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a b s t r a c t

Wireless sensor network (WSN) applications sense events in situ and compute results in-network. Their
software components should run on platforms with stringent constraints on node resources. To meet
these constraints, developers often design their programs by trial-and-error. Such manual process is
time-consuming and error-prone.
Based on an existing task view that treats a WSN application as tasks and models resources as con-

straints, we propose a new component view that associates components with code optimization tech-
niques and constraints. We provide a visualization mechanism to help developers select code
optimization techniques. We also develop algorithms to synthesize components running on nodes, fulfill-
ing the constraints, and thus optimizing their quality.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

A wireless sensor network (WSN) is a computer network of sen-
sor nodes interconnected by short-range and short-life wireless
communication channels (Akyildiz et al., 2002). Each sensor node
may capture data, such as temperature and light intensity, from
the environment. Applications running on WSNs, such as animal
surveillances (Szewczyk et al., 2004), automatic detections of geo-
logical events, and hospital administrations (Shnayder et al., 2005),
should sense physical events in situ (Kuorilehto et al., 2005) and
analyze the sensed data in-network (Srivastava, 2006).

Power-aware applications are common in WSNs (Chan et al.,
2007). Communication consumes the highest amount of energy
in sensor nodes, followed next by processing, and then storage
(Healy et al., 2007). Akin to design patterns or code refactoring
for general object-oriented development, WSN developers use di-
verse code optimization techniques such as loop unfolding and
lookup tables to tune the WSN software applications to meet the
resource constraints. They apply different tactics to cater for differ-
ent needs. This paper will collectively refer to such tactics as code
optimization techniques, or COTs for short.

However, incorporating a code optimization technique in a
WSN program currently needs significant manual effort. When
an application does not work according to a COT, a simple prag-
matic approach is to tune it iteratively and manually by means
of trial-and-error. This is tedious, low-level, and time-consuming.
Also, the underlying WSN platforms, both hardware and software,
are diverse in quality. A seemingly innocuous change may drasti-
cally alter the constraints that these programs need to fulfill. The
WSN software fit for a specific resource-stringent environment will
need to be adapted further to adjust to the changed environment.
The lack of a system-wide concept to deal with code optimization
techniques further complicates how developers can apply various
COTs for different software units.

To tackle these challenges, this paper proposes a task-oriented
component-based COT model. It represents a WSN application as
a set of components. In the task view, resource constraints, known
as resource concerns or simply concerns, are defined at both the
application and node levels. In the component view, every compo-
nent is associated with its basis resource usages and a set of COTs.
The resource usages of the COTs are visualized as a color palette.
The developer can select COTs with higher optimization capabilities
by choosing the COTs in darker colors in the palette, and thus de-
cide on a favorable COT combination. We further present heuristic
algorithms to determine the COT combination automatically. The
empirical result shows that our method is effective and efficient.

The main contribution of the paper is fourfold: First, it proposes
an application-level design optimization model for WSN applica-
tions. Second, it develops algorithms to construct components
that support the automatic selection of a suite of COTs. Third, it
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provides a visualization mechanism to help developers manually
decide a COT combination. Fourth, it provides the first empirical
study on the topic, comparing the effectiveness of applying our
heuristic algorithm to a case study with that of the corresponding
manual process.

The rest of this paper is organized as follows: After reviewing
the related work in Section 2, we describe a motivating example
in Section 3. Section 4 presents our design model and algorithms,
followed by an evaluation in Section 5. Finally, Section 6 concludes
the paper.

2. Related work

Many researchers have conducted studies to adapt WSN applica-
tions to resource constraints. Kuchcinski (1997) synthesizes an
embedded system to meet timing constraints. Similarly, Wang and
Shin (2006) construct tasks to tackle a similar issue with a view to
minimizing the overall elapsed time. Other than timing constraints,
Teich et al. (1997) study the processing capability of partitioned pro-
cessor arrays. Shin et al. (2004) further investigate how to tackle the
energy and code size constraints. These studies inspire our work.

In the above work, resource usages are optimized via different
techniques including reconfiguration, task construction, code
encoding, and compressing. These techniques are specific to differ-
ent situations and, hence, may adversely affect the modifiability of
the applications. On the other hand, Gay et al. (2005) implements
experimental design patterns in the context of WSNs. This inspires
us to use combined code optimization techniques to optimize re-
source usages to cater for unanticipated fluctuations in environ-
mental constraints. As in Kaspersky (2003), code optimization
techniques can be embedded into the code similarly to design pat-
terns. A difference between our method and that of Kaspersky
(2003) is that we consider aggregated effects of combined code
optimization techniques while they do not.

Adopting code optimization techniques is related to program
synthesis. In this field, Huselius and Andersson (2005) introduce
their model synthesis work for real-time systems, which focuses
on architectures and observed behaviors. Kuchcinski (1997) tackles
timing constraints by assigning processes to processors. Our com-
ponent-based model supports configurations with multiple re-
sources, and we use combined code optimization techniques to
optimize their overall usages. A similar concept is also introduced
in Wohlstadter et al. (2004), which only investigates the interac-
tion relationships of optimization techniques but not their aggre-
gated effects.

This paper is also related to searching. Kulkarni et al. (2004) de-
scribe two complementary general approaches, which are designed
to achieve faster searches when genetic algorithms are used. The
results show that evolutionary compilation can be used to tune
embedded applications. Zhao et al. (2006) make use of an analytic
model and heuristic algorithms to investigate the profitability of
optimizations, which can be used to determine the effectiveness
of applying optimizations. They suggest one can determined from
the model whether an optimization is beneficial and should be ap-
plied, without the need to actually applying it. Özcan and On-
bas�ioglu (2007) propose a memetic algorithm to find the best
number of processors and the best data distribution method for
each stage of a parallel program. Different crossover operators as
well as hill-climbing methods are used to compare a steady-state
memetic algorithm with a transgenerational memetic algorithm.

We treat WSN applications as components. Zhang and Cheng
(2006) use Petri nets as a model to cater for the design of adaptive
behavior, while Sgroi et al. (2000) propose a communicating finite
state machine model with a similar aim. Their applicability to
WSNs is yet to be studied.

3. Motivating example

This section describes a motivating example using the compo-
nent Timer.fired from Surge,1 a real-life application of TinyOS.2

The component, as shown in Fig. 1, resides in a task initiated by peri-
odic time-driven events. Let us call this version P0 for the ease of
reference.

In P0, a switch construct accepts a message-type identifier
(parameter arg_0xb76cb2c8) and invokes the corresponding pro-
cessing functions. To do so, the component needs to compare the
value of arg_0xb76cb2c8 with the cases in switch. The mean num-
ber of comparison operations, denoted by meanðCOMPÞ, is
1þ2þ3þ4þ252�4

256 � 3:977. This is because, for the uniform distribution
of an unsigned 8-bit integer whose range is [0U, 255U], almost
all of possible values will fall under the default branch, which
means that they should pass through the first four case statements
before reaching the default branch. In the worst case, all samples
fall into [3U, 255U]. The maximum number of comparison opera-
tions, denoted by maxðCOMPÞ, is 4.

We observe that this code fragment adopts at least one COT. The
variables arg_0xb76cb2c8 and ret as well as the case values 0U, 1U,
2U, and 3U are of the type uint8_t, that is, unsigned 8-bit integer.3

Suppose that, owing to the concern of low-end processors in
sensor nodes, we plan to reduce the time complexity by reducing
meanðCOMPÞ. A simple COT is to add an if-then-else construct
embracing the switch construct, which decides whether to call
the default processing (see Fig. 2). We denote this code optimiza-
tion technique by cot1 and the optimized version by P1. The func-
tional behavior of the example does not change after introducing
cot1, while meanðCOMPÞ becomes 2þ3þ4þ5þ252�1

256 � 1:039 and
maxðCOMPÞ increases to 5.

While COTs may reduce the amount of usage for one resource,
they may increase another. Fig. 3, for example, shows another

1 Available at http://www.tinyos.net/tinyos-1.x/apps/Surge/.
2 TinyOS, available at http://www.tinyos.net/, is an open-sourced operating

system dedicated and widely used for wireless sensor network applications. Surge
and Timer.fired are available at http://www.tinyos.net/tinyos-1.x/apps/Surge/.

Fig. 1. Timer.fired in Surge.

3 The use of unsigned 8-bit integer variables is a general code optimization
technique for embedded applications to produce executable files of smaller sizes.
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version ðP2Þ that includes another code optimization technique
ðcot2Þ on top of version P1. cot2 is designed to remove the time-
wasting switch construct. This is achieved by introducing a lookup
table to manage the pointers of the corresponding functions. P2 has
the same functionality as P1 but needs only one comparison
operation for any arg_0xb76cb2c8, so that meanðCOMPÞ ¼
maxðCOMPÞ ¼ 1. Still, it consumes an extra statically-allocated
memory block whose size is 16 bytes, that is, the size of 4 pointers
in a 32-bit environment.

The effects of optimization of resource usages by such COTs
may be estimated statically. A prerequisite for implementing cot2
is that the case block in switch has no default case, which means
that cot2 depends on cot1. The effects of optimization can be found
by comparing version P1 with P0, and comparing version P2 with
P1. Table 1 shows the effects of P1 and P2 in units of number of
comparison operations and memory blocks.

Considering that cot2 depends on cot1, legitimate combinations
of code optimization techniques to synthesize such a component

include fcot1g and fcot1; cot2g. Their resource usages are shown
in Table 2, in which ecMEM stands for the basis memory usage of ver-
sion P0.

While it cannot be guaranteed that estimated resource usages
will truly reflect runtime resource usages, developers in practice
often assume an approximately monotonic trend between them.
Thus, they target at code versions with reduced estimated resource
usages. Considering meanðCOMPÞ;maxðCOMPÞ, and MEM in this
example, P2 is the best version.

To deal with different concerns, developers often use different
COTs or their combinations. While these COTs may have depen-
dencies or conflicting relationships among one another, such as
function inlining conflicting with function pointer table, most of
the work in synthesizing the COTs is done manually at present.
Each time the environment and the corresponding resource con-
straints change, extra manual work must be done to search for
and adopt suitable code optimization techniques. While many
standard approaches to optimization are available (as in P1 and
P2), there may be many functional components requiring different
COTs and manyWSN nodes imposing different environmental con-
straints. It is very difficult to manually manage the complexity
involved.

4. Model and algorithms

This section presents our model and algorithms. Our compo-
nent-based model is built on top of a task view described in Section
4.1. The model consists of a skeleton component view, basis
resource usages, code optimization techniques, and optimization
priority, as described in Sections 4.2–4.6. The visualization
mechanism and the heuristic algorithms are given in Sections
4.7–4.8.

4.1. Task view

A task is a notion used in the real-time and system communi-
ties. It is often realized as a process or a thread on many platforms
including TinyOS and Java. It provides a simple and direct means
of partitioning components for the analysis of resource usages. We
adapt the task model from Wang and Shin (2006) as the formal
model to represent a WSN application, where a task has a run-
to-complete semantics, meaning that the task will complete its
execution before another copy of the same task is being run.4 A task
(Wang and Shin, 2006) is a tuple s ¼ hU; Prd; d; o; x; loci, where
U ¼ ha1; a2; . . . ; ami is a list of m WSN components, Prd is the invo-
cation period of the task, d is its relative deadline, o is its release time

Table 1
Effects of code optimization techniques on resource usages.

COTs Effect on meanðCOMPÞ Effect on maxðCOMPÞ Effect on MEM

cot1 �2.938 +1 0
cot2 �0.039 �4 +16

Table 2
Resource usages of tasks synthesized.

Version mean(COMP) max(COMP) MEM

P0 3.977 4 ~cMEM

P1 1.039 5 ~cMEM

P2 1 1 ~cMEM þ 16

Fig. 2. Optimized version 1 of Timer.fired.

Fig. 3. Optimized version 2 of Timer.fired.

4 Note that tasks are statically allocated in embedded systems. When there are
needs for, say, 10 copies of the same task, we simply regard them as 10 distinct tasks
in our model.
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offset, x: s! Qþ
0 maps the task to its resource usages, and

loc : s! Nþ maps the task to an integer representing the WSN node.

4.2. Skeleton component view

By considering all lists U of components of all the tasks s in a
task model, we set up our component model of WSN applications.
We define a component as a tuple a ¼ hPrd; d; pre; post; loci, where
Prd is the invocation period of the component, d is its relative dead-
line, pre is its previous component in the original list U, post is its
next component in U, and loc : a! Nþ maps the component to an
integer representing the WSN node. In this way, the execution
schedule of tasks in the original task model is converted to that
of the components.

The component view will not be useful for resource optimiza-
tion unless we attach to it the basis resource usages, the code opti-
mization techniques, and the optimization priority. These concepts
will be introduced in Sections 4.3–4.5.

4.3. Resource concerns and resource usages

Resource concerns: We model a concern imposed by the applica-
tion environment by means of its bounds. A concern is a range
j ¼ ½min;max�, where min represents the lower bound, and max
the upper bound. For instance, in the motivating example of Sec-
tion 3, a concern for CPU may be [0, 2000], which means that the
CPU can support no more than 2000 operations per second. Simi-
larly, a concern for memory may be [0K, 30K], which means that
the memory available to a node is no more than 30KB (or
30� 1024 bytes). We use K ¼ hj1; j2; . . . ; jni to denote a list of
concerns for n resources, where jj denotes the constraint for the
j-th resource.

Resource usages: For every component a of a WSN application,
the resource usage caj of the j-th resource is a numerical value with-
in the range specified by the appropriate concern jj. We use
Ca ¼ hca1; ca2; . . . ; cani to denote a list of n resource usages.

Basis resource usages: Components should have resource usages
even if software developers do not optimize them. To acknowledge
this fact in our model, we attach a list of n basis resource usageseCa ¼ heca1; eca2; . . . ; ecani to every component a of a WSN application.

After the resource usages Ca of every component a have been
determined, we can assemble them to compute the resource
usages of a node or the whole application, and compare them with
the given K to evaluate the overall impacts. This assembling com-
putation is related to the executing schedule of the components. It
will be further discussed in Section 5.1.

The basis resource usage eCa can be improved to Ca according to
a code optimization technique. In the next section, we will further
formulate the COTs.

4.4. Code optimization techniques

Each code optimization technique (COT) is inscribed in a compo-
nent. A COT usually has local effects on resource usages. In other
words, it only affects the resource usages of the component where
it is inscribed. We model it as effects of optimization of resource
usages.

Thus, we define a code optimization technique xa for a compo-
nent a as a list xa ¼ hda1; da2; . . . ; dani, where each daj represents an
increment or decrement of a resource usage caj from the corre-
sponding basis usage ~caj . In the example in Section 3, for instance,eCTimer:fired ¼ h1000; 1100; 20Ki is the list of basis resource usages of
the component. After adopting a code optimization technique
xTimer:fired ¼ h�200; þ5; þ2Ki, the resource usage will become
CTimer:fired ¼ h800; 1105; 22Ki.

For every component, developers may define a set of code opti-
mization techniques Xa ¼ fxa1; xa2; . . . ; xajXa jg.

In this way, we complete our adaptive design framework
ða; eCa; XaÞ for a WSN component.

4.5. Order of priority

The two code optimization techniques cot1 and cot2 in the
example in Section 3 show very different effects on resource
usages, as shown in Table 1. In general, one code optimization
technique may increase a specific resource usage while another
technique may reduce it. To remedy this situation, we propose to
use an order of priority P ¼ hp1; p2; . . . ; pni to optimize the n re-
sources. Here, hp1; p2; . . . ; pni is a permutation of h1; 2; . . . ; ni and
each pj means that the pj-th resource is of the j-th highest priority
in optimization.

4.6. Objective of our model

Given the preambles introduced in Sections 4.1–4.5 above, we
can formulate our problem statement as follows:

Problem statement: Consider a WSN application in which there
is a resource concern K and each component a is associated with
a basis resource usage eCa and a set of code optimization tech-
niques Xa. Our goal is to find a combination of code optimization
techniques Yopt ¼ fy1; y2; . . . ; yjYopt jg that collectively satisfy all
given concerns K and minimize the overall resource usages
C ¼ hCa1 ; Ca2 ; . . . ; Cami for a given order of priority P for resource
optimization.

If the COTs only provide maximal local effects of optimization to
their assigned components, and if we can adapt each COT indepen-
dently, it is easy to prove that a sufficient condition for Yopt to be an
optimal solution for the entire wireless sensor network application
is that there exists an optimal solution Yai

opt for every component ai

such that Yopt ¼ Ya1
opt [ Ya2

opt [ . . . [ Yam
opt . Formally, the optimal

combination of code optimization techniques Ya
opt for component

a satisfies the four conditions in Fig. 4.
The first condition ensures that, given any COT in Ya

opt , all its
dependencies are also included in Ya

opt . The second condition
guarantees that any two COTs in Ya

opt will not conflict with each
other. The last two conditions ensures that Ya

opt is a subset of Xa

and produces the optimal effects of optimization of resource
usages.

Let us explain the notations in Fig. 4 in more detail. The relation
y . x denotes that y depends on x, so that x must be adopted when-
ever y is adopted. The relation x}y denotes that x conflicts with y,
so that only x or y can be adopted but not both.
FðeCa; YÞ ¼ hf1ðeca1; YÞ; f 2ðeca2; YÞ; . . . ; f nðecan; YÞi is a list of functions
calculating the resource usages according to the basis usages eCa

after implementing a set Y ¼ fya1; ya2; . . . ; yajYjg of code optimization
techniques yak ¼ hda1;k; da2;k; . . . ; dan;ki. Each function fj for the j-th
resource usage is given by

fjðecaj ; YÞ ¼ ecaj þXjYj
k¼1

daj; k: ð1Þ

Fig. 4. Conditions for optimal solution.
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For a given P, we define

WðP; C; C0Þ ¼

�1 if P ¼ hp1; p2; . . . ; pni
and cp1 < c0p1 ;

1 if P ¼ hp1; p2; . . . ; pni
and cp1 > c0p1 ;

Wðhp2; p3; . . . ; pni; C; C0Þ if P ¼ hp1; p2; . . . ; pni
and cp1 ¼ c0p1 ;

0 if P ¼ ;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
It compares two resource usage sets C and C0. A negative re-

turned value means that C is preferred to C0, a positive value
means that C0 is preferred, and a zero means no preference.

When a solution is found, we can follow the description in Sec-
tion 4.3 to set up a list of calculation formulas G ¼ hg1; g2; . . . ; gni to
compute the application-level or node-level resource usages based
on the n resource usages at the component level, where
gjðh~ca1j ; eca2j ; . . . ; ~camj i; YÞ is a summary of the j-th resource usage
of allm components. For each gj, the first argument is a list of basis
resource usages in respective components, and the second argu-
ment is a set of COTs. By comparing the resulting values of G with
the given concerns K, we can evaluate the solution.

Finding an optimal solution for such a problem is NP-hard in
general (Kulkarni et al., 2004; Zhao et al., 2006). We propose two
options to tackle the problem: We provide a mechanism for devel-
opers to graphically visualize the optimization capabilities of the
code optimization techniques. This visualization mechanism helps
developers choose the appropriate combination manually. Alterna-
tively, we can use heuristic searching to identify a suboptimal solu-
tion within a time limit.

Our model can be summarized as three steps.

(1) Represent the target WSN application with a component-
based model, with attached COTs X. Generate calculation
formulas G to compute the usages of concerned resources.

(2) Either display the COTs as a color palette, which helps devel-
opers manually choose a resultant COT combination Y, or use
heuristic algorithms and the calculation formulas G to deter-
mine a resultant COT combination Y.

(3) Estimate the concerned resource usages by inputting the
above resultant COT combination Y to the calculation formu-
las G.

We will explain our visualization mechanism and algorithms in
the next two sections.

4.7. Visualization of code optimization techniques

To help developers manually decide the combination of code
optimization techniques, we use a color palette to represent the
COTs, as shown in Fig. 5. Each column shows the resource usage
optimizations of a COT. Each row shows the resource usage optimi-
zations of various COTs on one kind of resource. Consider, for
example, the cell marked ‘‘�”. It represents the optimization capa-
bility of the k-th COT on the j-th resource.

We introduce the concept of optimization capability. The optimi-
zation capability of each code optimization technique means how
much the COT optimizes within given concerns. To balance among
all resources, we normalize the resource usage optimization of
each code optimization technique. The lightness value of each cell
in the grid is calculated using a utility function lum:

lumðdj;kÞ ¼ 255�
max
16k6n

½dj;k� � dj;k

max
16k6n

½dj;k� � min
16k6n

½dj;k�

6664 7775
Using lum, the resource usage optimization of a COT is normalized
to [0, 255]. The darker the color, the higher will be the optimization
capability.

The lightness values in each row represent the optimization
capabilities with respect to each resource. To compare them di-
rectly with one another, we normalize them independently for
each resource. Then, for every COT, we simply calculate its average
optimization capability with respect to all resources. Let us focus on
the column enclosed by a thick rectangle, which stands for the
optimization capability of the 6th COT. Since it has high optimiza-
tion capabilities on most resources, its average optimization capa-
bility is the highest (indicated by the darkest cell in the bottom
row). The average optimization capability is calculated by:

avglumðdj;kÞ ¼ 1
n

Xn
k¼1

½lumðdj;kÞ�
$ %

Thus, the developer may choose the 6th COT together with some
other COTs to form a combination; and iteratively refine the
solution.

4.8. The searching algorithms

Our algorithms cover two phases: the sorting of code optimiza-
tion techniques and the generation of a combination.

Sorting of code optimization techniques: The algorithm first esti-
mates the average optimization capability of each code optimiza-
tion technique. Then, the COTs are sorted using traditional
insertion sort. When the average optimization capabilities of two
COTs are exactly the same, their optimization capabilities on differ-
ent resources should be considered according to the given priority.
The algorithm, depicted in Fig. 6, accepts a set of COTs X and an or-
der of priority P as arguments and returns an ordered list of COTs Z.

Generation of combination: Given a sorted list of COTs Z pro-
duced in the first phase, the present phase generates a suboptimal
combination. We use a hill-climbing strategy in the algorithm.
Every possible combination of COTs fulfilling the order of priority
P will be considered in turn. We rank the combinations before
the algorithm begins. For every combination of r selections from
jZj choices, denoted by fzs1 ; zs2 ; . . . ; zsrg, its lexicographical index
(Buckles and Lybanon, 1977) is the concatenated string
‘‘s1s2 . . . sr”. We simply sort all the combinations in ascending order
of the lexicographical indexes, and use Cj to denote the j-th combi-
nation in the ordered list. (Since this is a fundamental concept in
combinatorics, we do not include it in the skeleton algorithm in
Fig. 7.) The iteration will continue until the concerns have been sat-
isfied and a locally optimal result has been found, which meansFig. 5. Using color palette to represent COTs.
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that the first minimum point has been reached. Then, the algo-
rithm returns a combination of COTs Y ¼ fy1; y2; . . . ; yjYjg. If all

legitimate combinations have been exhausted but the concerns
cannot be fulfilled, the algorithm returns an empty set. If the

Fig. 6. Algorithm to sort code optimization techniques.

Fig. 7. Algorithm to generate combination.
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iterations always produce better solutions than before, the algo-
rithm returns the last one. However, the lexicographical order of
the combinations naturally implies that there is a high chance
for suboptimal solutions to appear early.

The procedure construct in the algorithm accepts a combination
Cj and an ordered list of COTs Z as inputs and returns a set of COTs
Y ¼ fy1; y2; . . . ; yjY jg, which can either be empty or includes all the
COTs that each yj 2 Y depends on. (The meaning of the symbols .

and } are first introduced and explained in Section 4.6.) Note that
the set of COTs returned by construct can only be an empty set or a
legitimate combination of COTs that satisfies the concerns. This
algorithm is shown in Fig. 7.

The main entry of this algorithm iteratively processes all legit-
imate selections of COTs. After some iterations, when a sufficient
number of COTs have been considered, the result may be able to
meet the resource constraints of the WSN application. When the
iteration process continues, the estimation result is expected to
further improve, but only up to a certain limit. When the algo-
rithm finds that the resultant resource usage begins to recede, a
heuristic solution has been found and the algorithm terminates.
The experimental results in the next section show that such a
heuristic strategy can be very helpful in searching for good
solutions.

Determination of W: To help understanding, the algorithm for
determining WðP; xi; xjÞ is given in Fig. 8.

Complexity of algorithms: The algorithm to determine W can be
completed in OðnÞ time, where n is the number of resource types.
The prototype algorithm for sorting code optimization techniques
can be completed in OðjXj � logðjXjÞ � nÞ time, where jXj is the num-
ber of COTs and n is the count of resource types.

The prototype algorithm for generating combinations itera-
tively evaluates possible selections until a local optimum is found.
A disadvantage of this prototype is its high time complexity in
the worst case, which is Oð2jXj � ðjXj2 þ nÞÞ. On the other hand, we
note from the experiment in Section 5 that the algorithm can find
solutions much earlier than exhaustive search. We also note that,
in practice, we set an affordable upper bound of the number of
combinations to be checked to find a solution.

5. Experimental study

In this section, we first select a few representative types of re-
source for experiment and set up their calculation formulas G.
Then, we construct a simulation model of a real-life application
and evaluate the performance of the algorithms.

5.1. The resources

We select three most common and widely-used resources for
our experimentation on optimization. For every individual node,
we study the average CPU operations per second (CPU), the maxi-

mum memory usage (MEM), and the volume of application-level
communication5 (COMM). Hence, in the following experiment, the
resource usage can be represented by C ¼ hcCPU ; cMEM; cCOMMi and
the resource constraint by K ¼ hjCPU ; jMEM; jCOMMi.

Fig. 9 shows the calculation formulas G ¼ hgCPU ; gMEM; gCOMMi for
computing application- or node-level resource usages based on the
usages in two components a1 and a2. In particular, gcec

CPU is the for-
mula for concurrent execution of two components and gsec

CPU is for
sequential execution of the same. For the case of more than two
components, their formulas can be reasoned hierarchically accord-
ing to the execution schedule.

5.2. Subject of experiment

The subject program is CntToLedsAndRfm6 written in nesC for
the project TOSSIM. TOSSIM is a representative emulator of
TinyOS (Levis et al., 2003). The CntToLedsAndRfm application
updates a binary counter and sends a radio message containing
the current value of the counter to LEDs for display.

A TinyOS application on any node of a wireless sensor network
is designed to support only sequentially and periodically executed
tasks (Gay et al., 2003). Although tasks on different nodes may be
executed concurrently, those on the same node are executed
sequentially. Each task is processed in a run-to-complete manner.
Thus, we can work out the execution schedule of the components
from the tasks and, hence, set up the functions F to compute the
resource usages.

5.3. Setup of experiment

CntToLedsAndRfm consists of two nodes of the same function.
Each node periodically increases a local counter, shows the lower
bit values of the counter on LEDs, and sends the counter value to
another node. The original application consists of five components,
namely Main, Counter, TimerC, IntToRfm, and IntToLeds.7

For the purpose of experimentation, we remove the debugging
task and expand the application by cloning nodes and components.

Fig. 8. Algorithm to compare two code optimization techniques over a given
priority.

Fig. 9. Calculation formulas.

10

Fig. 10. Infrastructure of testbed.

5 That is, the estimated total number of bytes sent or received.
6 Available at http://www.tinyos.net/tinyos-1.x/apps/CntToLedsAndRfm/.
7 Available at http://cse.yeditepe.edu.tr/tnl/html/LOCAL/files/docs/tos-source-tree/

apps.CntToLedsAndRfm.CntToLedsAndRfm.nc.html.
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The resultant program consists of three nodes, each having three to
four components with fixed orders of execution without idle time.
Each component is equipped with COTs, some of which have
dependencies or conflicting relationships among one another.
Fig. 10 shows a schematic component-and-connector diagram of
the program. The components a1;a2, and a5 are cloned from the
TimerC component. The components a3 and a8 are cloned from
the IntToLeds component. The component a6 is cloned from the
Main component. The component a7 is cloned from the Counter
component. The components a4, a9, and a10 are cloned from the
IntToRfm component.

Suppose we have resource concerns regarding CPU and MEM at
the node level and COMM at the application level. They can be cal-
culated using the formulas in Fig. 9. This calculation is illustrated
by Fig. 11, where gCPU represents the average number of CPU oper-
ations per second of an individual node, gMEM represents the max-
imum memory usage of an individual node, gCOMM represents the
volume of communication of the application, and fCPU ; fMEM , and
fCOMM are calculated by Eq. (1).

The subject application is from the TinyOS tool set TOSSIM
version 1.1.15 (December 2005), which can be downloaded from
http://www.TinyOS.net/download.html. Our driver programs and
simulation platform are coded in C++. All the programs are com-
piled with ncc version 1.1.EF15 or gcc version 4.0.3 (Ubuntu
4.0.3-1ubuntu 5). Our experiment is conducted on Ubuntu 6.06
LTS Linux with the kernel version 2.6.15-28-386.

5.4. Experimental evaluation results

This section presents the experimental evaluation results with
respect to the overall optimization capability, the order of priority
for resource optimization, and sensitivity.

The COTs used in this experiment include ‘‘loop unfolding”,
‘‘lookup table”, ‘‘cache”, ‘‘serialization”, and so on. Their optimiza-
tion effects, basis resource usages, and resource constraints are
given in Table 3. These raw data are collected by monitoring the
WSN application running on the TOSSIM simulator. Since the
resource usages vary greatly in different WSN applications,
we do not discuss their absolute values, but always use their
normalized values to analyze the performance of our algorithms.

Comparison with other solutions: Our experiment can be re-
peated deterministically. We report the results with the order of
priority for resource optimization to be set as P ¼ hCPU; COMM;

MEMi and the concerns K are arbitrarily chosen to be 1.5 times
the basis resource usages.

We compare the result of our method with three other solutions
for code optimization, as shown in Fig. 12. The three other solu-
tions include: (a) Fully optimal solution: We iterate all legitimate
selections and find the fully optimal solution. (b) Randomly selected
solution: We randomly pick 300 COTs and then choose from them
the COTs with the minimum resource usages. The magic number
300 is chosen from experience according to the scale of the prob-
lem. (c) Unoptimized solution: The original subject program is taken
as an ‘‘unoptimized” solution. We should point out that the original
subject program is manually crafted by professional developers.
Since it targets for wireless sensor network applications, code opti-
mization has been conducted, albeit not to an optimized level. The
resource usages of the subject program (that is, the random solu-
tion) are normalized according to the unoptimized solution.

Resource usages are classified into three groups, namely (from
top to bottom in Fig. 12) CPU, COMM, and MEM; the usages in
the four solutions are shown under each group. We notice that
CPU usage is best optimized, followed by COMM usage, according
to the order of priority specified by P. This is consistent with our
hypothesis that CPU and COMM usages are reduced at the expense
of increased MEM usage. We also notice that, for the CPU resource,
which is the main objective of optimization in the empirical study,
our model obviously produces a better usage pattern than a
randomly selected combination of COTs. Our results are only

Fig. 11. Calculation formulas for the target program.

Table 3
Raw data used in experiment.

Resources

CPU (cycles) MEM (KB) COMM (bytes)

Constraints 1050–3000 280–1440 70–360
Basis usages of component 1500–2500 400–1200 100–300
Optimization effects of COTs �600 to +900 �200 to +300 �20 to +30
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overtaken by the optimal solution for the MEM resource, which is
at the lowest priority of optimization.

We observe, as expected, that the CPU and COMM usages are re-
duced at the expense ofMEM. For instance, CPU is reduced to 0.897,
while MEM is increased to 1.230. If developers would like to re-
serve some resources (such as MEM) for the other applications,
they can adjust the upper bound max for the related resources
and rerun our algorithm.

Since a mote has limited memory, the developers may have al-
ready tried their best to fit the existing code into the limited mem-
ory (as indicated by the unoptimized bar for MEM in Fig. 12). One
would like to know any alternative options that our approach may
offer to the developers. The next experiment studies this question.

Changes in resource usages for different orders of priority: To ana-
lyze the adaptive capability of our algorithm to different orders of
priority, we submit all six possible priority orders for resource opti-
mization as inputs and present the results in Fig. 13. The results are
plotted in six groups, showing the results for six different orders of
priority. Each group consists of three columns representing the re-
source usages of CPU, MEM, and COMM. Take the first group as an
example. It means that CPU is given the highest optimization prior-
ity, followed by MEM, while COMM is given the lowest optimiza-
tion priority. We notice that, whenever we set a top priority to a
resource, the usage of that resource will automatically be best opti-
mized. This indicates that our model have a high adaptation capa-
bility for different orders of priority.

We also observe from the experiment that resources may have
different properties when being optimized. In the example, many
COTs that target at reducing CPU or COMM do so at the expense
of the increased MEM. This is because many COTs are designed to
reduce other resources through additional memory usages, such
as caches and lookup tables, which are very common in real life.
On the other hand, COMM is very difficult to be reduced. Even
inconspicuous reductions in COMM, such as groups 5 and 6 in
the figure, may result in disproportionate increases in CPU and
MEM usages. Consider, for instance, the first group again. The
CPU usage is reduced to 79% of the unoptimized case. Such result
comes with the cost of increasingMEM to 132% of the unoptimized
case. At the same time, the COMM usage is also reduced a bit, to
96% of the unoptimized case.

Next, let us consider cases where MEM takes the topmost prior-
ity in the optimization process. These cases are shown as the third
and fourth set of bars in Fig. 13. We observe that we can only
slightly optimize MEM (only a small percentage) at great expenses

to CPU and COMM. It is understandable because mote application
usually has been optimized for MEM.

We note that, in this experiment, the number of COTs available
for individual components is limited. Intuitively, if the developers
are not satisfied with the optimization, one way to allow a better
search of an optimized solution is to increase the number of COTs
for individual (bottleneck) components. Identifying these compo-
nents may not be difficult because developers can use a memory
profiler to find out existing memory usages of components. In
the next experiment, we study whether increasing the number of
COTs helps resolve the situation.

Variations in resource usages for different COT counts: Intuitively,
the number of code optimization techniques used in an experiment
(referred to as the COT count) should enhance the results.

In our experiment, we vary the COT count from 2 to 10. Fig. 14
shows the variations in resource usages with respect to different
COT counts. The x-axis is the COT count while the y-axis is the nor-
malized resource usages. We notice that when the COT count in-
creases from 2 to 3, all the three resource usages are reduced.
Take the COMM resource as an example. It changes from 91% of
the unoptimized case to 83% of that.

When the COT count continues to increase, the resource usages
showed fluctuations; however, they still show descending trends.
We postulate that this is due to the hill-climbing strategy used in
our algorithm. The results are expected to improve by implement-
ing more advanced algorithms.

The results also show that having more choices of code optimi-
zation techniques help improve CPU and MEM. When the COT
count increases, however, the complexity in choosing a promising
one from different combinations increases. It makes our automated
method to synthesize COTs in WSN applications more attractive.

Variations in solutions for different resource constraints:
When stringent resource usage constraints are given, can our

algorithm find effective solutions? We conduct an empirical exper-
iment to address this question.

We randomly select 50 COTs, varying the resource usage con-
straints from 70% of the basis resource usage to 120% of the usage,
and record the resultant usage of the highest prioritized resource.
We repeat our experiment by giving the highest priority to the
resources CPU, MEM, and COMM in turn. The results are shown in
Table 4.

In Table 4, the three rows in turn show the resultant resource
usages when the highest priority is given to CPU, MEM, and COMM,
respectively. The resource usage constraints are controlled in the
range of [70%, 120%]. We observe that, for the CPU and MEM re-
sources, when stringent constraints are given (such as limited to
less than 80% of the basis resource usage), the resultant resource
usages frequently appear as 1.00. It means that no legitimate and
effective COT combination can be found. An empty set is therefore
returned, so that the resource usage is equal to the unoptimized
one. Consider, for example, the column entitled 85%. In each of
the three independent tests, no legitimate and effective COT com-
bination can be found.

Performance of solutions in order of iterations:
Since the algorithm iterates all solutions in lexicographical

order of COT combinations, no legitimate solution are missed. On
the other hand, the algorithm stops at the first encountered
minimum point (in the sense of hill-climbing techniques). We
are interested in the time cost to find a solution and the perfor-
mance of the solution thus found.

Since it is not easy to figure out theoretically the capability of
such a heuristic algorithm, we also evaluate it experimentally
using the testbed subject program. We randomly take 50 COTs into
consideration, and check the performance of solution in each
iteration. The result is given in Fig. 15. This test is very time-
consuming (with 250 iterations). Fig. 15 shows only part of theFig. 14. Effects of COT on resource usage.

1384 Z. Zhang et al. / The Journal of Systems and Software 82 (2009) 1376–1387



searching domain (which includes the solution position) rather
than the whole domain.

In Fig. 15, the x-axis shows the iterations in order, while the y-
axis shows the normalized resource usages of the solution in each
iteration. We notice that the resource usages are all equal to 1
when X ¼ 0, which corresponds to the basis resource usages when
no code optimization technique is adopted. Since CPU resource is of
the highest optimization priority and theMEM resource is assigned
a low priority, the optimization of CPU is done at the cost of
increasing the usage ofMEM. The COTs that have high optimization
capabilities to reduce CPU usage are selected first. When there is
less room for reducing CPU usage, the COTs that reduce COMM
usage are combined. Within the given resource usage constraints
(which is 150% of the basis resource usage), the first local mini-
mum is identified in iteration 30. The final solution in turn opti-

mizes the usages of CPU and COMM to 50% and 77%, respectively,
at a cost of increasing the MEM usage to 148%.

In our experience, the heuristic search algorithm has a high
chance of terminating before the first jXj iterations, where jXj is
the total number of COTs.

5.5. Case study

In this section, we further evaluate our method on the same tar-
get program and simulation platform used in Section 5.

Fig. 16 shows the resource optimization capabilities of the 50
randomly selected COTs for program CntToLedsAndRfm. To ease
the manual process, we assume that no dependency relations exist
among these COTs. Starting from a color palette that represents the
optimization capabilities of the COTs, the developer may manually
choose the appropriate COTs, refine the choices, and finally work
out a COT combination.

The CPU resource is given the highest optimization priority, fol-
lowed by MEM, and COMM is given the lowest optimization prior-
ity. First, we would like to pick out the COTs with a high
optimization capability in reducing CPU usage. By examining the
dark red cells in the first row, we identify eighteen COTs numbered
4, 5, 8, 10, 11, 15, 17, 20, 21, 26, 29, 34, 35, 37, 40, 45, 47, and 50.
Then, for the remaining COTs, we pick out the dark blue cells in the
second row, which stand for a relatively high optimization capabil-
ity in reducing MEM usage. Ten COTs numbered 1, 2, 6, 16, 22, 27,
31, 32, 38, and 49 are chosen. In the same way, we choose three
more COTs numbered 9, 14, and 43, whose colors in the third
row are dark purple. Intuitively, they should have a high optimiza-
tion capability in reducing COMM usage. Finally, we choose an-
other three COTs 18, 26, and 27 which are dark gray in color in
the fourth row. These COTs also have a high optimization capabil-
ity in reducing resource usage. Denoting the set of the above se-
lected COTs as Y, the resource usages are estimated using the
calculation formulas in Fig. 11.

Table 4
Resource usage of solution on different resource constraints.

120% 115% 110% 105% 100% 95% 90% 85% 80% 75% 70%

CPU 0.97 0.85 0.96 0.81 0.93 1.00 1.00 1.00 1.00 1.00 1.00
MEM 0.94 0.98 0.76 1.00 0.95 0.93 1.00 1.00 1.00 1.00 1.00
COMM 0.69 0.76 0.71 0.76 0.67 0.62 0.71 1.00 0.75 0.72 0.61

Fig. 15. Performance of solutions in order of iterations.

Fig. 16. Color palette for program CntToLedsAndRfm.
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Table 5 shows the basis resource usages (see the row tagged as
‘‘Unoptimized”), the resource usages of the manual process (the
row tagged as ‘‘Manually chosen”), the resource usages of the solu-
tion generated by our algorithm (the row tagged as ‘‘By algo-
rithm”), and the resource usages of the optimal COT combination
(the row tagged as ‘‘Optimal”, calculated by iterating all possible
combinations). The usages have been normalized with respect to
the unoptimized case. Let us focus on the row tagged as ‘‘Manually
chosen” and use it as an example for explanation. It shows that,
after applying the COTs in Y, CPU usage is reduced to 71% of the
unoptimized case. Such optimization comes with the cost of
increasing MEM usage to 133% of the unoptimized case. At the
same time, COMM usage is also reduced to 91% of the unoptimized
case. The other rows can be explained similarly.

Previously, to meet resource constraints, developers need to
manually implement the COTs and iteratively tune the results.
Such a process is time-consuming and error-prone. With the use
of a color palette, developers can visually compare the optimiza-
tion capabilities of different COTs and different resources. At the
same time, the average optimization capability is also displayed
to help select the most valuable and suitable COT. Contrasted with
a comparison of numbers, the color palette mechanism is more
effective. Developers have an easier time to decide on the appropri-
ate COTs.

In this case study, our algorithm is executed in less than 0.001
second but outperforms the manual process. Although both our
algorithm and the manual process cannot, of course, perform bet-
ter than the optimal solution, the cost to generate the optimal is
fairly high (having to iterate 250 possible COT combinations). In
real cases, developers may decide on a suitable strategy by weigh-
ing between quality and effort.

5.6. Threats to validity

We summarize the threats to validity in this section.
A construct validity thread is the target program we used. The

WSN application used in the experiment is a sample program from
the TOSSIM platform. It is very simple and consists of only five
components. Real-life applications are more complicated. Hence,
we clone components and COTs to increase the complexity of the
subject program. In addition, we vary the count of COTs in a con-
trolled range to simulate other cases.

Another construct threat to validity is the use of COTs. In the
experiment, we have created various COTs and specified different
resource usages to them. The related resource usages are estimated
according to our pilot study on monitoring the WSN application
running on the TOSSIM simulator. Although they may reflect the
resource usages of realistic scenarios in WSN applications, deploy-
ing the applications in real WSN hardware environments may give
results different from our simulation study.

A threat to internal validity is the assumption that code optimi-
zation techniques are applied in WSN applications. We use the
term COT to represent all optimization-like patterns used in the
programs. To obtain reasonable results, we monitor the resource
usages of several WSN applications, and specify the raw data used
in the experiment accordingly.

The next threat is the complexity of the problem. Although the
only safe way to search for the optimal solution is to iterate all pos-
sible combinations, the time cost is not acceptable. We have intro-
duced a heuristic algorithm that has a high chance of producing a
suboptimal solution within a reasonable time limit. In real-life set-
tings, developers can implement their own version of sorting algo-
rithm and searching algorithm.

A threat to external validity may be due to the resources chosen
for experimentation. Resources used in WSN applications vary
widely. Our model has, therefore, been designed for the general sit-
uation and does not depend on the types of resource used. We have
taken three representative kinds of resource for study in the exper-
iment and set up the corresponding calculation formulas.

We set up our model based on the TinyOS platform since it is
the most widely used platform for WSN applications.

There is, however, no guarantee that our model work for other
WSN platforms. To address this validity threat, we design our mod-
el from the perspective of tasks and components. It is independent
of hardware and software architectural issues (such as processes,
threads, and concurrency). It should be portable to other platforms
easily.

6. Conclusion

Optimization is indispensable in the design and implementa-
tion of wireless sensor network applications because of the strin-
gent resource constraints referred to as concerns. Developers
often need to iteratively select possible code optimization tech-
niques (COTs) to meet the resource concerns. Such manual work
is inefficient and error-prone.

In this paper, we present a model to manage COTs and evaluate
its usefulness in optimizing the effectiveness under given concerns
and a user-defined order of priority. The evaluation is conducted
through estimated usages of resources based on the infrastructure
of an application under study. We provide developers with a color
palette to help them visualize the optimization capabilities of the
COTs and to manually choose a favorable combination. We also
present a heuristic algorithm that automatically determines a
suboptimal combination. An experimental study shows that our
heuristic algorithm produces a promising solution to code optimi-
zation. A case study further demonstrates the effectiveness of our
visualization mechanism. As future work, we will conduct experi-
ment in real-life WSN hardware environments. And it will be inter-
esting to explore context-awareness, runtime adaptation, andmore
elaborate experimentation. We will also study how to specify COTs
and how interactions among COTs may affect our method.
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