
Coincidental Correctness: An Interference or

Interface to Successful Fault Localization?

Zheng Zheng, Yichao Gao, Peng Hao

School of Automation Science and Electrical Engineering,

Beihang University,

Beijing, China

zhengz@buaa.edu.cn

Zhenyu Zhang

Institute of Software

Chinese Academy of Sciences

Beijing, China

zhangzy@ios.ac.cn

Abstract—In software debugging, statistical fault localization

techniques contrast dynamic spectra of program elements to

estimate the location of faults in faulty programs. Coincidental

correctness may have a negative impact on these techniques

because faults can also be triggered in an observed non-failed run

and thus disturbs the assessment of fault locations. However,

eliminating the confounding relies on the accuracy of recognizing

them. This paper makes use of the presence of coincidental

correctness as an effective interface to the success of fault

localization. We calculate the distribution overlapping of

dynamic spectrum in failed runs and in non-failed runs to find

out the fault-leading predicates, and further reduce the region by

referencing the inter-class distances of the spectra to suppress the

less suspicious candidates. Empirical results show that our

technique can outperform representative existing predicate-

based fault localization techniques.

Keywords—fault localization; coincidental correctness; class

distribution

I. INTRODUCTION

Modern software and software systems are becoming more
and more complicated, and both academia and industry require
effective mechanisms to guarantee the quality of software.
Most failed program runs are caused by faults existing in a
program. Generally speaking, to fix a program fault, a
developer needs to locate it first. Statistical fault localization
(SFL in short) refers to the automatic process to locate
suspicious program elements.

A SFL technique captures dynamic spectrum for each
program element from the failed runs and the non-failed runs
respectively, and contrasts them to estimate the suspiciousness
of a program element being related to faults. Liblit et al. [10]
proposed a scalable SFL technique CBI, which installs Boolean
expressions (coined predicates) for specific program elements,
and locates fault-relevant predicates to reduce the complexity
of conventional SFL techniques that investigate every
statement. To distinguish the two technique families, we refer
to them as predicate-based SFL techniques and statement-level
SFL techniques, respectively.

Although SFL techniques are reported successful, their
effectiveness to locate faults is unavoidably influenced by the
characteristics of input data. Coincidental correctness refers to
the phenomenon that no failure is detected, even though the

fault has been exercised [18]. The portion of non-failed runs
that coincidentally manifest no abnormal behavior may have a
negative impact on the accuracy of SFL techniques, because
their execution profiles are closer to those of the failed runs
(both with the fault triggered).

Previous studies have realized and validated the prevalence
of coincidental correctness as well as its confounding to SFL
techniques, and put efforts to address it. The direct idea is to
recognize the coincidental correctness runs and remove them
from inputs [6][12]. However, the feasibility and effectiveness
are based on the accurate recognition of the coincidental
correctness runs. The latest controlled experiment gave a
pessimistic report that the false negative related to the
recognition of coincidental correctness runs is above 50% for
one out of three experiment subjects [13]. Can we allow the
existence of coincidental correctness and locate a fault with the
presence of it? The problem is both challenging and interesting.

In this paper, we analyze the behavior of dynamic spectra
for different program predicates, with the presence of
coincidental correctness, and propose a technique to find out
the most fault-relevant predicates. First of all, we capture the
dynamic spectra of program predicates in the failed runs and in
the non-failed runs, respectively. After that, we calculate the
overlapping of the spectrum distribution in the failed runs and
that in the non-failed runs to find out the predicates, whose
exercising lead to the triggering of a fault. Next, we reduce the
region by calculating the inter-class distances for the spectra in
the two communities (failed and non-failed) to suppress
uninterested less suspicious predicates. We sort the predicates
by referencing their calculated suspiciousness, and output a
ranked list of suspicious predicates. Experiments show that our
technique outperforms some representative existing predicate-
based SFL techniques.

This paper makes the following contributions. (i) We
propose a technique that properly estimates fault locations with
the presence of coincidental correctness. It is expected to be
more accurate since there is no longer a need to recognize the
coincidentally correct runs. (ii) We use an empirical evaluation
to show that our technique outperforms representative existing
peer techniques on the common data sets.

The rest of this paper is organized as follows. Section II and
III motivates and elaborates on our technique, respectively.

116978-1-4799-2552-0/13/$31.00 ©2013 IEEE 114

Section IV and V give an empirical evaluation and a literature
review, respectively. Section VI concludes the paper.

II. MOTIVATION

A. The Sample Program

Fig. 1 shows a piece of code to find the maximum value
among three inputs. A fault is seeded in the statement L5,
which may cause the program to generate an incorrect output.

We use simple integers as inputs to start the program and
permute them to create six test cases, namely T1, T2, T3, T4,

T5, and T6. We notice that although all of T3, T4, T5, and T6

have exercised the faulty statement, only T5 and T6 generate
unexpected outputs. We thus mark the program execution over
T5 and T6 as failed runs and the other executions as non-failed
runs, respectively. To ease the following discussion, we use the
term coincidental runs, to name the program executions over
T3 and T4, where the fault is triggered but no faulty state is
propagated to be finally observable. To differentiate from them,
we use the term successful runs, to name the program runs over
T1 and T2.

Previous studies such as CBI construct predicates at three
kinds of program statements (i.e., branch statements, return
statements, and scalar-pairs). Following previous work [10],
we install seven predicates in the program, and they are noted
as P1, P2, P3, P4, P5, P6, and P7 in Fig.1. We also record their
dynamic spectrum in a program run in the form of x : y, where
x and y stands for the number of times a predicate is evaluated
to be true and the number of times that predicate is evaluated to
be false, respectively. Let us take the first row to illustrate. In
the program run of T1, predicate “P1: x==a” is evaluated
false once and never evaluated true. We thus record the
dynamic spectra of predicate P1 as “0:1” in that run.

B. Inspiring Our Work

Since the program contains no loop and is sequentially
executed, we label three categories of predicates

1
, namely

1 Note that a predicate may have more than one label.

neutral predicates, fault-leading predicates and fault-led
predicates, according to their execution sequence in the failed
runs. A rough judging is made according to the heuristics that
(1) the exercising of a neutral predicate does not correlate with
the exercising status of the fault, (2) the exercising of the fault-
leading predicates may deterministically lead to trigger the
fault or skip the fault, and (3) triggering the fault may
deterministically lead to exercise the fault-led predicates or
skip them. With such a criterion, the seven predicates are
partitioned into three groups, in which P1 is a neutral predicate,

P2, P3 and P4 are fault-leading predicates, and P5, P6, and P7

are fault-led predicates. Note that predicate P4, the most fault-
relevant predicate, is also a fault-leading predicate with such
classification. In Fig. 1, the observations are as below.

1) On a Neutral Predicate

For a neutral predicate, its dynamic spectra in every runs
resemble each other. This can be understood as that neutral
predicates often have less relationship with the fault so that
their behaviors make less difference in every runs no matter it
is a failed run or a non-failed run. Let us take predicate P1 in

the program run T4 to illustrate. Predicate “P1: x==a” lies on
the first statement and always evaluates false, its spectra in all
runs are equal.

2) On a Fault-leading Predicate

For a fault-leading predicate, its dynamic spectra in the
coincidental runs (the non-failed runs with coincidental
correctness happening) are identical to those in the failed runs,
but different from those in the successful runs (the non-failed
runs without coincidental correctness happening). We use the
symbols “≠” and “≈” in Fig. 1 to mark them for a better view.
This can be understood as follows. The execution paths leading
to a fault often concentrate into small clusters, as reported in
[4]. Therefore, a fault-leading predicate may manifest similar
dynamic spectra in the coincidental runs and the failed runs.
Let us take predicate P2 and the program run T4 to illustrate.

Predicate “P2: a>b” evaluates false, which skips the

statement L3 to triggers the fault on the statement L5. This is
the only legitimate path that leads to the fault, and the dynamic

Program: Dynamic spectra of predicates Observations

int max(int a, int b, int c) {

T1:

(2,1,3)

T2:

(2,1,2)

T3:

(1,1,3)

T4:

(1,2,3)

T5:

(2,3,1)

T6:

(1,2,0)

L1: int x = a; P1: x==a 0:1 0:1 0:1 0:1 0:1 0:1 Neutral predicates: Similar spectra in all runs.

L2: if (a > b) P2: a>b 1:0

0:1 Fault-leading predicates:

Spectra in {T3,T4} resemble those in {T5,T6},

because both of them lead to trigger the fault;

spectra in {T3,T4} vary from those in {T1,T2},

because the latter lead to trigger no fault.

1:0 ≠ 0:1 0:1 ≈ 0:1

L3: x = a; P3: x==a 0:1 0:1 ≠ 0:0 0:0 ≈ 0:0 0:0

L4: else

L5: x = a; // x = b; P4: x==a 0:0 0:0 ≠ 0:1 0:1 ≈ 0:1 0:1

L6:

Fault-led predicates:

Spectra in {T3,T4} vary from those in {T5,T6},

because the latter reveal failures;

spectra in {T3,T4} resemble those in {T1,T2},

because both of them reveal no failure.

L7: if (x > c) P5: x>c 0:1 0:1 ≈ 0:1 0:1 ≠ 1:0 1:0

L8: return x; P6: x==0 0:0 0:0 ≈ 0:0 0:0 ≠ 0:1 0:1

L9: else

L10: return c; P7: c==0 0:1 0:1 ≈ 0:1 0:1 ≠ 0:0 0:0

 } successful coincidental a failed

a. coincidental runs: they are also non-failed runs, but with coincidental correctness happening

Fig. 1. Motivating example (predicates may behave differently according to their relative position to fault)

117115

spectra for P2 in T4 are identical to those in T5 and T6, while

is different from those in T1 and T2.

3) On a Fault-led Predicate

For a fault-led predicate, its dynamic spectra in the
coincidental runs are identical to those in the successful runs,
but different from those in the failed runs. This can be
understood as follows. Even if the fault is exercised, the faulty
state may be coincidentally not propagated and the led program
executions still behave as normal. As a result, no difference can
be observed in the dynamic spectra from the successful runs
and those form the coincidental runs, for a fault-led predicate.
Let us take predicate P5 and the program run T4 to illustrate.

During the program run over T4, even with the faulty value of

x, predicate “P5: x>c” gives a correct answer (i.e., it
evaluates false). The fault is thus glossed over, which leads the
rest program excerpt (from L7 to the end) to execute as normal.

As a result, the dynamic spectra for P5 in T4 are identical to

those in T1 and T2, while different from those in T5 and T6.

Such observations inspire us to utilize the spectrum
distribution in different program runs to distinguish the fault-
leading predicates from the others.

We find that the overlapping of spectrum distribution in
failed runs with that in non-failed runs can be an effective
means to differentiate a fault-leading predicate from the others.
For the fault-leading predicate P2, its dynamic spectra in T5

and T6 are also observed in T3 and T4 (though not in T1 and

T2), and we record an overlapping of 100% for it. The same

phenomenon is observed with the predicates P3 and P4. For the

fault-led predicate P5, its dynamic spectra in T5 and T6 are not

observed in T1, T2, T3, and T4, and we record an overlapping
of 0% for it. The same phenomenon is observed with the
predicates P6 and P7. Thus, by comparing the extent of
overlapping, we can rule out the fault-led predicates.

We have demonstrated that the overlapping of spectra in
failed runs with that in non-failed runs can be helpful in
indicating fault-leading predicates. However, to work out a
successful fault localization technique, there are still challenges.
First, a predicate can be evaluated more than once because of
the presence of loops. What is the proper form for a dynamic
spectrum? Second, we notice that the opposite overlapping
(spectra in non-failed runs with that in failed runs) can be also
a good indicator. How to scientifically assess the extent of the
overlapping is a key problem. Third, the neutral predicates
have high overlapping (e.g., 100% for P1 in the example) and
they mix up with the fault-leading predicates. It is necessary to
suppress their confounding in the result. How does our model
work in such cases? We will elaborate on our model in the next
section.

III. OUR MODEL

A. Problem Settings

Let P be a faulty program with m predicates, which are
referred to as . Program runs is
partitioned into two sets, N and F, where
is the set of u non-failed runs and is the set

of v failed runs. For example, in Fig. 1, ,
and .

In each program run, a predicate may be exercised or not,
and the evaluation result can be passed or fail. We use the term

 () and the term () to record the number of times

a predicate pj is evaluated true and the number of times it is
evaluated false in the program run ri, respectively.

Our aim is to estimate the suspicious predicates, which are
most relevant to the faults causing the observed failed runs in
F.

B. Preliminaries

Before elaborating on our model, we first introduce some
preliminaries. Following previous study [11], we use

to express the evaluation bias of a predicate pj in a program run
ri. Here, an evaluation bias is the probability of a predicate
being evaluated true in a program run. It is calculated as

 ()

 () ()
2 . We also use and

 to express the evaluation bias of a predicate pj in a

failed run and a non-failed run, respectively.

Further, the vector
 []

is used to denote the vector of evaluation bias for each

predicate in the i-th failed run . Similarly,
 is used to

denote the vector of evaluation bias in the i-th non-failed run .

The overlapping of spectrum distribution in failed runs with
that in non-failed runs actually considers the similarity between
the two kinds of runs, according to the variables of evaluation
bias which exist in both of them. In this paper, Bhattacharyya
coefficient [2] is introduced to the measurement of the
overlapping. It is a function to measure the amount of overlap
between two statistical samples or populations. Let be a

variable of evaluation bias for predicate pj, and , denote
the failed runs and non-failed runs, respectively. Bhattacharyya
coefficient can be formalized as

 (() ()) ∑ √ () ()

where is the domain of , () and () are the

conditional probabilities of in the set of failed runs and non-

failed runs respectively. The probability of exists in both of

the two kinds of runs is denoted as () (). The

measure is proved to be the upper bound of Bayes error, which
directly related to the overlapping of two models [16]. In this

paper, we use
 and

 to approximate ()

and () respectively, where
 is the count of the

appearance of in the set of failed runs, and
 is the count of

the appearance of in the set of non-failed runs. Take the

predicate in Fig. 1 as an example, there exists only one
variable , so the conditional probabilities are

and are 1, and () .

2 Note that when the predicate is never evaluated, there is no clue to

determine its evaluation bias value, and we follow previous work [11]

to unbiasedly set it to 0.5.

118116

C. Our Technique

Our fault localization technique consists of four steps.

1) S1: Collecting Dynamic Spectra

In this step, the subject program is instrumented to log
execution traces of predicates at runtime. We collect dynamic
spectra for all predicates in every program runs, and predicates
are inserted for three kinds of statements, that is, branch
statements, scalar-pair statements, and return statements. We
use the evaluation bias to capture the dynamic spectrum.

2) S2: Calculating the Overlapping of Spectrum Distributions

For neutral predicates and fault-leading predicates, since
their spectra in coincidental runs and their spectra in failed runs
resemble each other to a great extent, we adopt to estimate the
distribution overlapping to differentiate them from the fault-led
predicates. Bhattacharyya distance [2] is used to calculate the
overlapping of spectrum distribution in failed runs with that in
non-failed runs (note that we cannot figure out the coincidental
runs from the non-failed runs).

Given a predicate pj, the problem is to determine the
overlapping of its spectrum distribution in failed runs F and
that in non-failed runs N. The overlapping Oj of the spectrum
distribution in failed runs with that in non-failed runs can be
expressed in terms of the Bhattacharyya distance:

 [(() ())],

where BC(•) is the Bhattacharyya coefficient. If

 (() ()) , we set to be .

After this step, we may reorder all the predicates by
referencing their overlapping value in the descending order.
The top ranked predicates is supposed to contain more fault-
leading predicates. However, we also predict that after such a
step, the neutral predicates may still mix up with the fault-
leading predicates in the results.

3) S3: Calculating the Inter- and Intra-class Distances

We notice that the neutral predicates still mix up with the
fault-leading predicates. Let us focus on the inter-class distance
[7] to figure out a solution. In the motivating example, we have
demonstrated that for fault-leading and fault-led predicates,
their spectra in successful runs and in failed runs are different
from each other to a great extent. We thus adopt to estimate the
inter-class distance to differentiate them from the neutral
predicates.

The inter-class distance Bj for a predicate pj is calculated as:

 |

 |

where
 and

 are the mean value of the evaluation bias for

pj in the failed and the non-failed program runs, respectively.

Here,
 and

 are calculated as follow.

∑[]

∑[]

The inter-class distance Bj captures the distance between
the evaluation bias of predicate pj in the set of failed runs and

the evaluation bias of it in the set of non-failed runs. As in the
motivation, we have explained that the inter-class distance for a
neutral predicate is less than that of a fault-leading predicate.
Thus we can use Bj to differentiate a neutral predicate from a
fault-leading predicate.

However, we also realize that spectrum distributions for
two predicates may have unequal widths. Directly comparing
their inter-class distance may not be scientific. For example,
the predicate installed for the branch statement of a long loop
may have very small evaluation bias value

3
. The inter-class

distance calculated for it can be much smaller than the average.
To fairly compare the inter-class distance of two predicates, we
further reference their intra-class distance to normalize them
before comparison.

The intra-class distance Dj for a predicate is calculated as,

√∑ [(()
)

]

√∑ [(()
)

]

It can be similarly explained as Bj. Note that it is the mean of
the intra-class distance of Pj for the failed runs and that for the
non-failed runs.

We normalize the inter-class distance Bj using the intra-
class distance Dj for each predicate, so that their distance can
be fairly compared to each other. The normalized inter-class
distance Aj for is as follows.

When is zero and Bj is not zero, we set Aj to be . When

 is zero and Bj is also zero, we set Aj to be zero.

This step decreases the ranks of the neutral predicates
without affecting the relative order of the fault-leading
predicates and the fault-led predicates.

4) S4: Generating a Ranked List of Suspicious Predicates

In previous step, we use the normalized inter-class distance
Aj to differentiate a neutral predicates from a fault-leading
predicates. By integrating the two steps, we have the
suspiciousness formula Sj as follows,

 () .

Since the use of Oj can rule out the fault-led predicates, and
the use of Aj can suppress neutral predicates, we thus identify
fault-leading predicates. At the same time, since the normalized
inter-class distance for a fault-leading predicate is supposed to
be comparable to that of a fault-led predicate, the relative order
of fault-leading predicates and fault-led predicates is still
reserved by the adjustment of “ ”. The base number 2 is to

assure that .

Finally, we reorder the predicates in the descending order
of their suspiciousness scores Sj, and generate a ranked list of
predicates.

3 E.g., predicate “i<9” in “for(i=0; i<9; i++)” always has an

evaluation bias of 0.1.

119117

IV. EMPIRICAL EVALUATION

In this section we conduct experiments to test the
effectiveness of our method. We describe the experiment setup,
including the subject programs, peer techniques, and the
effectiveness metrics for fault localization. The results and
analysis of our experiments are presented subsequently. Finally,
we discuss the threats to validity of our experiment.

A. Experiment Design

1) Subject programs

 To evaluate our technique, we use the Siemens suite [5], a
realistic program space, and two UNIX programs flex and grep
as experiment subjects (see TABLE I). We excluded the
versions come with no failed run or having a failure rate greater
than 20% [21]. 171 faulty versions are used in our experiments.

2) Peer techniques

To adequately evaluate our method, we compare it with the
predicate-based techniques CBI [10], SOBER [11], Wilcoxon
[20], and Mann-Whitney [20]. We choose the former two
because they are representative. We choose the latter two
because they show promising results in a last report [20].

We do not select any popular statement-level techniques for
comparison due to three considerations. (i) It is not fair to

directly compare the effectiveness of a predicate-based
technique with that of a statement-level technique. (ii) We
want to focus on predicate-based techniques to consistently
evaluate our method. (iii) The Wilcoxon and Mann-Whitney
techniques have been empirically shown comparable to the
state-of-the-art statement-level techniques [20].

3) Effectiveness metrics

P-score [20] uses the appearance position of the most fault-
relevant predicate in the generated ranked list of predicates as
the effectiveness of that fault-localization technique to locate a
fault.

The effectiveness for our technique is consistently coined
as “J-B” in the rest part of this section. The other techniques
are referred to by their names.

B. Results

Fig. 2 depicts the overall effectiveness of each technique.

The x-axis of Fig. 2 shows the predicate examination efforts

(the percentage of predicates examined). The y-axis of Fig. 2

shows the percentage of faults located (P-score) within the

given predicate examination efforts. The curve of J-B, which

stands for our technique, is shown in bold, and curves for

other techniques are shown with different colors and markers.

 Fig. 2 shows that, for the 171 faulty versions in all the

programs, our technique always locates more faults than the

other techniques, when using any predicate examination effort

of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% as a

check point. For example, when a developer examines at most

10% of the predicates, CBI and SOBER can catch faults in

21.64% and 12.28% of the faulty versions, respectively, while

Wilcoxon and Mann-Whitney capture faults in 32.75% and

18.71% faulty versions, respectively. With the same predicate

examination efforts, our method can locate faults in 47.95%

faulty versions. The advantages of our technique are

observable. In summary, Fig. 2 shows that our technique has

an overall advantage to the other techniques in locating faults

in the subject programs.

C. Threats to Validity

In our technique, Bhattacharyya distance and inter-class
distance [7] are used to evaluate the spectrum distribution
overlapping and the inter-class distance, respectively. Since
both the overlapping and the inter-class distance are evaluated
using symmetric metrics, other popular distance measurements
can be also adopted. They may result in different experiment
observations and conclusions. On the other hand, effectiveness
metric may cause threats to the construct validity of the results.

External validity of the experiment can be threatened by the
use of other subject programs. The experimental observation
may be consolidated by using more subjects in evaluation.

Threats to the validity of the experiment also relate to the
impact factors of the experiment conclusions. In our technique,
we employ two different measurements in two steps. We
predict that by using each of them independently we cannot
achieve the desired results. Though the experiment also gives
positive answers, whether one of them has a dominant effect is
unknown. Orthogonal experiments to validate the net effect of
each step may give more insights on our technique.

TABLE I. STATISTICS OF SUBJECT PROGRAMS IN USED

Programs
of selected

versions

of

LOC

of

predicates

of

runs

print_tokens 4 472 51 4130

print_tokens2 10 399 116 4115

schedule 9 292 24 2650

schedule2 9 301 55 2710

replace 30 512 63 5542

tot_info 19 440 47 1052

tcas 30 141 10 1608

space 28 6218 914 13585

flex 20 15297 895 567

grep 12 15633 1284 809

Fig. 2. Overall effectiveness comparison

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

J-B

Mann-Whitney

Wilcoxon

CBI

SOBER

120118

V. RELATED WORK

Tarantula [9] is one of the most famous fault localization
techniques. It uses the proportions of failed or passed
executions that exercising a statement to calculate the
suspiciousness of that statement. Naish et al. [14] gave a
summary for such techniques.

Compared to such statement-level techniques, CBI [10]
uses predicates as fault indicators to locate faults, which gains
both low complexity and high extensibility. Zhang et al. [22]
empirically validated that the short-circuiting rule to evaluate a
Boolean expression has significantly effects on the predicate-
based techniques, and proposed DES [22] accordingly. Zhang
et al. [20] proposed a non-parametric predicate-based statistical
fault-localization framework. Arumuga Nainar et al. [1] further
used compound Boolean predicates to locate faults. HOLMES
[3] uses execution path as a fault predicator. Our technique can
be also applied by using paths as predicates. In the future work,
we will make further investigation. Other related work includes
CP [20] and [15], which uses execution spectra of control flow
edges to locate faults.

Coincidental correctness is a well-known impact factor of
statistical fault localization. It causes program runs, which
trigger the fault, to be marked as non-failed runs. Test suite
reduction is a solution [8][15] to address coincidental
correctness or improve test suite quality [19], but its feasibility
relies on the accuracy of recognizing coincidental cases [13].
This paper proposes a methodology to address coincidental
correctness, which does not rely on the accuracy of recognizing
them. In this paper, Bhattacharyya coefficient is used to
measure the similarity of the predicate spectra between failed
runs and non-failed runs, to rule out the fault-led predicates.
The inter- and intra-class distances are often used in pattern
recognition to measure the class difference [16][17]. In this
work, we use them to pick out the neutral predicates which mix
up with the fault-leading predicates. The fundamental
difference of this work with the mentioned previous studies is
that it utilizes the presence of coincidental correctness as an
effective interface to successful fault localization, rather than to
eliminate it from inputs and propose a yet another
suspiciousness metrics.

VI. CONCLUSION

Oracle used in real-life can be seldom perfect, and the use
of imperfect oracles in fault localization causes the prevalent
coincidental correctness in practice. A popular approach is to
get rid of them, since their presence make the input data of
statistical fault localization techniques unreliable. However, its
feasibility relies on the accuracy of recognizing them.

In this paper, we propose to utilize the presence of
coincidental correctness to locate faults. We analyze the
confounding of coincidental correctness to fault localization,
propose to measure the spectrum distribution overlapping to
rule out fault-led predicates, and further suppress neutral
predicates by assessing the inter-class distribution of spectrum
in the failed runs and the non-failed runs. A preliminary
evaluation shows that our technique can more effectively locate
the fault-leading predicates that are tightly related to faults,
compared to the other representative techniques.

Future work includes involving execution path as additional
information to accurately identify fault-leading predicates, and
validating the proposed idea using statement-level techniques.

REFERENCES

[1] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, Statistical
debugging using compound Boolean predicates, Proc. ISSTA ,pp. 5-15,
2007.

[2] A. Bhattacharyya. On a measure of divergence between two statistical
populations defined by probability distributions. Bulletin of the Calcutta
Mathematical Society, 1943.

[3] T.M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, and K. Vaswani,
HOLMES: effective statistical debugging via efficient path profiling,
Proc. ICSE, pp. 34-44, 2009.

[4] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure: the
distribution of program failures in a profile space. Proc. ESEC/FSE, pp.
246-255, 2001.

[5] H. Do, S. G. Elbaum, and G. Rothermel, Supporting controlled
experimentation with testing techniques: an infrastructure and its
potential impact, Experimentation in Software Engineering, vol. 10(4),
pp. 405-435, 2005.

[6] R. Gore, and P. F. Reynolds. Reducing confounding bias in predicate-
level statistical debugging metrics, Proc. ICSE, pp. 463-473, 2012.

[7] Y. Guan, H. Wang. Set-valued information systems. Information
Sciences, vol. 176(17), pp. 2507-2525, 2006.

[8] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei and J. Sun, A similarity-
aware approach to testing based fault localization, Proc. ASE, pp. 291-
294, 2005.

[9] J.A. Jones and M.J. Harrold, Empirical evaluation of the Tarantula
automatic fault-localization technique, Proc. ASE, pp. 273-282, 2005.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M.I. Jordan, Scalable
statistical bug isolation, Proc. PLDI, pp. 15-26, 2005.

[11] C. Liu, L. Fei, X. Yan, S. P. Midkiff, and J. Han, Statistical debugging: a
hypothesis testing-based approach, IEEE TSE, vol. 32(10), pp. 831-848,
2006.

[12] W. Masri and R. A. Assi. Cleansing test suites from coincidental
correctness to enhance fault-localization, Proc. ICST, pp. 165-174, 2010.

[13] Y. Miao, Z. Chen, S. Li, Z. Zhao, and Y. Zhou, Identifying coincidental
correctness for fault localization by clustering test cases, Proc. SEKE, pp.
262-272, 2012.

[14] L. Naish, H.J. Lee, and K. Ramamohanarao, A model for spectra-based
software diagnosis, ACM TOSEM, vol. 20(3):11, 2011.

[15] R. Santelices, J.A. Jones, Y. Yu, and M.J. Harrold, Lightweight fault-
localization using multiple coverage types, Proc. ICSE, pp. 56-66, 2009.

[16] S. Theodoridis, K. Koutroumbas. Pattern Recognition. Academic Press,
New York, 4th. 2009.

[17] L. Wang, Feature selection with kernel class separability, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30(9),
pp. 1534-1546, 2008.

[18] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang. Taming
coincidental correctness: Coverage refinement with context patterns to
improve fault localization. Proc. ICSE, pp. 45-55, 2009.

[19] Y. Yu, J. A. Jones, and M.J. Harrold, An empirical study of the effects
of test-suite reduction on fault localization, Proc. ICSE, pp. 201-210,
2008.

[20] Z. Zhang, W.K. Chan, T.H. Tse, B. Jiang, and X. Wang, Capturing
propagation of infected program states, Proc. ESEC/FSE, pp.43-52,
2009 .

[21] Z. Zhang, W. K. Chan, T. H. Tse, Y. T. Yu, and P. Hu, Non-parametric
statistical fault localization, Journal of Systems and Software, vol. 84(6),
pp. 885-905, 2011.

[22] Z. Zhang, B. Jiang, W. K. Chan, T. H. Tse, and X. Wang, Fault
localization through evaluation sequences, Journal of Systems and
Software, vol. 84(6), 2010.

121119

