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Abstract—Graphical User Interface (GUI) is a component 
of many software applications. Many mobile game applications 
in particular have to provide excellent user experiences using 
graphical engines to render GUI screens. On a rendered GUI 
screen such as a treasury map, no GUI widget is embodied in it 
and the operable GUI regions, each of which is a region that 
triggers actions when certain events acting on these regions, 
may only be implicitly determinable. Traditional testing tools 
like monkey test do not effectively generate effective event 
sequences over such operable GUI regions. Our insight is that 
operable regions in a rendered GUI screen of many mobile 
game applications are given with visible hints to catch user 
attentions. 

In this paper, we propose Smart Monkey, which uses the 
fundamental features of a screen, including color, intensity, 
and texture, as visual signals to detect operable GUI region 
candidates, and iteratively identifies and confirms the real 
operable GUI regions by launching GUI events to the region. 
We have implemented Smart Monkey as a testing tool for 
Android apps and conducted case studies on real-world 
applications to compare it with a peer technique. The empirical 
results show that it effective in identifying such operable 
regions and thus able to generate functional event sequences 
more efficiently. 
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I. INTRODUCTION 
Software programs are widely used in our digital living. 

To present good usage experience to users, many software 
developers use Graphical User Interface (GUI [26]) in their 
projects. GUI is one of the most important bridge between 
users and software applications. However, bugs existing in 
GUI-based programs present more and more serious 
problems in the real world. For example, after experiencing 
a few occurrences of flash back or black screen when using 
a mobile application, a user may choose to uninstall the 
problematic application. 

GUI testing is an integral part of many software 
development projects. There are a large number of testing 
tools and frameworks such as Ascentialtest [13], Sikuli [33], 
Appium [27], MonkeyRunner [3], UIAutomator [5], 
Robotium [14], and monkey [4] for various platforms and 
development environments.  

On one hand, some testing tools are specifically 
designed to be used by professional programmers and test 
engineers. For example, automatic testing tools like 
MonkeyRunner and Robotium launch GUI events on GUI 
widgets and depend on composed test scripts to simulate 
user behavior [4][14]. To use these tools, mastering the 
corresponding script languages like Python [25] or testing 
frameworks like JUnit [18] are pre-requisites, making them 
not accessible to less skillful programmers or engineers. On 
the other hand, many applications (like games) use graphic 
engines like OpenGL [19] and others [12][29] to render 
images and use these images as the GUI in the background 
[19]. Many testing tools do not effectively handle such 
rendered GUIs because no widget information is correlated 
with them. Further, composing test scripts by developers can 
be difficult because the regions of a “background” that can 
receive GUI events, which we refer such a region to as an 
operable region, may not be statically determinable.   

Monkey test [4]  is an easy-to-use testing strategy, which 
is able to operate a software application with rendered GUI. 
However, existing monkey test tools may only hit an 
operable region over a rendered GUI with a low probability, 
or may be inefficient in revealing software bugs with limited 
“blind trials” [8]. We thus ask a research question: Is it 
possible to detect operable regions in a rendered GUI and 
thus make a blind monkey test smarter? 

Our insight is based on the following observation. A 
basic design principle is that a GUI may give user visible 
hints of operable regions to draw the attention of users. In 
this paper, we formulate our technique on top of this insight 
to detect operable regions in a rendered GUI. Inspired by the 
psychological studies that human perception system is 
sensitive to the contrast of visual signals, such as color, 
intensity and texture, we propose to detect the salient 
regions of a rendered GUI through color, intensity, and 
texture to infer operation candidates. To validate our 
technique, we implemented it as a tool “Smart Monkey” on 
the Android framework to automate GUI testing for Android 
apps. We conducted case studies using real-world 
applications to evaluate the feasibility of our technique, 
compare it to peer techniques to assess its effectiveness, and 
evaluate its efficiency. The experiment on nine real-world 



widely used mobile applications show that our technique is 
more effective than Monkey of Android by 33% in correctly 
hitting the operable regions on screens of these mobile 
applications and can expose the first crashing fault from 
applications earlier. 

The contributions of this work is threefold. First, this is 
the first work targeting at handling rendered GUIs to detect 
operable region candidates, confirm them through concrete 
GUI events, and generate test scripts accordingly. Second, 
we show the feasibility of our technique by implementing it 
as a testing tool for Android app testing and share it on 
GitHub1. Third, we report an experiment, which shows our 
technique feasible to detect operable region candidates in a 
rendered GUI, confirms these candidates by concrete GUI 
events, effectively boosting the probability of generating a 
sequence of events that can trigger the GUIs to take actions. 

The organization of this paper is as follows. The 
motivation of this work is presented in Section II. Our 
technique is presented in Section III. The case studies that 
validate our work are given in Section IV. Related works are 
reviewed in Section V. Section VI concludes the paper.  

II. MOTIVATION 
Many software applications developed in recent years 

have graphical user interfaces (GUIs). One of the easiest 
way for a user to interact with such software applications is 
through the provided GUIs. 

A. Monkey Test  
Figure 1 shows the GUI of a well-known app Twitter. In 

the left plot (the app Twitter), buttons for general actions 
like “Home”, “Alert”, “Email”, “Search”, and so on are 
always placed at the top of the GUI. At the bottom of each 
post, the “Forward”, “Friend Link”, and “Like!” buttons can 
be found.  

The record-and-replay [14] is a popular strategy for 
testing such an app, which has a traditional Android GUI 
layout. For example, Figure 2 lists out a test script to operate 
the GUI widgets in Figure 1. A button named “Add note” is 
located in the GUI and triggered. Then that the script checks 
whether a follow-up window page named “NoteEditor” is 
opened. After that, it inserts two notes “The First Test Case” 
and “The Second Test Case” in the editing widget. Finally, 
it surfs the “NoteList” page and validates whether the two 
insertions have been successfully completed. 

B. The Problem 
Figure 3 shows a car racing scenario of the game 

asphalt8. To give a player a good playing experience, the 
GUI is not designed in a conventional GUI architecture as 
seen in Figure 1. Instead, the whole image is rendered using 
a graphics engine and is periodically refreshed. There are 
buttons at fixed positions in the GUI, such as the “Pause” 
button at the left-top corner. There are also dynamic 
operable objects, such as the “gas” bonus in the center of the 
screen. It only appears sometimes, and may be shown in 
different positons on the GUI at different moments. 
Furthermore, the latter elements can be more important and 
interactive for a game application.  

Operable objects, whose appearances, numbers, 
positions, and other properties cannot be statically known or 

Figure 2. The record-and-replay test script for a static GUI 

            public void testAddNote() throws Exception 
     1     { 
     2          solo.clickOnMenuItem("Add note"); 

3 
     4          // Assert that NoteEditor activity is opened 
     5          solo.assertCurrentActivity("Expected NoteEditor activity", "NoteEditor"); 
     6 
     7          // In text field 0, add Note 1 
     8          solo.enterText(0, "The first Test case"); 
     9          solo.goBack(); 
    10 
    11          // Clicks on menu item 
    12          solo.clickOnMenuItem("Add note"); 
    13          // In text field 0, add Note 2 
    14          solo.enterText(0, "The Second Test case"); 
    15 
    16          // Go back to first activity named "NotesList" 
    17          solo.goBackToActivity("NotesList"); 
    18 
    19          // Assert that Note 1 & Note 2 are found 
    20          assert(solo.searchText("The first Test case")); 
    21          assert(solo.searchText("The Second Test case")); 
    22     } 

Figure 1. Monkey test applied on simple GUI (the Twitter app) 

 

1 https://github.com/sunchenglong/smartmonkey 



dynamically queried, are difficult to handle in a record-and-
replay test by existing tools. Monkey is an Android stress 
testing tool that can automatically and randomly operate an 
Android application to test it against some generic oracles 
(e.g., crash). However, it has no knowledge about the 
locations of operable regions of the game under test, which 
may limit its effectiveness. Furthermore, there are also 
enhancement versions of Monkeys such as PUMA [15], 
which uses UI-Automator to query the GUI widget structure 
at runtime. However, it cannot query the rendered GUI 
information through UI-Automator (or DUMP for earlier 
versions of Android). As a result, mobile game applications 
that heavily use rendered GUIs cannot be handled gracefully 
by existing automated testing tools.  

C. Our Insight 
There is a popular design principle that operable objects 

in a GUI screen should be attractive to the visions of human 
players so as to catch players’ attentions more readily. For 
an ordinary human player watching a video sequence on 
such an application applying this design principle, the player 
may be attracted not only by the interesting events but also 
by the interesting objects in still images. This is referred as 
the spatial attention [34]. Moreover, based on the 
psychological studies, the human perception system is 
sensitive to the contrast of visual signals, such as color, 
intensity and texture. Based on the above insights, we 
propose to capture such signals to facilitate the identification 
of dynamic operable objects in a rendered GUI. 

III. OUR TECHNIQUE – SMART MONKEY  
In this section, we first introduce the architecture of our 

technique “Smart Monkey”, then explain the algorithm, and 
discuss its time complexity. 

A. Architecture 
Our technique “Smart Monkey” is designed to test 

software applications, especially game apps, which have 
rendered GUIs (still images with regions on the images that 
actions are attached when some events are triggered).  To do 
that, we propose to identify salient regions in a GUI using a 
computer vision approach as operable region candidates, 
and confirm these candidates as real operable regions by 
generating monkey tests to send GUI events to identified 
operable GUI widgets.  

 Figure 4 is the blueprint of our technique. Our technique 
performs the same randomized and iterative GUI state 
exploration of the application under test to generate event 
sequences. In each iteration, it first uses adb or the http 
protocol to get the screenshot (as well as the class name of 
current Activity) of the application under test from a mobile 
phone to the component of our technique running on a host 
computer. Then, if the operable regions (or region 
candidates) of a GUI state have been recognized in a 
previous iteration, our technique generates an event based 
on previous indexed recognition results. If a new GUI state 
is encountered during the current iteration, our technique 
invokes a region detection algorithm to detect operable 
region and store the recognition results by indexing the GUI 
state. 

 Note that the GUI state (current window) is represented 
by the current active activity class name, which is a simple 
string that can be queried with adb interface. In short, the 
Monkey tool randomly selects a point to send event during 
state exploration; and different from the Monkey tool, our 
technique first randomly selects a not-yet-selected operable 
region among the detected operable regions  for the current 
GUI state, then it sends an event of a particular type (e.g., 
among touch, drag, or click) to a random coordinate within 
that operable region. Then the application will transit to the 
next state (which can be the same as the current one), and 
the Smart Monkey just repeats the event generation process. 

We have implemented our technique on the Android 
framework and built the whole project using maven [28]. 
All the algorithms are run on a remote site (a computer). 

Figure 3. Dynamic operable objects in the GUI of game asphalt8 

 

Figure 4.  The schematic diagram 
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Unlike Lin et al. [20] that used camera to capture the images 
on android phones, our tool only uses the adb and the http 
protocol [3] to transfer image data.  

B. Visual Features 
We choose three kinds of fundamental features, namely 

color, density, and texture, as visual signals to detect 
operable region candidates. They are listed in Table I. 

Pixel space based saliency detection algorithms can be 
for gray spatial attention model (aka. the GA algorithm [34]) 
and color spatial attention model (aka. the CA algorithm 
[10]), and other models (e.g., the SA algorithm [16]). For 
instance, SR can be used to find saliency region in terms of 
texture but runs inefficiently; and CA can be used to find 
saliency regions in terms of color, and thus can help to find 
regions with different density. Our technique apply all these 
three saliency detection algorithms, namely GA [34], CA 
[10], and SR [16], to detect the high contrast regions in 
terms of the three visual features in a GUI. 

C. Saliency Detection Algorithm 
Detecting the operable regions from a still image is the 

goal of saliency detection, and our algorithm SliencyDetect 
for this purpose is listed in Figure 5, which is implemented 
in our tool using the OpenCV framework and in Java.  

According to the spatial attention model, the saliency 
map of an image is built upon the color contrast between 
image pixels. The saliency value of a pixel Ik in an image I 
is defined as equation (1), 

                          𝑆 𝐼! = 𝐷 𝐼! , 𝐼!∀!!∈!                            (1) 

This equation is expanded to have the following form, 

𝑆 𝐼! = 𝐷 𝐼! , 𝐼! + 𝐷 𝐼! , 𝐼! +⋯+ 𝐷 𝐼! , 𝐼!  

                                    = 𝑓!𝐷!
!!! 𝑐! , 𝑐!                              (2)  

Let Ik = cl, and equation (1) is further restructured, such 
that the terms with the same Ii are rearranged to be together, 
where fj is the frequency of pixel value an in the image. We 
calculate the frequency of the pixel value and store them in 
a map   (lines 06 to 14), in order to decrease the complexity 
of the algorithm. In this part, the input is an image, gray or 
color are all available, and output is a saliency image. A 
saliency is a distance map, is the pixel value on the whole 
image gray or color value histogram weighted distance. The 
histogram calculates in lines 06 and 07. The two loops in 
lines 08 to 10 are calculating the weighted map, then, in 
lines 11 to 13, we can use this map to get the each map 
saliency value, decrease the loop level.  

 For a saliency image, we also need a function to choose 
the most operable points (lines 15 to 19), we use a random 

strategy. We have used a threshold to filter the points in 
saliency image to increase the hit ratio in line 17. 

 The calculation of GA (lines 20 to 24) computes the 
distance between pixel and every pixel gray level as the 
saliency map each gray value. The calculation of CA (lines 
25 to 28) uses the color value in L×a×b color space as the 

Figure 5. The pseudo-code of Saliency  algorithm 

function SaliDtc (method) 
      @INPUT:  x[] - Image 
      @OUTPUT: y[] - Points 
 
01  switch method: 
02    case GA: y ß call GA (x) 
03    case CA: y ß call CA (x) 
04    case SR: y ß call SR (x) 
05  return y 

function GenSaliTbl (x) 
  @INPUT:  x[] – Image 
  @OUTPUT: s[] - Saliency Image 
 
06 for r, c in [1, nRow], [1, nCol]: 
07   Hist[x[r][c]]++ 
08 for outlevel in Hist: 
09   for inlevel in Hist: 
10     Map[outlevel] ß d[r][c]+   
         Hist[level]*call 

dist(outlevel,inlevel) 
11 for r, c in [1, nRow], [1, nCol]: 
12   for level in Hist 
13     s[r][c] ß Map(x[r][c])   
14 return s 

function SaliCan (s) 
  @INPUT:  s - Saliency Image  
           THRESHOLD 
  @OUTPUT: y[] - Points 
 
15  while  y[] is not full 
16     r, c ß ran(1, nRow), ran(1, nCol) 
17     if s[r][c] < THRESHOLD 
18        y ß call cancat(y, d) 
19  return y 

function GA 
  @INPUT:  x[] - Image 
  @OUTPUT: y[] – Points 
   
20  nRow, nCol ß size of x 
21  g ß call gray(x)   
22  s ß call GenSaliTbl (g) 
23  y ß call SaliCan (s) 
24  return y 

function CA 
  @INPUT:  x[] - Image 
  @OUTPUT: y[] – Points 
 
25  l ß call Lab (x)   
26  s ß call GenSaliTbl (l) 
27  y ß call SaliCan (s) 
28  return y 

function SR 
  @INPUT:  x[] - Image 
  @OUTPUT: y[] - Points 
 
29  g ß call gausian(x) 
30  x’ ß call fft(x) 
31  x’’ ß x’ – g 
32  s ß call ifft (x’’) 
33  y ß call SaliCan(s) 
34 return y  

TABLE I. Visual features and their detection algorithms 

 
Saliency detection 

algorithms 
GA [34] CA [10] SR [16]  

   visual features 
density √ √  

color   √  

texture   √ 



value unit, and computation is like LC algorithm, the 
saliency map is conducted by the distance between every 
pixel value.  

 The difference is the color information to choose, which 
is the gray-scale transformation (line 21) in GA algorithm, 
and the L×a×b transform (line 25) in CA algorithm. The rest 
step are all the same, using saliency map function first (lines 
22 and 26), then use the operable points predict function 
(lines 23 and 27). 

The calculation of SR (lines 29 to 34) is calculating of 
on frequency domain. The input and output are all the same 
to the algorithms GA and CA, the unique step is the saliency 
image generating. 

First, we calculate the image Fourier spectrum (lines 30). 
Next, we calculate the saliency spectrum image via the 
source spectrum image minuses the Gaussian noise (lines 
31). Finally, we calculate the image in pixel domain via 
inverse fast Fourier transformation [16] (lines 32). 

D. Time Complexity 
 The time complexity of GA, CA and SR algorithms are 

all O(NXY) , where N is the level number of histogram, and 
X and Y are the image height and width, respectively. For a 
gray image (GA), the maximum of N is 25. For a color 
image (CA), it is 256×256×256; and it is 1 in the SR 
algorithm. The time complexity of getting the operable 
points from a saliency map is O(K) (lines 15 to 19), where K 
is the number of operable points. The complexity of the 
algorithm shown in Figure 5 is therefore O(NXYK). 

IV. EXPERIMENT 
In this section, we first explain our research questions, 

then introduce our experimental design, and finally show the 
results with some case studies. 

A. Research Questions  
 Smart Monkey is a technique closely similar to monkey, 

but is a smart one: it can “see” the rendered image on the 
screen, and select the ones most similar to a button or tag to 
click or drag. The computer vision algorithms were run on a 
server. The testing scripts only need the widget name and 
snapshot information. Therefore, a non-professional can 
easily write test cases. 

For the smart monkey part, we mainly focus on the 
amount of valid operations generated per minute, and for 
auto testing based image script part, we also want to assess 
the test script execution time and the results.  

RQ1: Is our technique effective in identifying operable 
widgets in mobile game screenshots?  

RQ2: Is our technique more effective for testing mobile 
game than the built-in monkey of Android?  

B. Design and Environment of the Experiment 
We compare the effectiveness of our technique to the 

built-in monkey tool of Android on a suite of representative 
real-world applications.   

The subject programs are listed in Table II. Every row is 
an application, and the column type is the application type 
such as social network, game and so on. The third column is 
the application version; the last column is the application 
source and the size. We have chosen nine applications from 
Google play and Samsung play, which include three kinds 
of applications: social network, game and shopping. The 
minimal size of application is 6.68Mb and the maximal size 
is 92.48Mb. These applications are all popular applications 
with large user base. Note that we include both game apps 
having rendered GUI and game apps of widget structure for 
a comparison.  

We have used three mobile devices to run the subject 
programs, which are Samsung GALAXY J7 (Android OS 
5.1), HTC X920e (Android OS 5.1), and XiaoMi 4s (MIUI 
7). A host computer is also configured to execute our 
computer vision component to identify operable regions and 
events generated to be sent to these mobile device. The host 
computer is a Mac mini (OS X Yosemite 10.10.5), which 
contains a 2.6 GHz Intel Core i5 CPU, and 16GB RAM. 
JDK, OpenCV and Android SDK are installed on the host as 
our implementation rely on these frameworks. The screen 
capture used the standard Android screen capture interface. 
We have used the adb tool to transfer the screenshot and the 
commands between the monkey part and the computer 
vision part of our technique. 

We have designed two experiments as follows. 

In our first experiment, to examine the effectiveness of 
Smart Monkey, we compare it to the build-in monkey of 
Android.  For each technique, we have run nine applications 
on three devices (the applications detail is in Table II) for 5 
times each to calculate the mean number of effective 
operations (e.g., click, tap) within a 3-minute duration. We 
further want to compare the relative effectiveness of the 
three saliency detection algorithms. Similar to the first 
experiment, we have run the same nine applications on the 
same three devices for 5 times each to calculate the mean 
number of effective operations. 

  TABLE II. THE EXAMINE APPLICATIONS 

 Type Version Source 
 

Size 

Twitter Social Net 5.96.00 Google play 62.39Mb 
Instagram Social Net 7.17.0 Google play 42.00Mb 
Flickr Social Net 4.0.7 Google play 17.20Mb 
Wechat Social Net 6.3.15 SamsungMarket 34.70Mb 
GuitarTune Game 3.0.3 Google play 29.16Mb 
Deadlyracing Game 1.0 Google play 46.45Mb 
Temple Run Game 1.6.14 SamsungMarket 92.48Mb 
GameDev Game 1.0.6 GooglePlay 6.68Mb 
Jingdong Shopping 5.0.0 SamsungMarket 77.32Mb 



In the second experiment, we want to compare the 
testing effectiveness of our tool and the built-in Monkey 
tool to test several game applications. We record the time to 
the first occurrence of crash using each tool. 

C. Result and study cases 
In this section, we list out the experiment results together 

with the observations. 

1) Answering RQ1 

Figure 6 shows four examples. The plots (a), (c), (e), (g) 
are the source images, and he plots (b), (d), (f), (h) are the 
saliency map binary images. In each plot, there are green 
points. They represent the saliency detection results. Let us 
take the first one for example to illustrate. 

 In Figure 6, plot (a) is a screenshot of an Android game 
app Final Fight, and the screen is horizontal. Plot (b) is the 
saliency image of plot (a). After processing, six regions are 
marked as saliency regions. Then we randomly place a 

green dot1 within each region in plot (a). Plots (c) and (d) 
are another test on the same app. In plot (c), ten saliency 
regions are recognized. The plots (e) to (h) are from the 
American mobile game Piano Tiles 2 and the screen is 
vertical. We notice that the principal color has changed from 
(e) to (g), and the saliency images are accordingly inversed. 
However, the operable regions do not change much. For 
instance, the left bottom Home button and Hall button are 
always recognized. It shows that the saliency detection 
method is robust. All of the computation costs less than 
800ms. We deem the performance acceptable for an 
interactive system. 

We also observe that not all the recognized saliency 
regions reflect realistic operable regions. For example, in the 
test of plot (a), three of the six dots valid input regions. In 
plot (c), more saliency regions are recognized, but some of 
them are invalid (false positives).  

                                                             
1 We apologize that the green dots may be not easy to see in a 
gray-scale printing. 

Figure 6. Some saliency detect in several android applications. The a, c, e, g pictures all are the source image and the  green circles are the 
saliency point, the b, d, f, h pictures all are the binary saliency map. 

 
(a) Screen shot of  Final Fight 

fighting scene 

 
(b) Saliency image of Final 

Fight fighting scene 

 
(c) Screen shot of  Final Fight 

choose hero scene 

 
(d) Saliency image of Final 

Fight choose hero scene 

 
(e) Screen shot of  Piano Tiles   

start scene 

 
(f)  Saliency image of  Piano 

Tiles  start scene 

 
(g) Screen shot of  Piano Tiles  

music choose scene 

 
(h) Saliency image of  Piano 

Tiles  music choose scene 



We further measure the percentage of effective hits for 
each application, as summarized in Table III. The first 
column is the name of application under test, the second 
column is the number of images for each application, and 
the third column is the total number of operable objects in 
each application. The fourth column and fifth columns are 
the average number of hits and unique hits by operable 
position in three times. The last column is the hit ratio, 
which is calculated as total number of operable objects 
divided by the unique hit number, which means that the 
third column divided by fifth column. 

 For instance, the first row is the GA algorithm of our 
tool running on the Twitter 3 screenshots. There are 39 
operable objects in total; and our tool identifies 33 
operations. On average 23.67 of them hit operable objects, 
and 10.67 operations are unique. So, the hit ratio is 27.35%.  

 Our tool attains the best results on Deadlyracing with a 
hit ratio of 55.07%, while the worst results on Temple with a 
hit ratio 21.21%. The average hit ratio in these nine 
applications is 33.00%. Generally, the result shows that our 
tool is effective. 

     We further compare with the Monkey tool to know the 
relative effectiveness of our tool. The results are shown in 
Table IV. Every row corresponds to an application, and the 
first column is application name, and the second and third 
columns are the number of valid operations of our tool and 
Monkey, respectively, the last column is the incremental 
ratio of our tool compared with Monkey. In this table, the 
number of valid operations is calculated during three 
minutes by running our Smart Monkey and monkey tools. 
The table is easy to understand that the higher the number, 
the more effective the tool is.  

 For instance, in the first row on Twitter, our tool 
performs 12.4 valid operations within 3 minutes. Meanwhile, 
the result of monkey is 8.2. Our tool performs better than 
Monkey on this application with the increase ratio 51.22%. 
The other rows can be interpreted similarly. From Table IV, 
we observe that our tool performs best on the application 
Jingdong, the worst on Temple Run. The increase ratios are 
all positive with the mean value 63.22%.  

 Thus, we can answer RQ1 that our technique is effective 
to identifying operable widgets from the rendered images of 
mobile game screenshots. 

2) Answering RQ2 

We have run several applications via our tool and 
Monkey on HTC X920e, to detect faults in practice. In order 
to test our tool in terms of fault exposing capability, we have 
designed an experiment to compare the time to expose the 
first fault our tool to monkey. The result is in Figure 7. The 
horizontal axis is the time to first fault (e.g., crash or 
exception in our context) in seconds of an application 
running on the real device with either tool, which is 
calculated as the mean of five runs. For each application, the 
lower (in orange) bar is our tool and the upper (in blue) one 
is the monkey. Out of three of the four applications, i.e., 
DungeonVillage, MinionRun, and DesertShooting, our tool 
finds a crashing bug quickly, 8.00% mean increase ratio 
compared to that of Monkey. On DeadlyRacing, our tool is 
1.80% higher than Monkey.  

 Thus, we can answer RQ2 that our technique is more 
effective to expose a crashing (vulnerability) fault than 
Monkey for testing mobile game applications with rendered 
GUIs. 

TABLE III. THE COVERAGE RATIO ON APPLICATIONS 

 Image Num Total Operable Objects Hit Num 
 

Hit Num Uniq Hit Ratio 

Twitter 3 39 23.67  10.67  27.35% 
Instagram 3 27 21.00  9.67  35.80% 
Flickr 4 25 23.00  9.67  38.67% 
Wechat 4 49 27.33  17.67  36.06% 
GuitarTune 5 55 28.33  18.33  33.33% 
Deadlyracing 5 23 14.67  12.67  55.07% 
Temple Run 3 22 17.33  4.67  21.21% 
GameDev 4 32 8.00  7.67  23.96% 
Jingdong 5 103 35.33 26.33  25.57% 

TABLE IV. THE VALID OPERATIONS IN 3 MINUTES 

 Smart 
Monkey 

monkey Incremental 
Ratio 
 

Twitter 12.4 8.2 51.22% 
Instagram 14.0 9.6 45.83% 
Flickr 16.0 14.0 14.28% 
Wechat 11.2 5.6 100.00% 
GuitarTune 14.6 8.2 78.04% 
Deadlyracing  12.6 10.8 16.67% 
Temple Run 11.6 11.2 3.57% 
GameDev 10.2 4.8 112.50% 
Jingdong 15.8 6.4 146.88% 

Figure 7. The crash time (unit: second) of application running on our  
Smart Monkey  and monkey seperately. 
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Threats to validity of the results observed in the 
experiment may include different performance measurement 
and use of external subject programs. 

V. RELATED WORK 

A. GUI Testing 
Test case generation is one topic of GUI testing. 

Amalfitano et al. [1] developed a technique based on a 
crawler that automatically builds model for the application 
GUI and obtains test cases that can be automatically 
executed. Memon et al. [23] presented a technique to 
automatically generate test cases for GUI systems. Their key 
idea is that the test designer is likely to have a good idea of 
the possible goals of a GUI user and it is simpler and more 
effective to specify these goals than to specify sequences of 
events that the user might employ to achieve them. 

In another work [22], they described “GUI Ripping”, a 
dynamic process in which the software’s GUI is 
automatically “traversed” by opening all its windows and 
extracting all their widgets (GUI objects), properties, and 
values. The extracted information is then verified by the test 
designer and used to generate test cases automatically. 
Huang et al. [17] developed a method to repair 
automatically GUI test suites feasibly, using a genetic 
algorithm to evolve new test cases that increase our test 
suite’s coverage while avoiding infeasible sequences. 

Meanwhile, many researchers focus on simplifying the 
test cases and abstract the testing. Vieira et al. [30] offered 
two ways to manage the number of tests. First, custom 
annotations and guards use the Category-Partition data that 
allows the designer tight control over possible, or 
impossible, paths. Second, automation allows different 
configurations for both the data and the graph coverage. 
Brooks et al. [8] used “usage profiles” to develop a 
probabilistic usage model of the application, which is used 
to ensure that a new version of the application will function 
correctly. Rauf et al. [26] have presented a GUI testing and 
coverage analysis technique centered on genetic algorithms, 
then exploited the event driven nature of GUI. 

Computer vision is a field that includes methods for 
acquiring, processing, analyzing, and understanding images 
and, in general, high-dimensional data from the real world 
in order to produce numerical or symbolic information, e.g., 
in the forms of decisions [31]. Different from the above 
conventional approaches, Chang et al. [9] tried to use 
computer vision techniques to aid GUI testing. They 
implemented a testing tool named Sikuli for desktop 
applications. Sikuli scripts describe target screenshot and the 
IDE can identify the graphic elements on the desktop and 
operate them accordingly. 

B. Mobile Testing 
Mobile devices and mobile apps are very popular. As a 

result, mobile testing becomes more and more important. 
Appium [27] and UIAutomator [5] are open source test 
automation frameworks for use with native, hybrid and 
mobile web apps. Robotium [14] and MonkeyRunner [3] 
can handle android applications only.  

At the same time, there are many researches focusing on 
test case generation via the widgets and component. N. 
Mirzaei et al. [24] used symbolic execution methods to 
implement android testing. T. Azim et al. [6] developed a 

strategy named Depth-first Exploration that mimics user 
actions for exploring activities and their constituents in a 
slower, but more systematic way. All these tools use the 
information of widgets. 

For the situation of no widget information catched, Lin 
et al. [20] used a USB camera on an android device to 
collect image information and identify the widgets, and then 
used the USB and adb communication tools to transit the 
test instructions conducted on the Oracle servers, realize the 
test function. Monkey [4] is also an android test that needs 
no information of the application. However, it is reported 
costly in revealing software bugs [8]. Different from 
Monkey [4], we in this work employ computer vision 
techniques to find operable regions and trigger GUI events 
accordingly.  

C. Saliency Detection 
Visual saliency is the perceptual quality that makes an 

object, person, or pixel stand out relative to its neighbors 
and thus capture our attention. Detection of visually salient 
image regions is useful for applications like object 
segmentation, adaptive compression, and object recognition.  

There are a lot of other saliency detection algorithms, 
divided into two kinds, pixel space or spectral based 
[33][34], and feature based [23][32]. Xie et al. 
[32] exploited low- and mid- level cues, and used Bayesian 
framework to classify saliency region. Hou and Zhang [16] 
developed a saliency detection method using the image 
magnitude in the frequency domain minus the average 
between thousands of image magnitude in the frequency 
domain. Feature based algorithms use the special point or 
location to descript the image, and then use the classifier to 
find the saliency location. 

VI. CONCLUSION 
Mobile game apps with rendered GUI widgets cannot be 

effectively tested by existing automated mobile testing tools. 
In this paper, we proposed a technique to apply saliency 
detection algorithms to recognize those rendered operable 
regions within mobile game applications as operable region 
candidates. Our technique generates concrete events to 
confirm whether these candidates are real operable regions. 
We have implemented our technique as an Android testing 
tool to test mobile game applications with the information 
on the detected operable regions. The experimental results 
on real-world widely used mobile applications show that our 
technique is effective to detect real rendered operable 
regions within mobile game applications. Furthermore, it is 
also generally effective in terms of the time to expose the 
first crashing fault. 

In the future, we will use our technique on other 
platforms such as iOS, mobile web applications. It is also 
interesting to study a cloud-testing environment to apply our 
technique to test large-scale mobile games. 
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