
MURE: aking Use of MUtations to REfine Spectrum-Based Fault Localization

Zijie Li
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

lizj2018@ios.ac.cn

Lanfei Yan
State Key Laboratory of Computer Science

Institute of Software, Chinese Academy of Sciences
Beijing, China

yanlf@ios.ac.cn
Yuzhen Liu, Zhenyu Zhang*

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

Beijing, China
{liuyz, zhangzy}@ios.ac.cn

Bo Jiang
School of Computer Science and Engineering

Beihang University
Beijing, China

jiangbo@buaa.edu.cn

Abstract—Locating faults in programs is never an easy task.
Spectrum-based fault localization (SBFL) techniques estimate
suspicious statements by contrasting the coverage spectra
collected from passed and failed program runs. Mutation-based
such techniques locate faults by trying different mutates with
the aim of finding one that involves less turbulence to program
behavior. The latter is empirically known more accurate, but
with massive increases in time complexity. In this paper, we
propose a new approach, MURE, which uses methodology of the
latter to refine results of the former. MURE first drives a state-
or-the-art SBFL technique Naish2 to output a list of suspicious
statements. It then picks out suspicious statement as candidates,
generates mutates for them, and estimates their likelihood of
relating to faults. Finally, it refines the resultant list by adjusting
part of its ordering. An experiment validates its effectiveness by
showing a 30% accuracy improvement over Naish2.

Keywords-software debugging; fault localization; mutation
testing

I. INTRODUCTION
Programs, as a kind of man-made product, are often

reported to contain errors. Software testing methods are used
to validate the behaviors of programs. However, the fault
localization task (after the confirmation of the existence of
fault) is well known time-consuming. With the rapid growing
of program scales and complexities, conventional approaches
like setting breakpoints or step tracing can be neither
effective nor efficient.

Fault localization is always one of the most time-
consuming tasks in software debugging. In practice, even if a
program contains a fault, there may exist program runs that
reveal no failure. Coincidental correctness, which occurs
when no failure is observed even though a fault has been
triggered, is one of the reasons [22]. It makes identification
of the fault even harder. Spectrum-Based Fault Localization
(SBFL) has been proposed as an automatic mechanism to
locate faults in programs [1][2][8][12][34]. The basic
conjecture of SBFL is that a program statement is more
suspicious (or safer) if it is exercised by more failed (or
passed) test cases [14][27]. A large number of researchers put
the main idea of SBFL to collect two types of execution

information, namely, passed and failed, and then generate a
ranked list of suspicious program statements according to the
suspiciousness values calculated for each of them by a SBFL
formula. Common SBFL formulas include Jaccard [2],
Ochiai [1], and Tarantula [14] to name a few. Xie et al. [32]
conducted a theoretical analysis to compare the accuracies of
30 SBFL formulas, and concluded that Naish2 gives optimal
result under specific conditions. However, recent studies
shows that coincidental correctness disrupts the basic
conjecture of SBFL and can adversely impact the accuracies
of all the SBFL formulas [5][26][18][19].

Without having to tell the coincidental correctness runs,
failure rate [35], an index capturing how many percentage of
program runs fail, is also used in fault localization. Mutation
testing techniques study a program by introducing mutation
fault into it [12]. Suppose a program contains a mutation
fault. We deem the new program, which is synthesized by
embedding a new mutant at the location of the existing
mutant, yet another one-mutant faulty program. Moon et al.
[20], which developed the approach of mutation-based fault
localization (MBFL), foresaw such a program less faulty
than a double-mutant faulty program, which is synthesized by
embedding a second mutant (i.e., not at the location of the
existing mutant). They iterated every program statement with
the aim of finding a location, embedding a mutant where will
not increase the failure rate too much. Papadakis and Le
Traon [23] proposed a more generalized another technique to
locate “unknown” faults. Empirical studies showed that
MBFL techniques are more accurate than SBFL techniques
in locating faults, while come with huge additional resource
usages caused by the need to execute a great deal of mutation
versions of the target program [20][23].

Realizing the differences between the two kinds of
techniques, we wonder whether there can be an approach
integrating them. The goal is challenging because we have
neither priori knowledge that where the faults reside nor the
way of identifying passed test cases where coincidental
correctness has occurred. In this paper we propose a new
model called MURE, which uses the methodology of the
latter to refine the results of the former. MURE first
manipulates Naish2 to generate a fault-localization result,
which is in form of a list of suspicious program statements. It
then picks out the most suspicious statements from the list to
conduct a mutation generation. More specifically, MURE
generates limited number of mutants at the location of each

* All correspondence should be addressed to Zhenyu Zhang at Institute
of Software, Chinese Academy of Sciences. Tel: (+8610) 62661630.
Fax: (+8610) 62661627. Email: zhangzy@ios.ac.cn.

56

2018 IEEE International Conference on Software Quality, Reliability and Security Companion

978-1-5386-7839-8/18/$31.00 ©2018 IEEE
DOI 10.1109/QRS-C.2018.00024

such suspicious statement, and obtains a set of mutation
versions for the target program accordingly. By running those
mutation versions and comparing over which test cases will
they reveal failure, MURE finally assess the likelihood each
generated mutation is at a location close to the original fault.
Finally, it re-sorts the evaluated suspicious statements and
synthesizes a new ranked list. We analytically show that
MURE is of a lower time complexity than representative
MBFL approaches such as [20]. To further validate the
effectiveness of our proposal, we conduct an experiment
using seven programs form Siemens suite [11], which have
been extensively used in previous studies [1][2][15][18][28].
Empirical results confirm the effectiveness of MURE by
showing a 30% improvement in fault-localization accuracy
over the original Naish2.

The contribution of this paper is as follows. (i) It presents
a novel approach to refine the results of SBFL techniques. (ii)
It proposes a new fault localization technique MURE based
on Naish2. (iii) It shows that MURE can significantly
improve the accuracy of Naish2, with controllable additional
cost.

The rest of this paper is organized as follows. Section II
introduces related work. Section III presents our model.
Section IV and V report the experiment results and case
study, respectively. Section VI concludes the paper.

II. RELATED WORK
Related work are listed out in three parts in this section.

A. Spectrum-Based Fault Localization (SBFL)
A program spectrum is a collection of data that provides

a specific view on the dynamic behavior of software.
Generally speaking, it records the run-time profiles about
various program statements for a specific test suite. The
program statements could be statements, branches, paths,
basic blocks, etc.; while the run-time information could be
the binary coverage status, the number of time that the
statement has been covered, and the program state before and
after executing the program statement, and so on.

 A spectrum-based fault localization technique compares
program execution spectra of the same statements in passed
or failed execution. Given a program P = S1, S2, S3, …, Sn
that contains n statements and runs against a test suite of m
test cases TS = {t1, t2, t3, …, tm}. After running P against TS,
we get the execution information, with respect to an statement
Si, reformed into a vector, denoted as Ai = ai

ef, ai
ep, ai

nf,
ai

np , where ai
ef and ai

ep represent the number of failed test
cases and that of passed test cases in TS that covered Si,
respectively, ai

nf and ai
np denote the numbers of the two kinds

of test cases that do not cover Si [32]. Here, whether a test
case is passed (or failed) is determined according to the result
information of the program run over that test case.

The main component of a SBFL technique is the ranking
function (aka. a SBFL formula), which maps the statement
coverage data Ai to a suspiciousness value, and a ranked list
of statements, which is compiled in the descending order of
the suspiciousness values. A statement with a higher
suspiciousness value implies a higher possibility to be faulty.
Existing SBFL techniques include Jaccard [2], Tarantula

[14], Ochiai [1], and so on. Many researchers focus on the
accuracies of a SBFL formulas rather than the effectiveness
of SBFL techniques, which may involve in other boosting
mechanisms like tie breaking [29][30][231]. In a theoretical
study [32], Xie and colleagues analytically confirmed that
Naish2 gives an optimal accuracy under specific conditions
like the single-fault assumption.

In this paper, we propose to refine the results of SBFL with
mutation analysis as mentioned later in this paper.

B. Impact Factors to SBFL
SBFL is based on a simple conjecture: program elements

that are mainly executed by failed test runs are more likely to
be faulty, while those that are mainly executed by passed test
runs are less likely to be faulty. Following this idea, when
there are many test cases, which test results (passed or failed)
are not correctly labeled, the suspiciousness of program
statements will not be accurately evaluated [33].

Coincidental correctness happens when a fault is
triggered but the program run does not reveal failures.
Previous studies showed that it could adversely affect the
effectiveness of software testing techniques [7][13]. Recent
experimental evidence shows that it is undesirable to SBFL
techniques as well. For example, Jones and colleagues [14]
noticed that Tarantula fails to highlight faulty statements in
the initialization code or main program path (e.g., code in the
“main” function of a C program). They suggested that
coincidental correctness may be the culprit and called for
further investigation. Such adverse cases were also reported
in other studies [5][24]. Coincidental correctness can be very
common in practice and it is not easy to figure out which case
triggers coincidental correctness. Up to date, some works try
to reduce the negative impact of coincidental correctness by
removing the dirty test cases whose coverage is not related to
test effectiveness. For example, Wang et al. [28] proposed an
approach using context patterns to refine code coverage
information. Their approach, however, assumes the
developers know the likely fault types, which may be difficult
to decide in practice. Li et al. [16] proposed a cluster-analysis
to alleviate coincidental correctness by grouping similar
behavior test cases and reconstructing the coverage matrix,
the failed test cases clustered too centralized or too scattered
would lead to poor results. In practice, we cannot know ahead
the pattern of coincidental correctness, so it is rather difficult
to improve SBFL by identifying the passed cases that are
suspected to incur coincidental correctness.

Many researchers have put their efforts to improving the
accuracy of SBFL formulas. The quality of test suite is a key
factor to impact the accuracy of SBFL. Our previous works
focus on reducing the impact of test suites imbalance between
passed cases and failed cases [34]. The work proposed in this
paper is expected to integrate with the above approaches.

C. Mutation-Based Fault Localization (MBFL)
Mutation analysis, first proposed by Hamlet [10] and

Demilo et al. [7], is a fault-based testing technique used to
measure the effectiveness of a test suite. A mutation operator
is a change-seeding rule to generate a mutant from the
original program. Mutant operator contains many categories,

57

namely, statement mutations, operation mutations, variable
mutations and constant mutations. Mutant operators in these
categories are designed to model errors made by
programmers in selection of identifiers and constants while
formulating expressions, composition of expression
functions and composition of functions using iterative and
conditional statements [25].

Given the program P that runs against the test suite TS
containing some failed test cases, which indicates that some
program statements contain fault. Suppose Sf is the faulty
statement, and Sc is a correct one. A mutation operation m is
applied to statement Si to generate a mutant P’ for P. If the
mutation is applied on Sf, we denote the mutated Sf as Mf, and
similarly we denote the mutated Sc as Mc. Supposing that P
contains only one fault, the former is a yet another one-
mutant program while the latter contains an additional fault.
Moon et al. [20] proposed a mutation-based fault localization
approach based on a basic conjecture that a test case is more
likely to fail on Mc than on Mf. Further, if P and P’ differ only
in one place which can be recovered by one mutation
operation, we say P’ is the first-order mutant [5]; otherwise a
higher-order mutant. In this paper, we concern the former
only.

Papadakis and Le Traon [23] iterated every program
statement, generated mutation versions on each site, run them
over the test suite, and compared the test results with the
original test results to determine which mutation is embedded
at a location close to the fault in the program. Empirical
studies showed that their method achieves better accuracies
than peer SBFL techniques. However, the additional cost is
also significant since a MBFL technique often needs to
execute a great deal of mutation versions of the target
program.

Moon et al. [20] used mutation analysis called MUSE in
fault localization, and the evaluation exhibited better
effectiveness then SBFL. However, the execution of mutation
analysis takes long time, and the fact that mutation operators
needed vary among different programs constraints the
utilization of the mutation analysis in fault localization. In
order to solve this problem, we choose to combine mutant
analysis with spectrum-based methods.

Peng et al. [10] used coverage information to choose total
failed statement to inject mutants, which was designed to
decrease the mutants generated, and then calculate the max
value of mutants by SBFL to set the suspicious value of
statement. But it did not consider the conversion between fail
and pass, which is important on decreasing the impact of
coincidental correctness in our analysis.

In our work, we discuss the possibility of using mutation-
based methodology to refine the results of a SBFL technique.

III. OUR PROPOSAL - MURE
 In this section we discuss the use of mutants to assist the

fault localization process in details.

A. Framework
Figure 1 shows the framework of MURE, which consists

of three major steps, namely, using SBFL to select promising
statements for mutation, generating and testing the mutants,
and the adjustment of the SBFL ranking list.

Step 1. We test a faulty program P with a test suite TS,
and get the coverage information of each executed statement
and the results of test cases. Then we generate a ranking list
of suspiciousness values by utilizing a SBFL technique T.
Further, we examine every statement in the ranking list, and
select K most promising statements as candidates to be
mutated.

Step 2. With respect to a mutation operator, a statement
may yield many different mutants. To avoid explosive growth
in size of mutants, we only randomly select N mutants per
statement candidate. Then we test these mutation versions
over the same test suite in Step 1, and collect their execution
result.

Step 3. This step is to use an impact formula F to calculate
an impact value for each statement candidate, and adjust the
ranking list generated in Step 1.

Before we elaborate on each step, we first need to give
necessary definitions to ease our presentation.

B. Definitions
Let P(tk) be the output of P over a test case tk, and P’(tk)

be the output of P’ over the same test case tj, where tj belongs
to TS.

As discussed, the relationship between P(tj) and P’(tj) can
be one of the three cases. (i) Equivalence. It means P(tk) and
P’(tk) are identical. In this case, the mutated program remains
unchanged for test case tk. For example, the mutated
statement is not exercised, or the mutation generates a
semantic equivalent change. (ii) Passed to failed. It implies
that P(tk) yields a correct output, but P’(tj) results in a failed
one. In particular, P(tk) is true but P’ failed to produce the
expected value on test case tk. According to the basic
conjecture, we are more likely to have mutated a correct
statement. (iii) Failed to passed. In this case, P(tk) generates
faulty output, while P’(tk) produces the correct one. In
particular, P(tk) is false but P’ produces the expected value on
test case tk. The case is not common in practice, which is

Figure 1. Overview of MURE

58

likely that the mutant is applied at the location of a faulty
statement.

We thus define three terms to simply our presentation.
Definition 1: Mi,j is the mutated statement Si that adopts

the j-th mutation on Si. Let Mci,j denotes the mutated
statement while Si is not faulty. Let Mfi,j denotes the mutated
statement if Si is faulty.

Definition 2: Changepass fail (Mi,j) is the number of test
cases, which test results change from passed to failed when
running on the program that contains Mi,j.

Definition 3: Changefail pass (Mi,j) is the number of test
cases, which test results change from failed to passed when
running on the program that contains Mi,j.

In the next section, we will elaborate on the
implementation details of each step of our method MURE.

C. Implementation Details
1) The Selection of Candidates

Since our goal is to improve the accuracy of SBFL
ranking, we do not necessarily mutate all statements in the
program. Instead, we are only interested in those that might
have ranked over the faulty statement in the SBFL ranking
result. For example, consider a statement, which has never
been executed by any failed test case. Mutating this statement
is futile as it cannot be faulty, and CBFL techniques will
generally rank it as the least suspicious statement.

Currently, our method selects only those statements that
are covered by over K failed test cases to mutate, where K is
a parameter that is decided by the user based on their
estimation on the number of faults that have triggered the
failed test cases. Suppose that all the failed test cases are
caused by the same fault, as in our experiment. Then K is set
to “Total Failed”, which means only statements that covered
by all failed cases are selected.

Finally, our approach is to select statements executed by
all failed cases. One reason is that statements with more fault
cases execution are more likely to be faulty. Another reason
is due to the effectiveness of this model, applying this
constraint could reduce the number of selected statements. It
leads to a significant reduction of statements to be mutated,
which reduces the time cost of our approach.
2) Mutant Sampling w.r.t. N:

According to the different syntactic elements in a
statement, the mutation operator can be applied to the
statement is different. Moreover, different mutation operator
generates different number of mutants. In order to unify the
number of mutants for each statement, we use mutant
sampling technique, which was first proposed by Acree [4]
and Budd [6]. A mutant sampling technique generates all
possible mutants, and then selects randomly x% mutants to
execute. Empirical studies of mutant sampling primarily
focus on the random selection rate (x%). Mathur and Wong
[17] conducted an experiment to suggest that random
selection of 10% of mutants is only 16% less effective than a
full set of mutants in terms of mutation score.

In our approach, we randomly select mutants from
mutants generated by mutating a specific statement, where
the random selection rate is controlled to be 10% (i.e., x% =
10%). However, in this paper, we mainly devote to the

effectiveness of our approach, rather than comparison
between mutant reduction techniques. With such
consideration, we choose mutant sampling to select 5 mutants
to estimate the mutation impact for each statement.

But we found that some mutants would run into dead loop,
or run too much long before the end. So we set a dynamic
time-out for each case, if a case run out of time, we simply
mark the case as failed. Unfortunately, some mutants may run
out of time on all test suites, which take a long time for
computer to finish testing the mutants. We call these mutants
as Dead Mutants. To solve this problem, we set a threshold t
so that if a mutant run out of time over t% of the whole test
cases, we will drop it and randomly select from other m
mutants correlated to the Dead Mutant.
3) The choice of base technique T and Impact Function F

Recent works by Naish and colleagues empirically
compared existing ranking functions and find the best
function they proposed is Naish2 [21]. Our technique is based
on this ranking function by selecting the T in Step 2 to be
Naish2. So the enhancing formula of MURE can be equally
expressed as

�������	
 ��
����������� � ����������

 (1)
As presented above, we use subtraction to implement the

refinement to the result of SBFL, and Impact(Si) in the
formula is the value of our refinement, which will be
discussed next. The suspiciousness value of Naish2 is
positive, and the higher the value, the more suspicious the
statement is. And the impact value is the measurement how
much the statement is likely to be correct, which has an
adverse meaning with the suspicious value of Naish2, so the
subtraction is selected.

The basic conjecture of MBFL means that it is more likely
to occur that a passed test case will fail on mutation Mci,j than
a failed test case will pass on mutation Mfi,j. So we define an
impact value to map test suites changes to the likelihood of a
statements’ suspiciousness value.

���� !����

" #$�%&'(���)*��+�,�-.�

/
�01

�

� �
" #$�%&'*��+)(����,�-.�

/
�01

�

(2)

Here we add a coefficient a before the second term. The
coefficient a balances the two terms, since it is harder to fix
a fault by using mutation technique than to change a correct
statement to false. In another word, the two terms contribute
different weights to suspiciousness values. The coefficient a
can be calculated as

�

2
�����

) 3�45�62 7 8

�����

�
6

9

���3�45�

2
���3�456) ��

� 2 7 8

(3)

where sum(pass fail) represents sum of Changepass fail
(Mi,j) for all mutants, sum(fail pass) represents the sum of
Changefail pass (Mi,j) for all mutants, sum(pass) denotes the
number of executed passed cases before mutation, and
sum(fail) denotes the number of executed failed cases before
mutation.

We say that when the value of impact is large, we are
likely to mutate the correct statement. Similarly, when the

59

value of impact is small, we are likely to mutate the faulty
statement.

D. Complexity
Our technique attempts to exploit mutation analysis to

enhance fault localization. However, we have to face a
practical issue of mutation analysis: the high computational
cost of executing enormous number of mutants against a test
suite [12][22].

Program P contains n executable statements, while there
are w statements executed by all failed cases; mutating each
of them can yield l mutants; the corresponding test suite has
m test cases. In our approach, our mutant sampling rate is x%.
We need to conduct w×m×l×x% runs. Since the time
complexity of SBFL is O(n2), and the time complexity is
O(n2wmlx%). Similarly, the time complexity of usual MBFL
is O(n3ml). Obviously, w is smaller than n, and x% is smaller
than 1. So MURE is efficient than the usual MBFL.

On the other hand, MURE is slower than SBFL.
However, our goal of this work is to improve the accuracy of
SBFL, as evaluated in the next section.

IV. EMPIRICAL EVALUATION

A. Subject Program
We used seven C programs, print_tokens, print_tokens2,

replace, schedule, schedule2, tcas, tot_info as subject
programs. These programs are widely used in fault
localization studies [3][15][31]. To determine whether a test
case is passed or failed, we need to know the test oracle, so
we run a fault-free version of each program.

Siemens suite contains a total of 129 versions of faulty
programs. The information of subject programs in our
experiment is shown in Table I. Let us take the first row to
explain. The tcas program comes with 41 faulty versions.
There is only one fault in each version. On average, there are
138 statements for each of the faulty versions, while only 63
to 67 of them are executable statements. Further, a test suite
containing 1608 test cases is equipped, on average 2.4% of
which are failed per faulty version. The other rows are
similarly understood.

B. Peer Comparison
We need to compare MURE with other SBFL methods.

Naish mentioned in [21], under the single fault circumstances,
the Naish2 formula is the most effective formula. Xie [32]
investigated 30 risk evaluation formulas, and classified them
into several groups, in which formulas are equal with each

other. We select one representative technique from each
group. Finally, Naish2, Jaccard, Qe, Wong2, Wong1, scott,
and M2 are used in the experiment.

To measure and compare the effectiveness of our
technique and other fault localization techniques, we adopt
Effectiveness metrics: Each of the techniques generates a
ranked list of all the executable statements in descending
order of their suspiciousness scores. Then we check all the
statements along the ranked list, until a faulty statement is
found.

Programmer is suggested to check statements along the
ranked list, so the Expense [30] matrix can be used to measure
the effectiveness of fault localization technique. The smaller
the value of expense is, the more effective a fault localization
technique is.
:;�'%
'�<�

=�%> ?3 �$' 3��5�@6
���'�'%�

%��A'= ?3 ';'����A5'6
���'�'%�

9 8BBC (4)

We devoted to utilize mutation analysis to improve the
accuracy of SBFL rather than MBFL, so we only compare
with SBFL in their fault-localization accuracies. The
comparison with MBFL in time complexity to understand
their efficiency has been given in Section III.D.

C. Experiment Setup
Of the 129 experiment subjects, five were not used in our

experiment. Two of them, (namely, version v27 of replace
and version v9 of schedule2) are excluded because all the
tests pass on these versions and there is no failed test. In two
versions (namely, versions v5 and v7 of schedule) all failed
to generate mutant. Another one version (version v10 of tcas)
is excluded for all the test cases were failed which is caused
by segmentation fault. Our experimental platform (gcc with
gcov) could not dump its coverage information before the
runs crashed. Thus, after removing these versions, we have
124 subjects for our experiment.

For each subject, we run the tool to run the program
without fault to get the right output of test cases. Then, we
run the versions with faults and compare the result with the
output derived from the program without fault. And we
choose the statements to be mutated using the criterion
described in section III.C. Then we run the mutant programs
and collect the result of mutation (fail pass or pass fail).
Then we calculate the impact value and refine the result of
SBFL. At last, we compare the result derived from MURE
with traditional SBFL methods, as mentioned in the next part.

Table I. EXPERIMENT SUBJECTS

Programs Number of
Faulty Versions

Number of
Test Cases

Percentage of
Failed Test Cases

Number of
Statements

Number of Executable
Statements

tcas 41 1608 2.4% 138 63-67
schedule 9 2650 2.4% 299 151-154
schedule2 10 2710 3.2% 297 128-130
tot_info 23 1052 5.6% 346 122-123
print_tokens 5 4130 1.7% 402 194-195
print_tokens2 10 4115 5.4% 483 196-200
replace 31 5542 2.0% 516 241-246

60

D. Experiment Results
Figure 2 shows the cumulative plot of the overall

effectiveness of some common fault localization technique
and MURE. The x-axis indicates the code examination effort.
The y-axis indicates the percentage of faults located with
certain code examination efforts indicated by the x-
coordinate. For each technique, a curve is used to visualize
the extent of faults located within a given code examination
range. For example, by examining up to 5% code in each
faulty version, MURE can locate faults in 58.06% (72 of 124)
of them. By examining up to 10% code in each faulty version,
MURE can locate faults in 65.32% (81 of 124) of them. For
each technique, the curve is drawn by connecting each point.

Figure 2 shows that the curve of MURE is always above
the others, which means that, when the certain code has been
examined, the MURE can always localize more faults than
other techniques can. Let us take the 5% point for illustration.
By examining up to 5% executable statements, Naish2 can
find 51.62% of all faults, while MURE can locate faults in
58.06% of all the faulty versions. We can figure out that our
technique is obviously effective than Naish2 when the
examined code is not beyond 40%. Meanwhile, MURE can
find over 90% of all faults when we examined 28% of all
statements while Naish2 has to examine over 36% of all
statements. Comparison with curves for the other peer
techniques shows similar results. Limited by space, we do not
explain each of them. From Figure 2, we have an impression
that MURE outperforms the other techniques. However, to
better understand their differences, we need other
presentation of the experiment results.

 To give a statistical comprehension, Table II presents the
number of faults can be located by all the fault localization
techniques at certain code examined expense. Let us take the
first row to illustrate. It compares the localization accuracy of
eight methods, including MURE and seven SBFL techniques.
And the table shows the number of faults localized by
different methods at given percentage of code examined. For
instance, while %1 codes are examined, Naish2 can localize
17 faults (13.7% of all faults), Jaccard can locate 12 faults
(9.7% of all faults), Qe can locate 11 faults (8.9% of all
faults), Wong1 can locate 0 faults, Wong2 can locate 7 faults
(5.6% of all faults), scott can locate 12 faults (9.7% of all
faults), M2 can locate 15 faults (12.1% of all faults), while
MURE can localize 28 faults (22.58% of all faults). By
looking at the other rows, we observe similar phenomenon
that MURE can locate more faults than any other technique
at the same code examination percentage. We can find that
MURE make full use of the advantage of MBFL and test
cases change information, which is more accurate than
original SBFL.

Table II also summarizes the statistics of accuracy of each
technique. Take the first two rows as an example, it shows
that in the best situation, all the technique can locate the fault
when 0% of the code has been examined. But in the worst
situation, in order to locate the fault, Naish2 need to examine
79.20% of the statements, Jaccard need 85.14%, Qe need
86.13%, Wong1 need 82.17%, Wong2 need 95.05%, scott
need 99.01%, M2 need 84.16%, while MURE need only
62.37% to locate the fault. It shows that MURE performs

better at the bad situation than traditional situations. By
looking at the other rows, we observe similar phenomenon
that statistically, MURE can locate the fault by examining
less code than other SBFL techniques. Let us further take the
column of MURE as example. Before reaching the faulty
statement, programmers have to examine from (in the best
case) 0% to (in the worst 62.37%) of all statements,
respectively. The median and mean code examination efforts
are 3.96% and 10.25%, and the standard deviation is 13.22%.
By looking at the other columns, we find that among the eight
techniques, MURE always get the smallest Expense values,
that means MURE always locates faults with least code
examined statistically. In addition, the deviation of MURE is
the lowest among these techniques, which means that MURE
is relatively more stable than other techniques in various
circumstances.

We further calculate how much improvement in fault-
localization accuracy MURE made over a peer technique T.
The improvement is measured as follow.

���=?D'�<�

:;�'%
'�<� � :;�'%
'�,EF:�

:;�'%
'�<�
9 8BBC

(5)

The numerator captures how much save in code
examination from the peer technique T to MURE, by
referencing the mean Expense of both. The denominator is
the mean Expense of T. As a result, such a ratio reflects the
relative improvement from T to MURE. The results show that
MURE reduces 30.13% (i.e., 100% � (10.25% / 14.67%))
the average examination effort of Naish2. At the same time,
Jaccard is improved by 52.74% in average, Qe is improved
by 54.34%, Wong1 is improved by 54.81%, Wong2 is
improved by 75.89%, scott is improved by 74.78%, and M2
is improved by 39.17%. All these results verify that using
mutant analysis to improve the accuracy of the SBFL is
effective.

In summary, MURE can apparently improve the accuracy
of SBFL, locating more faults than traditional SBFL methods
at the same percentage of codes examined.

Figure 2. Comparison of different methods of fault localization

0 20 40 60 80 100

0

20

40

60

80

100

fa
ul

ts
 lo

ca
te

d
(%

)

code examination effort (%)

 MURE
 Jaccard
 QE
 wong2
 wong1
 scott
 M2
 Naish2

61

E. Threats to Validity
Naish2 is the optimal formula under specific condition.

With such considerations, cooperating other formulas in our
proposal may result in different conclusions in evaluating the
effectiveness of our proposal.

The choice of parameters (like candidate number ad
sampling rate) in our proposal also put threats to the validity
of empirical observations.

In our experiment, when a mutant run encounters a
segmentation fault, as our approach does not collect the
coverage of a mutant run, this mutant run will be retained and
identified as failed.

At the same time, we measured code examination effort
as the amount of code to be inspected before reaching the first
fault. We also realized that different experiment setups might
result in different experiment results.

V. DISCUSSION
 Even though our proposal has improved SBFL effectively,

it still has space for improvements.

A. On Other Techniques
In this paper, we apply mutant analysis on Naish2, and the

result shows that it significantly improves the accuracy of
Naish2, but it does not mean that our approach can only apply
to Naish2. A change on the formula of impact, we can get
impact formulas of other SBFL. For example, the formula
Hamming is aef+anp. The final modified formula can be as
follow:

�GH 7 �I� 7
J��� !��J�

K
 (6)

 Discovering the effectiveness of our proposal on other
techniques and evaluating the corresponding improvement
belongs to our future work.

B. Change Set Measurement
When we calculate impact, we simply compare the

average size of test case sets mentioned in (1), (2). It is kind

of rough to just compute the number of changed cases. For
example, the original cases consist of 80 passed cases and 20
failed cases. After executing a mutant, ten test cases changes
from “pass” to “fail” and three test cases change from “fail”
to “pass”. Suppose that balance coefficient is 3.33, the impact
value will be close to zero, what if we utilize the vectorization
method, and calculate the Euclidean Distance of output of
different test cases, instead of scalar addition? We plan to
conduct an empirical study in our future work.

VI. CONCLUSION
It is time-consuming to locate fault in a program. Existing

spectrum-based fault localization (SBFL) techniques and
mutation-based fault localization (MBFL) techniques
estimate the location of faults in programs to narrow down
the region of the fault localization. The latter is reported more
accuracy in existing empirical studies, while much more
exhaustive in time complexity.

In this paper, we have proposed an effective model for
integrating the advantages of SBFL and MBFL. We designed
MURE, which utilizes mutation analysis to refine the result
of SBFL. We control the computation cost by reducing it
from both number of statements as mutation candidates and
number of mutates as mutation operators. We carried out a
controlled experiment on seven programs from Siemens suite
and compare our model with eight peer techniques, including
the state-of-the-art technique Naish2. We have found that
MURE can improve the average accuracy of all of them in
comparison. In particular, the accuracy improvement over
Naish2 is over 30%.

Further work includes applying mutant technique on
define-use pair or other information flows to enhance the
effectiveness and safety of SBFL and extend the mutation
analysis to multi-fault program.

ACKNOWLEDGMENT
 This work was supported by a grant from the National

Key Basic Research Program of China (project no.

Table II. ACCURACY OF DIFFERENT FAULT LOCALIZATION TECHNIQUES

Code examined (%) Numbers of faults located
Naish2 Jaccard Qe Wong1 Wong2 scott M2 MURE

1 17 12 11 0 7 12 15 28
5 63 42 41 13 12 23 56 72
10 74 53 49 26 15 26 68 81
15 86 63 62 47 22 33 76 92
20 89 71 68 58 30 38 83 96
30 101 87 85 90 42 44 96 112
40 114 100 98 106 61 64 109 119
50 118 110 110 118 76 75 117 122
60 121 116 116 120 90 89 119 123
70 122 119 119 122 104 104 120 124
80 124 121 121 123 109 108 123 124
90 124 124 124 124 122 121 124 124
100 124 124 124 124 124 124 124 124
 Percentage of statements examined before localizing the fault
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 79.20 85.14 86.13 82.17 95.05 99.01 84.16 62.37
median 4.84 14.43 14.83 21.37 40.62 38.42 9.58 3.96
mean 14.67 21.69 22.45 22.68 42.51 40.65 16.85 10.25
stdev. 18.08 21.52 21.67 15.54 26.12 28.68 19.21 13.22
 Improvements made by MURE over T
Improve (%) 30.13 52.74 54.34 54.81 75.89 74.78 39.17 -

62

2014CB340702), a grant from the National Natural Science
Foundation of China (project no. 61379045), a grant from the
China Scholarship Council (project no. 201604910232), an
open project from the State Key Laboratory of Computer
Science (project no. SYSKF1608), and grants from the
General Research Fund of the Research Grants Council of
Hong Kong (project nos.1120 0 015 and 11201114).

 REFERENCES
[1] R. Abreu, P. Zoeteweij and A.J.C. Van Gemund. An Evaluation of

Similarity Coefficients for Software Fault Localization. In Proceedings
of the 12th Pacific Rim International Symposium on Dependable
Computing (PRDC '06), pp. 39-46, 2006.

[2] R. Abreu, P. Zoeteweij and A.J.C. Van Gemund. On the Accuracy of
Spectrum-based Fault Localization. In Proceedings of the Testing:
Academic and Industrial Conference Practice and Research
Techniques - MUTATION (TAICPART-MUTATION '07), pp. 89-98,
2007.

[3] R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund. A
practical evaluation of spectrum-based fault localization. J. Syst.
Softw., 82(11): 1780-1792, 2009.

[4] Jr. A.T. Acree, On mutation, PhD Thesis. 1980, Georgia Institute of
Technology: Atlanta, Georgia, pp. 184, 1980. T.A. Budd. Mutation
Analysis of Program Test Data. Ph.D. Dissertation. Yale University,
New Haven, CT, USA, pp.155, 1980.

[5] B. Baudry, F. Fleurey and Y. Le Traon. Improving test suites for
efficient fault localization. In Proceedings of the 28th international
conference on Software engineering (ICSE '06), pp. 82-91, 2006.

[6] T.A. Budd. Mutation Analysis of Program Test Data. Ph.D.
Dissertation. Yale University, New Haven, CT, USA, pp.155, 1980.

[7] R.A. DeMillo, R.J. Lipton and F.G. Sayward. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer, 11(4): 34-
41, 1978.

[8] H. Do, S. Elbaum and G. Rothermel. Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering, 10(4): 405-435,
2005.

[9] P. Gong, R. Zhao, and Z. Li. Faster mutation-based fault localization
with a novel mutation execution strategy. Software Testing,
Verification and Validation Workshops (ICSTW, 2015), pp. 1-10.

[10] R.G. Hamlet. Testing Programs with the Aid of a Compiler. Software
Engineering, IEEE Transactions on, 3(4): 279-290, 1977.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of the 16th international conference on
Software engineering (ICSE '94), pp. 191-200, 1994.

[12] Y. Jia and M. Harman. An Analysis and Survey of the Development of
Mutation Testing. Software Engineering, IEEE Transactions on, 37(5):
649-678, 2011.

[13] J.A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th
International Conference on Software Engineering (ICSE '02), pp.
467-477, 2002.

[14] J.A. Jones. Fault Localization Using Visualization of Test Information.
In Proceedings of the 26th International Conference on Software
Engineering (ICSE '04), pp. 54-56, 2004.

[15] J.A. Jones and M.J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering (ASE '05), pp. 273-282, 2005.

[16] W. Li and X. Mao. Alleviating the Impact of Coincidental Correctness
on the Effectiveness of SFL by Clustering Test Cases. Theoretical
Aspects of Software Engineering Conference (TASE 2014), pp. 66-69.

[17] A.P. Mathur and W.E. Wong. An empirical comparison of data flow
and mutation-based test adequacy criteria. Software Testing,
Verification and Reliability, 4(1): 9-31, 1994.

[18] B. Marick, The Weak Mutation Hypothesis, In Proc. of ISSTA’91,
Page 190-199, Oct., 1991.

[19] B. Marick, Faults of Omission, Software Testing and Quality
Engineering Magazine, 2(1), 2000.

[20] S. Moon, Y. Kim, and M. Kim. Ask the Mutants: Mutating faulty
programs for fault localization. 2014 IEEE International Conference on
Software Testing,Verification, and Validation.

[21] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based
software diagnosis. ACM Transaction on Software Engineering
Methodology, 20(3): 11, 2011.

[22] A.J. Offutt and R.H. Untch. Mutation 2000: Uniting The Orthogonal.
In Proceedings of the 1st Workshop on Mutation Analysis
(MUTATION’ 00), pp. 34–44, 2001.

[23] M. Papadakis and Y. Le Traon, "Using Mutants to Locate "Unknown"
Faults," 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, Montreal, QC, 2012, pp. 691-700.

[24] M. Renieris and S.P. Reiss. Fault localization with nearest neighbor
queries. In Proceedings of the International Conference on Automated
Software Engineering, pp. 30-39, 2003.

[25] H.A. Richard, R.A. Demillo, B. Hathaway, W. Hsu, W. Hsu, E.W.
Krauser, R.J. Martin, A.P. Mathur, and E.H. Spafford. Design Of
Mutant Operators For The C Programming Language, Technical
Report SERC-TR-41-P, Software Engineering Research Center,
Purdue University, 1989.

[26] D.J. Richardson and M.C. Thompson. An analysis of test data selection
criteria using the RELAY model of fault detection. Software
Engineering, IEEE Transactions on, 19(6): 533-553, 1993.

[27] R. Santelices, J.A. Jones, Y. Yu, and M.J. Harrold. Lightweight fault-
localization using multiple coverage types. In Proceedings of the 31st
International Conference on Software Engineering (ICSE '09), pp. 56-
66, 2009.

[28] X. Wang, S.C. Cheung, W.K. Chan, and Z. Zhang. Taming
coincidental correctness: Coverage refinement with context patterns to
improve fault localization. In Proceedings of the 31st International
Conference on Software Engineering (ICSE '09), pp. 45-55, 2009.

[29] W.E. Wong and Y. Qi. Effective program debugging based on
execution slices and inter-block data dependency. J. Syst. Softw., 79(7):
891-903, 2006.

[30] W.E. Wong, Y. Qi, L. Zhao, and K-Y Cai. Effective Fault Localization
using Code Coverage. In Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC '07),
Vol. 1, pp. 449-456, 2007.

[31] E. Wong, V. Debroy and B. Choi. A family of code coverage-based
heuristics for effective fault localization. J. Syst. Softw., 83(2): 188-
208, 2010.

[32] X. Xie, T.Y. Chen, F. Kuo, and B. Xu. A theoretical analysis of the risk
evaluation formulas for spectrum-based fault localization. ACM
Transactions on Software of Engineering and Methodology(TOSEM
2013),pp.1-40.

[33] X.Y. Zhang, Z. Zheng, and K.Y. Cai. (2017). “Exploring the usefulness
of unlabelled test cases in software fault localization”. Journal of
Systems and Software (JSS 2017), pages 1–13.

[34] L. Zhang, L. Yan, Z. Zhang, J. Zhang, W. K. Chan, and Z. Zheng. A
theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization. Journal of Systems and Software
(JSS), Volume 129, July 2017, Pages 35-57.

[35] Software testing help. “Software Testing Terms- Complete Glossary”,
available on: http://www.softwaretestinghelp.com/software-testing-
terms-complete-glossary/.

63

