
Analyzing GUI Running Fluency for Android Apps
Tian Huang Zhenyu Zhang Xue-Yang Zhu*

State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

Beijing, China

(+86)10-6266{1630, 1630, 1655}

{huangt, zhangzy, zxy}@ios.ac.cn

ABSTRACT
Android as a free open platform has become increasingly popular

and been widespread adopted in mobile, tablet, and other devices.

However, a great number of issues, such as inadequate quality and

the fragmentation phenomenon, have emerged, enhancing the

difficulty of developing. Among them, the running fluency of

Android apps directly affects user experience directly. As a result,

it is of great significance to detect and analyze it.

The frame rate and 16-ms-per-frame benchmark are the most

popular metrics to evaluate and measure the smooth performance

of Android application GUIs and to test the quality of apps by

developers. However, very few studies have analyzed the

performance and consider the adequate usage of frame rate before

extensively applying it. Further, current tools provided by Google

or third-party cannot obtain the frame rate and rendering time for

the system with multiple applications.

In this work, we focus on the performance issue, revisit and

analyze various factors that Android apps do not run smoothly,

along with Android graphic system. After that, we present

ARFluency --- a tool to measure and automatically analyze the

system and applications without modifying the source code of the

Android apps. We also conduct an experiment to validate our tool

using realistic Android apps. Experimental results show that

although even the apps running fluently do have problematic

frames. However, the metrics of frame rate cannot accurately

reflect the performance of Android applications.

CCS Concepts

• Software Engineering ➝ Software/Program Verification—

Reliability • Software Engineering ➝ Testing and Debugging—

Testing tools, Tracing.

Keywords

Android; Performance analysis; Running fluency; FPS

1. INTRODUCTION
Android [7] created by Google and the Open Handset Alliance has

become a rather popular platform for mobile applications (apps)

commonly used in a variety of devices including mobile, tablet,

etc. It is reported that the number of those devices ranging in

different sizes of screens has reached ten billion [5]. Meanwhile,

an enormous amount of applications have been developed. As

subscribes are growing in number and market share is expanding,

a great number of issues have emerged, especially GUI lagging,

memory bloat, and energy leak [2]. Such performance bugs bring

in bad user experience.

Android operation system is continuously updated. Every version

provides better performance on various aspects such as user

interface (UI), battery life, user control, etc. Current Marshmallow

based on API level 23 runs much more fluently than the first one

released. Besides, developers tend to develop and optimize their

apps so as to get more online downloads because apps of good

quality have advantages over those of bad performance in market

competition and the “survival of fittest” circumstances. Android is

always on the road toward high performance.

However, as Android system grows rapidly, various problems

appear, e.g., device-specific problems and software related issues,

resulting in fragmentation (see Figure 1). These problems have

deteriorated the difficulty of developing apps, as well as testing

them. For example, an app runs fluently on one device may not

perform well on another. Furthermore, any occasion where

performance issues of an app occur may lead to uninstallation,

especially GUI lagging (e.g. screen tearing, standstill) and poor

responsiveness. To users, whether an Android app runs fluently or

not extremely matters.

In this work, we focus on the performance of Android application

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

MobiHoc’16, July 5–8, 2016, Paderborn, Germany.
Copyright 2016 ACM 978-1-4503-4184-4

DOI: http://

* Corresponding author.

Figure 1. Distribution of Android OS in market share.

GUIs. By introducing the phenomena where the apps do not run

smoothly from the users’ perspective, we analyze Android graphic

system used to present graphics to the screen. Then we discuss

two available metrics to evaluate and measure the performance of

Android application GUIs, namely the frame rate and the 16-ms-

per-frame benchmark. Although frame rate is commonly used as

an important factor to measure the performance on automated

testing platforms (ATPs), we revisit whether the frame rate

accurately reflects the performance. After that, we implement our

tool --- ARFluency to access the frame rate and the rendering time

usage of Android apps to investigate tools provided by Google

and thirty-party. Finally, we conduct an experiment to use realistic

apps downloaded from the Android markets to test our tool.

Contributions of the work are as follows.

1) This is the first work focusing on running fluency of

Android application GUIs from the users’ perspective.

2) This is the first work choosing and comparing both the

frame rate and the16-ms-per-frame as metrics.

3) We implemented a tool ARFluency to obtain the frame rate

and rendering time usage of Android apps.

4) We conducted an experiment to use realistic Android apps

from Google Play to validate our tool.

The remainder of this paper is organized as follows. Section 2

discusses the performance related including the phenomenon such

as screen tearing, Android graphic system and metrics, along with

some tools available. Section 3 presents our tool ARFluency.

Section 4 conducts an experiment and reports observations.

Section 5 introduces related work. Section 6 concludes the paper.

2. BACKGROUND AND MOTIVATION
In this section, we first introduce Android and Android systems as

the background of this work, together with interested performance

metrics. After that, we explore existing tools and motivate our

work.

2.1 Android
From the users’ perspective, running fluency emerges as a

comprehensive performance of a system that delivers information

quickly. In Android, it refers to the responsiveness and rendering

performance of Android app GUIs. A most visible manifestation

of poor responsiveness is an “Application Not Responding” error

(ANR [3]). When the application does not respond to user input

(e.g., screen tough), within certain time (5 seconds in an Activity

or 10 seconds in a BroadcastReceiver), an ANR dialog should be

presented to the user by Android run-time [10]. Such errors create

a highly negative user experience, and the efforts to avoid them is

of great importance [11].

 Frame rate (Frames per Second, FPS) is the rate at which an

imaging device generates consecutive images, while the refresh

rate is the rate at which the display hardware refreshes the images

called frames. The vertical synchronization technique (V-Sync) is

introduced since Android 4.1, aiming at limiting the frame rate

lower than the refresh rate [8].

Screen tearing results from two frames appearing on the screen at

the same time. After introducing V-Sync, screen standstill comes

out instead of screen tearing. Both screen tearing and standstill are

caused by the unequal value between frame rate and refresh rate.

Regardless of refresh rate depending on hardware, the frame rate

is controlled by Surface Manager [8].

Android graphic system is extremely complex and it penetrates

the Android system architecture, illustrated in Figure 2. Each app

may have one or more surfaces, which are the cache of screen and

store the drawing data from graphic libraries such as Skia Graphic

Library (SGL) and OpenGL ES [6]. Surface Manager (aka.

SurfaceFlinger) is responsible for combining the rendered

surfaces of apps and then updating the frames by writing data to

frame buffer to draw them on screen through EGL (see Figure 3).

Rendering frames need several steps such as draw, process,

execute, etc. The number of steps is not fixed (e.g. three or four).

It depends on version of the Android system.

Current Android platform since Jelly Bean [4] has already reached

a new height of displaying graphic user interface with making

progress of Open GL ES from 2.0 to 3.0 and employing triple

buffering rather than double buffering, etc.

Applications

Application framework

 Libraries

Linux kernel

Android runtime

Home

Window manager View system

Surface manager

OpenGL ES

SGL Core libraries

Display driver Binder (IPC) driver

Dalvik virtual

machine

...BrowserContacts

Figure 2. Android system architecture.

SurfaceSurface Surface

Flinger

Surface

Flinger EGLEGL Frame

Buffer

Frame

Buffer

Figure 3. The process Android drawing to screen.

2.2 Metrics
The performance of apps can be measured in a number of ways,

including execution time, memory usage or battery consumption

that typically yield useful values for performance assessment [9].

Execution time actually refers to processing overhead of CPU.

Compared to PCs, smart phones have limited computing resources,

and smart phones applications are more prone to have

performance problems [25]. In terms of CPU, memory, battery

belonging to the resources category, the less resources the app

consumes, the better performance it should have. In addition,

metrics also include network traffic, frame rate, 16-ms-per-frame

benchmark and so on. Network traffic is the amount of data

transferred through network; frame rate is the rate at which

consecutive images drawing to the screen, and the 16-ms-per-

frame benchmark describes the maximum time of rendering a

frame of a UI window.

Among those metrics measuring the performance of apps, both the

frame rate and the 16-ms-per-benchmark are popular to evaluate

and measure the performance of Android application GUIs. In

Android, it is required that the frame rate of an app should reach

60 fps to run fluently on devices. Hence, each frame should be

rendered in no more than 16.67ms. Compared to 16.67ms, 16-ms-

per-frame benchmark is stricter. In another word, if 16-ms-per-

frame benchmark is satisfied, the app should run smoothly. Since

the frame rate is closely related to 16-ms-per-frame, the less time

rendering frames used, the larger the frame rate is.

2.3 Existing Tools and Improvement Space
A great many of tools are available and used by developers to

detect performance-related issues. Linares-Vasquez et al. [1]

listed out some of them, which are divided into six categories.

There are also some tools provided by Google or third-party,

which are to help profile and analyze the performance of Android

application GUIs.

Systrace [12] is used to analyze the performance of rendering. It

can collect and inspect timing information across the entire

Android device. It inspects the frame rendering information of an

Android app, and uses different colors to distinguish whether a

frame exceeds the 16-ms-per-frame run-time limit. However, it

needs source code of Android apps.

Profile GPU Rendering [13] exists in a mobile device running at

least Android 4.1 with Developer Options enabled. It provides a

visual representation of how much time it takes to render the

frames of a UI window relative to the 16-ms-per-frame

benchmark. It can inspect rendering frames info and record at

most 128 frames when rendering frames of each UI across an

entire Android device. It does not need the source code of an app.

However, it cannot be employed in Android of versions prior to

4.1. At the same time, the representation can neither transform

into accurate numerical data nor write data into a file.

FPS Meter [14] only measures the frame rate of the entire

Android device rather than that of a specific application. It then

shows FPS values on arbitrary corner of the screen in real time

without storing them. It can be used to measure the frame rate of

the app without its code on devices with the prerequisite that it

requires root privileges.

GT (Great Tit) [16] is an open source project in Github. It is a

portable debugging tool for bug hunting and performance tuning

anytime and anywhere. It is designed for skillful developers to

monitor their apps in devices just under the circumstances of

developing the apps with GT project.

The four tools mentioned above have merits and demerits

respectively. However, none of them can obtain frame rate or

frames rendered info of a specific app. Open source Android

developers primarily rely on manual testing and analysis of

reviews for detecting performance bottlenecks using tools like the

first two [1], while the other two tools can be used as reference

tools to develop a suitable tool for automated testing platforms

which arise with the advantage of compatibility testing, etc.

In addition, there are mainly two ways to get FPS. One is to

instrument the app during developing. The other is to decompile

the apk file and edit the source code. Either way needs to modify

the code of an app. Mostly, apps are encrypted avoiding being

cracked. When testing on ATP, it is rather problematic to obtain

the frame rate. Moreover, timing info about rendering frames

against 16-ms-per-frame is also of great importance.

Therefore, a tool should be developed to obtain frame rate and

frames rendered info across system and multiple apps without

modifying the source code so as to test and analyze the smooth

performance of GUI in Android apps.

3. OUR TOOL
In this section, we introduce our tool --- ARFluency and elaborate

on its mechanism.

3.1 ARFluency
We implement a tool named ARFluency, which can access the

frame rate and frames rendered information of a specific app

across system and apps without modifying their source code.

In Android, each app has its own process and one app usually

cannot get information of another, for security consideration. Each

app should request permissions to deal with tasks. For example, if

an app asks to install, system may ask the user whether to install it

and accordingly grant corresponding permissions. If the user

chooses not to install, then the app could not run normally until it

actually accesses these permissions.

The permissions in Android are mainly categorized into three

kinds as follows, based on the user experience perspective:

1) Android owner permissions. Once an Android device is

bought, the user has privileges to install apps.

2) Android root privileges. They are the highest permissions in

Android system, roughly equaling to administrator

privileges in Windows operating system.

3) The permissions requested by apps. Developers can develop

various apps leveraging the SDK (Software Development

Kit). The authority of an app attached to access the

resources may request permissions. For different resources,

the apps are supposed to request permissions respectively.

The information about frame rate and frames rendered of apps

belongs to relatively independent processes. So among the tools

mentioned above, FPS Meter and GT perform well with the

prerequisite that the Android device should have root privileges.

Therefore, ARFluency should be granted Android root privileges

for the sake of operating normal on devices.

3.2 Mechanism
The mechanism of our tool is to find the SurfceFlinger process

and inject it with a so file, which is a library used to monitor the

process and obtain relevant information such as frame rate. The

step makes use of code injection technique. Besides, ARFluency

adopts adb shell instruction (e.g. Dumpsys command) . It executes

the instruction every certain time, and dumps the result data.

Our tool is implemented in C++ language and the NDK [26] tool

is used to compile the codes into executable and static libraries.

Our tool finds the target process and injects it using a prior static

library if the process exists.

The code injection technique in our tool consists of two parts. One

is an executable file called Inject. It is used to hook the process.

The other is a static library named libsurfaceflinger.so. It

consumes little resources of CPU and RAM. Once Inject is

successfully executed, the so file exists in Android system to

obtain information until it is unloaded by force.

There is only one UI in ARFluency, which consists of three parts.

The first part is to show the device information including the

version of Android system, instruction set, and so on. The second

part is to select and list all package names of all apps installed on

the devices. And the third part presents the run-time information

of the app tested.

ARFluency is allowed to select the package name of an app in

entire Android device. After choosing the app, the user may click

“Start” button. Once clicked, the button changes itself to “Stop”.

Then we can just manipulate the app selected. To finish testing,

just switch back to ARFluency and click the “Stop” button.

Meanwhile, ARFluency can obtain and collect the frame rate and

frames rendered information of the app between the moments of

two clicks.

4. EXPERIMENT AND ANALYSIS
In this section, we give our experiment to validate the tool.

4.1 Research questions
The goal of the study is to obtain the frame rate and frames

rendered information from realistic apps and analyze the

performance of Android application GUIs. The following research

questions are raised.

1) RQ1: Is there a strong negative correlation between the

frame rate and time usage to render a frame?

2) RQ2: Does the frame rate describe the GUI running fluency

in Android apps accurately?

3) RQ3: Which part consumes most resources during the

process of rendering frames in GUI?

4.2 Experiment Design
To ensure ARFluency operate normally, the minimum version of

Android system (Android 4.1) must be satisfied. Besides,

according to the Android specification [28], if an app can be

developed and run on Android 4.1, it can run on approximately

94.8% of active devices. Therefore, a Samsung galaxy note 10.1

device based on Android 4.1.2, API 16 is selected. To ensure the

reliability of experimental data and effectiveness captured during

the experiment, we create a pure, independent and secure

environment on the test device. In order to reduce the impact of

various factors influencing the performance of the apps (e.g. Out

of Memory, Memory Leak, and other bugs), we use apps of good

quality, from Google Play [15].

The experiment encompasses several tests, namely, (1) to study

whether ARFluency is workable, (2) to evaluate the efficiency of

ARFluency, and (3) to answer the research questions.

The above three tests are conducted almost at the same time. Five

top selling apps are downloaded from Google Play, including

Google Chrome, Google photos, Shadowsocks, Google translate

and Qihoo Security. Besides, AnTuTu benchmark used to

evaluate and measure the performance of the entire Android

device is also tested.

4.3 Experiment Results
When the apps artoe is tested, the same operation is executed. We

first install the app on the device and run ARFluency. We select

the package name of the app, click “Start” button, and then play

with the app for about 3minites. Last, we come back to

ARFluency, click the “Stop” button, and then uninstall it. We fail

to obtain the frame rate and frames rendered information of Qihoo

security among the six apps. The others perform successfully.

Table 1 shows the experimental data.

In table1, issued frames refer to frames which their rendering time

more than 16-ms-per-frame, and the step consuming time most is

the step processing the most time during rendering frames process.

From table 1, we can observe that issued frames exist in all apps,

which can be tested by ARFluency successfully. According to the

above experimental data, a line chart is shown in Fig.4. Different

colors are used to distinguish different data. The red line presents

the average time rendering per frame, the blue one stands the

frame rate, and the green is on behalf of the percentage of issued

frames.

Table 1. Experimental data.

App name
Issued frames

(%)

Average time per frame

(ms)

frame rate

(fps)
The most time-consuming step

Chrome 1.14 2.05 34.75 Process

Shadowsocks 0.84 3.72 21.25 Process

Google translate 0.78 3.43 15.47 Process

Google photos 4.36 13.12 24.00 Process

AnTuTu Benchmark 16.33 11.77 26.25 Draw

Figure 4. Issued frames and time rendering.

a) Time consuming per frame

b) The percentage of each process per frame

Figure 5. Information of execution per frame.

0

5

10

15

20

25

30

35

40

Chrome Shadowsocks Google

translate

Google

photos

AnTuTu

Benchmark

Line chart of apps

Issued frames(%) Average time per frame (ms)

The frame rate(fps)

0

10

20

30

40

50

60

70

80

1

2
3

4

5

6
7

8

9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

M
il

li
se

co
n

d
s

The number of frames

Time consuming per frame

0%

20%

40%

60%

80%

100%

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

P
er

ce
n

ta
g
e

The number of frames

The percentage of each process per frame

Draw Process Execute

In addition, from Fig. 4, we observe that there is also no

observable relationship between the frame rate and the percentage

of issued frames. Therefore, the frame rate may have no strong

correlation with both factors. Our observation is that though the

frame rate may not measure the GUI running fluency in Android

apps accurately, to some extend, it can qualitatively reflect the

performance.

We can see that the Process step usually consumes the most time

when rendering frames in table 1. The five results are rather

similar in rendering frames. Take Chrome as an example.

Information of rendering a UI window per frame is shown in Fig.

5. A majority of frames (approximately 98.86%) finish updating

in less than 16.67ms, while a minimum part of issued frames

operate over 20ms. Fig. 6 shows the time consuming of each

process. We can see that to process is the most unstable and time-

consuming step to deal with one frame on average, in about 1.67

milliseconds.

4.4 Answering the Research Questions
We answer the research questions as follows.

1) A1: There is no strong negative correlation between the

frame rate and time rendering a frame.

2) A2: The frame rate does not describe the GUI running

fluency in Android apps accurately.

3) A3: The step Process consumes most resources during the

process of rendering frames in GUI.

4.5 Other Findings
The above five apps run fluently on the Samsung device in despite

of different values of the frame rate (also Frames per Second,

FPS).FPS is widely used to evaluate and measure the performance.

Although it is closed related with the 16-ms-per-frame benchmark

in theory, there is no strong correlation between them in the

experiment. FPS is the outer reflection of running fluency from

the user’s perspective and the 16-ms-per-frame benchmark is also

a measurement of rendering a UI window. In fact, there are

various factors influencing the result. For example, different apps

may belong to distinct categories, providing corresponding

services, behaving different. As a result, in each category, the

higher the FPS, the better the performance is.

a) Time consuming of each step per frame

b) Average time consuming of each step per frame

Figure 6. Time consuming of each process.

0

20

40

60

80

1

2
3

4

5

6
7

8

9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

M
il

ls
ec

o
n

d
s

The number of frames

Time consuming per frame

Draw Process Execute

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Draw Process Execute

M
il

li
se

co
n

d
s

Average time consuming per frame

5. RELATED WORK

Android phone cannot be counted as fast mobile device until

Froyo was released. Froyo [5] introduced the Dalvik JIT compiler,

which delivered up to 5x performance improvement in CPU-

bound code. And it also brought in 2-3x improvement in

JavaScript performance.

There are many studies on performance issues, many of which [1,

2, 3, 8, 9, 21, 25] focus on performance analysis. Among them, [2,

25] aim at helping developers characterize and detect performance

bugs in Android apps while the work [1] pay paid attention on

how developers detect and fix performance bottlenecks by

surveying 485 developers. Yang et al. [3] proposed a systematic

technique to discover and quantify common causes of poor

responsiveness in apps. Kim et al. [8] proposed an effective

scheme to reduce energy consumption without compromising user

experience. Some other work [19, 22] also researched GUI

automated testing. Related work such as analysis based on

concolic testing [20] and multi-surface computing [18] were also

carried on.

Although a plenty of work have focused on performance of

Android, very few studies [3] have focus on performance

evaluation and measurement of running fluency from user

perspective. Qian et al. [17] put forward a new model or method

in comparison with others using the frame rate as a metric, in

which three programming models are been analyzed and FPS as a

metric to measure the related performance.

6. CONCLUSION
While Android is a success on the basis of the number of available

apps and market share, a plenty of performance issues do great

harm to user experience.

In this paper, we focused on frame rate and made use of 16-ms-

per-frame as metrics to evaluate and measure the performance.

We implemented our tool ARFluency and conducted an

experiment comparing it with existing tools. We found that

although these apps run fluently, they do have problematic frames.

Another observation is that though frame rate qualitatively reflects

the running fluency, it cannot accurately measure the performance.

Future work is scheduled on using our tool in GUI optimization,

reverse engineering of GUI models, and automated testing.

7. ACKNOWLEDGMENTS
This work was supported by the National Key Basic Research

Program of China (project No. 2014CB340702) and the National

Natural Science Foundation of China (project No. 61379045).

8. REFERENCES
[1] M. Linares-Vasquez, C. Vendome, Q. Luo, and D.

Poshyvanyk. How developers detect and fix performance

bottlenecks in Android apps. In Proceedings of ICSME,

pages 352-361, 2015.

[2] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and

detecting performance bugs for smartphone applications. In

Proceedings of ICSE’14, pages 1013-1024, 2014.

[3] S. Yang, D. Yan, and A. Rountev. Testing for poor

responsiveness in Android applications. In Proceedings of

MOBS, pages 1-6, 2013.

[4] Jelly Bean. http://developer.android.com/about/versions/

android-4.0.html.

[5] Android – History. www.android.com/history/.

[6] Y. Zhuang and Y. Li. Display Technique of Mobile Video

Monitor on Android. Atlantis press, pages 2475-2482, 2015.

[7] M. Bulter. Android: Changing the Mobile Landscape. In

Proceedings of IEEE Pervasive Computing, pages 4-7, 2011.

[8] D. Kim, N. Jung, and H. Cha. Content-centric display energy

manager for mobile devices. In Proceedings of Design

Automation Conference (DAC), ACM, 2014.

[9] L. Corral, A. Sillitti, and G. Succi. Mobile multiplatform

development: An experiment for performance analysis. In

Proceedings of the 9th International Conference on Mobile

Web Information System (MobiWIS), Procedia Computer

Science, pages 736-743, 2012.

[10] Keeping your app responsive. http://developer.android.com/

training/articles/perf-anr.html.

[11] Loading large bitmaps efficiently. http://developer.android.

com/training/displaying-bitmaps/load-bitmap.html.

[12] Analyzing UI performance with Systrace. http://developer.

android.com/tools/debugging/systrace.html.

[13] Profiling GPU Rendering Walkthrough. http://developer.

android.com/tools/performance/profile-gpu-rendering/index.

html.

[14] FPS Meter. http://app.cnmo.com/android/188987/.

[15] Google Play. https://play.google.com/store.

[16] Github. https://github.com/TencentOpen/GT.

[17] X. Qian, G. Zhu, and X.-F. Li. Comparison and analysis of

the three programming models in Google Android. In

Proceedings of First Asia-Pacific Programming Languages

and Compilers Workshop (APPLC), pages 1-9, 2012.

[18] A. Vant Hof, H. Jamjoom, J. Nieh, and D. Williams. Flux:

multi-surface computing in Android. In Proceedings of

EuroSys’15, pages 1-17, 2015.

[19] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De

Carmine, and A. M. Memon. Using GUI ripping for

automated testing of Android applications. In Proceedings of

ASE, pages 258-261, 2012.

[20] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated

concolic testing of smartphone apps. In FSE, pages 1-11,

2012.

[21] M. Jovic and M. Hauswirth. Listener latency profiling:

Measuring the perceptible performance of interactive Java

applications. Science of Computer Programming,

76(11):1054-1072, 2011.

[22] X. Yuan and A.M Memon. Using GUI run-time state as a

feedback to generate test cases. In Proceedings of ICSE,

pages 396-405, 2007.

[23] D. Gavalas and D. Economou. Development platforms for

mobile applications: status and trends. IEEE Software, pages

77-86, 2011.

[24] Best practices for performance. http://developer.android.

com/training/best-performance.html.

[25] A. Nistor, L. Ravindranath. Suncat: Helping developers

understand and predict performance problems in smartphone

applications. In Proceedings of ISSTA’14, pages 282-292,

2014.

[26] Android NDK. http://developer.android.com/tools/sdk/ndk/

index.html.

[27] Y. Li, J. Fang, M. Liu, and S. Wu. Study on the application

of Dalvik injection technique for the detection of malicious

programs in Android. In Proceedings of Electronics

Information and Emergency Communication (ICEIEC)

Conference (Beijing, China, May 14-16, 2015), pages 309-

312, 2015.

[28] Android Studio. https://developer.android.com/.

