
includes

th

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.005
mailto:zhangwenbo@otcaix.iscas.ac.cn
http://www.osgi.org
http://dx.doi.org/10.1016/j.infsof.2014.04.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

4 These references only provide names of the classes they refer to, so they are
symbolic.

W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085 1077
components that contain a class of the same name. Since same-
named classes in different components are defined by different class
loaders and thus represent different runtime types [12], the propa-
gation may cause some reference variables to point to objects with
wrong runtime types. Compilers, which focus more on static types,
cannot detect this kind of. In realities, such errors are mostly found
by JVM as runtime errors and handled as exceptions, such as Class-
CastException and ArrayStoreException.

Eliminating same-named classes will prevent this kind of
errors. A brute force solution is to delete those classes until there
is only one class left for each class name. However, this approach
may have undesired results. Same-named classes may have sepa-
rate implementations, because they may come from different
third-party libraries, and each of them may have a set of static
fields, which take effect when loaded. If only one such class is per-
mitted to be loaded, the semantics of the program may be dam-
aged. Avoiding such errors by coding standards or best practices,
for example, prohibiting the instances of same-named classes (or
their subclasses) to be propagated beyond their own components,
is also impractical. First, which classes will become the same-
named classes are usually not known until those components are
integrated together, especially when many third-party libraries
are integrated at the same time. Second, components may come
from various vendors and constraint these vendors comply with
the same coding standard is also ineffective. Third, some third-
party components are casually migrated from legacy code, such
as the official OSGi-compliant log4j 1.2.16, which imports and
exports [21] many Java packages and the clarity of component
interface is sacrificed. Exceptions caused by runtime type errors
may occur at almost every possible position of the program, ren-
dering writing exception handling code to recover from these
errors can be very hard [18].

Statically detecting runtime type errors will help programmers
find out faults at early stage and enables corresponding remedies.
There have been some works using static analysis to detect run-
time type errors caused by unsafe casts [16,17,24,30]. However,
these works do not consider runtime type discrepancies caused
by class loaders and thus cannot detect runtime type errors
effectively.

In our previous work [33], we propose a class loading sensitive
approach based on points-to analysis [9] to detect runtime type
errors in component-based Java programs. We invoke class loaders
provided by component containers to get their behavior and figure
out the defining class loader of the allocation sites [15]. Then the
runtime types of objects a reference variable may point to can be
obtained. In this paper, we extend our previous work to acquire
the runtime types of the reference variables from the behavior
information of class loaders. Based on these runtime types, we
check every program statement where JVM may raise exception
[3] for runtime type error, and assess the possibility that related
variables pointing to wrong-typed allocation sites. Besides, we also
give the formal descriptive pseudo code to integrate our detection
progress based on both points-to analysis and class loader
information.

We implement our method as a prototype tool and conduct four
case studies to show the feasibility and effectiveness of our method
and its performance in false negative test and scalability test.

Contribution of this work is at least three-folded. First, we give a
solution to detect runtime type error related to class loaders. Sec-
ond, we use the de facto dynamic module system OSGi [11] as the
framework to implement our open-source prototype tool. Third,
we conduct a case study to validate our method and show it
promising.

The remainder of this paper is organized as follows. Section 2
gives preliminaries by stating the problem of runtime type
errors in component-based Java programs. Section 3 gives a short
motivation and presents our approach in Section 4. Section 5 talks
about the implementation of our prototype tool as an evaluation,
presents results of case studies, and talks about threats to validity
of the results observed, followed by Section 6, which introduces
related work. Section 7 concludes the paper and gives future work.
2. Preliminaries

Before we give the problem and elaborate on our solution, we
first introduce the class loading mechanism and OSGi framework
as preliminaries.

2.1. Class loading in Java

In Java, all the classes are loaded into JVM by class loaders [14]
at runtime. Class loaders are also Java objects (except for the boot-
strap class loader provided by JVM which is used to load some core
classes of Java Runtime Environment). A class loader may delegate
to another class loader to look for a class; after several (may be
zero) delegations, one class loader will finally load the class by
itself. The class loader, which is requested for loading a class (by
passing the class name as parameter), is called the initiating class
loader of the class, and the one, which loads the class by itself after
delegations, is called the defining class loader of this class; the two
class loaders may be same. A runtime class is identified both by
its class name and its defining class loader, therefore two runtime
classes must not be the same if they have different defining class
loaders, even if they had the same name or were created from
the same class file.

Java programmers may create their own custom class loaders,
and component containers usually also create several class loaders
for themselves and for components hosted in them. As a result, in a
Java runtime environment, there may exist several class loaders
besides those provided by JVM.

A class usually has a lot of symbolic references4 [14] to other
classes, such as its super class, classes included in its field types
and the classes referred to in the code of its methods and so on.
The defining class loader of one class will initiate the loading of these
referred to classes when needed.

2.2. Type error detection

Static detection of type errors in a program can be conducted by
checking whether reference variables in the program may point to
objects, which do not have correct types, using points-to analysis.
Some work uses points-to analysis to check the safety of casts [16].

Points-to analysis for Java computes a points-to relation that
maps each reference variable to a superset of the objects that it
may point to during execution. In points-to analysis, object is usu-
ally abstracted to allocation site (the location of ‘‘new’’ statement
for creating this object). When a program is running, an allocation
site may be passed several times along the execution trace and
many objects may be created but of the same type. Thus, the
abstraction of objects to allocation sites will satisfy the need of
checking for type errors.

2.3. The OSGi framework

We take OSGi as our case of Java component model and
framework.

An OSGi-based program consists of several bundles interacting
with each other. Fig. 1 shows the architecture of an OSGi-based

JVM

OSGi framework

Bundle Bundle Bundle

Fig. 1. OSGi-based program.

Fig. 3. Some code in Test1 bundle.

1078 W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085
program. One bundle can only use some of the classes of other
bundles. For example, if a bundle wants to create an instance of
a class in another bundle, the using and providing of the class
should be explicitly declared in the metadata of corresponding
bundles. This is guaranteed by OSGi’s class loading mechanism.
OSGi framework provides every bundle a dedicated class loader,
which will define all the classes in the corresponding bundle. The
OSGi specification specifies the workflow of these class loaders.

3. Motivation

In this section, we use an example to motivate our work and
show that class loader can be statically referenced as clues to
detect runtime type errors.

3.1. An example

We use a simplest working example to show runtime type
errors [5] in an OSGi-based program. In this example, ‘‘Test1’’
and ‘‘Test2’’ are two bundle, shown in Fig. 2. Both of them contain
the class named ‘‘base.Base’’ where ‘‘base’’ is the package name.
Further, ‘‘Test2’’ contains another class ‘‘test2.Derived’’ which is a
subclass of the class ‘‘base.Base’’. The bundle ‘‘Test1’’ will invoke
the class ‘‘test2.Derived’’, and we add ‘‘Import-Package: test2’’ to
the meta data (MANIFEST.MF file) of ‘‘Test1’’, and ‘‘Export-Package:
test2;uses:=’’base’’’’ to that meta data of ‘‘Test2’’. Some codes of the
‘‘Test1’’ is also shown in Fig. 3.

3.2. The problem

In real-world programs, object reference has many ways of
propagation, and it may be passed on many times until a runtime
type error will occur. When a component-based Java program is
running, classes in different components may interact with each
other. For example, a class instance of one component may hold
an instance of a class of another component. When they interact
with each other, some variables may be assigned wrong-typed
object references, and runtime type errors may occur.
Fig. 2. Example bundles ‘‘Test1’’ and ‘‘Test2’’.
In the example, the two bundles can be successfully compiled
but will get a java.lang.VerifyError when running. This is because
that the variable baseVar points to a wrong-typed object when
being used in field reference ‘‘baseVar.field’’ in Fig. 2. At runtime,
‘‘test2.Derived’’ is a subclass of ‘‘base.Base’’ defined by the class
loader of ‘‘Test2’’ bundle, but the type of the variable baseVar is
‘‘base.Base’’ defined by the class loader of ‘‘Test1’’ bundle. As a
result, a runtime type error occurs.

Even for some traditional Java programs where all the applica-
tion classes are defined by the system class loader provided by
JVM, there are also chances of runtime type errors, such as those
caused by unsafe casts. However, for some component-based Java
programs, the causes of runtime time type errors are more compli-
cated. At runtime, classes in different components may be defined
by various class loaders. And some components may contain
same-named classes. It happens that some variables are assigned
wrong-typed object references having correct static types, e.g.
the example in Section 3.1. Runtime type is determined by its cor-
responding static type and the defining class loader of the class
involved in that static type.

The class loading scheme of Java, especially that of OSGi, is not
easy for junior programmers to master and use. For example, we
realize the exception handling and multi-threading cases. When
writing component-based programs, some Java programmers
may casually believe that same-named classes represent the same
type, causing runtime type errors more often to happen.

3.3. Our basic idea

Static types do not distinguish between same-named classes,
i.e. considering them to be identical, and it is also the case when
figuring out subclass relationships. Java compilers only check static
types, so the code in Section 3.1 compiles successfully. However,
since the defining class loader is introduced, same-named classes
in different components will not be always identical and some sta-
tic subclass relationships will not be valid at runtime. This kind of
runtime type errors is caused by the ‘‘dynamic part’’ (defining class
loaders) of runtime types.

Runtime type errors partially depend on the behavior of the
class loaders. For example, which runtime class will be the super-
class of a runtime class is decided by the latter’s defining class loa-
der, and whether two runtime classes have subclass relationship
may determine whether there will be runtime type errors. For
example, by referencing the class loader information in Fig. 2, a
programmer can easily distinguish the same-named classes. How-
ever, Java compiler or static analysis cannot detect runtime type
errors caused by defining class loaders generally.

3.4. Challenges

In this motivation example, we have shown that the behavior of
class loaders provided by component containers is useful in detect-
ing runtime type error. However, we also foresee some challenges.
For example, how to integrate the use of class loader information
with points-to analysis mechanism in detecting runtime type
errors is not trivial. Also, the OSGi specification specifies a class
loading mechanism, and servlet container Tomcat also has a

Table 1
Transition functions of ’Anderson’s style points-to analysis.

W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085 1079
description of its class loaders. A well-designed detecting process
will be elaborated on in the next section.
Statement Transition function

Object creation:
l = newCN

f(G, si: l = newCN) = G [{(l, oi)}

Direct assignment:
l = r

f(G, l = r) = G [{(l, oi)|oi e Pt(G, r)}

Field writing: l � f = r f(G, l � f = r) = G [{(hoi, fi, oj)|oi e Pt(G, l) ^ oj e Pt(G,
r)}

Field reading: l = r � f f(G, l = r�f) = G [{(l, oi)|oj e Pt(G, r) ^ oi e Pt(G, hoj, fi)}
Virtual call:

l = r0 �m(r1, . . . , rn)
f(G, l = r0 �m(r1, . . . , rn)) = G [{resolve(G, m, oi, r1 . . . ,
rn, l)|oi e Pt(G, r0)}
4. Our detection process

Previous points-to analysis approaches solely consider static
types and cannot effectively detect runtime type errors caused
by the ‘‘dynamic part’’ of runtime types. To detect this kind of
errors, we also need to consider defining class loaders in points-
to analysis.
resolve(G, m, oi, r1, . . . , rn, l) = let mj(p0, p1, . . . , pn,
retj) = dispatch(oi, m)

in{(p0, i)} [{f(G, p1 = r1)} [. . .[{f(G, l = retj)}
4.1. Problem settings and typical points-to analysis

We first follow Andersen’s [1] points-to analysis for Java [19] to
give the basic problem settings, and then present our detection
process. Here, R contains all the reference variables in the program
under analysis, O contains all the allocation sites, and F contains all
the fields of the program’s classes. A typical detection process
gradually constructs a points-to graph. For example, a points-to
graph [19] example is shown in Fig. 4. Points-to graph contains
two kinds of edges: edge (r, oi) e R � O denotes variable r may point
to allocation site oi; edge (hoi, fi, oj) e (O � F) � O denotes the field f
of allocation site oi may point to allocation site oj. The goal is to find
sites having suspicious type error in the graph.

Statements in the program under analysis may cause the prop-
agation of object references, which is depicted by the transition
function f. Table 1 shows the transition functions for five common
statements, in which G is the points-to graph (its edge set); Pt is
the function which retrieves the set of pointed to allocation sites
(points-to set) for reference variable or field of allocation site; and
the function dispatch determines which method will be actually
called, given an allocation site pointed to by the target variable
of a virtual call statement and a method signature. Most of these
transition functions have intuitive names. For example, for the
direct assignment case, the transition function creates points-to
edges from l to all the allocation sites pointed to by r. For the virtual
call case, the transition function depicts the propagation of alloca-
tion sites via parameters and return values. Other statements, like
static method calls, can be treated analogously. Furthermore, some
complex statement may be equivalently transformed into several
simpler statements to fit transition functions. For example, l � f1 =
r � f2 can be transformed to v = r � f2 followed by l � f1 = v, in which
v is a temporary variable.

The process of points-to analysis begins with an empty G, and
iterates over program statements, replacing G with the result of
the transition function, i.e. G f(G, stmt), until G stops becoming
larger.
p

this

q

r

o1

o2

f

Fig. 4. Points-to graph (p, this, q, r are reference variables, o1, o2 are allocation sites,
f is a field of o1).
4.2. Referencing class loader information

We invoke class loaders provided by component containers to
get the runtime types of allocation sites.
4.2.1. Assumptions
We make two assumptions for the class loaders we pay atten-

tion to. First, the loading process initiated by these class loaders
must be terminable. Second, the behavior of these class loaders is
deterministic, i.e. different invocations of ‘‘loadClass’’ at different
time with the same parameter will return the same result (return
the same runtime class or raise the same exception).

In Section 5.5, we cite OSGi and JVM documents to show that
the two assumptions almost hold.
4.2.2. Loading function
Under the above assumptions, we invoke the class loaders to get

their behavior for static analysis by requesting them to load classes
and using AOP techniques to get the resulting defining class loader
without actually loading the class into JVM. Since the program is
not deployed and run, our method is deemed static analysis.

We model the behavior of loading function as follows:

load : String � ClassLoader ! ClassLoader

This function gets a class name and a class loader, and returns the
defining class loader of the loaded class when the argument class
loader initiates the loading process for the class name. If the loading
process fails, null will be returned. Bootstrap class loader is not an
ordinary Java object, and will be represented by null in JVM.

Note that in the loading function, we use an object different
from any other class loaders to represent bootstrap class loader,
to differentiate from the case of loading failure.
4.2.3. Extending typical points-to analysis
We notice that same-named classes defined by different class

loaders are different. Further, the reference variables declared in
different runtime classes (fields and local variables) are also differ-
ent. Therefore, we attach a runtime class C to every reference var-
iable to differentiate between variables in same-named classes
defined by different class loaders. We thus attach a defining class
loader to every allocation site; with which we are able to obtain
its runtime type, since the static type of an allocation site can be
easily retrieved. After that, the edge (r, oi) in points-to graph will
be extended to (hr, Ci, hoi, CLi), which denotes the reference that
variable r in runtime class C may point to allocation site oi with
defining class loader CL. Here, edge (hoi, fi, oj) will be extended to
(hoi, CL1, fi, hoj, CL2i), which denotes the field f of allocation site oi

with defining class loader CL1 may point to allocation site oj with

p, C1

this, C1

q, C2

r, C2

o1, CL1

o2, CL2

f

Fig. 5. Extended points-to graph.

1080 W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085
defining class loader CL2. An example of extended points-to graph
using the same notations is shown in Fig. 5.

The extension of transition functions is shown in Table 2. We
add an argument C to transition functions to denote the runtime
class in which the argument statement resides. For the object cre-
ation case, the defining class loader of C will be used to find
referred classes, according to JVM’s resolution mechanism [3]. So
we use loading function to determine the defining class loader of
allocation site oi (C.defCL is the defining class loader of C). The vir-
tual call case involves parameter passing between classes, and we
make a special transition function f0 to deal with it. Here, function
dispatch uses runtime subclass relationship to find the actually
invoked method and gets the runtime class in which the method
is declared, which can be easily achieved since loading function
can be used to determine the runtime super class of a class. We
have modified the representation of points-to graph and transition
functions. Note that the process of analysis is not affected.

With such extended points-to analysis, the runtime type of allo-
cation sites pointed to by a reference variable can be retrieved.
4.3. Detecting runtime type errors

With the extended points-to analysis, we can check whether a
variable may point to wrong-typed allocation sites. However, in
the actual execution of Java programs, JVM will not raise exception
even if some variables points to objects with wrong runtime types.
For example, in the code shown in Section 3.1, if we delete line 17
in Fig. 3, the program will not raise exception. Actually, the
previous line of code will cause the baseVar variable to point to
wrong-typed object. This is the consequence of JVM’s bytecode
verification mechanism. JVM pays much attention to whether a
local variable points to a wrong-typed object only at some points
[2] (for example, when the variable is to be assigned to a field or
returned by a method).

To solve the above problem, we statically simulate the bytecode
verification mechanism of JVM by choosing some statements (or
some fragment of statements) that may cause JVM to raise excep-
tions to check. This enables us to know which kinds of exception
Table 2
Extended transition functions.

Statement Transition

Object creation: l = newCN f(G, si: l = n
Direct assignment: l = r f(G, l = r, C
Field writing: l � f = r f(G, l � f = r
Field reading: l = r = f f(G, l = r � f
Virtual call: l = r0 �m(r1, . . . , rn) f(G, l = r0 �

resolve(G,
in{(hp

f0(G, l = r, C
may be raised from the detected runtime type errors and which
statements may actually cause exceptions.

We first use Java static analysis framework Soot [27] to convert
the program under analysis to Jimple intermediate code [28].
Jimple has only 15 kinds of statements, which makes the analyzer
program simpler to implement. With such Jimple code representa-
tion, there are only six cases to check for runtime type errors.

4.3.1. Instance field referring (v.field)
Here we check if local variable v may point to wrong-typed allo-

cation sites; we describe the criteria as a logic formula:

9hoi;CLiðhoi;CLi 2 ptoðhv ;CiÞ ^ :ðhoi;CLi : hv ;Ci:typeÞÞ

In which hv, Ci�type is the runtime type of local variable v in runtime
class C (v is declared in C’s method); the defining class loader part in
the type can be obtained by loading function, i.e. load(v.classintype-
name, C.defCL), where v.classintypename is the class name included
in v’s static type. hoi, CLi: hv, Ci.type denotes hoi, CLi is an instance
of hv, Ci.type, resembling the instanceof operator in Java. pto(hv, Ci)
is the points-to set of hv, Ci obtained by the points-to analysis. If
the formula evaluates to true, we get a runtime type error and give
out a warning.

4.3.2. Field writing (v1.field = v2)
This case includes writing to instance field and static field, we

only take the former as an example here and the latter is alike.
Here we check if the well-typedness of field may be spoiled by
the assignment. The formula is:

9hoi;CLiðhoi;CLi 2 ptoðhv2;CiÞ ^ :ðhoi;CLi : hv1:field;Ci:typeÞÞ

In which hv1.field, Ci.type is the runtime type of field which is
declared in the class included in hv1, Ci.type.

4.3.3. Array storing (a[ind] = v)
Here we check if the well-typedness of array elements may be

spoiled by assignment. The formula is:

9hoi;CLiðhoi;CLi 2 ptoðhv ;CiÞ ^ :ðhoi;CLi : ha½ind�;Ci:typeÞÞ

In which ha[ind], Ci.type is the element type of array a.

4.3.4. Type casting ((T)v)
Here we check if the cast may be illegal. The formula is:

9hoi;CLiðhoi;CLi 2 ptoðhv ;CiÞ ^ :ðhoi;CLi : hT;CLTiÞÞ

In which hT, CLTi is the runtime type of T, and CLT = load(T, C.defCL).

4.3.5. Method calling (v0.m(v1, v2, . . .))
Here we check if the calling target (static method call does not

have a target) and parameters may point to wrong-typed allocation
sites. The formula is:

9v9hoi;CLiðv 2 fv0;v1;v2; :::g ^ hoi;CLi 2 ptoðhv ;CiÞ ^ :ðhoi;CLi
: hv ;Ci:typeÞÞ
function

ewCN, C) = G [{(hl, Ci, hoi, load(CN, C.defCL)i)}
) = G [{(hl, Ci, hoi, CLi|hoi, CLi e Pt(G, hr, Ci))
, C) = G [{(hoi, CL1, fi, hoj, CL2i)|hoi, CL1i e Pt(G, hl, Ci) ^ hoj, CL2i e Pt(G, hr, Ci)}
, C) = G [{(hl, Ci, hoi, CLi)|hoj, CL1i e Pt(G, hr, Ci) ^ hoi, CLi e Pt(G, hoj, CL1, fi)}
m(r1, . . . , rn), C) = G [{resolve(G, m, hoi, CL1i, r1, . . . , rn, l, C)|hoi, CL1i e Pt(G, hr0, Ci)}
m, hoi, CL1i, r1, . . . , rn, l, C) = let C1 �mj(p0, p1, . . . , pn, retj) = dispatch(hoi, CL1i, m)
0, C1i, hoi, CL1i)} [{f0(G, p1 = r1, C1, C)} [. . .[{f0(G, l = retj, C, C1)}
l, Cr) = G [{(hl, Cli, hoi, CLi|hoi, CLi e Pt(G, hr, Cri))

Clap

Bundle Bundle Bundle...

W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085 1081
4.3.6. Method returning (return v)
Here we check if local variable v may point to wrong-typed allo-

cation sites. The formula is:

9hoi;CLiðhoi;CLi 2 ptoðhv; CiÞ ^ :ðhoi;CLi : hv; Ci:typeÞÞ
JVM

Fig. 6. Clap system structure.
4.4. Complexity and other issues

For component-based Java programs, C.defCL in the transition
function for the object creation cases is usually decided by the loca-
tion of the class file. At the same time, the classes in a bundle are
defined by its class loader, according to the specification of OSGi.

Our extension to points-to analysis increases the time and space
complexity of the analysis. Since there are a lot of points-to analy-
sis implementations and each implementation has its own com-
plexity, we may not give a precise complexity formula. For an
extended points-to graph, the reference variables in same-named
classes may be distinguished by the defining class loaders of their
belonging (containing)classes, and the number will not exceed the
number of reference variables contained in these same-named
classes. On the other hand, the number of allocation sites and fields
is similar to each other. Further, suppose we change the names of
all the same-named classes to make every class name different
from each other. Our extended points-to analysis of original classes
may not have a higher complexity than ordinary points-to analysis
of these changed name classes.

For example, suppose there are 1200 classes with 1000 different
names, ordinary points-to analysis may analyze 1000 classes;
extended points-to analysis may not have higher complexity than
analyzing 1200 classes using ordinary points-to analysis. So we
think that the complexity of our method is generally acceptable.
5. Evaluation

To validate the feasibility of our method, we implement a pro-
totype tool called Clap,5 which is specific to OSGi-based programs
now. This tool is based on Java static analysis framework Soot and
OSGi framework Felix.6 We add a defining class loader field to Java
class’s representation class ‘‘soot.SootClass’’ and Java reference type’s
representation class ‘‘soot.RefType’’, and change Soot’s code of
resolving symbolic references to using loading function to determine
the defining class loaders of the referred classes. Loading function is
simulated by invoking the code of a slightly modified version of bun-
dle class loader provided by Felix. We put the bundles under analysis
into Felix’s deployment folder, adjust Felix’s configuration file (set
boot delegations and so on), and start the analysis by just starting
Clap. Clap starts the analysis after Felix installs and resolves every
bundle, and none of the bundles starts and runs during the process.
The system composed of Clap and the program under analysis is
shown in Fig. 6.

5.1. Implementation details

5.1.1. Entry points
In Soot, points-to analysis should have entry points. For ordin-

ary Java programs, the entry points contain the ‘main’ method.
For OSGi-based programs, we choose the methods for activating
and deactivating bundles as entry points.

5.1.2. Loading constraint violations
In OSGi-based programs, same-named classes may also cause

JVM to raise LinkageError due to loading constraint violations. In
5 The source code of Clap is available at <http://code.google.com/p/clap/>.
6 http://felix.apache.org/site/index.html.
Clap, we implement this checking which also uses defining class
loaders of classes and loading function. The principle of this check-
ing is a static simulation of JVM’s process of enforcing loading con-
straints [14].

5.2. Pseudo code of checking algorithm

The pseudo-code description of our algorithm to check runtime
type error is shown in Fig. 7.

From the pseudo-code, we have the following observations. For
one line of Jimple statement stmt, if the statement is an InvokeStmt
or contains (at most one) InvokeExpr, the number of calls of check-
type function depends on the number of parameters of the method
to invoke. Usually, a Java method does not have arbitrarily large
number of parameters. We assume that the largest number of
parameters of every method is k1. For other kinds of statements,
the algorithm code will call checktype function at most a certain
number of times, say k2. Here, we let k = k1 + k2, and the number
of Jimple lines of the program under analysis is L, and then the
number of calls of checktype function is not more than kL.

The running time of reachingObjects method depends on the
implementation details of the points-to analysis. In some points-
to analysis implementations, points-to set are computed when
reachingObjects is called, whereas some others just return the
pre-calculated points-to set. As a result, we attribute the total time
of calling reachingObjects method to the time of performing points-
to analysis. The execution time of the other code of checktype func-
tions proportional to the size of the points-to set, if we do not
count the time of handling detected runtime type errors.

5.3. Experiment design and settings

We use four programs to conduct case studies to understand
the feasibility, effectiveness, false negative issue, and scalability
of our method, respectively.

In the case study, we configure demand-driven context-sensi-
tive points-to analysis as traversing at most 75,000 nodes per
query, and set maximum refinement passes to 10 [24]. We set
‘‘ignore-types’’ to false and change code to let the points-to analy-
sis consider static types only. It improves the performance by fil-
tering out some obviously impossible propagation, but preserves
statically well-typed ones to enable our analysis.

5.4. Case studies and results

5.4.1. Case of a toy program: feasibility test
We used Clap to analyze the example program in Section 3.1;

the analysis finished after a couple of seconds on an ordinary PC
(Core i7 3.4 GHz, 4 GB Mem, Windows 7). Clap gave out a runtime
type error warning of case ‘‘instance field referring’’, saying the
variable baseVarat line 17 in Fig. 3 may point to wrong-typed
allocation site in the previous line. The errors confirmed.

The propagation trace contains 4 edges. The first two edges are
allocation edge and assign edge both derived from line 16. These
two edges will sufficiently make baseVar variable to have

http://code.google.com/p/clap/
http://felix.apache.org/site/index.html

initialize modified bundle class loaders, as loading
function
load all the bundles’ classes into Soot
figure out same-named classes
perform our extended points-to analysis

for each sootclass c in soot’s scene
 for each method m in c
 check loading constraints for method overriding on m
 for each statement stmt in m
 check loading constraints for field reference in stmt
 check loading constraints for method reference in stmt

 if stmt instanceof AssignStmt then
l = stmt.getLeftOp()
r = stmt.getRightOp()

 if r instanceof CastExpr then
 // type casting case

castToType = r.getCastType()
castOp = r.getOp()

 checktype(castOp, castToType)
 elseif r instanceof InstanceFieldRef then
 // instance field referring case (1)

refBaseVar = r.getBase()
baseType = refBaseVar.getType()

 checktype(refBaseVar, baseType)
 elseif r instanceof InvokeExpr then
 // method calling case (1)

args = r.getArgs()
argTypes = r.getMethodRef().parameterTypes()

 for each (arg, argType) in (args, argTypes)
 checktype(arg, argType)
 endfor
 if r instanceof InstanceInvokeExpr then

invkBaseVar = r.getBase()
baseType = invkBaseVar.getType()

 checktype(invkBaseVar, baseType)
 endif
 endif

 if l instanceof FieldRef then
 if r instanceof Local then

refFieldType = l.getType()
 checktype(r, refFieldType)
 endif
 if l instanceof InstanceFieldRef then
 // instance field referring case (2)

refBaseVar = l.getBase()
baseType = refBaseVar.getType()

 checktype(refBaseVar, baseType)
 endif
 elseif l instanceof ArrayRef then
 // array storing case

refArrBaseType = l.getType()
 checktype(r, refArrBaseType)
 endif

 elseif stmt instanceof InvokeStmt then
 // method calling case (2)
 // the same as AssignStmt and r is an InvokeExpr
 elseif stmt instanceof ReturnStmt then
 // method returning case

retType = m.getReturnType()
retOp = stmt.getOp()

 checktype(retOp, retType)
 endif
 endfor
 endfor
endfor

function checktype(localvar, intendedsupertype)
ptoSet = pointsto.reachingObjects(localvar)
 for alloc_site in ptoSet

ptoType = alloc_site.getType()
 if ptoType is not a subtype of intendedsupertype then
 got runtime type error
 endif
 endfor
end function

Fig. 7. Checking algorithm.

1082 W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085
malformed value. The last two edges do not have a corresponding
source code line number. Let us look at the Jimple code of
‘‘testFieldRef’’ method to give a more clear view (Fig. 9, generated
by our modified Soot). Our modified Soot considers defining class
loader in inferring types of local variables [2]. Being aware that
‘‘test2.Derived’’ is not a subclass of ‘‘base.Base’’, it inserts a cast
statement ‘‘r6 = (base.Base) r2;’’, where ‘‘r6’’corresponds to
variable baseVar at line 17 and ‘‘r2’’ to variable baseVar at line
16in Fig. 3, and the last two edges are derived by this cast
statement.
5.4.2. Case with more propagation: effectiveness test
We made an example about wrong-typed objects propagating

via object fields. It is shown in Fig. 8.
Like Fig. 3, ‘‘FieldTest1’’ and ‘‘FieldTest2’’ are bundles. In

‘‘FieldTest2’’, there is a ‘‘BaseContainer’’ class, which is a singleton,
holding a ‘‘Derived’’ instance in its Object-typed field ‘‘base’’. In
‘‘FieldTest1’’, some code retrieves the ‘‘BaseContainer’’ instance,
gets the content of its ‘‘base’’ field and casts it to type ‘‘Base’’. This
program can pass compilation but results in a ClassCastException-
atruntime.

Fig. 8. Example about propagating via object fields.

public void testFieldRef()
{
 test1.FormalTest r0;
 test2.Derived r2, r4;

java.lang.Object r5;
base.Base r6;

 r0 := @this: test1.FormalTest;
 r4 = new test2.Derived;
specialinvoke r4.< test2.Derived: void <init>()>();
 r2 = r4;
 r5 = new java.lang.Object;
specialinvoke r5.<java.lang.Object: void <init>()>();
 r6 = (base.Base) r2;
 r6.<base.Base: java.lang.Object field> = r5;
 return;
}

Fig. 9. The Jimple code of testFieldRef.

org.apache.log4j.Logger logger =
 org.apache.log4j.Logger.getLogger(X.class);
org.apache.log4j.net.SMTPAppender appender = new
 org.apache.log4j.net.SMTPAppender();
// The code for initializing appender is omitted
logger.addAppender(appender);
logger.error("Hello World");

Fig. 10. Some code in ‘‘Log4jTest1’’ bundle.

W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085 1083
We used Clap to analyze this program in the same environment
as Section 5.4.1) and the analysis finished in a couple of seconds.
Clap gave out a runtime type error warning of case ‘‘type casting’’.
This warning is also confirmed. The propagation trace contains 2
edges. The first one is an allocation edge indicating the creation
of the ‘‘Derived’’ instance. The second one is a match edge which
is a special kind of edge made by the demand-driven analysis.
The match edge indicates the writing-reading pair of the ‘‘base’’
field of ‘‘BaseContainer’’ class.
5.4.3. Case in a bug-fix scenario: false negative test
We analyzed an example of log4j’s classes existing in two

bundles. We used log4j 1.2.16, whose jar file is already a bundle,
which we call ‘‘Log4jBundle’’. We made another bundle called
‘‘Log4jTest1’’ and embedded log4j’s classes in it. Then log4j’s clas-
ses exist in both bundles and become same-named classes. We let
‘‘Log4jTest1’’ bundle import the ‘‘org.apache.log4j’’ package but no
other log4j packages like ‘‘org.apache.log4j.net’’ and so on. Thus,
‘‘Log4jTest1’’ bundle will use log4j’s classes in ‘‘org.apache.log4j’’
package from bundle‘‘Log4jBundle’’and those in other packages
from itself. ‘‘Log4jTest1’’ bundle has some code shown in Fig. 10,
in which class‘‘Logger’’ and ‘‘SMTPAppender’’ come from different
bundles. In addition, we add another two bundles ‘‘javax.mail’’
and ‘‘javax.activation’’ to make the whole program able to run,
and thus the whole program consists of 4 bundles.

Clap ran for about 7 minutes and detected 150 runtime type
errors and 35 loading constraint violations. In fact, this program
will end in a LinkageError due to loading constraint violation,
which muffle other errors; this violation has been detected by Clap.
From the analysis result, we found that some reference variables in
‘‘Log4jTest1’’ bundle may point to objects created in ‘‘Log4jBundle’’
bundle.

We used a simple approach to correct the problem by removing
the importing of package ‘‘org.apache.log4j’’ in the bundle
‘‘Log4jTest1’’. After that, the program run correctly, and Clap reports
no runtime type error or loading constraint violation any longer.

5.4.4. Case of a large program: scalability test
We used Clap to analyze JOnAS 5.2.0’s 77 active bundles on the

same PC server as previous case studies. The analysis finished after
about 19 minutes, and no runtime type error nor loading con-
straint violation was detected.

5.4.5. Summary
With the four designed case studies, we have the following

observations.

� Our method is feasible.
� Our method works well in normal cases.
� Our method has the capability of realizing the fix of the bug and

avoiding false negative.
� Our method can handle programs of medium scale.

5.5. Threats to validity and related discussions

Generally speaking, there is no guarantee of a bug-free program
even if no warning is reported. Many Java dynamic features such as
calling method by reflection and the use of custom class loaders
(not those provided by component containers) inside components
render our approach neither sound nor complete.

In some of our case studies, some propagation traces given by
Clap are fairly long, e.g., hundreds of edges. When the trace is long,
the manual reviewing of this warning is more difficult and the
chance that this warning is a false positive is high. Some works
[6,7] combine static analysis and testing, and can be used to some
extent to check for false positives; these approaches complement
the scope of this work.

A variable with possibly wrong-typed pointed-to allocation
sites may cause several warnings of runtime type errors. For exam-
ple, if we copy line 17 in Fig. 3 several times, then all these lines
will be detected, although all the warnings are about the same var-
iable baseVar. This also makes manual reviewing more laborious.

Further, in Section 4.2, we base our method on two assump-
tions. If a bundle’s class loader initiates the loading process of a
class, the overall process to search for the class is as follows.

1. If the class is in the ‘‘java.�’’ package, the loading request is del-
egated to parent/system class loader. If parent/system class loa-
der cannot find the class, then the process fails (without
continuing the following steps).

2. If the class’s package name is directly or indirectly included in
the boot delegation list (, which can be set by modifying the
configuration of OSGi framework), the parent/system class loa-
der is used to try to find the class. If the class cannot be found,
the search continues.

Fig. 11. The flow chart of bundle’s class loader’s search workflow.

1084 W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085
3. If the package name is imported using the Import-Package
header in the bundle’s meta data, the request is delegated to
the exporting bundle’s class loader. If it is not found, the process
fails.

4. If the package name is not imported using the Import-Package
header, the bundles cited using the Require-Bundle header are
searched for the class. If it is not found, the search continues.

5. The bundle’s own internal bundle class path and the class path
of the bundle’s fragment bundlesare searched for the class. If it
is not found, the search continues.

6. If the package name is directly or indirectly included using the
DynamicImportPackage header, the dynamic importing of
the package is tried. If the package is successfully imported,
the request is delegated to the exporting bundle’s class loader.
If it is not found, the process fails.

These steps are connected in a workflow shown in Fig. 11 (This
figure is a slightly simplified version of that in [21]). The procedure
implements lots of favorable features of OSGi. For example, the
codes in one bundle cannot use all the classes in other bundles,
because the class paths of the other bundles are not searched
unless they are imported. This feature shows information hiding
and explicit interface characterization of CBSD. Every OSGi frame-
work implementations, like as Apache Felix, implement such a
workflow. And this workflow is proved to be terminable; more-
over, after all the bundles are resolved (every mandatory import
of every bundles wired to a corresponding exporter), different exe-
cutions of the workflow at the same starting state will have the
same result.
Generally, in fact, component containers are so well tested (by
users) that we can believe their class loaders are terminable and
deterministic, so their behavior can be known without executing
the whole program, making statically checking for runtime type
errors in component-based Java programs feasible. However, we
also realize that there may be scenarios where the two assump-
tions do not hold.

At last, our method is built based on the Andersen’s settings.
Since we propose a general method in this work, there is no limi-
tation on the points-to analysis mechanism chosen. Applying our
method on other implementation of points-to analysis method
may result in different observations in the case studies.
6. Related work

Static analysis is used for detecting unsafe casts in Java pro-
grams [16,17,24,30], and unsafe casts are a source of runtime type
errors. The proposed approaches use either points-to analysis or
constraint-based analysis. They only consider static types and can-
not detect runtime type errors caused by class loaders.

Points-to analysis is used to statically estimate which objects a
reference variable may point to during execution of the program
under analysis. Spark [15] is an early but still popular context-
insensitive points-to analysis framework for Java.

There is work showing that context-sensitive points-to analysis
is more precise than context-insensitive one [16]. However, the
former is more costly. In our analysis, we only consider the situa-
tion when the class name included in the right part of ‘:’ operator
in Section 2 belongs to same-named classes. Since the number of
same-named classes are relatively small compared to the total
number of classes in a program, we use demand-driven context-
sensitive points-to analysis [24], which is efficient when we only
need to get points-to sets for a small number of variables.

Context-sensitive analysis is far more time and space consum-
ing and there are a lot of works on trying to reduce its complexity.
Whaley and Lam [29] and Lhoták [17] use binary decision diagram
(BDD) to make context-sensitive points-to analysis more scalable.
Xu and Rountev [31] employ equivalent context merging to reduce
time and space consumption. Xiao and Zhang [32] incorporate
geometric encoding in context-sensitive analysis; this approach
substantially reduces encoding redundancy and achieves great per-
formance improvement. Demand-driven points-to analysis for Java
are mainly proposed in [25] and [24] which are context-insensitive
and context-sensitive respectively.

Sawin and Rountev [22] propose a semi-static approach to
improve the static resolution of dynamic class loading, using
dynamically retrieved values of environment variables. This work
tries to statically determine the value of parameter (class name)
to ‘‘loadClass’’ method, but does not consider the behavior of class
loaders so the runtime types of loaded classes cannot be obtained.
Bodden, et al. make TamiFlex [4] to gain a better resolution of
reflection calls and dynamic class loadings, using information gath-
ered from recorded program runs. Our work have not considered
explicitly invoking class loaders to load classes in program code
yet, and their work may complement ours.

Some researchers formalize Java class loading [20,26,34],
mainly proposing formal specifications of type-safety criteria for
JVM. Our work is also related to type-safety. In fact, some of these
thoughts are incorporated into modern JVM as part of class loading
and bytecode verification scheme, and thus has become an indirect
cause of runtime type errors in component-based Java programs.
However, these reasoning-based approaches are impractical for
verifying type-safety of industry-scale Java programs.

Partial evaluation [13], which is a technique for program
transformation and specialization, builds on the insight that some

W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085 1085
dynamic program constructs have statically known behavior,
which is somewhat similar to ours. Braux and Noyé use partial
evaluation to tackle Java reflection [3]. But we have not seen work
which partially evaluates Java class loaders so far.

Applications which use a lot of frameworks and third-party
libraries are called framework-intensive applications in [8], and this
work describes author’s research plan to apply blended analysis
technique to taint analysis. [9] and [10], which are also the author’s
works, mainly use blended analysis to detect performance prob-
lems in framework-intensive applications. The programs we focus
on are largely also framework-intensive applications, but these
works do not make use of the behavior of class loaders and thus
cannot detect many of the runtime type errors.

7. Conclusion and future work

In this paper we propose an approach using points-to analysis
and dynamically gathered behavior information of Java class load-
ers to statically detect runtime type errors in component-based
Java programs, and implement a prototype tool for OSGi. Case
studies show our method feasible, effective, and scalable.

In the future, we will first use larger and more complicated
experiment to evaluate our method. Further, we plan to make Clap
couples loosely with component container such as Felix, using
mainly AOP code to interact with system under analysis. Thus,
we will be able to easily create new versions of Clap for various
component containers like web application servers. We will try
to integrate test-based approaches [6,7] to check if a warning is a
false positive.

We are trying to conduct static analysis on component-based
Java programs. Component containers often use reflection, depen-
dency injection and other techniques, which pose difficulties for
static analysis. Still, some behavior of component containers can
be statically simulated, given the configuration files, in order to
cope with some of these difficulties. In the future we will try to
push this idea further.

Acknowledgments

This work is supported by the National Key Basic Research Pro-
gram of China (Grant No. 2014CB340701) and the National Natural
Science Foundation of China (Grant No. 61173004, 61379045).

References

[1] L.O. Andersen, Program Analysis and Specialization for the C Programming
Language, PhD, Computer Science Department, University of Copenhagen,
1994.

[2] B. Bellamy, P. Avgustinov, O. d. Moor, D. Sereni, Efficient local type inference,
in: Proceedings of the Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, Nashville,
TN, USA, 2008.

[3] M. Braux, J. Noyé, Towards partially evaluating reflection in Java, in:
Proceedings of the Proceedings of the 2000 ACM SIGPLAN workshop on
Partial evaluation and semantics-based program manipulation, Boston,
Massachusetts, United States, 1999.

[4] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, M. Mezini, Taming reflection:
aiding static analysis in the presence of reflection and custom class loaders, in:
Proceedings of the Proceedings of the 33rd International Conference on
Software Engineering, Waikiki, Honolulu, HI, USA, 2011.

[5] Class Loading and Types in Java. <https://access.redhat.com/site/documentation/
enUS/JBoss_Enterprise_Application_Platform/4.3/html/Server_Configuration_
Guide/JBoss_JMX_Implementation_Architecture-Class_Loading_and_Types_
in_Java.html>.

[6] C. Csallner, Y. Smaragdakis, Check ‘n’ crash: combining static checking and
testing, in: Proceedings of the Proceedings of the 27th International
Conference on Software Engineering, St. Louis, MO, USA, 2005.

[7] Z.Q. Cui, L.Z. Wang, X.D. Li, Target-directed concolic testing, Chin. J. Comput. 34
(2011) 953–964 (in Chinese with English abstract).
[8] B. Dufour, Blended analysis for improving the quality of framework-intensive
applications, in: Proceedings of the 2008 Foundations of Software Engineering
Doctoral Symposium, Atlanta, Georgia, 2008.

[9] B. Dufour, B.G. Ryder, G. Sevitsky, Blended analysis for performance
understanding of framework-based applications, in: Proceedings of the 2007
International Symposium on Software Testing and Analysis, London, United
Kingdom, 2007.

[10] B. Dufour, B.G. Ryder, G. Sevitsky, A scalable technique for characterizing the
usage of temporaries in framework-intensive Java applications, in:
Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, Atlanta, Georgia, 2008.

[11] K. Gama, D. Donsez, A self-healing component sandbox for untrustworthy
third party code execution, in: L. Grunske, R. Reussner, F. Plasil (Eds.),
Component-Based Software Engineering, vol. 6092, Springer, Berlin/
Heidelberg, 2010, pp. 130–149.

[12] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, Addison-
Wesley, 2005.

[13] N.D. Jones, An introduction to partial evaluation, ACM Comput. Surv. 28 (1996)
480–503.

[14] T. Lindholm, F. Yellin, Java Virtual Machine Specification, Addison-Wesley
Longman Publishing Co., Inc., 1999.

[15] O. Lhoták, L. Hendren, Scaling Java points-to analysis using SPARK, in:
Proceedings of the Proceedings of the 12th International Conference on
Compiler Construction, Warsaw, Poland, 2003.

[16] O. Lhoták, L. Hendren, Context-sensitive points-to analysis: is it worth it?, in:
A. Mycroft, A. Zeller (Eds.), Compiler Construction, vol. 3923, Springer, Berlin/
Heidelberg, 2006, pp. 47–64.

[17] O. Lhoták, Program Analysis using Binary Decision Diagrams, School of
Computer Science, McGill University, Montreal, 2006.

[18] S. Liang, G. Bracha, Dynamic class loading in the Java virtual machine, in:
Proceedings of the Proceedings of the 13th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, New
York, NY, USA, 1998.

[19] A. Milanova, A. Rountev, B.G. Ryder, Parameterized object sensitivity for
points-to analysis for Java, ACM Trans. Softw. Eng. Methodol. 14 (2005) 1–41.

[20] Z. Qian, A. Goldberg, A. Coglio, A formal specification of Java class loading, in:
Proceedings of the Proceedings of the 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
Minneapolis, Minnesota, United States, 2000.

[21] Osgi service platform, core specification, release 4, version 4.1, OSG Alliance,
2007.

[22] J. Sawin, A. Rountev, Improving static resolution of dynamic class loading in
Java using dynamically gathered environment information, Autom. Softw. Eng.
16 (2009) 357–381.

[23] I. Sommerville, Software Engineering, Addison-Wesley Publishing Company,
2007.

[24] M. Sridharan, R. Bodik, Refinement-based context-sensitive points-to analysis
for Java, in: Proceedings of the Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation, Ottawa,
Ontario, Canada, 2006.

[25] M. Sridharan, D. Gopan, L. Shan, R. Bodík, Demand-driven points-to analysis for
Java, in: Proceedings of the Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, San Diego, CA, USA, 2005.

[26] A. Tozawa, M. Hagiya, Formalization and analysis of class loading in Java,
Higher-Order Symb. Comput. 15 (2002) 7–55.

[27] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan, Soot – a Java
bytecode optimization framework, in: Proceedings of the Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, Mississauga, Ontario, Canada, 1999.

[28] R. Vallée-Rai, L.J. Hendren, Jimple: Simplifying Java Bytecode for Analyses and
Transformations, Sable Research Group, McGill University, 1998.

[29] J. Whaley, M.S. Lam, Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams, in: Proceedings of the Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and
Implementation, Washington DC, USA, 2004.

[30] T. Wang, S.F. Smith, Precise constraint-based type inference for Java, in:
Proceedings of the Proceedings of the 15th European Conference on Object-
Oriented Programming, 2001.

[31] G. Xu, A. Rountev, Merging equivalent contexts for scalable heap-cloning-
based context-sensitive points-to analysis, in: Proceedings of the Proceedings
of the 2008 International Symposium on Software Testing and Analysis,
Seattle, WA, USA, 2008.

[32] X. Xiao, C. Zhang, Geometric encoding: forging the high performance context
sensitive points-to analysis for Java, in: Proceedings of the Proceedings of the
2011 International Symposium on Software Testing and Analysis, Toronto,
Ontario, Canada, 2011.

[33] X. Zhou, W. Zhang, J. Zhang, Semi-static detection of runtime type errors in
component-based Java programs, in: Proceedings of the Proceedings of the
19th Asic-Pacific Software Engineering Conference, Hong Kong, 2012.

[34] T.J. Zuo, J.G. Han, P. Chen, Formalizing Java dynamic loading in HOL, in: K.
Slind, A. Bunker, G. Gopalakrishnan (Eds.), Theorem Proving in Higher Order
Logics, vol. 3223, Springer, Berlin/Heidelberg, 2004, pp. 79–90.

http://access.redhat.com/site/documentation/enUS/JBoss_Enterprise_Application_Platform/4.3/html/Server_Configuration_Guide/JBoss_JMX_Implementation_Architecture-Class_Loading_and_Types_in_Java.html
http://access.redhat.com/site/documentation/enUS/JBoss_Enterprise_Application_Platform/4.3/html/Server_Configuration_Guide/JBoss_JMX_Implementation_Architecture-Class_Loading_and_Types_in_Java.html
http://access.redhat.com/site/documentation/enUS/JBoss_Enterprise_Application_Platform/4.3/html/Server_Configuration_Guide/JBoss_JMX_Implementation_Architecture-Class_Loading_and_Types_in_Java.html
http://access.redhat.com/site/documentation/enUS/JBoss_Enterprise_Application_Platform/4.3/html/Server_Configuration_Guide/JBoss_JMX_Implementation_Architecture-Class_Loading_and_Types_in_Java.html
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0035
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0035
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0055
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0060
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0060
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0060
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0065
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0065
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0070
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0070
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0070
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0075
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0075
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0075
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0075
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0080
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0080
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0080
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0080
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0080
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0085
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0085
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0085
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0095
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0095
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0110
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0110
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0110
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0115
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0115
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0115
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0130
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0130
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0140
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0140
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0140
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170
http://refhub.elsevier.com/S0950-5849(14)00086-X/h0170

	A class loading sensitive approach to detection of runtime type errors in component-based Java programs
	1 Introduction
	2 Preliminaries
	2.1 Class loading in Java
	2.2 Type error detection
	2.3 The OSGi framework

	3 Motivation
	3.1 An example
	3.2 The problem
	3.3 Our basic idea
	3.4 Challenges

	4 Our detection process
	4.1 Problem settings and typical points-to analysis
	4.2 Referencing class loader information
	4.2.1 Assumptions
	4.2.2 Loading function
	4.2.3 Extending typical points-to analysis

	4.3 Detecting runtime type errors
	4.3.1 Instance field referring (v.field)
	4.3.2 Field writing (v1.field=v2)
	4.3.3 Array storing (a[ind]=v)
	4.3.4 Type casting ((T)v)
	4.3.5 Method calling (v0.m(v1, v2,…))
	4.3.6 Method returning (return v)

	4.4 Complexity and other issues

	5 Evaluation
	5.1 Implementation details
	5.1.1 Entry points
	5.1.2 Loading constraint violations

	5.2 Pseudo code of checking algorithm
	5.3 Experiment design and settings
	5.4 Case studies and results
	5.4.1 Case of a toy program: feasibility test
	5.4.2 Case with more propagation: effectiveness test
	5.4.3 Case in a bug-fix scenario: false negative test
	5.4.4 Case of a large program: scalability test
	5.4.5 Summary

	5.5 Threats to validity and related discussions

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

