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Abstract—Locating faults in programs is never an easy task. 
Spectrum-based fault localization (SBFL) techniques estimate 
suspicious statements by contrasting the coverage spectra 
collected from passed and failed program runs. Mutation-based 
such techniques locate faults by trying different mutates with 
the aim of finding one that involves less turbulence to program 
behavior. The latter is empirically known more accurate, but 
with massive increases in time complexity. In this paper, we 
propose a new approach, MURE, which uses methodology of the 
latter to refine results of the former. MURE first drives a state-
or-the-art SBFL technique Naish2 to output a list of suspicious 
statements. It then picks out suspicious statement as candidates, 
generates mutates for them, and estimates their likelihood of 
relating to faults. Finally, it refines the resultant list by adjusting 
part of its ordering. An experiment validates its effectiveness by 
showing a 30% accuracy improvement over Naish2.  

Keywords-software debugging; fault localization; mutation 
testing 

I. INTRODUCTION  
Programs, as a kind of man-made product, are often 

reported to contain errors. Software testing methods are used 
to validate the behaviors of programs. However, the fault 
localization task (after the confirmation of the existence of 
fault) is well known time-consuming. With the rapid growing 
of program scales and complexities, conventional approaches 
like setting breakpoints or step tracing can be neither 
effective nor efficient.  

Fault localization is always one of the most time-
consuming tasks in software debugging. In practice, even if a 
program contains a fault, there may exist program runs that 
reveal no failure. Coincidental correctness, which occurs 
when no failure is observed even though a fault has been 
triggered, is one of the reasons [22]. It makes identification 
of the fault even harder. Spectrum-Based Fault Localization 
(SBFL) has been proposed as an automatic mechanism to 
locate faults in programs [1][2][8][12][34]. The basic 
conjecture of SBFL is that a program statement is more 
suspicious (or safer) if it is exercised by more failed (or 
passed) test cases [14][27]. A large number of researchers put 
the main idea of SBFL to collect two types of execution 

information, namely, passed and failed, and then generate a 
ranked list of suspicious program statements according to the 
suspiciousness values calculated for each of them by a SBFL 
formula. Common SBFL formulas include Jaccard [2], 
Ochiai [1], and Tarantula [14] to name a few. Xie et al. [32] 
conducted a theoretical analysis to compare the accuracies of 
30 SBFL formulas, and concluded that Naish2 gives optimal 
result under specific conditions. However, recent studies 
shows that coincidental correctness disrupts the basic 
conjecture of SBFL and can adversely impact the accuracies 
of all the SBFL formulas [5][26][18][19].  

Without having to tell the coincidental correctness runs, 
failure rate [35], an index capturing how many percentage of 
program runs fail, is also used in fault localization. Mutation 
testing techniques study a program by introducing mutation 
fault into it [12]. Suppose a program contains a mutation 
fault. We deem the new program, which is synthesized by 
embedding a new mutant at the location of the existing 
mutant, yet another one-mutant faulty program. Moon et al. 
[20], which developed the approach of mutation-based fault 
localization (MBFL), foresaw such a program less faulty 
than a double-mutant faulty program, which is synthesized by 
embedding a second mutant (i.e., not at the location of the 
existing mutant). They iterated every program statement with 
the aim of finding a location, embedding a mutant where will 
not increase the failure rate too much. Papadakis and Le 
Traon [23] proposed a more generalized another technique to 
locate “unknown” faults. Empirical studies showed that 
MBFL techniques are more accurate than SBFL techniques 
in locating faults, while come with huge additional resource 
usages caused by the need to execute a great deal of mutation 
versions of the target program [20][23].  

Realizing the differences between the two kinds of 
techniques, we wonder whether there can be an approach 
integrating them. The goal is challenging because we have 
neither priori knowledge that where the faults reside nor the 
way of identifying passed test cases where coincidental 
correctness has occurred. In this paper we propose a new 
model called MURE, which uses the methodology of the 
latter to refine the results of the former. MURE first 
manipulates Naish2 to generate a fault-localization result, 
which is in form of a list of suspicious program statements. It 
then picks out the most suspicious statements from the list to 
conduct a mutation generation. More specifically, MURE 
generates limited number of mutants at the location of each 
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such suspicious statement, and obtains a set of mutation 
versions for the target program accordingly. By running those 
mutation versions and comparing over which test cases will 
they reveal failure, MURE finally assess the likelihood each 
generated mutation is at a location close to the original fault. 
Finally, it re-sorts the evaluated suspicious statements and 
synthesizes a new ranked list. We analytically show that 
MURE is of a lower time complexity than representative 
MBFL approaches such as [20]. To further validate the 
effectiveness of our proposal, we conduct an experiment 
using seven programs form Siemens suite [11], which have 
been extensively used in previous studies [1][2][15][18][28]. 
Empirical results confirm the effectiveness of MURE by 
showing a 30% improvement in fault-localization accuracy 
over the original Naish2. 

The contribution of this paper is as follows. (i) It presents 
a novel approach to refine the results of SBFL techniques. (ii) 
It proposes a new fault localization technique MURE based 
on Naish2. (iii) It shows that MURE can significantly 
improve the accuracy of Naish2, with controllable additional 
cost. 

The rest of this paper is organized as follows. Section II 
introduces related work. Section III presents our model. 
Section IV and V report the experiment results and case 
study, respectively. Section VI concludes the paper. 

II. RELATED WORK 
Related work are listed out in three parts in this section. 

A. Spectrum-Based Fault Localization (SBFL) 
A program spectrum is a collection of data that provides 

a specific view on the dynamic behavior of software. 
Generally speaking, it records the run-time profiles about 
various program statements for a specific test suite. The 
program statements could be statements, branches, paths, 
basic blocks, etc.; while the run-time information could be 
the binary coverage status, the number of time that the 
statement has been covered, and the program state before and 
after executing the program statement, and so on. 

 A spectrum-based fault localization technique compares 
program execution spectra of the same statements in passed 
or failed execution. Given a program P = S1, S2, S3, …, Sn  
that contains n statements and runs against a test suite of m 
test cases TS = {t1, t2, t3, …, tm}. After running P against TS, 
we get the execution information, with respect to an statement 
Si, reformed into a vector, denoted as Ai  = ai

ef, ai
ep, ai

nf, 
ai

np , where ai
ef and ai

ep represent the number of failed test 
cases and that of passed test cases in TS that covered Si, 
respectively, ai

nf and ai
np denote the numbers of the two kinds 

of test cases that do not cover Si [32]. Here, whether a test 
case is passed (or failed) is determined according to the result 
information of the program run over that test case.  

The main component of a SBFL technique is the ranking 
function (aka. a SBFL formula), which maps the statement 
coverage data Ai to a suspiciousness value, and a ranked list 
of statements, which is compiled in the descending order of 
the suspiciousness values. A statement with a higher 
suspiciousness value implies a higher possibility to be faulty. 
Existing SBFL techniques include Jaccard [2], Tarantula 

[14], Ochiai [1], and so on. Many researchers focus on the 
accuracies of a SBFL formulas rather than the effectiveness 
of SBFL techniques, which may involve in other boosting 
mechanisms like tie breaking [29][30][231]. In a theoretical 
study [32], Xie and colleagues analytically confirmed that 
Naish2 gives an optimal accuracy under specific conditions 
like the single-fault assumption. 

In this paper, we propose to refine the results of SBFL with 
mutation analysis as mentioned later in this paper. 

B. Impact Factors to SBFL 
SBFL is based on a simple conjecture: program elements 

that are mainly executed by failed test runs are more likely to 
be faulty, while those that are mainly executed by passed test 
runs are less likely to be faulty. Following this idea, when 
there are many test cases, which test results (passed or failed) 
are not correctly labeled, the suspiciousness of program 
statements will not be accurately evaluated [33]. 

Coincidental correctness happens when a fault is 
triggered but the program run does not reveal failures. 
Previous studies showed that it could adversely affect the 
effectiveness of software testing techniques [7][13]. Recent 
experimental evidence shows that it is undesirable to SBFL 
techniques as well. For example, Jones and colleagues [14] 
noticed that Tarantula fails to highlight faulty statements in 
the initialization code or main program path (e.g., code in the 
“main” function of a C program). They suggested that 
coincidental correctness may be the culprit and called for 
further investigation. Such adverse cases were also reported 
in other studies [5][24]. Coincidental correctness can be very 
common in practice and it is not easy to figure out which case 
triggers coincidental correctness. Up to date, some works try 
to reduce the negative impact of coincidental correctness by 
removing the dirty test cases whose coverage is not related to 
test effectiveness. For example, Wang et al. [28] proposed an 
approach using context patterns to refine code coverage 
information. Their approach, however, assumes the 
developers know the likely fault types, which may be difficult 
to decide in practice. Li et al. [16] proposed a cluster-analysis 
to alleviate coincidental correctness by grouping similar 
behavior test cases and reconstructing the coverage matrix, 
the failed test cases clustered too centralized or too scattered 
would lead to poor results. In practice, we cannot know ahead 
the pattern of coincidental correctness, so it is rather difficult 
to improve SBFL by identifying the passed cases that are 
suspected to incur coincidental correctness. 

Many researchers have put their efforts to improving the 
accuracy of SBFL formulas. The quality of test suite is a key 
factor to impact the accuracy of SBFL. Our previous works 
focus on reducing the impact of test suites imbalance between 
passed cases and failed cases [34]. The work proposed in this 
paper is expected to integrate with the above approaches. 

C. Mutation-Based Fault Localization (MBFL) 
Mutation analysis, first proposed by Hamlet [10] and 

Demilo et al. [7], is a fault-based testing technique used to 
measure the effectiveness of a test suite. A mutation operator 
is a change-seeding rule to generate a mutant from the 
original program. Mutant operator contains many categories, 
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namely, statement mutations, operation mutations, variable 
mutations and constant mutations. Mutant operators in these 
categories are designed to model errors made by 
programmers in selection of identifiers and constants while 
formulating expressions, composition of expression 
functions and composition of functions using iterative and 
conditional statements [25].  

Given the program P that runs against the test suite TS 
containing some failed test cases, which indicates that some 
program statements contain fault. Suppose Sf is the faulty 
statement, and Sc is a correct one. A mutation operation m is 
applied to statement Si to generate a mutant P’ for P. If the 
mutation is applied on Sf, we denote the mutated Sf as Mf, and 
similarly we denote the mutated Sc as Mc. Supposing that P 
contains only one fault, the former is a yet another one-
mutant program while the latter contains an additional fault. 
Moon et al. [20] proposed a mutation-based fault localization 
approach based on a basic conjecture that a test case is more 
likely to fail on Mc than on Mf. Further, if P and P’ differ only 
in one place which can be recovered by one mutation 
operation, we say P’ is the first-order mutant [5]; otherwise a 
higher-order mutant. In this paper, we concern the former 
only. 

Papadakis and Le Traon [23] iterated every program 
statement, generated mutation versions on each site, run them 
over the test suite, and compared the test results with the 
original test results to determine which mutation is embedded 
at a location close to the fault in the program. Empirical 
studies showed that their method achieves better accuracies 
than peer SBFL techniques. However, the additional cost is 
also significant since a MBFL technique often needs to 
execute a great deal of mutation versions of the target 
program. 

Moon et al. [20] used mutation analysis called MUSE in 
fault localization, and the evaluation exhibited better 
effectiveness then SBFL. However, the execution of mutation 
analysis takes long time, and the fact that mutation operators 
needed vary among different programs constraints the 
utilization of the mutation analysis in fault localization. In 
order to solve this problem, we choose to combine mutant 
analysis with spectrum-based methods. 

Peng et al. [10] used coverage information to choose total 
failed statement to inject mutants, which was designed to 
decrease the mutants generated, and then calculate the max 
value of mutants by SBFL to set the suspicious value of 
statement. But it did not consider the conversion between fail 
and pass, which is important on decreasing the impact of 
coincidental correctness in our analysis. 

In our work, we discuss the possibility of using mutation-
based methodology to refine the results of a SBFL technique. 

III. OUR PROPOSAL - MURE 
 In this section we discuss the use of mutants to assist the 

fault localization process in details.  

A. Framework 
Figure 1 shows the framework of MURE, which consists 

of three major steps, namely, using SBFL to select promising 
statements for mutation, generating and testing the mutants, 
and the adjustment of the SBFL ranking list. 

Step 1. We test a faulty program P with a test suite TS, 
and get the coverage information of each executed statement 
and the results of test cases. Then we generate a ranking list 
of suspiciousness values by utilizing a SBFL technique T. 
Further, we examine every statement in the ranking list, and 
select K most promising statements as candidates to be 
mutated. 

Step 2. With respect to a mutation operator, a statement 
may yield many different mutants. To avoid explosive growth 
in size of mutants, we only randomly select N mutants per 
statement candidate. Then we test these mutation versions 
over the same test suite in Step 1, and collect their execution 
result. 

Step 3. This step is to use an impact formula F to calculate 
an impact value for each statement candidate, and adjust the 
ranking list generated in Step 1. 

Before we elaborate on each step, we first need to give 
necessary definitions to ease our presentation. 

B. Definitions 
Let P(tk) be the output of P over a test case tk, and P’(tk) 

be the output of P’ over the same test case tj, where tj belongs 
to TS. 

As discussed, the relationship between P(tj) and P’(tj) can 
be one of the three cases. (i) Equivalence. It means P(tk) and 
P’(tk) are identical. In this case, the mutated program remains 
unchanged for test case tk. For example, the mutated 
statement is not exercised, or the mutation generates a 
semantic equivalent change. (ii) Passed to failed. It implies 
that P(tk) yields a correct output, but P’(tj) results in a failed 
one. In particular, P(tk) is true but P’ failed to produce the 
expected value on test case tk. According to the basic 
conjecture, we are more likely to have mutated a correct 
statement. (iii) Failed to passed. In this case, P(tk) generates 
faulty output, while P’(tk) produces the correct one. In 
particular, P(tk) is false but P’ produces the expected value on 
test case tk. The case is not common in practice, which is 

 

Figure 1. Overview of MURE

58



likely that the mutant is applied at the location of a faulty 
statement. 

We thus define three terms to simply our presentation. 
Definition 1: Mi,j is the mutated statement Si that adopts 

the j-th mutation on Si. Let Mci,j denotes the mutated 
statement while Si is not faulty. Let Mfi,j denotes the mutated 
statement if Si  is faulty. 

Definition 2: Changepass fail (Mi,j) is the number of test 
cases, which test results change from passed to failed when 
running on the program that contains Mi,j. 

Definition 3: Changefail pass (Mi,j) is the number of test 
cases, which test results change from failed to passed when 
running on the program that contains Mi,j. 

In the next section, we will elaborate on the 
implementation details of each step of our method MURE. 

C. Implementation Details 
1) The Selection of Candidates 

Since our goal is to improve the accuracy of SBFL 
ranking, we do not necessarily mutate all statements in the 
program. Instead, we are only interested in those that might 
have ranked over the faulty statement in the SBFL ranking 
result. For example, consider a statement, which has never 
been executed by any failed test case. Mutating this statement 
is futile as it cannot be faulty, and CBFL techniques will 
generally rank it as the least suspicious statement. 

Currently, our method selects only those statements that 
are covered by over K failed test cases to mutate, where K is 
a parameter that is decided by the user based on their 
estimation on the number of faults that have triggered the 
failed test cases. Suppose that all the failed test cases are 
caused by the same fault, as in our experiment. Then K is set 
to “Total Failed”, which means only statements that covered 
by all failed cases are selected. 

Finally, our approach is to select statements executed by 
all failed cases. One reason is that statements with more fault 
cases execution are more likely to be faulty. Another reason 
is due to the effectiveness of this model, applying this 
constraint could reduce the number of selected statements. It 
leads to a significant reduction of statements to be mutated, 
which reduces the time cost of our approach. 
2) Mutant Sampling w.r.t. N: 

According to the different syntactic elements in a 
statement, the mutation operator can be applied to the 
statement is different. Moreover, different mutation operator 
generates different number of mutants. In order to unify the 
number of mutants for each statement, we use mutant 
sampling technique, which was first proposed by Acree [4] 
and Budd [6]. A mutant sampling technique generates all 
possible mutants, and then selects randomly x% mutants to 
execute. Empirical studies of mutant sampling primarily 
focus on the random selection rate (x%). Mathur and Wong 
[17] conducted an experiment to suggest that random 
selection of 10% of mutants is only 16% less effective than a 
full set of mutants in terms of mutation score. 

In our approach, we randomly select mutants from 
mutants generated by mutating a specific statement, where 
the random selection rate is controlled to be 10% (i.e., x% = 
10%). However, in this paper, we mainly devote to the 

effectiveness of our approach, rather than comparison 
between mutant reduction techniques. With such 
consideration, we choose mutant sampling to select 5 mutants 
to estimate the mutation impact for each statement. 

But we found that some mutants would run into dead loop, 
or run too much long before the end. So we set a dynamic 
time-out for each case, if a case run out of time, we simply 
mark the case as failed. Unfortunately, some mutants may run 
out of time on all test suites, which take a long time for 
computer to finish testing the mutants. We call these mutants 
as Dead Mutants. To solve this problem, we set a threshold t 
so that if a mutant run out of time over t% of the whole test 
cases, we will drop it and randomly select from other m 
mutants correlated to the Dead Mutant.  
3) The choice of base technique T and Impact Function F 

Recent works by Naish and colleagues empirically 
compared existing ranking functions and find the best 
function they proposed is Naish2 [21]. Our technique is based 
on this ranking function by selecting the T in Step 2 to be 
Naish2. So the enhancing formula of MURE can be equally 
expressed as 
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 ��
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As presented above, we use subtraction to implement the 

refinement to the result of SBFL, and Impact(Si) in the 
formula is the value of our refinement, which will be 
discussed next. The suspiciousness value of Naish2 is 
positive, and the higher the value, the more suspicious the 
statement is. And the impact value is the measurement how 
much the statement is likely to be correct, which has an 
adverse meaning with the suspicious value of Naish2, so the 
subtraction is selected. 

The basic conjecture of MBFL means that it is more likely 
to occur that a passed test case will fail on mutation Mci,j than 
a failed test case will pass on mutation Mfi,j. So we define an 
impact value to map test suites changes to the likelihood of a 
statements’ suspiciousness value. 
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Here we add a coefficient a before the second term. The 
coefficient a balances the two terms, since it is harder to fix 
a fault by using mutation technique than to change a correct 
statement to false. In another word, the two terms contribute 
different weights to suspiciousness values. The coefficient a 
can be calculated as 
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where sum(pass fail) represents sum of Changepass fail 
(Mi,j) for all mutants, sum(fail pass) represents the sum of 
Changefail pass (Mi,j) for all mutants, sum(pass) denotes the 
number of executed passed cases before mutation, and 
sum(fail) denotes the number of executed failed cases before 
mutation. 

We say that when the value of impact is large, we are 
likely to mutate the correct statement. Similarly, when the 
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value of impact is small, we are likely to mutate the faulty 
statement. 

D. Complexity 
Our technique attempts to exploit mutation analysis to 

enhance fault localization. However, we have to face a 
practical issue of mutation analysis: the high computational 
cost of executing enormous number of mutants against a test 
suite [12][22]. 

Program P contains n executable statements, while there 
are w statements executed by all failed cases; mutating each 
of them can yield l mutants; the corresponding test suite has 
m test cases. In our approach, our mutant sampling rate is x%. 
We need to conduct w×m×l×x% runs. Since the time 
complexity of SBFL is O(n2), and the time complexity is 
O(n2wmlx%). Similarly, the time complexity of usual MBFL 
is O(n3ml). Obviously, w is smaller than n, and x% is smaller 
than 1. So MURE is efficient than the usual MBFL. 

On the other hand, MURE is slower than SBFL. 
However, our goal of this work is to improve the accuracy of 
SBFL, as evaluated in the next section. 

IV. EMPIRICAL EVALUATION 

A. Subject Program 
We used seven C programs, print_tokens, print_tokens2, 

replace, schedule, schedule2, tcas, tot_info as subject 
programs. These programs are widely used in fault 
localization studies [3][15][31]. To determine whether a test 
case is passed or failed, we need to know the test oracle, so 
we run a fault-free version of each program. 

Siemens suite contains a total of 129 versions of faulty 
programs. The information of subject programs in our 
experiment is shown in Table I. Let us take the first row to 
explain. The tcas program comes with 41 faulty versions. 
There is only one fault in each version. On average, there are 
138 statements for each of the faulty versions, while only 63 
to 67 of them are executable statements. Further, a test suite 
containing 1608 test cases is equipped, on average 2.4% of 
which are failed per faulty version. The other rows are 
similarly understood. 

B. Peer Comparison 
We need to compare MURE with other SBFL methods. 

Naish mentioned in [21], under the single fault circumstances, 
the Naish2 formula is the most effective formula. Xie [32] 
investigated 30 risk evaluation formulas, and classified them 
into several groups, in which formulas are equal with each 

other. We select one representative technique from each 
group. Finally, Naish2, Jaccard, Qe, Wong2, Wong1, scott, 
and M2 are used in the experiment. 

To measure and compare the effectiveness of our 
technique and other fault localization techniques, we adopt 
Effectiveness metrics: Each of the techniques generates a 
ranked list of all the executable statements in descending 
order of their suspiciousness scores. Then we check all the 
statements along the ranked list, until a faulty statement is 
found. 

Programmer is suggested to check statements along the 
ranked list, so the Expense [30] matrix can be used to measure 
the effectiveness of fault localization technique. The smaller 
the value of expense is, the more effective a fault localization 
technique is. 
:;�'%
'�<�
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We devoted to utilize mutation analysis to improve the 
accuracy of SBFL rather than MBFL, so we only compare 
with SBFL in their fault-localization accuracies. The 
comparison with MBFL in time complexity to understand 
their efficiency has been given in Section III.D.  

C. Experiment Setup 
Of the 129 experiment subjects, five were not used in our 

experiment. Two of them, (namely, version v27 of replace 
and version v9 of schedule2) are excluded because all the 
tests pass on these versions and there is no failed test. In two 
versions (namely, versions v5 and v7 of schedule) all failed 
to generate mutant. Another one version (version v10 of tcas) 
is excluded for all the test cases were failed which is caused 
by segmentation fault. Our experimental platform (gcc with 
gcov) could not dump its coverage information before the 
runs crashed. Thus, after removing these versions, we have 
124 subjects for our experiment. 

For each subject, we run the tool to run the program 
without fault to get the right output of test cases. Then, we 
run the versions with faults and compare the result with the 
output derived from the program without fault. And we 
choose the statements to be mutated using the criterion 
described in section III.C. Then we run the mutant programs 
and collect the result of mutation (fail pass or pass fail). 
Then we calculate the impact value and refine the result of 
SBFL. At last, we compare the result derived from MURE 
with traditional SBFL methods, as mentioned in the next part. 

Table I. EXPERIMENT SUBJECTS 

Programs Number of 
Faulty Versions 

Number of 
Test Cases 

Percentage of 
Failed Test Cases 

Number of 
Statements 

Number of Executable 
Statements 

tcas 41 1608 2.4% 138 63-67
schedule 9 2650 2.4% 299 151-154
schedule2 10 2710 3.2% 297 128-130
tot_info 23 1052 5.6% 346 122-123
print_tokens 5 4130 1.7% 402 194-195
print_tokens2 10 4115 5.4% 483 196-200
replace 31 5542 2.0% 516 241-246
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D. Experiment Results 
Figure 2 shows the cumulative plot of the overall 

effectiveness of some common fault localization technique 
and MURE. The x-axis indicates the code examination effort. 
The y-axis indicates the percentage of faults located with 
certain code examination efforts indicated by the x-
coordinate. For each technique, a curve is used to visualize 
the extent of faults located within a given code examination 
range. For example, by examining up to 5% code in each 
faulty version, MURE can locate faults in 58.06% (72 of 124) 
of them. By examining up to 10% code in each faulty version, 
MURE can locate faults in 65.32% (81 of 124) of them. For 
each technique, the curve is drawn by connecting each point. 

Figure 2 shows that the curve of MURE is always above 
the others, which means that, when the certain code has been 
examined, the MURE can always localize more faults than 
other techniques can. Let us take the 5% point for illustration. 
By examining up to 5% executable statements, Naish2 can 
find 51.62% of all faults, while MURE can locate faults in 
58.06% of all the faulty versions. We can figure out that our 
technique is obviously effective than Naish2 when the 
examined code is not beyond 40%. Meanwhile, MURE can 
find over 90% of all faults when we examined 28% of all 
statements while Naish2 has to examine over 36% of all 
statements. Comparison with curves for the other peer 
techniques shows similar results. Limited by space, we do not 
explain each of them. From Figure 2, we have an impression 
that MURE outperforms the other techniques. However, to 
better understand their differences, we need other 
presentation of the experiment results. 

 To give a statistical comprehension, Table II presents the 
number of faults can be located by all the fault localization 
techniques at certain code examined expense. Let us take the 
first row to illustrate. It compares the localization accuracy of 
eight methods, including MURE and seven SBFL techniques.  
And the table shows the number of faults localized by 
different methods at given percentage of code examined. For 
instance, while %1 codes are examined, Naish2 can localize 
17 faults (13.7% of all faults), Jaccard can locate 12 faults 
(9.7% of all faults), Qe can locate 11 faults (8.9% of all 
faults), Wong1 can locate 0 faults, Wong2 can locate 7 faults 
(5.6% of all faults), scott can locate 12 faults (9.7% of all 
faults), M2 can locate 15 faults (12.1% of all faults), while 
MURE can localize 28 faults (22.58% of all faults). By 
looking at the other rows, we observe similar phenomenon 
that MURE can locate more faults than any other technique 
at the same code examination percentage. We can find that 
MURE make full use of the advantage of MBFL and test 
cases change information, which is more accurate than 
original SBFL.  

Table II also summarizes the statistics of accuracy of each 
technique. Take the first two rows as an example, it shows 
that in the best situation, all the technique can locate the fault 
when 0% of the code has been examined. But in the worst 
situation, in order to locate the fault, Naish2 need to examine 
79.20% of the statements, Jaccard need 85.14%, Qe need 
86.13%, Wong1 need 82.17%, Wong2 need 95.05%, scott 
need 99.01%, M2 need 84.16%, while MURE need only 
62.37% to locate the fault. It shows that MURE performs 

better at the bad situation than traditional situations. By 
looking at the other rows, we observe similar phenomenon 
that statistically, MURE can locate the fault by examining 
less code than other SBFL techniques. Let us further take the 
column of MURE as example. Before reaching the faulty 
statement, programmers have to examine from (in the best 
case) 0% to (in the worst 62.37%) of all statements, 
respectively. The median and mean code examination efforts 
are 3.96% and 10.25%, and the standard deviation is 13.22%. 
By looking at the other columns, we find that among the eight 
techniques, MURE always get the smallest Expense values, 
that means MURE always locates faults with least code 
examined statistically. In addition, the deviation of MURE is 
the lowest among these techniques, which means that MURE 
is relatively more stable than other techniques in various 
circumstances. 

We further calculate how much improvement in fault-
localization accuracy MURE made over a peer technique T. 
The improvement is measured as follow. 
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The numerator captures how much save in code 
examination from the peer technique T to MURE, by 
referencing the mean Expense of both. The denominator is 
the mean Expense of T. As a result, such a ratio reflects the 
relative improvement from T to MURE. The results show that 
MURE reduces 30.13% (i.e., 100% � (10.25% / 14.67%)) 
the average examination effort of Naish2. At the same time, 
Jaccard is improved by 52.74% in average, Qe is improved 
by 54.34%, Wong1 is improved by 54.81%, Wong2 is 
improved by 75.89%, scott is improved by 74.78%, and M2 
is improved by 39.17%. All these results verify that using 
mutant analysis to improve the accuracy of the SBFL is 
effective. 

In summary, MURE can apparently improve the accuracy 
of SBFL, locating more faults than traditional SBFL methods 
at the same percentage of codes examined. 

Figure 2. Comparison of different methods of fault localization 

0 20 40 60 80 100

0

20

40

60

80

100

fa
ul

ts
 lo

ca
te

d 
(%

)

code examination effort (%)

 MURE
 Jaccard
 QE
 wong2
 wong1
 scott
 M2
 Naish2

61



E. Threats to Validity 
Naish2 is the optimal formula under specific condition. 

With such considerations, cooperating other formulas in our 
proposal may result in different conclusions in evaluating the 
effectiveness of our proposal. 

The choice of parameters (like candidate number ad 
sampling rate) in our proposal also put threats to the validity 
of empirical observations. 

In our experiment, when a mutant run encounters a 
segmentation fault, as our approach does not collect the 
coverage of a mutant run, this mutant run will be retained and 
identified as failed. 

At the same time, we measured code examination effort 
as the amount of code to be inspected before reaching the first 
fault. We also realized that different experiment setups might 
result in different experiment results. 

V. DISCUSSION 
 Even though our proposal has improved SBFL effectively, 

it still has space for improvements. 

A. On Other Techniques 
In this paper, we apply mutant analysis on Naish2, and the 

result shows that it significantly improves the accuracy of 
Naish2, but it does not mean that our approach can only apply 
to Naish2. A change on the formula of impact, we can get 
impact formulas of other SBFL. For example, the formula 
Hamming is aef+anp. The final modified formula can be as 
follow: 
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 Discovering the effectiveness of our proposal on other 
techniques and evaluating the corresponding improvement 
belongs to our future work. 

B. Change Set Measurement 
When we calculate impact, we simply compare the 

average size of test case sets mentioned in (1), (2). It is kind 

of rough to just compute the number of changed cases. For 
example, the original cases consist of 80 passed cases and 20 
failed cases. After executing a mutant, ten test cases changes 
from “pass” to “fail” and three test cases change from “fail” 
to “pass”. Suppose that balance coefficient is 3.33, the impact 
value will be close to zero, what if we utilize the vectorization 
method, and calculate the Euclidean Distance of output of 
different test cases, instead of scalar addition? We plan to 
conduct an empirical study in our future work. 

VI. CONCLUSION 
It is time-consuming to locate fault in a program. Existing 

spectrum-based fault localization (SBFL) techniques and 
mutation-based fault localization (MBFL) techniques 
estimate the location of faults in programs to narrow down 
the region of the fault localization. The latter is reported more 
accuracy in existing empirical studies, while much more 
exhaustive in time complexity. 

In this paper, we have proposed an effective model for 
integrating the advantages of SBFL and MBFL. We designed 
MURE, which utilizes mutation analysis to refine the result 
of SBFL. We control the computation cost by reducing it 
from both number of statements as mutation candidates and 
number of mutates as mutation operators. We carried out a 
controlled experiment on seven programs from Siemens suite 
and compare our model with eight peer techniques, including 
the state-of-the-art technique Naish2. We have found that 
MURE can improve the average accuracy of all of them in 
comparison. In particular, the accuracy improvement over 
Naish2 is over 30%.  

Further work includes applying mutant technique on 
define-use pair or other information flows to enhance the 
effectiveness and safety of SBFL and extend the mutation 
analysis to multi-fault program. 
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