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a b s t r a c t

Fault localization is a major activity in program debugging. To automate this time-consuming task, many
existing fault-localization techniques compare passed executions and failed executions, and suggest sus-
picious program elements, such as predicates or statements, to facilitate the identification of faults. To
do that, these techniques propose statistical models and use hypothesis testing methods to test the simi-
larity or dissimilarity of proposed program features between passed and failed executions. Furthermore,
when applying their models, these techniques presume that the feature spectra come from populations
with specific distributions. The accuracy of using a model to describe feature spectra is related to and
may be affected by the underlying distribution of the feature spectra, and the use of a (sound) model
on inapplicable circumstances to describe real-life feature spectra may lower the effectiveness of these
fault-localization techniques. In this paper, we make use of hypothesis testing methods as the core con-
cept in developing a predicate-based fault-localization framework. We report a controlled experiment
to compare, within our framework, the efficacy, scalability, and efficiency of applying three categories

of hypothesis testing methods, namely, standard non-parametric hypothesis testing methods, standard
parametric hypothesis testing methods, and debugging-specific parametric testing methods. We also
conduct a case study to compare the effectiveness of the winner of these three categories with the effec-
tiveness of 33 existing statement-level fault-localization techniques. The experimental results show that
the use of non-parametric hypothesis testing methods in our proposed predicate-based fault-localization

ing.
model is the most promis

. Introduction

.1. Background

Program debugging is a process to locate faults in faulty pro-
rams, repair the programs, and confirm that the repairs effectively
emove the identified faults (Vessey, 1986). It cannot be avoided
n any typical software development project. In practice, program
ebugging (including fault localization as one of the three activ-
ties) often takes a lengthy and manual procedure. Automated or
emi-automated techniques that accurately locate the faults help
mprove the debugging process. Traditionally, a developer may
teratively and repetitively set up breakpoints through an inte-
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grated development environment, execute a faulty program over
inputs, monitor how different slices of the program states change
with the executions, and identify suspicious program elements. To
help identify the suspicious program elements more effectively, a
class of statistical fault-localization techniques has been proposed.
Examples include Tarantula (Jones et al., 2002; Jones and Harrold,
2005), SOBER (Liu et al., 2005, 2006), CBI (Liblit et al., 2003, 2005),
DES (Zhang et al., 2008, 2010), CP (Zhang et al., 2009b), and Ochiai
(Abreu et al., 2009).

The basic intuition behind this class of techniques is that, if cer-
tain static or dynamic program features correlate the root cause
(that is, the fault) with the observed failures, a technique may
use a statistical analysis approach to reveal the correlations. The
strengths of correlations between such program features and the
presence (as well as absence) of the observed failures can be used
as indicators of the degree to which some (suspicious) program

features may explain the observed failures. Furthermore, since the
selected program features can be mapped back to certain program
elements, various indicators essentially provide different ways to
assess the fault suspiciousness of various program elements. In
DES (Zhang et al., 2008, 2010), for instance, we use an evalu-

dx.doi.org/10.1016/j.jss.2010.12.048
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:wkchan@cs.cityu.edu.hk
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tion sequence of a predicate (Liblit et al., 2003) as a program
lement and its distribution (Liu et al., 2006) of decision outcomes
Lau and Yu, 2005) as a program feature. Moreover, using the cor-
elation formula of SOBER (Liu et al., 2005), DES estimates the
trengths of correlations between these program features and the
bserved failures in the dataset. DES further maps each evalua-
ion sequence to the corresponding program predicate, and hence
he fault-suspiciousness estimate of each program feature is trans-
ated linearly back to a fault-suspiciousness estimate of the mapped
rogram predicate.

Many previous fault localization studies propose their own ways
o determine the strengths of the above correlations. Typically, such
echniques compare the program features obtained from a set of
ailed executions with the same program features obtained from
set of passed (or passed and failed) executions, and measure the

orrelation strengths accordingly. Some use this basic information
o derive other heuristics to locate faults. In other words, in the
ore part, a technique typically looks for high contrasts between
he program features obtained from the former set and those from
he latter set (Jones et al., 2002; Jones and Harrold, 2005; Liu et al.,
005, 2006; Liblit et al., 2003, 2005; Zhang et al., 2008, 2010; Masri,
009). In this contrast step, the model of the technique assumes
hat there are plenty of samples available. Thus, a technique of
his class characterizes each sample set approximately by a pre-
upposed distribution (say, a normal distribution by applying the
aw of large numbers). Such a distribution can be characterized by
ertain parameters (such as the mean and standard deviation for a
ormal distribution). For example, Tarantula compares the mean
ercentages of passed executions and failed executions that go
hrough a particular statement as building blocks of its ranking for-

ula to estimate the fault suspiciousness of the statement. Another
xample is that DES uses the distributions of evaluation biases (Liu
t al., 2005) of evaluation sequences, and in its experiment, DES
akes both the means and standard deviations as parameters in the
anking formula when integrated with SOBER.

The model of an existing technique in this class thus depends
n a number of parameters, including the selection of sensitive
rogram features to gauge the presence and absence of observed
ailures, the characterization of the distribution of each program
eature, and the maximum number of executions to conduct the
ontrast step above. For ease of presentation, we will collectively
efer to such existing techniques in this class as parametric statis-
ical fault localization techniques.

Many previous studies, including Jones and Harrold (2005),
iu et al. (2005) and Zhang et al. (2009b), have asserted that the
ynamic program features related to statements and predicates can
e sensitive to the presence and absence of observed failures. More-
ver, the maximum number of executions may noticeably affect
he effectiveness (Liu et al., 2006). In the experiment presented in
hang et al. (2009a), we have discovered that the distributions of
valuation biases for many program predicates are far from nor-
al. In the subject programs of that experiment, for instance, the

istributions of evaluation biases of almost 45% of the predicates
n or closest to faulty statements, which are usually referred to
s the most fault-relevant predicates, do not exhibit normal dis-
ributions with adequate confidence even though we may wish
o lower our standard to accept it to be a normal distribution at
significance level of 50%. Our previous result thus implies that
technique which uses the parameters of pre-supposed distribu-

ions of program features in the contrast step to assess the fault
uspiciousness of program subjects can be non-scientific.
.2. Our work

The above discussion thus poses a series of interesting research
uestions. For instance, are some techniques of this class indepen-
nd Software 84 (2011) 885–905

dent of the distributions of the selected program features so that
they can be more reliably applied to a larger class of programs in
general and scenarios encountered in the above contrast step in
particular? Is such a distribution-independent technique effective?
Is it efficient with respect to the state-of-the-art debugging-specific
techniques, such as those mentioned above? We will answer these
questions in the present paper.

We have proposed on the preliminary work (Hu et al., 2008) of
this paper that a predicate-based statistical fault-localization tech-
nique can adopt a non-parametric hypothesis testing method as
the procedure to determine the extent of differences in the con-
trast step mentioned above. For ease of presentation, we refer to
such a procedure as the core of the fault-localization technique,
and refer to a predicate-based fault-localization technique that uses
a non-parametric hypothesis testing method as its core as a non-
parametric predicate-based fault-localization technique.

In particular, in Hu et al. (2008), we use SOBER (Liu et al.,
2005, 2006) as an example fault-localization technique but replaces
SOBER’s core by a standard non-parametric hypothesis testing
method—the Mann–Whitney test (Mann and Whitney, 1947).
The preliminary results of Hu et al. (2008) show that this non-
parametric version of SOBER is more effective than the original
SOBER in terms of T-score (Renieris and Reiss, 2003).

In this paper, we extend our preliminary work on studying
whether non-parametric techniques can be superior to their para-
metric counterparts and propose a predicate-based fault-localization
framework, which formulates the use of various hypothesis testing
methods to compare the differences of program spectra in passed
executions and failed executions. In our framework, we include
three categories of hypothesis testing methods, namely, two non-
parametric hypothesis testing methods—the Wilcoxon signed-rank
test (Wilcoxon, 1945) and the Mann–Whitney test (Mann and
Whitney, 1947), two parametric hypothesis testing methods—the
Student’s t-test (Devore, 2008) and the F-test (Devore, 2008), and
two debugging-specific hypothesis testing methods taken from
existing predicate-based fault-localization techniques—CBI (Liblit
et al., 2003, 2005) and SOBER (Liu et al., 2006). We use the
names “TC1”, “TC2”, and “TC3” to refer to these three categories
of techniques. We apply the three categories of hypothesis testing
methods in our framework to synthesize six predicate-based fault-
localization techniques, and investigate their efficacy, scalability,
and efficiency issues. Further in the paper, we will also include an
additional category “TC4” to represent 33 statement-level fault-
localization techniques, for comparisons with the winner among
TC1, TC2, and TC3 on fault-localization effectiveness.

We further introduce our motivation of the above compari-
son setting as follows. The Wilcoxon signed-rank test is frequently
cited in pair with the Mann–Whitney test in statistics. Moreover,
the Wilcoxon signed-rank test is popularly used in statistics as an
alternative to Student’s t-test (Devore, 2008) when the popula-
tion cannot be assumed to be normally distributed (Lomax, 2007),
and we therefore include also Student’s t-test in our investigation.
We further note that F-test (Devore, 2008) is a parametric alter-
native when the variances are equal, while Student’s t-test does
not have this restriction (Lomax, 2007). Hence, we also include
F-test in our investigation. Lastly, we include two representa-
tive debugging-specific techniques, namely, CBI and SOBER, so
that we can determine how well the standard parametric and
non-parametric fault-localization techniques perform. A set of 33
statement-level techniques have first been summarized in Naish
et al. (in press). We choose to compare with them because of

inadequate previous research reported in comparisons between
predicate-level fault-localization techniques and statement-level
fault-localization techniques.

We first set up a controlled experiment to evaluate and compare
the six techniques in TC1, TC2, and TC3 in multiple dimensions,
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ncluding effectiveness, scalability, and efficiency. Following pre-
ious studies including SOBER (Liu et al., 2006) and DES (Zhang
t al., 2009a), we use the Siemens suite as subject programs. Origi-
ally, we planned to include more subjects. However, because we
ave included six techniques and target to evaluate these tech-
iques in much wider aspects than most previous experiments,
e estimate that our experiment would require much time and

ffort to conduct and the resulting data would be hard to analyze.
o balance between our resource constraints and the scale of the
xperiment, we finally settle with the use of the Siemens suite as
ubjects. After that, we use a median-sized program space that has
set of real-life faults as an additional program subject to evaluate

he effectiveness of the winner techniques among TC1, TC2, and
C3 with 33 statement-level fault-localization techniques (TC4).
e include many TC4 techniques in this case study because lat-

st research in statistical fault localization almost exclusively uses
tatement-level techniques. However, since we include so many
C4 techniques in the case study, we are unable to compare all
he techniques in terms of scalability, efficiency, or other practical
cenarios owing to effort and resource constraints.

We have four conclusions from the experimental results:

(i) A predicate-based fault-localization technique using a non-
parametric core is more effective than one that uses a
parametric or debugging-specific core.

(ii) When increasing the maximum number of executions in
fault-localization techniques, the advantage of using a non-
parametric core becomes more significant.

iii) A predicate-based fault-localization technique using a non-
parametric core is more efficient than one that uses a
debugging-specific core.

iv) A predicate-based fault-localization technique using a non-
parametric core is more effective than existing statement-level
fault-localization techniques.

The main contribution of this paper is fourfold. First, it proposes
framework for statistical predicate-based fault-localization tech-
iques, which uses hypothesis testing as the core concept. This is
he first time that such a framework is proposed. It also differs from
ur previous work. Second, it proposes to characterize a predicate-
ased such technique (under our framework) based on whether
heir hypothesis testing methods are parametric, non-parametric,
r debugging-specific. Our empirical study shows that the tech-
iques among various categories differ very much from one another

n efficacy and scalability. Third, it reports the first empirical study
o validate whether a predicate-based fault-localization technique
sing a non-parametric core is more effective and scalable than
technique using a parametric or debugging-specific core. The

mpirical results show that the use of a non-parametric core for
redicate-based statistical fault localization can be promising and
utperforms the latter two kinds of cores in terms of effective-
ess. In addition, if we deem existing debugging-specific methods
o be efficient, the use of a non-parametric core is found to be
omparable in efficiency. Fourth, it reports the first case study
o compare the effectiveness of predicate-based fault-localization
echnique using a non-parametric core with statement-level fault-
ocalization techniques. The empirical results interestingly show
hat the use of a non-parametric core for predicate-based statistical
ault localization can be promising and outperforms the evaluated
tatement-level fault-localization techniques.
The remainder of the paper is organized as follows: We first
eview related work in Section . Then, in Section 3, we discuss our
pproach and formally present the research questions to be studied.
ext, we report our empirical evaluation in Section 4, followed by
conclusion in Section 5.
nd Software 84 (2011) 885–905 887

2. Related work

In this section, we review related work on fault localization
research.

2.1. Program slicing

Program slicing (Weiser, 1984) is a code-based technique widely
used in program debugging research (Tip, 1995). A slice refers to a
set of statements in a program that may affect the computed values
at some location, such as particular occurrences of a variable. Slicing
techniques can be static (Weiser, 1984) or dynamic (Agrawal and
Horgan, 1990; Korel and Laski, 1988). Statistical fault localization
provides assessments of individual program features, which may
annotate the slices to make debugging more effective. Ottenstein
and Ottenstein (1984) develop a program dependence graph (PDG)
to reduce the computation of static slices of a sequential program
to a reachability problem in PDG. Horwitz et al. (1990) extend the
technique to inter-procedural slicing. However, the typical size of a
static slice for a program can be one-third of the program (Binkley
et al., 2007). It may not be useful to present such a large piece of
code for developers to look for faulty statements. To address this
problem, researchers study dynamic analysis techniques to reduce
the size of a slice. Chen and Cheung (1993) propose dynamic dicing
and the related strategies to construct dynamic dices. Gupta et al.
(2005) propose to use forward dynamic slicing to narrow down
slices. They further integrate forward dynamic slicing with back-
ward one (Zhang et al., 2006) to prune irrelevant statements. Slicing
techniques can also be integrated with statistical fault localization
so that only those program statements that exist in a set of slices
will be examined to locate faults. The main difference between our
non-parametric predicate-based fault-localization techniques and
program slicing techniques is that the former is based on coverage
information of program executions while the latter may need addi-
tional program execution context information about any possible
statement.

2.2. Predicate-based statistical fault-localization techniques

Another approach to debugging is to use the statistics collected
from test case executions. Collofello and Cousins (1987) pioneer
the use of test cases for fault localization. Earlier research (Agrawal
et al., 1991; Korel, 1988; Korel and Laski, 1988), however, only uti-
lizes failed test cases. Later research such as Jones et al. (2002)
evaluates this approach as ineffective. Subsequent research such as
Liu et al. (2005) switches to use both the passed and failed test cases
in localizing faults. Harrold et al. (2000) evaluate nine kinds of pro-
gram features, including path count, data-dependency count, and
execution trace. Among them, the execution trace spectrum is most
widely used in debugging. Their study surprisingly shows that the
use of data-dependency count is less effective than many other pro-
gram features. A later study (Yu et al., 2008) shows, however, that by
applying a proper contrast step, the use of data-dependency counts
can be more effective than that of control-dependency counts. CBI
(Liblit et al., 2003, 2005) and SOBER (Liu et al., 2005, 2006) are
two representative techniques that relate to control-dependency
information. More specifically, they make use of the execution
spectra information of program predicates set in branch statements
and so on, and hence we call them “predicate-based statistical
fault-localization techniques”. CBI compares the probability that
a program fails when a predicate is ever evaluated to be true with

the probability that the program fails when the predicate is ever
evaluated. The technique uses this difference as the primary pro-
gram feature to identify the positions of the predicates related to
faults. SOBER further proposes to use the actual probability that
a predicate is evaluated to be true, which they call the evaluation
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ias, as the program feature. It contrasts the evaluation biases of
ach predicate in passed and failed executions to locate predicates
hat are related to faults. After locating suspicious predicates, these

ethods recommend programmers to search for faults around the
ocated suspicious predicates in the program.

Based on the proposed framework of predicate-based fault-
ocalization techniques in this paper, both parametric/non-
arametric hypothesis testing methods and the debugging-specific
ypothesis testing methods in CBI and SOBER can be described. The
ain difference between parametric/non-parametric hypothesis

esting methods and debugging-specific hypothesis testing meth-
ds is that the former uses mature standard mathematical methods
hile the latter uses self-proposed methods that are specifically
esigned for fault localization.

.3. Statement-level statistical fault-localization techniques

Rather than locating suspicious predicates, some techniques
irectly assess the suspiciousness of statements and target at

ocating faulty statements. They are so called “statement-level
ault-localization techniques”. Jones et al. (2002) and Jones and
arrold (2005) propose Tarantula to rank every statement accord-

ng to its fault suspiciousness. As mentioned in Section 1, Tarantula
ses the mean values of the execution count statistics as building
locks. It then uses these building blocks to compose a formula
o assess fault suspiciousness. Baudry et al. (2006) observe that
ome statements are always executed by the same set of execu-
ions. They use an evolutionary approach to select a subset of the
iven execution set, aiming to achieve better diversity in terms of
ynamic basic blocks. Applying the algorithm developed in Jones
t al. (2002) to rank statements, Baudry et al. (2006) empirically
how that their approaches require fewer test cases to achieve the
ame fault-localization effectiveness. Abreu et al. (2009) further
how empirically that a technique can achieve almost the same
ault-localization accuracy by using a few failed executions. Several

ore advanced approaches use statistical measures for behaviors
elated to program failures. Jones et al. (2007) further extend Taran-
ula so that it can be applied when multiple developers are available
o debug the program independently. Our present work provides
nother dimension to optimize the use of test executions. Observ-
ng that individual executions of the same statements may have
ifferent contributions to indicate faulty statements when they are
sed together, Wong et al. (2007) propose to use a utility function
o calibrate the contribution of each passed execution when com-
uting the fault relevance of executed statements. Their techniques
re shown empirically to outperform Tarantula. They further define
series of heuristics based on different marginal contributions of

dditional failed executions and passed executions (Wong et al.,
010).

Naish et al. (in press) have given a summary of the follow-
ng statement-level fault-localization techniques: Tarantula (Jones
t al., 2002) has been introduced in the last paragraph. Duarte et al.
1999), Dice (1945), Ochiai (1957), Russell & Rao (1940), Anderberg
1973), Simple Matching and Ochiai2 (da Silva Meyer et al., 2004),
nd Rogers & Tanimoto (1960) are originally used for classifica-
ions in the botany domain. Overlap (Krause, 1973) is a general
ersion of Ochiai (1957). Others include Euclid (Krause, 1973), M1
nd M2 (Everitt, 1978) (where the names M1 and M2 are proposed
y Naish et al., in press), Kulczynski1 and Kulczynski2 (Lourenc̨o
t al., 2004), Hamann and Sokal (Lourenc̨o et al., 2004) (which
re used in data clustering), Jaccard (1901) (originally used in the

otany domain and later used in data clustering), Hamming (1950)
originally used for error detection codes), Goodman & Kruskal
1954), Scott (1955), Cohen (1960), Fleiss (1965), Geometric mean
Maxwell and Pilliner, 1968), Rogot1, Rogot2, harmonic mean, and
rithmetic mean (Rogot and Goldberg, 1966) (originally used as bio-
nd Software 84 (2011) 885–905

metrics metrics), Ample (Dallmeier et al., 2005) (originally used for
fault localization; following Naish et al., in press, the Ample tech-
nique used in our paper is taken from their modified version Abreu
et al., 2007), Zoltar (González-Sánchez, 2007), and Wong1, Wong2,
and Wong3 (Wong et al., 2007) (originally used for fault localiza-
tion). Interested readers may follow Table 1 to obtain the exact
formulas. A similarity among all these techniques is that they share
the same input format and generate outputs of the same format. An
essential difference among them lies in the ranking formulas they
use to assess the suspiciousness of a statement related to faults.
The study on whether their models have any non-parametric prop-
erty is outside the scope of this paper. In this paper, we design
non-parametric predicate-based fault-localization techniques and
compare them empirically with these statement-level techniques
to gauge whether predicate-based techniques may have compara-
ble effectiveness with statement-level techniques in terms of fault
localization.

2.4. Other fault-localization techniques

Renieris and Reiss (2003) observe that it may be more useful to
compare failed executions with “similar” ones, where the “similar-
ity” of a pair of execution is measured by the edit distance between
the two execution sequences. Their approach, however, does not
use statistical methods to pinpoint faulty positions from the results
of a pair of similar executions. Apart from using statistics, some pro-
posals adopt an iterative elimination approach. For instance, delta
debugging simplifies the failed test cases and yet preserves the fail-
ures (Zeller and Hildebrandt, 2002), producing cause–effect chains
(Zeller, 2002) and linking them to suspicious statements (Cleve and
Zeller, 2005). Other heuristics have also been studied, such as the
use of Jaccard distance (Abreu et al., 2009). Debroy and Wong (2009)
and Wong et al. (2008) propose a crosstab method to compute the
fault suspiciousness of statements and focus on programs having
multiple faults.

Arumuga Nainar et al. (2007) further extend CBI to address
compound Boolean expressions. They show that the accuracy of
CBI changes significantly when compound Boolean expressions are
involved. Zhang et al. (2008) conduct an empirical study to show
that the short-circuit rules in evaluating Boolean expressions in
predicates affect the effectiveness of fault-localization techniques,
and that the results of CBI can be improved using short-circuit
information in the form of evaluation sequences. Chilimbi et al.
(2009) propose Holmes, which uses fragments of paths rather
than individual predicates to locate faults iteratively. Our previous
paper (Zhang et al., 2009a) finds empirically that the evaluation
biases of many predicates are not distributed normally. Our pre-
liminary work (Hu et al., 2008) of the present paper proposes to
use the Mann–Whitney non-parametric hypothesis testing method
to replace the debugging-specific hypothesis testing method in
SOBER, and conducts experiments to compare its effectiveness
with SOBER and CBI. The empirical results show that such a tech-
nique is promising. In this paper, we propose a generic framework
of predicate-based fault-localization techniques, apply many non-
parametric, parametric, or debugging-specific hypothesis testing
methods to it to generate predicate-based fault-localization tech-
niques, and empirically evaluate them. Our framework is general,
and its application is not limited to the techniques presented in this
paper.

Based on the suspiciousness estimation obtained from a con-
trast step, CP (Zhang et al., 2009b) constructs a probabilistic control

flow graph and a propagation model for the faulty program with a
view to capturing the propagation of infected and abstract states
extracted from the given set of program executions to locate faults.
Besides, a few studies (Hao et al., 2010, 2006; Jiang et al., 2009)
focus on optimizing the sizes of input test data to facilitate effec-
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Table 1
The 33 statement-level fault-localization techniques listed in Naish et al. (in press).

Name Formula

Jaccard (1901) aef/(aef + anf + aep)

Anderberg (1973) aef/(aef + 2(anf + aep))

Sørensen-Dice (Duarte et al., 1999) aef/(aef + anf + aep)

Dice (1945) 2aef/(aef + anf + aep)

Kulczynski1 (Lourenc̨o et al., 2004) aef/(anf + aep)

Kulczynski2 (Lourenc̨o et al., 2004) 1
2

(
aef

aef +anf
+ aef

aef +aep

)
Russell & Rao (1940) aef/(aef + anf + aep + anp)

Hamann (Lourenc̨o et al., 2004) (aef + anp − anf − aep)/(aef + anf + aep + anp)

Simple Matching (da Silva Meyer et al., 2004) (aef + anp)/(aef + anf + aep + anp)

Sokal (Lourenc̨o et al., 2004) 2(aef + anp)/(2aef + 2anp + anf + aep)

M1 Everitt, 1978 (aef + anp)/(anf + aep)

M2 Everitt, 1978 aef/(aef + anp + 2anf + 2aep)

Rogers & Tanimoto (1960) (aef + anp)/(aef + anf + 2anf + 2aep)

Goodman & Kruskal (1954) (2aef − anf − aep)/(2aef + anf + aep)

Hamming (1950) aef + anp

Euclid (Krause, 1973)
√

aef + anp

Ochiai (1957)
aef

sqrt(aef +anf )(aef +aep)

Overlap (Krause, 1973) aef/min(aef , anf , aep)

Tarantula (Jones et al., 2002)
aef /(aef +anf )

aef /(aef +anf )+aep/(aep+anp)

Zoltar (González-Sánchez, 2007)
aef

aef +anf +aep+
10000anf aep

aef

Ample (Dallmeier et al., 2005) | aef
aef +anf

− aep
aep+anp

|

Wong1 (Wong et al., 2007) aef

Wong2 (Wong et al., 2007) aef − aep

Wong3 (Wong et al., 2007) aef −

⎧⎨
⎩

aep aep ≤ 2

2 + 0.1(aep − 2) 2 ≤ aep ≤ 10

2.8 + 0.001(aep − 10) aep ≥ 10

Ochiai2 (da Silva Meyer et al., 2004)
aef anp√

(aef +aep)(anp+anf )(aef +anf )(aep+anp)

Geometric mean (Maxwell and Pilliner, 1968)
aef anp−anf aep√

(aef +aep)(anp+anf )(aef +anf )(aep+anp)

Harmonic mean (Rogot and Goldberg, 1966)
(aef anp−anf aep)((aef +aep)(anp+anf )+(aef +anf )(aep+anp))

(aef +aep)(anp+anf )(aef +anf )(aep+anp)

Arithmetic mean (Rogot and Goldberg, 1966)
2aef anp−2anf aep

(aef +aep)(anp+anf )+(aef +anf )(aep+anp)

Cohen (1960)
2aef anp−2anf aep

(aef +aep)(anp+anf )+(aef +anf )(aep+anp)

Scott (1955)
4aef anp−4anf aep−(anf −aep)2

(2aef +anf +aep)(2anp+anf +aep)

Fleiss (1965)
4aef anp−4anf aep−(anf −aep)2

(2aef +anf +aep)+(2anp+anf +aep)

Rogot1 (Rogot and Goldberg, 1966) 1
2

(
aef

2aef +anf +aep
+ anp

2anp+anf +aep

)
f
aep

+

t
t
f
t
m
t

Rogot2 (Rogot and Goldberg, 1966) 1
4

(
ae

aef +

ive fault localization. For example, Jiang et al. (2009) investigate
he effect of test case prioritization techniques on effectiveness of

ault-localization techniques. Many other methodologies, such as
raining a neural network (Wong and Qi, 2009) and integrating with

odel checking (Griesmayer et al., 2009), have also been proposed
o improve the effectiveness of fault localization.
aef
aef +anf

+ anp
anp+aep

+ anp
anp+anf

)

3. Our study
In this section, we first review the basic terminology used in
our study and then present a model to assess the fault relevance of
predicates to facilitate the localization of faults, before posing the
research questions to be addressed by this paper.
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.1. Preliminaries

Here, we revisit the notion of program predicates (Liblit et al.,
003, 2005) and evaluation biases (Liu et al., 2005, 2006). In
redicate-based statistical fault localization, predicates are the pro-
ram element in focus. Liblit et al. (2003, 2005) address three types
f program locations and the associated set of predicates as follows:

. Branches: At each decision statement (such as an “if” or “while”
statement), CBI tracks, via a pair of program predicates, whether
the conditional “true” and “false” branches have been taken.
SOBER (Liu et al., 2006) further collects the execution frequency
of the branches.

. Returns: At each return statement (of a function module), six
predicates are tracked to find whether the returned value r sat-
isfies r < 0, r < = 0, r > 0, r > = 0, r = = 0, or r! = 0. Both CBI and SOBER
collect evaluations of these predicates.

. Scalar-pairs: To monitor the relationship of a variable to another
variable or to a constant in each assignment statement, six pred-
icates (similar to those for return statements above) are tracked
by CBI. For example, for an assignment statement x = y, the fol-
lowing six predicates are tracked: x > y, x > = y, x < y, x < = y, x = = y,
and x! = y.

SOBER, however, experimentally verifies and concludes that not
racking these predicates will not degrade the quality of fault local-
zation when using the Siemens suite. We will exclude scalar-pairs
rom our experiment with a view to a fair comparison.

Given a predicate, a technique may sample the outcomes of its
omponent conditions at each execution. One may further use the
ifferences among the sampled outcomes to facilitate fault local-

zation. Liu et al. (2005) define the concept of evaluation bias to
upport the description of such differences.

efinition 1 (Evaluation bias (Liu et al., 2005)). Let nt be the number
f times that a predicate P has been evaluated to be “true” in an
xecution, and nf the number of times that it has been evaluated
o be “false” in the same execution. �(P) = nt/(nt + nf) is called the
valuation bias of predicate P in this particular execution.

.2. Predicate-based statistical fault-localization framework

First, we present the conceptual model behind our statistical
ault-localization framework. In this way, the framework can be ini-
ialized by using different hypothesis testing methods to synthesize
ifferent predicate-based fault-localization techniques.

We first model a faulty program by a set of predicates {P1, P2,
. ., Pm}, and use Tp and Tf to denote the set of successful test cases
nd the set of failed test cases, respectively. We use Ei(r) to denote
he evaluation bias of predicate pi in a program execution over test
ase r. Based on this information, our target is to assess the fault
uspiciousness of predicate Pi being related to fault by analyzing
i(r). Once we obtain these fault-suspiciousness values for differ-
nt predicates, debuggers may use such information to assist them
o locate faults. Different executions may give different evaluation
ias values for the same predicate. Hence, we use a random variable
i to represent the evaluation bias Ei(r), and use f(Xi | Tp) to repre-
ent the probability density function of Xi for the set Tp of successful
est cases and f(Xi | Tf) to represent that for the set Tf of failed test
ases.

Many previous studies (Hu et al., 2008; Liblit et al., 2003, 2005;

iu et al., 2005, 2006; Zhang et al., 2008, 2009a, 2010) observe that
he stronger the correlation between a predicate Pi and a fault,
he larger will be the difference between f(Xi | Tp) and f(Xi | Tf). Our

ethodology will, therefore, use the difference between f(Xi | Tp)
nd f(Xi | Tf) to assess the suspiciousness of predicate Pi, expressed
nd Software 84 (2011) 885–905

as follows:

R(Pi) = Diff(f (Xi|Tp), f (Xi|Tf ))

We then review our predicate-based statistical fault-localization
model. Following our previous work (Hu et al., 2008; Zhang et al.,
2009a), we measure the difference between the two probability
density functions f(Xi | Tp) and f(Xi | Tf) by conducting a hypothesis
testing method to test the following null hypothesis:

H0: The evaluation biases of predicate Pi for the set Tp of successful
test cases and those for the set Tf of failed test cases come from the
same population.

The p-value of a hypothesis testing method is the probability of
that the population is at least as extreme as the observed result.
Thus,

Diff(f (Xi|Tp), f (Xi|Tf )) = p-value of hypothesis H0 (1)

For the program feature spectra in failed executions and passed
executions, there is unfortunately no scientific support for the
mapping between the similarity of their distributions and the
magnitudes of the p-values for the hypothesis testing of their dis-
tributions. However, the smaller the p-value, the less confident are
we that the two sets of samples come from the same population.
We choose to use our confidence on whether the two sets of sample
come from the same population as a measurement of fault suspi-
ciousness. A fault-localization technique may sort the predicates in
ascending order of p-values. Such an ordered predicate list is help-
ful for developers to locate faults in programs (Liblit et al., 2003,
2005; Liu et al., 2005, 2006; Renieris and Reiss, 2003; Zhang et al.,
2008, 2009a).

3.3. Research questions

To measure the difference between two sample sets H and H′,
parametric hypothesis testing can be meaningfully applied only if
the following assumptions (Lowry, 2006) hold:

N1: The two sample sets are randomly and independently drawn
from the source population.
N2: The measurements in both sample sets have the same interval
scales.
N3: The source population(s) can reasonably be assumed to have
a known distribution.

When any of these three assumptions does not hold, a non-
parametric testing method should be used instead. As shown by
our previous work in Zhang et al. (2009a), the source populations
of evaluation bias of predicates are indeed far from being nor-
mally distributed (as often implicitly assumed). The property of
non-parametric hypothesis testing also frees us from the need to
use artificial configuration parameters and allows a technique to
use fewer samples than their parametric counterpart to assess the
difference.

We now present the details of our framework to facilitate
further elucidation. First, we classify statistical fault-localization
techniques into several categories, as shown in Table 2. The
first category TC1 refers to predicate-based techniques that use
debugging-specific parametric testing methods (such as those used
in CBI and SOBER). The second category TC2 refers to predicate-

based techniques that use standard parametric hypothesis testing
methods, such as F-test and Student’s t-test (or t-test for short).
The third category TC3 refers to predicate-based techniques that
use standard non-parametric hypothesis testing methods, such as
the Mann–Whitney test and Wilcoxon Signed-rank test. The fourth
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Table 2
Classification of statistical fault-localization techniques.

Category Type (predicate-based) Example tests (References)

Parametric or
non-parametric

Standard or
debugging-specific

TC1 Parametric* Debugging-specific Tests used in CBI (Liblit et al., 2003, 2005) and SOBER (Liu et al., 2005, 2006)
TC2 Parametric Standard F-Test (Devore, 2008) and t-test (Devore, 2008)
TC3 Non-parametric Standard Mann–Whitney test (Mann and Whitney, 1947) and Wilcoxon Signed-rank test (Wilcoxon, 1945)

Category Type Examples (References)

TC4 Statement-level Tarantula (Jones et al., 2002) and Jaccard (Jaccard, 1901)

*It is not clear whether the tests used in CBI and SOBER should be categorized as parametric. However, we tend to consider the tests in CBI and SOBER as parametric because
they use parametric numerical methods without knowing the distribution of the execution spectra of the predicates. For example,
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lines of code. It is attached with a test suite containing 13,496 test
cases and 38 faulty versions, each of which contains a real fault.
The explanations for the corresponding data section in Table 3 is
i) CBI uses harmonic means in its computation.
ii) CBI approximates the frequency of a predicate being exercised in a program run
iii) SOBER sets the evaluation bias of a predicate to a theoretical mean value 0.5 (b
iv) SOBER assumes a normal distribution in one of its computation steps.

ategory TC4 refers to statment-level techniques such as Tarantula
nd Jaccard.

We design the following research questions to find the proper-
ies of TC1, TC2, and TC3, compare the effects of using them in our
ramework, and compare with TC4.

Q1: Compared with TC1, is TC2 more effective?
Q2: Compared with TC2, is TC3 more effective?
Q3: Compared with TC1, is TC3 more effective?

Research question Q1 essentially asks, when parametric test-
ng methods are used, whether a standard one (TC2) is better than
debugging-specific one (TC1). Research question Q2 asks, when

tandard statistical testing methods are used, is a non-parametric
ne (TC3) better than a parametric one (TC2)? Research question
3 is similarly posed to directly compare TC3 techniques with TC1.

We further study the research question Q4 to compare the effec-
iveness of the winner among TC1, TC2, and TC3 with existing
tatement-level fault-localization techniques.

Q4: How does the winner among TC1, TC2, and TC3 compare with
TC4 in terms of effectiveness?

Next, we study the scalability issue. There seems to be a common
elief that, with increasingly more data, the population can be more
losely approximated by a normal distribution (Liu et al., 2005), and
ence the adoption of parametric tests is better justified. Should
his be the case, according to statistics theories, parametric tests (if
pplicable) will provide more accurate results than non-parametric
nes. Hence, we are also interested in the effect of a larger number
f test cases on the relative effectiveness of the techniques. We state
his as research question Q5 below. Finally, we study the efficiency
f the three classes of techniques, as stated in research question Q6.

Q5: When the number of test cases increases, are TC2 and TC3
techniques more effective than TC1 in localizing faults?
Q6: Are TC1, TC2, and TC3 techniques comparable in efficiency?

. Experiment

This experiment consists of three parts: (a) An effectiveness
omparison among TC1, TC2, and TC3. This part is to study which
f parametric, non-parametric, and debugging-specific hypothesis

esting methods gives predicate-based fault-localization tech-
iques the best effectiveness in locating faults in programs. (b) An
ffectiveness comparison between TC4 and the winner among TC1,
C2, and TC3. This part is to study whether a good predicate-based
ault-localization technique can be as effective as or more effective
ms of a 0/1 status (depending on whether it has been exercised in a program run).
g the mean value of 0 and 1) if it is never evaluated.

than statement-level fault-localization techniques in locating faults
in programs. (c) Scalability and efficiency analysis of TC1, TC2, and
TC3. This part is to investigate the scalability and efficiency issues
of predicate-based fault-localization techniques. We do not include
TC4 techniques in this part because previous work has studied these
issues on TC4 and we are limited by our resources to repeat them.

4.1. Subject programs

Our experiment uses the seven programs in the Siemens suite,
namely, tcas, tot info, replace, print tokens, print tokens2, schedule, and
schedule2, as well as one real-life program space, all downloaded
from the Software-artifact Infrastructure Repository (SIR) (Do et al.,
2005).

Each subject program in the Siemens suite has 7–41 faulty ver-
sions, each version being hand-seeded with one fault. Table 3 shows
the descriptive statistics of each subject program, including the
number of faulty versions, number of executable lines of code (LOC),
number of test cases in the pool, and percentage of failed test cases
among all test cases. The table also shows the minimum, maximum,
and median perceived failure rates of the faulty versions of each
subject program over the test pool, together with their fault types
and code excerpts. For example, tcas has 41 faulty versions, each
version consisting of 133–137 LOCs. For this program, 1608 test
cases are available, of which 2.4% are failed test cases. Faulty version
v12, which contains a “wrong logic or relational operators” fault, has a
minimum perceived failure rate of (0.001).1 In other words, among
all the faults in the 41 faulty versions, the one in version v12 has the
minimum failure rate of 0.001. According to orthogonal defect clas-
sification (Durães and Madeira, 2006), this fault occurs frequently
in real-life programs. It belongs to the Check class (see Table 4),
which constitutes 36.1% of occurrences among all classes of faults
in the subject programs. The fault can further be classified under
the fault type C2 (see Table 4), which represents 52.9% of all fault
occurrences within the Check class of faults in the Siemens suite.

The program space is an interpreter for an array definition lan-
guage (ADL). It reads an ADL file, parses it, checks the consistency
according to ADL grammar, and outputs a list of array elements
(or error messages). According to the original version in the SIR
repository (Do et al., 2005), the program consists of 6218 executable
similar to those of the last paragraph.

1 A failing rate is defined as the number of failed test cases in a test pool over the
total number of test cases in the same pool.
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Table 3
Descriptive statistics of subject programs.

Table 4
Important fault types in subject programs.

Class Fault type (Durães and Madeira, 2006)

Assignment (43.9%) A1: Missing assignment (9.6%)
A2: Wrong/extraneous assignment (37.0%)
A3: Wrong assigned variable (46.7%)
A4: Wrong data types or conversion (6.4%)

Check (36.1%) C1: Missing OR-term/AND-term (45.0%)
C2: Wrong logic or relational operators (52.9%)
C3: Missing branching around statements (1.9%)

Interface (4.2%) I1: Wrong return expression (16.6%)
I2: Missing return (83.3%)

Algorithm (15.6%) G1: Missing the whole “if” statement (68.1%)

G2: Missing function call (13.6%)
G3: Wrong function call (18.1%)
Table 4 shows the frequencies of various classes of faults for
these subject programs according to the orthogonal defect classifi-
cation (Durães and Madeira, 2006).

4.2. Alternative hypothesis testing methods for TC1, TC2, and TC3
techniques

Six statistical testing methods are studied in this paper, two from
each category, shown under “Example Tests” in Table 2. They are:

(TC1) Methods used in CBI (Liblit et al., 2003) and SOBER (Liu
et al., 2006), which will simply be referred to as CBI and SOBER,
respectively,

(TC2) F-test and Student’s t-test (which will simply be called t-test),
and
(TC3) Mann–Whitney test and Wilcoxon signed-rank test (Lowry,
2006), which will be abbreviated as Mann–Whitney and Wilcoxon,
respectively.
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than 3 lines from a faulty statement. There is no ambiguity in
identifying the most fault-relevant predicate and we use all of
them in our experiment. For the remaining 19 faulty Siemens ver-
sions, the most fault-relevant predicate in each case is hard to be

2 We use the UNIX tool gcov to collect the statistics of program executions. How-
ever, gcov cannot work with crashed program runs, and we therefore exclude from
Z. Zhang et al. / The Journal of Sys

The procedures of CBI and SOBER have been briefly discussed in
ection 1 and are not repeated here. Details can be found in Liblit
t al. (2003, 2005) and Liu et al. (2005, 2006).

Mann–Whitney (Lomax, 2007) is a non-parametric testing
ethod, widely used to compare the medians of two non-normal

istributions. In our preliminary experiment in Hu et al. (2008),
e employ Mann–Whitney to conduct non-parametric statistical

ault localization. Its p-value, which measures the probability that
he evaluation bias for all passed executions and those for all failed
xecutions for a given predicate come from the same population,
s used to indicate the extent of fault suspiciousness of a program
eature, and hence is used to sort the list of predicates (see Eq. (1)).

Given two samples, F-test and t-test are statistical tests
ommonly used to decide whether the means and dispersions,
espectively, of the distributions are equal (Lowry, 2006). Again,
heir p-values are used to sort the predicate lists in the experiment.

.3. Effectiveness metric for TC1, TC2, TC3, and TC4 techniques

The metric T-score has been first proposed in Renieris and Reiss
2003) and then used in other studies (Cleve and Zeller, 2005; Liu
t al., 2005, 2006; Renieris and Reiss, 2003) to evaluate the effec-
iveness of predicate-based fault-localization techniques. The idea
s that debugging can start from some highly prioritized predicate
tatements, search the whole space of statements in a breadth-
rst manner, and then measure the result of effectiveness by the
ercentage of statements examined before reaching any faulty
tatement inclusively. Several previous studies, such as Cleve and
eller (2005) and Renieris and Reiss (2003), have reported the lim-
tations of T-score. One such limitation is that its rationale heavily
elies on an assumption in the debugging process. In reality, it is not
asy to take for granted the behavior of “an ideal programmer who
s able to distinguish defects from non-defects at each location, and
an do so at the same cost for each location considered” (Cleve and
eller, 2005). As such, we adopt another metric in this paper — the
-score (Zhang et al., 2009a) — which makes no such assumption,
nd is more intrinsic to a given list of predicates generated by a
ault-localization technique than T-score.

P-score uses the appearance position of the most fault-relevant
redicate in the generated predicate list as the effectiveness of that
ault-localization technique. It is similar to the concepts of Expense
Jones and Harrold, 2005; Zhang et al., 2009b) (which has been
opularly used to evaluate statement-level fault-localization tech-
iques) and F-measure (Chen and Merkel, 2008) (which measures
he number of test cases to reveal the first failure in a faulty pro-
ram). P-score is given by

-score =

m∑
i=1

1-based index of P̃i in L

m × number of predicates in L
× 100%

here m is the number of faults in the program, a 1-based index
s an index that starts from 1 (rather than 0), and P̃i is the most
ault-relevant predicate, that is, the predicate closest to the position
of the fault in the program (in terms of the number of non-
mpty non-comment lines). Let us illustrate P-score through an
xample. Suppose (i) the program has only one fault, (ii) there
re 10 predicates in a program, prioritized as 〈P2, P3, . . . 〉, and
iii) the most fault-relevant predicate is P3 (that is, P̃ = P3). One
ould examine the first two predicates out of the total of ten

efore locating the most fault-relevant predicate, and hence P-score

2/10 × 100% = 20%. The smaller the value, the more effective will
e the fault-localization technique.

P-score is used in all parts of our experiment to evaluate the
ffectiveness of TC1, TC2, and TC3, except when comparing the
ffectiveness of TC3 and TC4 techniques as discussed in Section
nd Software 84 (2011) 885–905 893

4.6. In that Section , we need to compare the effectiveness of
both predicate-based techniques and statement-level techniques
together. Predicate-based techniques are based on the execution
spectra of predicates, and predicates are set on three kinds of
statements (namely, branch statements, return statements, and
assignment statements) according to the settings of CBI or SOBER.
On the other hand, statement-level techniques are based on the
execution spectra of all statements. Since the number of state-
ments are greater than that of predicates in most cases, it is not
fair to compare them directly. In the comparative experiment
discussed in Section 4.6, we collect the execution spectra of pred-
icates on branch statements only, and adapt TC3 (predicate-based
fault-localization) techniques to work solely on branch predicates.
Further, we collect the execution spectra of branch statements
to drive TC4 (statement-level fault-localization) techniques. Thus,
the inputs to predicate-based and statement-level techniques are
approximately equal in scale. After that, we adjust P-score to search
for the “most fault-relevant branch statement P̃i”, and use this revised
version of P-score to evaluate both predicate-based techniques and
statement-level techniques.

4.4. Experimental setup

Recall that there are a total of 132 faulty versions for all the seven
Siemens programs and a total of 38 faulty versions for the space pro-
gram. Two of the 132 faulty Siemens versions (namely, version v27
of program replace and version v9 of program schedule2) come with
no failed test cases, as reported in Liu et al. (2005, 2006). These two
versions are excluded because all the methods in our experiment
require both passed and failed test cases. According to execution
statistics on our platform, the faults in 10 out of 38 faulty versions
of the space program cannot be revealed by any test case. Since
both passed executions and failed executions are needed to con-
duct statistical fault localization, we exclude these 10 versions from
our experiment.2 They are versions v1, v2, v25, v26, v30, v32, v34,
v35, v36, and v38.

Following Liu et al. (2005, 2006), we use the whole test suite as
inputs to the testing methods (except when studying the effect of
test suite size on the efficacy of TC1, TC2, and TC3 techniques as
discussed in Section 4.7 and when conducting the efficiency analy-
sis of TC1, TC2, and TC3 techniques as discussed in Section 4.8). We
also use branches and returns (see Section 3.1) as program locations
for predicates in all parts of the experiment except when compar-
ing the effectiveness of TC3 and TC4 techniques as described in
Section.

We identify faulty statements by comparing each faulty ver-
sion with the original (supposedly correct) version. If a fault lies in
a global definition statement, we mark the directly affected exe-
cutable statement as faulty. If a statement is omitted, we mark
the next executable statement as the faulty statement. Next, we
manually mark the most fault-relevant predicate (or branch state-
ment) in each faulty version. For 111 faulty Siemens versions, the
position of the most fault-relevant predicate is always no more
our experiment the test cases that cause a program to crash. This strategy is also used
in other studies such as Jones and Harrold (2005) and Zhang et al. (2009b). Owing
to different experimental settings (including the platforms and gcc versions), the
number of faulty versions excluded from every study can be different. For example,
Jones and Harrold (2005) excluded 8 faulty versions from their experiment, while
Debroy and Wong (2009) excluded 3 faulty versions.
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reason, we merge the results of schedule and schedule2 and show
them in one figure (Fig. 3).

From the plots for replace in Fig. 2, we find that the result
of Wilcoxon is always the best among the six, the results of
Fig. 1. Overall effectiveness comparison.

niquely determined. We therefore exclude these 19 versions from
he experiment. For the 28 faulty versions of space, the positions of
he most fault-relevant branch statements are easy to identify.

We conduct our experiment using a Dell PowerEdge 1950 server
unning Solaris unix with kernel version Generic 120012-14. The
ools used to build up our experimental platform include flex++
.5.31, bison++ 1.21.9-1, CC 5.8, and gcov 3.4.3. The implementation
f the two standard non-parametric tests (namely, Mann–Whitney
nd Wilcoxon) and the two standard parametric tests (namely, F-
est and t-test) have been downloaded from the ALGLIB website
available at http://www.alglib.net/).

.5. Effectiveness comparison of TC1, TC2, and TC3 techniques

Fig. 1 shows the results of applying P-score to evaluate the
ffectiveness of the six methods (Wilcoxon, Mann–Whitney, CBI,
OBER, F-test, and t-test). It depicts the percentage of faulty ver-
ions whose most fault-relevant predicates can be located when a
ertain percentage of predicates in each of the faulty version have
een examined.

As an illustration, we consider the behavior of the tests when
0% of the predicates have been examined, and have the following
bservation:

TC1: CBI and SOBER can only reach the most fault-relevant predi-
cate in 9.01% and 8.11% of the 111 faulty versions, respectively.
TC2: F-test and t-test can reach the most fault-relevant predicate
in 1.80% and 4.50% of the 111 faulty versions, respectively.
TC3: Wilcoxon and Mann–Whitney can reach the most fault-
relevant predicate in 17.12% and 5.41% of the 111 faulty versions,
respectively.

Similarly, when examining up to 20% of all the predicates in the
enerated predicate list,

TC1: CBI and SOBER can only reach the most fault-relevant predi-
cate in 17.12% and 13.51% of the 111 faulty versions, respectively.
TC2: F-test and t-test can reach the most fault-relevant predicate
in 9.01% and 10.81% of the 111 faulty versions, respectively.
TC3: Wilcoxon and Mann–Whitney can reach the most fault-
relevant predicate in 36.04% and 16.22% of the 111 faulty versions,
respectively.
Moreover, in the range of [10–80%], both CBI and SOBER out-
erform F-test and t-test. In the range of [10–90%], Wilcoxon
lways outperforms CBI and SOBER, while the effectiveness of
ann–Whitney is (in the range of [10–40%]) comparable to, or (in
Fig. 2. Individual effectiveness comparison on replace.

the range of [50–90%]) better than CBI and SOBER. From this plot,
we observe that Wilcoxon performs better than CBI and SOBER,
Mann–Whitney performs comparably to CBI and SOBER, while CBI
and SOBER perform better than F-test and t-test.

Table 5 further summarizes the statistics of the effectiveness
of each test. Take Wilcoxon as an example. It has to examine (in
the best case) 0.89% and (in the worst case) 100.00% of the all
predicates, respectively, in order to locate the most fault-relevant
predicate in a faulty version. The median and mean statistics are
39.82% and 46.91%, respectively, and the standard deviation is
35.71%.

Among all six tests, Wilcoxon always scores the best in the rows
that correspond to the minimum, median, and mean statistics, but
its standard deviation is also the highest. Thus, while Wilcoxon gen-
erally performs very well, its performance also varies more widely
than other tests. Note also that all the tests may reach the worst case
of assigning the lowest rank to the most fault-relevant predicate.

We also include Figs. 2–6 to give readers a better understanding
of the effectiveness of every method on each individual subject pro-
gram. Note that we merge the results of print tokens and print tokens2
and show them in one figure (Fig. 6) because they have very simi-
lar structures and the number of faulty versions for each of them is
too limited to form meaningful individual statistics. For the same
Fig. 3. Individual effectiveness comparison on schedule and schedule2.

http://www.alglib.net/
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Table 5
Statistics of effectiveness of individual tests.

Wilcoxon (%) Mann–Whitney (%) CBI (%) SOBER (%) F-Test (%) t-Test (%)

Min 0.89 3.45 0.91 3.70 4.44 4.50
Max 100.00 100.00 100.00 100.00 100.00 100.00
Median 39.82 50.00 63.64 63.06 75.86 80.30
Mean 46.91 53.38 58.58 60.64 67.01 70.74
Stdev 35.71 30.56 34.34 32.06 29.29 28.23
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Fig. 4. Individual effectiveness comparison on tcas.

ann–Whitney and SOBER are the second best in most regions,
hile the results of CBI, t-test, and F-test are comparable to one

nother. From the plots for schedule and schedule2 in Fig. 3, our
bservation is that the results of Wilcoxon and Mann–Whitney are
etter than those of SOBER and CBI, and the results of the latter two
re better than those of t-test and F-test. The plots for tcas in Fig. 4
how little difference. The results of Wilcoxon, Mann–Whitney, and

BI are comparable, the results of SOBER, t-test, and F-test are also
omparable, while results of the former three are better than those
f the latter three. In the results for tot info in Fig. 5, TC1 techniques
erform better than TC3 techniques. TC2 techniques are the least
ffective. In the results for print tokens and print tokens2 in Fig. 6,

able 6
tatistics of pairwise comparison (in terms of P-score) between Wilcoxon and other techn

Wilcoxon – Mann–Whitney Wilcoxon – CBI

<−1% 55 54
−1% to 1% 18 18
>1% 38 39
<−5% 50 53
−5% to 5% 26 21
>5% 35 37
<−10% 44 50
−10% to 10% 36 33
>10% 31 28

able 7
tatistics of pairwise comparison (in terms of P-score) between Mann–Whitney and othe

Mann–Whitney – SOBER

<−1% 55
−1% to 1% 23
>1% 33
<−5% 53
−5% to 5% 26
>5% 32
<−10% 52
−10% to 10% 29
>10% 30
Fig. 5. Individual effectiveness comparison on tot info.

on average, TC1 techniques outperform TC2 techniques, which in
turn outperform TC3 techniques. Results on tot info, print tokens,
and print tokens2 show that there are still improvements on top of
Wilcoxon and Mann–Whitney techniques. CBI works quite well to
locate some faults in these subject programs. It will also be inter-
esting to dig out why TC2 techniques are more effective than TC3
on these subject programs. We have found that TC3 techniques can

be more effective than TC2 techniques in most cases, and often
outperform TC1 techniques. To further find the relative merits on
individual versions, we compute the difference in effectiveness
between each TC1 technique and each peer technique in TC2 or
TC3, and the results are shown in Tables 6 and 7, respectively.

iques on individual programs.

Wilcoxon – SOBER Wilcoxon – F-test Wilcoxon – t-test

58 64 66
20 19 19
33 28 26
55 61 62
28 24 27
28 26 22
49 54 57
38 34 36
24 23 18

r techniques (except Wilcoxon) on individual programs.

Mann–Whitney – F-test Mann–Whitney – t-test

53 60
29 24
29 27
52 55
33 30
26 26
48 51
39 35
24 25
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Fig. 6. Individual effectiveness comparison on print tokens and print tokens2.

Let us first take the column “Wilcoxon − Mann–Whitney” and
he row “<−1%” in Table 6 as an example. It shows that, for 55
f the 110 faulty versions, the code examination effort of using
ilcoxon to locate a fault is less than that of using Mann–Whitney

y at least 1%. Similarly, the row “>1%” shows that, for only 38
f the 110 faulty versions, the code examination effort of using
ilcoxon to locate a fault is more than that of Mann–Whitney by

t least 1%. The row “−1% to 1%” shows that, for 18 faulty versions,
he effectiveness between Wilcoxon and Mann–Whitney cannot be
istinguished at a significance level of 1%. By comparing these three
ows, we observe that Wilcoxon tends to be more effective than
ann–Whitney. The other columns can be interpreted similarly.
e further observe from the two tables that, in general, Wilcoxon

s more effective in locating faults than the other five techniques.
imilarly, Mann–Whitney is more effective than SOBER, F-test, and
-test.

.6. Effectiveness comparison of TC3 and TC4 techniques

We have shown experimentally that TC3 techniques outperform
C1 and TC2 techniques. In this section, we further use a case study
o compare the effectiveness of TC3 techniques with TC4 techniques
ver space.
Fig. 7 shows the histogram for the failing rate distribution of the
8 faulty versions of space. Since most faults have failing rates less
han 10%, we use logarithmic coordinates in this figure. We observe
hat the mode of this histogram in the range of 4–8%.

ig. 7. Histogram for failing rate distribution of the 28 faulty versions of space.
nd Software 84 (2011) 885–905

In the experiment, we compare the effectiveness of TC3 tech-
niques with 33 existing statement-level techniques summarized
and studied in Naish et al. (in press). We have summarized them in
Table 1 for reader’s ease of reference. Each technique differs from
Tarantula on its ranking formula only. The terms aef means the num-
ber of failed executions that exercise a statement, anf means the
number of failed executions that does not exercise a statement, aep

and anp mean the numbers of passed executions that exercise and
do not exercise a statement, respectively.

The experimental results3 are shown in Fig. 8. Note that we
group the 33 techniques into three rows according to their order
of appearance in Table 1. The effectiveness of each technique is
shown in figure using the box-and-whisker plot. Furthermore, for
ease of comparison, we replicate the results of the two TC3 tech-
niques (Wilcoxon and Mann–Whitney) as the two rightmost bars
in each group. Let us take the Anderberg technique (the second
from the left in the first row) as an example. For each of the 28
faulty versions, Anderberg outputs a ranked list of branch state-
ments. Accordingly, by applying P-score on each of the 28 faulty
versions, Anderberg produces an individual P-score value. The posi-
tion of the separator dash in the box indicates a median value of 32%
using Anderberg is used. It means intuitively that, by following the
suggestion made by Anderberg, developers need to examine, on
average, 32.0% of the branch statements in order to locate 50% of
the most fault-relevant branch statements in the 28 faulty versions.
The top of the upper whisker shows the maximum value (62.5%) of
the 28 P-scores, while the bottom of the lower whisker shows the
minimum value (11.1%). Accordingly, they mean the worse case and
the best case scenarios when Anderberg is used. The top and bottom
of the box correspond to the 75% percentile and the 25% percentile
of the 28 P-score values. They indicate intuitively that developers
need to examine, on average, 37.7% and 23.2% of the branch state-
ments to locate the 7th (25% percentile position) and the 21st (75%
percentile position) most fault-relevant branch statements in the
28 faulty versions.

We also zoom into the figure and show them in Fig. 9. From
Figs. 8 and 9, we observe that the effectiveness of TC4 tech-
niques are not always good. Some old technique (e.g., Tarantula)
and some recently well evaluated techniques (e.g., Jaccard) have
outstanding effectiveness. Some techniques having good mathe-
matical supports (e.g., geometric mean) do not yield good results.
Interestingly, there are also some techniques (e.g., Scott), which
are not extensively mentioned in previous works, but work well on
space. Comparing with the overall effectiveness of TC4 techniques,
the effectiveness of TC3 techniques are above the average.

Readers may be interested to know the number of faults located
with different code examining effort for these techniques. Table 8
gives such a summary. Again, we group the 33 TC4 techniques into
three rows to ease our presentation. Take the column with a label
“Jaccard” and the row with a label “1%” for example. The cell means
that with 1% code examination effort, the technique Jaccard can find
the most fault-relevant branch statements in 13 faulty versions of
space. Other cells can be interpreted similarly. From this table, we

observe that for almost each of the 1%, 2%, 5%, 10%, 20%, and 50%
code examination efforts, TC3 techniques can outperform almost
every TC4 technique in locating the most fault-relevant branch
statements in the faulty versions of space.

3 The calculation of non-parametric hypothesis testing methods Wilcoxon
and Mann–Whintey are conducted using the ALGLIB library (available at
http://www.alglib.net/). The wilcoxonsignedranktest and mannwhitneyutest proce-
dures of the ALGLIB library may encounter malformatted data and output NaN (Not
a Number) results in a few cases. It may be caused by unknown reasons due to the
execution spectra data of the space program. In such cases, we use Tarantula’s for-
mula to continue the calculation and replace the NaN values. We choose Tarantula’s
formula because it is known to be unaffected by the divided-by-zero issue.

http://www.alglib.net/
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Fig. 8. Effectiveness comparison between non-

We further calculate the minimum, maximum, mean, median,
nd standard deviation of effectiveness for each technique, and
how them in turn in the five plots in Fig. 10. Logorithmic coor-
inates are used in the y axes. Further, we use a triangle sign and a
quare sign to mark the Wilcoxon and Mann–Whintey techniques,
espectively. For ease of comparison, we sort the techniques in
he first plot in ascending order of their minimum effectiveness

easures. For example, it shows that among the 35 techniques,
ilcoxon is the champion in effectiveness in the best case (min-

mum measurement), while the Mann–Whitney technique is the
rst runner-up. The other plots are interpreted similarly except that
he maximum, mean, median, and standard deviation effectiveness

easures are used for sorting. Our observation is that in terms of
he minimum, maximum, mean, or median values, Wilcoxon and
ann–Whitney are always the best two among the 35 techniques.
owever, when looking at the standard deviations, Wilcoxon and
ann–Whintey are the 4th and 5th, respectively. In summary, this

gure shows that TC3 techniques require the lowest effort in code
xamination to locate faults and have relatively low fluctuations in
etric methods and statement-level techniques.

the effectiveness of locating faults. This test also consolidates the
observations in previous paragraphs.

4.7. Effect of test suite size on efficacy of TC1, TC2, and TC3
techniques

We have also investigated the effect of different test suite sizes
by observing the corresponding change in effectiveness. Fig. 11
shows the results. The test suite size, shown as x-axis in the fig-
ure, is gradually increased from 50 to 100, 150, 200, 300, 400, 500,
and finally to 1000. The y-axis stands for the mean percentage of
predicates examined to locate the most fault-relevant predicate.
The test cases were randomly selected from the test pool.

We observe that, overall, the curves for Wilcoxon and

Mann–Whitney show a decreasing trend as test suite size increases.
On the other hand, the curves for CBI, SOBER, F-test, and t-test do
not show any decreasing trend with the increase of test suite size.
The results show that the use of Wilcoxon or Mann–Whitney in our
model is more effective for test suites of larger sizes than for test
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Fig. 9. Effectiveness comparison between non-param

uites of smaller sizes. Thus, in terms of effectiveness improvement
ith increase of test suite size, Wilcoxon and Mann–Whitney are
ore scalable than CBI, SOBER, F-test, and t-test.

.8. Efficiency analysis of TC1, TC2, and TC3 techniques

In this section, we report the efficiency of our implementation
f the fault-localization techniques. Fig. 12 shows the mean exe-
ution time of using these techniques to rank the predicates. The
est suite size is chosen as 1000. All the times spent are collected
y sequentially executing each technique to rank the predicates in
ach faulty version. The six categories in Fig. 12 represent, respec-
ively, the results over all the programs, the results on programs
rint tokens and print tokens2, the results on program replace, the
esults on programs schedule and schedule2, the results on pro-
ram tcas, and the results on program tot info. In each category,
he six different bars respectively show the mean times taken by
ach technique on the faulty versions of the corresponding pro-

ram category. For the print tokens and print tokens2 category, for
nstance, the six bars in the figure represent the mean execution
imes spent by Wilcoxon (1.002 s), Mann–Whitney (1.192 s), CBI
1.674 s), SOBER (1.657 s), F-test (1.218 s), and t-test (1.223 s). Note
hat we group the faulty versions of print tokens and print tokens2
ethods and statement-level techniques (zoomed in).

into the same category because (i) each of them has too few faulty
versions to form meaningful statistics individually, and (ii) these
programs have similar structures and logic. For the same reason, we
also group the faulty versions of programs schedule and schedule2
into the same category.

From Fig. 12, we observe that the times taken by individual tech-
niques show an increasing trend as the program sizes increases.
For example, programs replace, print tokens, and print tokens2 are
larger in scale than programs schedule, schedule2, tcas, and tot info,
and the mean execution times of each technique in the for-
mer three programs are longer than those in the latter four
programs. This is understandable because the former three pro-
grams have relatively more predicates (Zhang et al., 2010). We
also observe that the tests in category TC1 (CBI and SOBER) gen-
erally run slower than those in categories TC3 (Wilcoxon and
Mann–Whitney) or TC2 (F-test and t-test), while the tests in TC2
often run slightly faster than those in TC3 (apart from apply-
ing Wilcoxon to program replace). The former happens because

the selected standard parametric or non-parametric methods are
designed by mathematicians and have better performance. The lat-
ter happens because the algorithms of these two non-parametric
methods are more complex than those of the two parametric
methods.
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Table 8
Number of faults located with different code examining efforts using TC3 and TC4 techniques.
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other words, given such samples, the probability that “the effec-
tiveness of the techniques using F-test and that of the techniques
using t-test come from the same population” is 0.68%. Since we also
have an intuitive observation in Sections 4.5 and 4.7 that F-test is
more effective overall than t-test, we can conclude with confidence

Table 9
Hypothesis testing results on H1.

X =

Wilcoxon Mann–Whitney CBI SOBER F-test
.9. Answering research questions

In the previous sections, we have discussed the phenomenon
hat TC3 techniques are observably more effective than TC1 tech-
iques, and TC1 techniques are observably more effective than TC2
echniques. To know whether the differences in effectiveness are
tatistically significant, we conduct hypothesis testing (using t-test)
o verify the observations. We set up the following hypothesis:

H1: Technique X and technique Y have no significant difference in
terms of P-score.
Note that only the p-values less than 0.05 are shown in Table 9.
e leave the cell as “−” if the p-values ≥ 0.05. Take the rightmost

ell with a value of 0.0068 as an illustration. It means that the p-
alue for the hypothesis is 0.0068, indicating the null hypothesis
(H1) can be rejected at a 5% significance level (0.0068 < 0.05). In
Y = t-test <0.0001 <0.0001 = 0.0002 <0.0001 = 0.0068
F-test <0.0001 = 0.0003 = 0.0074 = 0.0080
SOBER <0.0001 = 0.0362 −
CBI = 0.0025 −
Mann–Whitney = 0.0327
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hat F-test has statistically significant advantages over t-test. Simi-
arly, we compare the other pairs of techniques and summarize the
ollowing observations from Table 9:

R1: Wilcoxon significantly outperforms Mann–Whitney,

Mann–Whitney significantly outperforms SOBER, and SOBER
significantly outperforms F-test.
R2: Wilcoxon significantly outperforms CBI, and CBI significantly
outperforms F-test,
R3: F-test significantly outperforms t-test.
effectiveness of TC3 and TC4 techniques over the space program.

Based on the above statistical results and the results presented
in the previous sections, we can answer the research questions in
Section 3.3 thus:

A1: Compared with TC1 techniques, TC2 techniques are not statis-

tically more effective (at a 5% significance level).
A2: Compared with TC2 techniques, TC3 techniques are statisti-
cally more effective (at a 5% significance level).
A3: Compared with TC1 techniques, TC3 techniques are often more
effective (for 3 cases out of 4, at a 5% significance level).
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ig. 11. Effect of test suite size. (The lower the curve is, the better will be the
echnique.)

We have shown that TC3 techniques outperform TC4 techniques
n the minimum, maximum, mean, and median effectiveness mea-
ures. To find out whether the advantages are also statistically
ignificant, we validate them using hypothesis testing.

Let X be the Wilcoxon or Mann–Whitney technique and Y be
ne of the other 33 techniques. We follow the above procedure in
ection 4.9 to test hypothesis H1. It can be interpreted as similar to
he answering of research questions Q1 to Q3.

If we take 5% as the threshold to reject H1, the null hypothesis
1 can be rejected at a significance level of 5% when X is Wilcoxon
nd Y is any of the 33 TC4 techniques except Sørensen-Dice, Kul-
zynski1, Goodman, Ochiai, and Ochiai2. In other words, given
uch samples, the probability that “the effectiveness of Wilcoxon

nd that of the other 28 (= 33 − 5) techniques come from a same
opulation” is less than 5%. Since we also have an intuitive obser-
ation in previous sections that Wilcoxon needs, on average, less
ode examination effort to locate faults on space than TC4 tech-

Fig. 12. Time spent by each technique on subject programs.
nd Software 84 (2011) 885–905 901

niques, we conclude that Wilcoxon has statistical advantages over
all the TC4 techniques studied (except Sørensen-Dice, Kulczynski1,
Goodman, Ochiai, and Ochiai2) at a significance level of 5%. Sim-
ilarly, Mann–Whitney also has statistical advantages over all the
TC4 techniques studied (except Sørensen-Dice, Kulczynski1, M2,
Goodman, Ochiai, and Ochiai2) at a significance level of 5%. When
we use 10% as the significance level to test H1, both Wilcoxon and
Mann–Whiney has statistically significant advantages over 30 of
out of the 33 TC4 techniques studied (except Sørensen-Dice, Kul-
czynski1, and Goodman). When using 30% as the threshold to test
H1, Wilcoxon has statistically significant advantages over all the
TC4 techniques studied. When we use 35% as the significance level
to test H1, Mann–Whintey has statistically significant advantages
over all the studied TC4 techniques. Finally, we answer research
question Q4 as follows:

A4: The effectiveness of TC3 techniques is empirically better than
most of the TC4 techniques.

The experimental results presented in previous sections show
that Wilcoxon, Mann–Whitney, CBI, and SOBER tend to be more
effective as the size of a test suite increases, whereas the overall
effectiveness trends for CBI, SOBER, F-test, and t-test do not seem
to increase as obviously when the size of a test suite increases.

To confirm these observations, we apply another hypothesis
test:

H2: For the same technique, there is no significance difference in
P-score with respect to the use of different test suite sizes.

More specifically, for each curve in Fig. 11, we compute the
change in P-score between every two adjacent points, compare the
series of such changes with a series of zeros, and conduct hypoth-
esis testing (using t-test) to validate H2. The results for Wilcoxon,
Mann–Whitney, CBI, SOBER, F-test, and t-test are 0.05, 0.21, 0.16,
0.16, 0.99, and 0.33, respectively.

If we deem 0.05 as the threshold to reject H2, the effectiveness
of Wilcoxon is confirmed to have changed significantly as the size
of a test suite increases. Since we also have an intuitive observation
that the effectiveness of Wilcoxon has a discernible increasing trend
with the increase of test suite size, we can conclude with confidence
that there is a statistically significant increasing trend. On the other
hand, we do not find any significant difference for the other five
techniques. Together with the results presented in the last section
on comparing the effectiveness among techniques, we can answer
research question Q5.

A5: The effectiveness of TC2 and TC1 techniques do not improve
much with increasing test suite size; whereas TC3 techniques,
particularly Wilcoxon, improves significantly as the number of
available test cases increases.

In a previous section, we have observed that there is discernible
difference between the times taken by two techniques to compute
the predicate lists. We further set up a hypothesis test to validate
this observation:

H3: There is no significant difference between the times taken to
compute the predicate lists by two techniques under study.

The result is shown in Table 10. Note that if a p-value is greater

than 0.05, we do not show it but leave the cell as “−”. Let us
take the top left cell with “X = Mann–Whitney” and “Y = CBI” as
an example. It means that the p-value is less than 0.0001 and H3
can be rejected at a significance level of 5%. The other cells can
be interpreted similarly. Based on Table 10, we can confirm that
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Table 10
Hypothesis testing results on H3.

X =

Mann–Whitney F-test t-test SOBER
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Y = CBI <0.0001 <0.0001 <0.0001 −
SOBER <0.0001 <0.0001 <0.0001
t-test <0.0001 <0.0001
F-test <0.0001

here is significant difference between the times taken to com-
ute the predicate lists by every pair of techniques listed in the
able (except the SOBER–CBI pair). On the other hand, we find that
here is no significant difference between Wilcoxon and any other
echnique under study. (Since there is no significant difference, the
omparisons with Wilcoxon are not listed in the table.)

Although there are significant differences in most pairs of tech-
iques, we would like to study which techniques are more efficient

n multiple aspects. For each technique, therefore, we compute the
tandard statistics to measure both the extreme values and central
endency. The results are shown in Table 11.

Take the first column of the table as example. In the best case
cenario, Wilcoxon takes 0.019 s to finish whereas, in the worst
ase scenario, it takes 1.618 s. For the median and mean scenarios,
t takes 0.086 and 0.544 s, respectively. The standard deviation of
he time taken to execute Wilcoxon is 0.672. The other columns can
e interpreted similarly.

We observe that Mann–Whitney attains the best mean and
edian results. Wilcoxon is the least efficient among TC2 and TC3

echniques, and is also the most diverse (having the largest stan-
ard deviation) among the six techniques. For min, max, mean, and
edian, TC1 techniques are the least efficient.
Based on the above discussion, we can answer research question

6 as follows:

A6: In terms of the time taken to execute a technique, the efficien-
cies of TC1, TC2, and TC3 are comparable.

.10. Threats to validity

In this section, we discuss the threats to validity of our experi-
ent.

.10.1. Internal validity
Internal validity refers to whether a causal relationship between

wo variables is properly demonstrated in the experiment. The
uthors of SOBER have released their instrumented faulty versions.
e find that instrumentation to some predicates is omitted in

heir experiment. Since we have no clue on whether a predicate
hould or should not be included, we follow their specification to
nclude all the predicates and work out their experiment again by
urselves. We have also developed a prototype to automate the

xperiment to minimize manual errors. To apply CBI and SOBER,
e have implemented the techniques according to their published
apers. We have used a few sample programs to test the correct-
ess of our implementations. To apply F-test, Student’s t-test, the
ann–Whitney test, and the Wilcoxon signed-rank test in the con-

able 11
tatistics of time taken to execute each technique (in seconds).

Wilcoxon Mann–Whitney CBI SOBER F-test t-test

Min 0.019 0.021 0.038 0.022 0.022 0.023
Max 1.618 1.340 1.972 1.916 1.366 1.376
Median 0.086 0.080 0.138 0.138 0.080 0.081
Mean 0.544 0.387 0.613 0.605 0.397 0.400
Stdev 0.672 0.445 0.670 0.662 0.455 0.456
nd Software 84 (2011) 885–905

trolled experiment, we use a public-domain mathematics package
ALGLIB rather than our own implementation. Note that a number
of research projects have used this package. We have searched the
Internet to look for reports on the accuracy problems of the mathe-
matical package, and yet we are not aware of such reporting related
to these four tests. We also spot check some results by working out
the p-values usingMATLAB independently to confirm whether the
results computed by the package can be reliable. In addition, we use
gcov, which is assumed to produce reliable statistics of execution
counts.

When analyzing the scalability of Wilcoxon, Mann–Whitney,
CBI, SOBER, F-test, and t-test, we use the same program library
at the ALGLIB website (see Section 4.4) for implementation, and
do not optimize any of them. Such consideration aims to com-
pare their effectiveness fairly. However, different implementation
details may affect their run time comparison. Another threat may
be due to the choice of predicates we investigate. CBI and SOBER
interpret different kinds of statements as predicates. It is not easy to
directly compare them with each other. On the other hand, SOBER
has reported that scalar-pair predicates only have minor effects on
fault localization results. Hence, we follow SOBER and exclude them
from our experiment. The inclusion of scalar-pair statements may
affect the performance of CBI.

4.10.2. Construct validity
Construct validity refers to whether the experiment actually

measures what it intends to measure.
In the experiment, we include CBI and SOBER for comparison.

Although there exist other techniques, both CBI and SOBER are
representative predicate-based techniques and popularly used to
compare with new predicate-level fault localization techniques.
We use P-score to measure the effectiveness of a technique. This
metric is originally adapted from its statement-level counterpart
(that is, the number of statements to be examined in order to locate
the faulty statement). To fairly evaluate both predicate-based and
statement-level techniques and compare their results together, we
apply the former on branch statements and the latter on branch
predicates so that P-score can be used to evaluate them. The use of
other metrics such as T-score may incur limitations as discussed in
a previous section and in Cleve and Zeller (2005). The use of other
metrics may also produce different comparison results.

In the experiment, we manually mark the most fault-relevant
predicates in the faulty versions. Such manual work may cause
threats to construct validity. We exclude those faulty versions in
which the most fault-relevant predicate cannot be uniquely deter-
mined.

To strike a balance between our resources and the scale of the
experiment, the efficacy, scalability, and efficiency comparisons of
two TC1, two TC2, and two TC3 techniques are conducted over the
Siemens suite of programs, while the efficacy comparisons of two
TC3 and 33 TC4 techniques are conducted over the median-sized
real-life space program. This also may cause threats to construct
validity of the experiment if we compare the results across exper-
iments.

4.10.3. External validity
In our experiment that compares predicate-level techniques,

we show the fault-localization results using two non-parametric
hypothesis testing methods, two parametric hypothesis test-
ing methods, and two debugging-specific methods. The use of
other non-parametric, parametric, or debugging-specific statistical

methods may give different comparison results. However, six tech-
niques have been investigated in this paper in multiple dimensions.
We believe that it represents a significant effort in the controlled
experiment. We have also used 33 statement-level techniques in
the experiment. We have verified their formulas carefully.
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External validity may also be caused by the subject programs
sed. The faults in the Siemens programs are seeded manually. They
ay not truly represent real-life faults. We have used the faulty

ersions of space to supplement the study of TC3 techniques. They
ontain real-life faults in a real-life program. The use of other pro-
rams may give different results. Moreover, the subject programs
re not large in scale and are not concurrent programs. It also poses
imitations on the generalization of the results of this paper.

In this paper, we have not evaluated the effectiveness of the
xamined techniques on multiple-fault programs. In our predicate-
ased fault-localization framework, we locate only one fault in
very fault-localization process. After fixing the located fault, our
echnique can be rerun to locate the next fault.

.11. Discussions

We have reported the experiment and analyzed the data to
nswer the research questions Q1–Q6. In this section, we revisit
he findings and discuss their implications.

We find that standard parametric fault-localization techniques
annot outperform debugging-specific techniques. We further
bserve that, in the experiment, the techniques under category TC1
namely, SOBER and CBI) uses the means either in their assess-

ent formula or uses the means to represent the probability in
he assessment formula. These techniques are parametric in nature.
he answer to Q1 provides justification evidence for one to develop
ebugging-specific parametric techniques.

Standard non-parametric cores outperform parametric cores in
erms of effectiveness. The effectiveness of the former is much

ore positively correlated to the maximum number of test exe-
utions for fault localization than that of standard parametric cores
r debugging-specific cores. This finding is interesting. It indicates
hat non-parametric techniques are preferred to parametric coun-
erparts. On the other hand, based on our findings on comparing
arametric cores and debugging-specific cores, we conjecture that
ebugging-specific non-parametric cores may be even more effec-
ive than TC1, TC2, and TC3. Our answer to Q6 further shows
hat non-parametric techniques can be efficiently implemented.
herefore, our study points out a research direction in fault local-
zation, namely, that one may further study debugging-specific
on-parametric statistical fault-localization techniques.

Our results show that standard non-parametric predicate-
ased techniques outperform statement-level techniques over
he evaluated subject programs. It means that, compared with
tatement-level techniques, predicate-based fault-localization
echniques can be also useful. This has not been reported in pre-
ious studies. On the other hand, since we make compromises
n both sides (adapting statement-level techniques to work solely
n branch statements and adapting predicate-based techniques to
ork solely on branch predicates), both of the effectiveness mea-

ures on these subject programs may have been modified.
In many previous studies, predicate-level fault-localization

echniques are often shown to be less effective than statement-
evel techniques. In our experiment, we have shown that using a
on-parametric core for predicate-level techniques can outperform
xisting debugging-specific predicate-based or statement-level
echniques. An interesting question is whether one may import the
oncept of non-parametric hypothesis testing to statement-level
echniques to enhance the latter.

. Conclusion
Fault localization is a time-consuming and yet crucial activity in
oftware debugging. Many previous studies contrast the program
eatures of passed executions and failed executions to locate the
redicates correlated to faults. However, they overlook the inves-
nd Software 84 (2011) 885–905 903

tigation of the statistical distributions of the program features, on
which their parametric techniques fully rely. Previous studies have
argued and verified empirically that it is problematic to assume
specific distributions of program features and use parameters that
categorize the distributions in fault-suspiciousness assessments.
However, solutions to tackle the problem have not been proposed.

In this paper, we propose a framework to handle statistical
predicate-based fault localization by applying standard hypoth-
esis testing techniques proposed by mathematicians. We have
conducted a controlled experiment on the Siemens suite and the
space program to evaluate the effectiveness of different hypothesis
testing methods in our framework, and compare with statement-
level fault-localization techniques. We have also experimentally
compared the efficacy, scalability, and efficiency of using two
standard non-parametric hypothesis testing methods, two stan-
dard parametric methods, and two debugging-specific methods
on our framework. The experimental results show that standard
non-parametric methods outperform standard parametric meth-
ods and debugging-specific methods in terms of effectiveness,
and are more efficient than debugging-specific methods. Since
non-parametric methods are the winners over parametric meth-
ods and debugging-specific methods on efficacy, we have also
experimentally compared the efficacy of using the two standard
non-parametric hypothesis testing methods on our framework
with 33 statement-level fault-localization techniques to gauge
whether the best predicate-based techniques may outperform
statement-level techniques. The experimental results show that
standard non-parametric methods also outperform statement-
level techniques in terms of effectiveness when given comparably
scaled input. Future studies may include the debugging issues
of multi-fault programs and concurrent programs, optimizing
the size of a test suite for debugging, and developing scientific
non-parametric hypothesis testing methods for statement-level
fault-localization techniques.
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