
Facilitating Monkey Test by Detecting Operable
Regions in Rendered GUI of Mobile Game Apps

Chenglong Sun
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

suncl@ios.ac.cn

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

Bo Jiang
School of Computer Science and Engineering

Beihang University
Beijing, China

jiangbo@buaa.edu.cn

W. K. Chan
Department of Computer Science

City University of Hong Kong
Hong Kong

wkchan@cityu.edu.hk

Abstract—Graphical User Interface (GUI) is a component
of many software applications. Many mobile game applications
in particular have to provide excellent user experiences using
graphical engines to render GUI screens. On a rendered GUI
screen such as a treasury map, no GUI widget is embodied in it
and the operable GUI regions, each of which is a region that
triggers actions when certain events acting on these regions,
may only be implicitly determinable. Traditional testing tools
like monkey test do not effectively generate effective event
sequences over such operable GUI regions. Our insight is that
operable regions in a rendered GUI screen of many mobile
game applications are given with visible hints to catch user
attentions.

In this paper, we propose Smart Monkey, which uses the
fundamental features of a screen, including color, intensity,
and texture, as visual signals to detect operable GUI region
candidates, and iteratively identifies and confirms the real
operable GUI regions by launching GUI events to the region.
We have implemented Smart Monkey as a testing tool for
Android apps and conducted case studies on real-world
applications to compare it with a peer technique. The empirical
results show that it effective in identifying such operable
regions and thus able to generate functional event sequences
more efficiently.

Keywords— game testing; rendered GUI, monkey test

I. INTRODUCTION
Software programs are widely used in our digital living.

To present good usage experience to users, many software
developers use Graphical User Interface (GUI [26]) in their
projects. GUI is one of the most important bridge between
users and software applications. However, bugs existing in
GUI-based programs present more and more serious
problems in the real world. For example, after experiencing
a few occurrences of flash back or black screen when using
a mobile application, a user may choose to uninstall the
problematic application.

GUI testing is an integral part of many software
development projects. There are a large number of testing
tools and frameworks such as Ascentialtest [13], Sikuli [33],
Appium [27], MonkeyRunner [3], UIAutomator [5],
Robotium [14], and monkey [4] for various platforms and
development environments.

On one hand, some testing tools are specifically
designed to be used by professional programmers and test
engineers. For example, automatic testing tools like
MonkeyRunner and Robotium launch GUI events on GUI
widgets and depend on composed test scripts to simulate
user behavior [4][14]. To use these tools, mastering the
corresponding script languages like Python [25] or testing
frameworks like JUnit [18] are pre-requisites, making them
not accessible to less skillful programmers or engineers. On
the other hand, many applications (like games) use graphic
engines like OpenGL [19] and others [12][29] to render
images and use these images as the GUI in the background
[19]. Many testing tools do not effectively handle such
rendered GUIs because no widget information is correlated
with them. Further, composing test scripts by developers can
be difficult because the regions of a “background” that can
receive GUI events, which we refer such a region to as an
operable region, may not be statically determinable.

Monkey test [4] is an easy-to-use testing strategy, which
is able to operate a software application with rendered GUI.
However, existing monkey test tools may only hit an
operable region over a rendered GUI with a low probability,
or may be inefficient in revealing software bugs with limited
“blind trials” [8]. We thus ask a research question: Is it
possible to detect operable regions in a rendered GUI and
thus make a blind monkey test smarter?

Our insight is based on the following observation. A
basic design principle is that a GUI may give user visible
hints of operable regions to draw the attention of users. In
this paper, we formulate our technique on top of this insight
to detect operable regions in a rendered GUI. Inspired by the
psychological studies that human perception system is
sensitive to the contrast of visual signals, such as color,
intensity and texture, we propose to detect the salient
regions of a rendered GUI through color, intensity, and
texture to infer operation candidates. To validate our
technique, we implemented it as a tool “Smart Monkey” on
the Android framework to automate GUI testing for Android
apps. We conducted case studies using real-world
applications to evaluate the feasibility of our technique,
compare it to peer techniques to assess its effectiveness, and
evaluate its efficiency. The experiment on nine real-world

widely used mobile applications show that our technique is
more effective than Monkey of Android by 33% in correctly
hitting the operable regions on screens of these mobile
applications and can expose the first crashing fault from
applications earlier.

The contributions of this work is threefold. First, this is
the first work targeting at handling rendered GUIs to detect
operable region candidates, confirm them through concrete
GUI events, and generate test scripts accordingly. Second,
we show the feasibility of our technique by implementing it
as a testing tool for Android app testing and share it on
GitHub1. Third, we report an experiment, which shows our
technique feasible to detect operable region candidates in a
rendered GUI, confirms these candidates by concrete GUI
events, effectively boosting the probability of generating a
sequence of events that can trigger the GUIs to take actions.

The organization of this paper is as follows. The
motivation of this work is presented in Section II. Our
technique is presented in Section III. The case studies that
validate our work are given in Section IV. Related works are
reviewed in Section V. Section VI concludes the paper.

II. MOTIVATION
Many software applications developed in recent years

have graphical user interfaces (GUIs). One of the easiest
way for a user to interact with such software applications is
through the provided GUIs.

A. Monkey Test
Figure 1 shows the GUI of a well-known app Twitter. In

the left plot (the app Twitter), buttons for general actions
like “Home”, “Alert”, “Email”, “Search”, and so on are
always placed at the top of the GUI. At the bottom of each
post, the “Forward”, “Friend Link”, and “Like!” buttons can
be found.

The record-and-replay [14] is a popular strategy for
testing such an app, which has a traditional Android GUI
layout. For example, Figure 2 lists out a test script to operate
the GUI widgets in Figure 1. A button named “Add note” is
located in the GUI and triggered. Then that the script checks
whether a follow-up window page named “NoteEditor” is
opened. After that, it inserts two notes “The First Test Case”
and “The Second Test Case” in the editing widget. Finally,
it surfs the “NoteList” page and validates whether the two
insertions have been successfully completed.

B. The Problem
Figure 3 shows a car racing scenario of the game

asphalt8. To give a player a good playing experience, the
GUI is not designed in a conventional GUI architecture as
seen in Figure 1. Instead, the whole image is rendered using
a graphics engine and is periodically refreshed. There are
buttons at fixed positions in the GUI, such as the “Pause”
button at the left-top corner. There are also dynamic
operable objects, such as the “gas” bonus in the center of the
screen. It only appears sometimes, and may be shown in
different positons on the GUI at different moments.
Furthermore, the latter elements can be more important and
interactive for a game application.

Operable objects, whose appearances, numbers,
positions, and other properties cannot be statically known or

Figure 2. The record-and-replay test script for a static GUI

 public void testAddNote() throws Exception
 1 {
 2 solo.clickOnMenuItem("Add note");

3
 4 // Assert that NoteEditor activity is opened
 5 solo.assertCurrentActivity("Expected NoteEditor activity", "NoteEditor");
 6
 7 // In text field 0, add Note 1
 8 solo.enterText(0, "The first Test case");
 9 solo.goBack();
 10
 11 // Clicks on menu item
 12 solo.clickOnMenuItem("Add note");
 13 // In text field 0, add Note 2
 14 solo.enterText(0, "The Second Test case");
 15
 16 // Go back to first activity named "NotesList"
 17 solo.goBackToActivity("NotesList");
 18
 19 // Assert that Note 1 & Note 2 are found
 20 assert(solo.searchText("The first Test case"));
 21 assert(solo.searchText("The Second Test case"));
 22 }

Figure 1. Monkey test applied on simple GUI (the Twitter app)

1 https://github.com/sunchenglong/smartmonkey

dynamically queried, are difficult to handle in a record-and-
replay test by existing tools. Monkey is an Android stress
testing tool that can automatically and randomly operate an
Android application to test it against some generic oracles
(e.g., crash). However, it has no knowledge about the
locations of operable regions of the game under test, which
may limit its effectiveness. Furthermore, there are also
enhancement versions of Monkeys such as PUMA [15],
which uses UI-Automator to query the GUI widget structure
at runtime. However, it cannot query the rendered GUI
information through UI-Automator (or DUMP for earlier
versions of Android). As a result, mobile game applications
that heavily use rendered GUIs cannot be handled gracefully
by existing automated testing tools.

C. Our Insight
There is a popular design principle that operable objects

in a GUI screen should be attractive to the visions of human
players so as to catch players’ attentions more readily. For
an ordinary human player watching a video sequence on
such an application applying this design principle, the player
may be attracted not only by the interesting events but also
by the interesting objects in still images. This is referred as
the spatial attention [34]. Moreover, based on the
psychological studies, the human perception system is
sensitive to the contrast of visual signals, such as color,
intensity and texture. Based on the above insights, we
propose to capture such signals to facilitate the identification
of dynamic operable objects in a rendered GUI.

III. OUR TECHNIQUE – SMART MONKEY
In this section, we first introduce the architecture of our

technique “Smart Monkey”, then explain the algorithm, and
discuss its time complexity.

A. Architecture
Our technique “Smart Monkey” is designed to test

software applications, especially game apps, which have
rendered GUIs (still images with regions on the images that
actions are attached when some events are triggered). To do
that, we propose to identify salient regions in a GUI using a
computer vision approach as operable region candidates,
and confirm these candidates as real operable regions by
generating monkey tests to send GUI events to identified
operable GUI widgets.

 Figure 4 is the blueprint of our technique. Our technique
performs the same randomized and iterative GUI state
exploration of the application under test to generate event
sequences. In each iteration, it first uses adb or the http
protocol to get the screenshot (as well as the class name of
current Activity) of the application under test from a mobile
phone to the component of our technique running on a host
computer. Then, if the operable regions (or region
candidates) of a GUI state have been recognized in a
previous iteration, our technique generates an event based
on previous indexed recognition results. If a new GUI state
is encountered during the current iteration, our technique
invokes a region detection algorithm to detect operable
region and store the recognition results by indexing the GUI
state.

 Note that the GUI state (current window) is represented
by the current active activity class name, which is a simple
string that can be queried with adb interface. In short, the
Monkey tool randomly selects a point to send event during
state exploration; and different from the Monkey tool, our
technique first randomly selects a not-yet-selected operable
region among the detected operable regions for the current
GUI state, then it sends an event of a particular type (e.g.,
among touch, drag, or click) to a random coordinate within
that operable region. Then the application will transit to the
next state (which can be the same as the current one), and
the Smart Monkey just repeats the event generation process.

We have implemented our technique on the Android
framework and built the whole project using maven [28].
All the algorithms are run on a remote site (a computer).

Figure 3. Dynamic operable objects in the GUI of game asphalt8

Figure 4. The schematic diagram

adb
http.adopt

color density texture

Unlike Lin et al. [20] that used camera to capture the images
on android phones, our tool only uses the adb and the http
protocol [3] to transfer image data.

B. Visual Features
We choose three kinds of fundamental features, namely

color, density, and texture, as visual signals to detect
operable region candidates. They are listed in Table I.

Pixel space based saliency detection algorithms can be
for gray spatial attention model (aka. the GA algorithm [34])
and color spatial attention model (aka. the CA algorithm
[10]), and other models (e.g., the SA algorithm [16]). For
instance, SR can be used to find saliency region in terms of
texture but runs inefficiently; and CA can be used to find
saliency regions in terms of color, and thus can help to find
regions with different density. Our technique apply all these
three saliency detection algorithms, namely GA [34], CA
[10], and SR [16], to detect the high contrast regions in
terms of the three visual features in a GUI.

C. Saliency Detection Algorithm
Detecting the operable regions from a still image is the

goal of saliency detection, and our algorithm SliencyDetect
for this purpose is listed in Figure 5, which is implemented
in our tool using the OpenCV framework and in Java.

According to the spatial attention model, the saliency
map of an image is built upon the color contrast between
image pixels. The saliency value of a pixel Ik in an image I
is defined as equation (1),

 𝑆 𝐼! = 𝐷 𝐼! , 𝐼!∀!!∈! (1)

This equation is expanded to have the following form,

𝑆 𝐼! = 𝐷 𝐼! , 𝐼! + 𝐷 𝐼! , 𝐼! +⋯+ 𝐷 𝐼! , 𝐼!

 = 𝑓!𝐷!
!!! 𝑐! , 𝑐! (2)

Let Ik = cl, and equation (1) is further restructured, such
that the terms with the same Ii are rearranged to be together,
where fj is the frequency of pixel value an in the image. We
calculate the frequency of the pixel value and store them in
a map (lines 06 to 14), in order to decrease the complexity
of the algorithm. In this part, the input is an image, gray or
color are all available, and output is a saliency image. A
saliency is a distance map, is the pixel value on the whole
image gray or color value histogram weighted distance. The
histogram calculates in lines 06 and 07. The two loops in
lines 08 to 10 are calculating the weighted map, then, in
lines 11 to 13, we can use this map to get the each map
saliency value, decrease the loop level.

 For a saliency image, we also need a function to choose
the most operable points (lines 15 to 19), we use a random

strategy. We have used a threshold to filter the points in
saliency image to increase the hit ratio in line 17.

 The calculation of GA (lines 20 to 24) computes the
distance between pixel and every pixel gray level as the
saliency map each gray value. The calculation of CA (lines
25 to 28) uses the color value in L×a×b color space as the

Figure 5. The pseudo-code of Saliency algorithm

function SaliDtc (method)
 @INPUT: x[] - Image
 @OUTPUT: y[] - Points

01 switch method:
02 case GA: y ß call GA (x)
03 case CA: y ß call CA (x)
04 case SR: y ß call SR (x)
05 return y

function GenSaliTbl (x)
 @INPUT: x[] – Image
 @OUTPUT: s[] - Saliency Image

06 for r, c in [1, nRow], [1, nCol]:
07 Hist[x[r][c]]++
08 for outlevel in Hist:
09 for inlevel in Hist:
10 Map[outlevel] ß d[r][c]+
 Hist[level]*call

dist(outlevel,inlevel)
11 for r, c in [1, nRow], [1, nCol]:
12 for level in Hist
13 s[r][c] ß Map(x[r][c])
14 return s

function SaliCan (s)
 @INPUT: s - Saliency Image
 THRESHOLD
 @OUTPUT: y[] - Points

15 while y[] is not full
16 r, c ß ran(1, nRow), ran(1, nCol)
17 if s[r][c] < THRESHOLD
18 y ß call cancat(y, d)
19 return y

function GA
 @INPUT: x[] - Image
 @OUTPUT: y[] – Points

20 nRow, nCol ß size of x
21 g ß call gray(x)
22 s ß call GenSaliTbl (g)
23 y ß call SaliCan (s)
24 return y

function CA
 @INPUT: x[] - Image
 @OUTPUT: y[] – Points

25 l ß call Lab (x)
26 s ß call GenSaliTbl (l)
27 y ß call SaliCan (s)
28 return y

function SR
 @INPUT: x[] - Image
 @OUTPUT: y[] - Points

29 g ß call gausian(x)
30 x’ ß call fft(x)
31 x’’ ß x’ – g
32 s ß call ifft (x’’)
33 y ß call SaliCan(s)
34 return y

TABLE I. Visual features and their detection algorithms

Saliency detection

algorithms
GA [34] CA [10] SR [16]

 visual features
density √ √

color √

texture √

value unit, and computation is like LC algorithm, the
saliency map is conducted by the distance between every
pixel value.

 The difference is the color information to choose, which
is the gray-scale transformation (line 21) in GA algorithm,
and the L×a×b transform (line 25) in CA algorithm. The rest
step are all the same, using saliency map function first (lines
22 and 26), then use the operable points predict function
(lines 23 and 27).

The calculation of SR (lines 29 to 34) is calculating of
on frequency domain. The input and output are all the same
to the algorithms GA and CA, the unique step is the saliency
image generating.

First, we calculate the image Fourier spectrum (lines 30).
Next, we calculate the saliency spectrum image via the
source spectrum image minuses the Gaussian noise (lines
31). Finally, we calculate the image in pixel domain via
inverse fast Fourier transformation [16] (lines 32).

D. Time Complexity
 The time complexity of GA, CA and SR algorithms are

all O(NXY) , where N is the level number of histogram, and
X and Y are the image height and width, respectively. For a
gray image (GA), the maximum of N is 25. For a color
image (CA), it is 256×256×256; and it is 1 in the SR
algorithm. The time complexity of getting the operable
points from a saliency map is O(K) (lines 15 to 19), where K
is the number of operable points. The complexity of the
algorithm shown in Figure 5 is therefore O(NXYK).

IV. EXPERIMENT
In this section, we first explain our research questions,

then introduce our experimental design, and finally show the
results with some case studies.

A. Research Questions
 Smart Monkey is a technique closely similar to monkey,

but is a smart one: it can “see” the rendered image on the
screen, and select the ones most similar to a button or tag to
click or drag. The computer vision algorithms were run on a
server. The testing scripts only need the widget name and
snapshot information. Therefore, a non-professional can
easily write test cases.

For the smart monkey part, we mainly focus on the
amount of valid operations generated per minute, and for
auto testing based image script part, we also want to assess
the test script execution time and the results.

RQ1: Is our technique effective in identifying operable
widgets in mobile game screenshots?

RQ2: Is our technique more effective for testing mobile
game than the built-in monkey of Android?

B. Design and Environment of the Experiment
We compare the effectiveness of our technique to the

built-in monkey tool of Android on a suite of representative
real-world applications.

The subject programs are listed in Table II. Every row is
an application, and the column type is the application type
such as social network, game and so on. The third column is
the application version; the last column is the application
source and the size. We have chosen nine applications from
Google play and Samsung play, which include three kinds
of applications: social network, game and shopping. The
minimal size of application is 6.68Mb and the maximal size
is 92.48Mb. These applications are all popular applications
with large user base. Note that we include both game apps
having rendered GUI and game apps of widget structure for
a comparison.

We have used three mobile devices to run the subject
programs, which are Samsung GALAXY J7 (Android OS
5.1), HTC X920e (Android OS 5.1), and XiaoMi 4s (MIUI
7). A host computer is also configured to execute our
computer vision component to identify operable regions and
events generated to be sent to these mobile device. The host
computer is a Mac mini (OS X Yosemite 10.10.5), which
contains a 2.6 GHz Intel Core i5 CPU, and 16GB RAM.
JDK, OpenCV and Android SDK are installed on the host as
our implementation rely on these frameworks. The screen
capture used the standard Android screen capture interface.
We have used the adb tool to transfer the screenshot and the
commands between the monkey part and the computer
vision part of our technique.

We have designed two experiments as follows.

In our first experiment, to examine the effectiveness of
Smart Monkey, we compare it to the build-in monkey of
Android. For each technique, we have run nine applications
on three devices (the applications detail is in Table II) for 5
times each to calculate the mean number of effective
operations (e.g., click, tap) within a 3-minute duration. We
further want to compare the relative effectiveness of the
three saliency detection algorithms. Similar to the first
experiment, we have run the same nine applications on the
same three devices for 5 times each to calculate the mean
number of effective operations.

 TABLE II. THE EXAMINE APPLICATIONS

 Type Version Source

Size

Twitter Social Net 5.96.00 Google play 62.39Mb
Instagram Social Net 7.17.0 Google play 42.00Mb
Flickr Social Net 4.0.7 Google play 17.20Mb
Wechat Social Net 6.3.15 SamsungMarket 34.70Mb
GuitarTune Game 3.0.3 Google play 29.16Mb
Deadlyracing Game 1.0 Google play 46.45Mb
Temple Run Game 1.6.14 SamsungMarket 92.48Mb
GameDev Game 1.0.6 GooglePlay 6.68Mb
Jingdong Shopping 5.0.0 SamsungMarket 77.32Mb

In the second experiment, we want to compare the
testing effectiveness of our tool and the built-in Monkey
tool to test several game applications. We record the time to
the first occurrence of crash using each tool.

C. Result and study cases
In this section, we list out the experiment results together

with the observations.

1) Answering RQ1

Figure 6 shows four examples. The plots (a), (c), (e), (g)
are the source images, and he plots (b), (d), (f), (h) are the
saliency map binary images. In each plot, there are green
points. They represent the saliency detection results. Let us
take the first one for example to illustrate.

 In Figure 6, plot (a) is a screenshot of an Android game
app Final Fight, and the screen is horizontal. Plot (b) is the
saliency image of plot (a). After processing, six regions are
marked as saliency regions. Then we randomly place a

green dot1 within each region in plot (a). Plots (c) and (d)
are another test on the same app. In plot (c), ten saliency
regions are recognized. The plots (e) to (h) are from the
American mobile game Piano Tiles 2 and the screen is
vertical. We notice that the principal color has changed from
(e) to (g), and the saliency images are accordingly inversed.
However, the operable regions do not change much. For
instance, the left bottom Home button and Hall button are
always recognized. It shows that the saliency detection
method is robust. All of the computation costs less than
800ms. We deem the performance acceptable for an
interactive system.

We also observe that not all the recognized saliency
regions reflect realistic operable regions. For example, in the
test of plot (a), three of the six dots valid input regions. In
plot (c), more saliency regions are recognized, but some of
them are invalid (false positives).

1 We apologize that the green dots may be not easy to see in a
gray-scale printing.

Figure 6. Some saliency detect in several android applications. The a, c, e, g pictures all are the source image and the green circles are the
saliency point, the b, d, f, h pictures all are the binary saliency map.

(a) Screen shot of Final Fight

fighting scene

(b) Saliency image of Final

Fight fighting scene

(c) Screen shot of Final Fight

choose hero scene

(d) Saliency image of Final

Fight choose hero scene

(e) Screen shot of Piano Tiles

start scene

(f) Saliency image of Piano

Tiles start scene

(g) Screen shot of Piano Tiles

music choose scene

(h) Saliency image of Piano

Tiles music choose scene

We further measure the percentage of effective hits for
each application, as summarized in Table III. The first
column is the name of application under test, the second
column is the number of images for each application, and
the third column is the total number of operable objects in
each application. The fourth column and fifth columns are
the average number of hits and unique hits by operable
position in three times. The last column is the hit ratio,
which is calculated as total number of operable objects
divided by the unique hit number, which means that the
third column divided by fifth column.

 For instance, the first row is the GA algorithm of our
tool running on the Twitter 3 screenshots. There are 39
operable objects in total; and our tool identifies 33
operations. On average 23.67 of them hit operable objects,
and 10.67 operations are unique. So, the hit ratio is 27.35%.

 Our tool attains the best results on Deadlyracing with a
hit ratio of 55.07%, while the worst results on Temple with a
hit ratio 21.21%. The average hit ratio in these nine
applications is 33.00%. Generally, the result shows that our
tool is effective.

 We further compare with the Monkey tool to know the
relative effectiveness of our tool. The results are shown in
Table IV. Every row corresponds to an application, and the
first column is application name, and the second and third
columns are the number of valid operations of our tool and
Monkey, respectively, the last column is the incremental
ratio of our tool compared with Monkey. In this table, the
number of valid operations is calculated during three
minutes by running our Smart Monkey and monkey tools.
The table is easy to understand that the higher the number,
the more effective the tool is.

 For instance, in the first row on Twitter, our tool
performs 12.4 valid operations within 3 minutes. Meanwhile,
the result of monkey is 8.2. Our tool performs better than
Monkey on this application with the increase ratio 51.22%.
The other rows can be interpreted similarly. From Table IV,
we observe that our tool performs best on the application
Jingdong, the worst on Temple Run. The increase ratios are
all positive with the mean value 63.22%.

 Thus, we can answer RQ1 that our technique is effective
to identifying operable widgets from the rendered images of
mobile game screenshots.

2) Answering RQ2

We have run several applications via our tool and
Monkey on HTC X920e, to detect faults in practice. In order
to test our tool in terms of fault exposing capability, we have
designed an experiment to compare the time to expose the
first fault our tool to monkey. The result is in Figure 7. The
horizontal axis is the time to first fault (e.g., crash or
exception in our context) in seconds of an application
running on the real device with either tool, which is
calculated as the mean of five runs. For each application, the
lower (in orange) bar is our tool and the upper (in blue) one
is the monkey. Out of three of the four applications, i.e.,
DungeonVillage, MinionRun, and DesertShooting, our tool
finds a crashing bug quickly, 8.00% mean increase ratio
compared to that of Monkey. On DeadlyRacing, our tool is
1.80% higher than Monkey.

 Thus, we can answer RQ2 that our technique is more
effective to expose a crashing (vulnerability) fault than
Monkey for testing mobile game applications with rendered
GUIs.

TABLE III. THE COVERAGE RATIO ON APPLICATIONS

 Image Num Total Operable Objects Hit Num

Hit Num Uniq Hit Ratio

Twitter 3 39 23.67 10.67 27.35%
Instagram 3 27 21.00 9.67 35.80%
Flickr 4 25 23.00 9.67 38.67%
Wechat 4 49 27.33 17.67 36.06%
GuitarTune 5 55 28.33 18.33 33.33%
Deadlyracing 5 23 14.67 12.67 55.07%
Temple Run 3 22 17.33 4.67 21.21%
GameDev 4 32 8.00 7.67 23.96%
Jingdong 5 103 35.33 26.33 25.57%

TABLE IV. THE VALID OPERATIONS IN 3 MINUTES

 Smart
Monkey

monkey Incremental
Ratio

Twitter 12.4 8.2 51.22%
Instagram 14.0 9.6 45.83%
Flickr 16.0 14.0 14.28%
Wechat 11.2 5.6 100.00%
GuitarTune 14.6 8.2 78.04%
Deadlyracing 12.6 10.8 16.67%
Temple Run 11.6 11.2 3.57%
GameDev 10.2 4.8 112.50%
Jingdong 15.8 6.4 146.88%

Figure 7. The crash time (unit: second) of application running on our
Smart Monkey and monkey seperately.

 0	 500	1000	1500	2000	2500	3000	3500	

DesertShooting	

MinionRush	

DeadlyRacing	

DungeonVillage	

monkey	

Smart	Monkey	

Threats to validity of the results observed in the
experiment may include different performance measurement
and use of external subject programs.

V. RELATED WORK

A. GUI Testing
Test case generation is one topic of GUI testing.

Amalfitano et al. [1] developed a technique based on a
crawler that automatically builds model for the application
GUI and obtains test cases that can be automatically
executed. Memon et al. [23] presented a technique to
automatically generate test cases for GUI systems. Their key
idea is that the test designer is likely to have a good idea of
the possible goals of a GUI user and it is simpler and more
effective to specify these goals than to specify sequences of
events that the user might employ to achieve them.

In another work [22], they described “GUI Ripping”, a
dynamic process in which the software’s GUI is
automatically “traversed” by opening all its windows and
extracting all their widgets (GUI objects), properties, and
values. The extracted information is then verified by the test
designer and used to generate test cases automatically.
Huang et al. [17] developed a method to repair
automatically GUI test suites feasibly, using a genetic
algorithm to evolve new test cases that increase our test
suite’s coverage while avoiding infeasible sequences.

Meanwhile, many researchers focus on simplifying the
test cases and abstract the testing. Vieira et al. [30] offered
two ways to manage the number of tests. First, custom
annotations and guards use the Category-Partition data that
allows the designer tight control over possible, or
impossible, paths. Second, automation allows different
configurations for both the data and the graph coverage.
Brooks et al. [8] used “usage profiles” to develop a
probabilistic usage model of the application, which is used
to ensure that a new version of the application will function
correctly. Rauf et al. [26] have presented a GUI testing and
coverage analysis technique centered on genetic algorithms,
then exploited the event driven nature of GUI.

Computer vision is a field that includes methods for
acquiring, processing, analyzing, and understanding images
and, in general, high-dimensional data from the real world
in order to produce numerical or symbolic information, e.g.,
in the forms of decisions [31]. Different from the above
conventional approaches, Chang et al. [9] tried to use
computer vision techniques to aid GUI testing. They
implemented a testing tool named Sikuli for desktop
applications. Sikuli scripts describe target screenshot and the
IDE can identify the graphic elements on the desktop and
operate them accordingly.

B. Mobile Testing
Mobile devices and mobile apps are very popular. As a

result, mobile testing becomes more and more important.
Appium [27] and UIAutomator [5] are open source test
automation frameworks for use with native, hybrid and
mobile web apps. Robotium [14] and MonkeyRunner [3]
can handle android applications only.

At the same time, there are many researches focusing on
test case generation via the widgets and component. N.
Mirzaei et al. [24] used symbolic execution methods to
implement android testing. T. Azim et al. [6] developed a

strategy named Depth-first Exploration that mimics user
actions for exploring activities and their constituents in a
slower, but more systematic way. All these tools use the
information of widgets.

For the situation of no widget information catched, Lin
et al. [20] used a USB camera on an android device to
collect image information and identify the widgets, and then
used the USB and adb communication tools to transit the
test instructions conducted on the Oracle servers, realize the
test function. Monkey [4] is also an android test that needs
no information of the application. However, it is reported
costly in revealing software bugs [8]. Different from
Monkey [4], we in this work employ computer vision
techniques to find operable regions and trigger GUI events
accordingly.

C. Saliency Detection
Visual saliency is the perceptual quality that makes an

object, person, or pixel stand out relative to its neighbors
and thus capture our attention. Detection of visually salient
image regions is useful for applications like object
segmentation, adaptive compression, and object recognition.

There are a lot of other saliency detection algorithms,
divided into two kinds, pixel space or spectral based
[33][34], and feature based [23][32]. Xie et al.
[32] exploited low- and mid- level cues, and used Bayesian
framework to classify saliency region. Hou and Zhang [16]
developed a saliency detection method using the image
magnitude in the frequency domain minus the average
between thousands of image magnitude in the frequency
domain. Feature based algorithms use the special point or
location to descript the image, and then use the classifier to
find the saliency location.

VI. CONCLUSION
Mobile game apps with rendered GUI widgets cannot be

effectively tested by existing automated mobile testing tools.
In this paper, we proposed a technique to apply saliency
detection algorithms to recognize those rendered operable
regions within mobile game applications as operable region
candidates. Our technique generates concrete events to
confirm whether these candidates are real operable regions.
We have implemented our technique as an Android testing
tool to test mobile game applications with the information
on the detected operable regions. The experimental results
on real-world widely used mobile applications show that our
technique is effective to detect real rendered operable
regions within mobile game applications. Furthermore, it is
also generally effective in terms of the time to expose the
first crashing fault.

In the future, we will use our technique on other
platforms such as iOS, mobile web applications. It is also
interesting to study a cloud-testing environment to apply our
technique to test large-scale mobile games.

ACKNOWLEDGMENT	
This work was supported by grant from the National

Key Basic Research Program of China (no. 2014CB340702),
grant from the National Natural Science Foundation of
China (no. 61379045), and grants from the General
Research Fund of Hong Kong (nos. 11200015, 11201114,
111313, 125113, and 123512).

REFERENCES	
[1] D. Amalfitano, A. R. Fasolino & P. Tramontana. A gui

crawling-based technique for android mobile
application testing. In Software Testing, Verification
and Validation Workshops (ICSTW 2011), 2011 IEEE
Fourth International Conference, pages 252-261, 2011.

[2] D. Amalfitano, A. R. Fasolino & P. Tramontana. A
toolset for GUI testing of Android applications. In
Software Maintenance (ICSM), 2012 28th IEEE
International Conference, 650-653, 2012.

[3] Android Developer Website. “Monkeyrunner”.
Available: http://cs.szpt.edu.cn/android/tools/help/
monkeyrunner_concepts.html.

[4] Android Developer Website. “The tool android
monkey”. Available: http://cs.szpt.edu.cn/android/
tools/help/monkey.html.

[5] Android Developer Website. “Uiautomator”. Available:
http://wear.techbrood.com/tools/help/uiautomator/.

[6] T. Azim, I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps. In
ACM SIGPLAN Notices, 48(10): 641-660, 2013.

[7] H. Bay, T. Tuytelaars, L. Van Gool. Surf: Speeded up
robust features. In Computer vision, ECCV 2006.

[8] P. A. Brooks, A. M. Memon. Automated GUI testing
guided by usage profiles. In Proceedings of the twenty-
second IEEE/ACM international conference on
Automated software engineering, pages 333-342, 2007.

[9] T. H. Chang, T. Yeh, R. C. Miller. GUI testing using
computer vision. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 1535-1544, 2010.

[10] M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, S. Hu.
Global contrast based salient region detection. In IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 37(3): 569-582, 2015.

[11] M. M. Cheng, Z. Zhang, W. Y. Lin, P. Torr. BING:
Binarized normed gradients for objectness estimation at
300fps. In Proceedings of 2014 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2007,
pages 3286-3293, 2014.

[12] Cocos Play. “Cocosplay”. Available: http://play.cocos.
com.

[13] Dr.Dobbs.com. The Best Testing Tools. In Jolt Awards
2014, Retrieved June 2014.

[14] Github, Inc. “robotium”. Available: http://code.google.
com/p/robotium.

[15] S. Hao, B. Liu, S. Nath, W. Halfond, and R. Govindan.
PUMA: programmable UI-automation for large-scale
dynamic analysis of mobile apps. In Proceedings of the
12th annual international conference on Mobile
systems, applications, and services (MobiSys '14).
ACM, New York, NY, USA, 204-217, 2014.

[16] X. Hou, L.Zhang. Saliency detection: A spectral
residual approach. In Proceedings of 2007 IEEE
Conference on Computer Vision and Pattern
Recognition, CVPR 2007, pages 1-8, 2007.

[17] S. Huang, M. B. Cohen, A. M. Memon. Repairing GUI
test suites using a genetic algorithm. In Proceedings of

Third IEEE International Conference on Software
Testing, Verification and Validation, ICST 2010, pages
245-254, 2010.

[18] Junit4. “Junit”. Available: http://junit.org.
[19] Khronos Group. “Opengl”. Available: https://www.

opengl.org.
[20] Y. D. Lin, E. T. Chu, S. C. Yu, Y. C. Lai. Improving

the accuracy of automated GUI testing for embedded
systems. In IEEE Software, 31(1): 39-45, 2014.

[21] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S.
Malek, A. Stavrou. A whitebox approach for automated
security testing of Android applications on the cloud. In
Proceedings of 7th International Workshop on
Automation of Software Test, AST 2012, pages 22-28.

[22] A. Memon, I. Banerjee, A. Nagarajan. GUI ripping:
Reverse engineering of graphical user interfaces for
testing. In Proceedings. 10th Working Conference on
WCRE, 2003, pages 260-269.

[23] A. M. Memon, M. E. Pollack, M. L. Soffa. Hierarchical
GUI test case generation using automated planning. In
IEEE Transactions on Software Engineering, 27(2):
144-155, 2001.

[24] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, R.
Mahmood. Testing android apps through symbolic
execution. In ACM SIGSOFT Software Engineering
Notes, 37(6): 1-5, 2012.

[25] Python software foundation. “The python language”.
Available: https://www.python.org.

[26] A. Rauf, S. Anwar, M. A. Jaffer. Automated GUI test
coverage analysis using GA. In Proceedings of Seventh
IEEE International Conference on Information
Technology: New Generations, ITNG 2010, pages
1057-1062.

[27] Sauce Labs. “Appiunm”. Available: https://saucelabs.
com/appium.

[28] The Apache Software Foundation. “Maven”. Available:
http://maven.apache.org.

[29] Unity Technologies. “Unity3d”. Available: http://
unity3d.com.

[30] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, J.
Kazmeier. Automation of GUI testing using a model-
driven approach. In Proceedings of the 2006 ACM
international workshop on Automation of software test,
pages 9-14.

[31] Wikimedia Foundation, Inc. “computer vision”.
Available: https://en.wikipedia.org/wiki/Computer_
Vision.

[32] Y. Xie, H. Lu, M. H. Yang. Bayesian saliency via low
and mid-level cues. In Image Processing, IEEE
Transactions, 22(5): 1689-1698, 2013.

[33] T. Yeh, T. H. Chang, R. C. Miller. Sikuli: using GUI
screenshots for search and automation. In Proceedings
of the 22nd annual ACM symposium on User interface
software and technology, pages 183-192, 2009.

[34] Y. Zhai, M. Shah. Visual attention detection in video
sequences using spatiotemporal cues. In Proceedings of
the 14th annual ACM international conference on
Multimedia, pages 815-824, 2006.

