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Abstract—Coverage-based fault localization techniques assess 
the extent of how much a program entity relates to faults by 
contrasting the execution spectra of passed executions and 
failed executions. However, previous studies show that 
different test cases may generate similar or identical coverage 
information in program execution, which makes the execution 
spectra of program entities indistinguishable to one another, 
thus involves noise and decreases the effectiveness of existing 
techniques. In this paper, we use the concept of coverage vector 
to model program coverage in execution, compare coverage 
vectors to capture the similarity among test cases, reduce noise 
by removing similar coverage vector to refine the execution 
spectra, and based on them assess the suspicious basic blocks 
being related to fault. We thus narrow down the search region 
and facilitate fault localization. The empirical evaluation using 
Siemens programs and realistic UNIX utilities shows that our 
technique effectively addresses the problem caused by similar 
test cases and outperforms existing representative techniques. 
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I. I
Coverage-based fault localization (CBFL) techniques 

have been proposed to support software debugging [8][11] 
[13]. By contrasting the coverage statistics of program 
entities (such as statements, blocks and predicates) between 
passed executions and failed executions, CBFL techniques 
can locate the program entities which exercising are strongly 
correlated to the program execution failures observed. 
Previous studies showed that CBFL techniques are effective 
in locating faults [8][13].  

Since test cases may not always be generated to satisfy 
some coverage criteria, and there is no guarantee that the test 
suite reduction task is always conducted, it is common that 
different executions may cover similar and even identical 
execution paths [4]. Similar coverage information makes the 
execution spectra of program entities indistinguishable in 
passed and failed executions and thus decreases the 
effectiveness of previous fault localization techniques or 
even makes them lose effect, especially when coincidental 
correctness occurs [5]. For example, suppose a faulty 
statement is exercised in the program execution of all passed 
and all failed executions, it is hard to pinpoint it by 
contrasting its execution spectra in passed and failed 
executions. Such a case may have a high chance to happen in 
real life programs (e.g., a faulty statement may exist in the 

main method of a program and must be exercised by all the 
executions). Previous study also shows that execution 
similarity and coincidental correctness occurs frequently in 
realistic programs [12]. 

In this paper, we propose to use the concept of coverage 
vector to count the distinct execution paths, to capture the 
happening of execution simila
failing rate of each coverage vector as the ratio of the 
number of failed executions covering it to the number of all 
executions covering it. For each basic block, we then 
calculate two numbers, the number of coverage vectors 
exercising that basic block and covered by failed executions, 
and the number of coverage vectors either exercising that 

ratio of the former to the latter as the suspiciousness score of 
 all the basic blocks in the 

descending order of thus calculated suspiciousness scores. In 
case of a tie, which means two or more blocks sharing 
identical suspiciousness scores, we try to use the average 
failing rate of coverage vectors exercising a block to further 
determine the order of the blocks.  

to evaluate our technique, and compare it with five 
representative techniques, namely, Tarantula [7], Jaccard [1], 
SBI [13], SAFL [4], and ICST10 [10]. The empirical results 
show that our technique is pr
programs. Further analysis show that our technique is 
promising to alleviate the impact of execution similarity. 

The contributions of this 
propose to use the concept of coverage vector to count the 
distinct execution paths, and make use of it to estimate the 
occurring of similarities from the coverage information. (ii) 

is empirically evaluated to be promising in locating fault, 
especially in case of high execution similarity. 

In this section, we use an example to demonstrate 
previous techniques and motivate our approach. 

The code excerpt in Figure 1 finds the middle value in 
three given numbers. A fault exists in statement s2, which 
accesses the variable x instead of z

indicates that a statement is exercised in the program 
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execution with respect to a test case. The execution results (P
for pass and F for fail) are shown in table header. 

SBI [13], SAFL [4], and ICST10 [10] to locate fault 
(statement s2) in this example. For example, Tarantula 
assigns suspiciousness score 0.50 to statement s2, and finally 
needs to examine 66% of all code to locate the fault. The 
results of Jaccard, SBI, SAFL, and ICST10 can be similarly 
explained. Unfortunately, none of them can locate the fault 
with somehow affordable code examining efforts (e.g., less 
than 50%). This is because that the faulty statement (s2)
happen to be exercised in all passed and failed executions, so 
that they are indistinguishable
other hand, Statements s4 and s6 are given higher 
suspiciousness scores than statements s8 and s10 because the 
former happen to be exercised in relatively more failed 
executions than the latter. Note that statements s4 and s6 are 
exercised in one failed execution (t5) and one passed 
execution (t6), while statements s8 and s10 are exercised in 
one failed execution (t1) and three passed executions (t2, t3,
and t4). Among the two passed test cases (t5 and t6), which 
exercise the former (statements s4 and s6), 50% of them are 

the latter (statements s8 and s10) are failed ones. As a result, 
statements s4 and s6 are given higher suspiciousness scores 
because of such imbalance.  

Execution similarity may frequently occur in realistic 

the imbalance observed in previous paragraph. To measure 
the execution similarity, we design to use the coverage 
information. In addition, we also measure the execution 
similarity to estimate the occurring of coincidental 
correctness in passed executions and manage to alleviate the 
impact of coincidental correctness to execution spectra of 
statements. 

From Figure 1, we observe that there are in total two 
distinct paths covered by the six test cases [2], which are 
denoted as p1 = b1, b2, b4, b10  and p2 = b1, b3, b7, b10 . After 
that, we adopt SBI’s formula  to estimate 

the failing rate of a path, which means the probability of an 
execution (covering that path) revealing a failure. Note that, 
here we use a path, rather than a statement, as the program 
entity in the formula. Since p1 is covered by one failed test 
case and three passed test cases, the failing rate of p1 is 0.25. 
Similarly, the failing rate of p2 is 0.5. A path with a positive 
failing rate means that the corresponding execution can 
reveal failures. A path with failing rate zero means that the 

Jaccard’s formula  to calculate the 
suspiciousness score for each block. Here, failed(b) means 
the number of distinct paths, which have positive failing 
rates and exercise block b; passed(b) means the number of 
distinct paths, which have failing rates of zero and exercise 
block b; totalfailed means the number of distinct paths, 
which have positive failing rates. Thus, the suspiciousness 
score of block b1 is calculated as . As a result, we 
finally take 33% code examining effort to locate the fault. 

The above example has interestingly demonstrated that 
previous techniques may not be effective in a common case, 
while our approach has the potential to address it. In the next 
section, we will elaborate on our model. 

In this section, we introduce the problem settings, give 
definitions, and elaborate on our model PAFL. 

A. Definitions 

describe the concept of “distinct path” used in Section II. 
[Definition I] An original coverage vector ocvi = b1,

b2, ..., bn (bj {0, 1} for j = 1, 2, ..., n) of program execution 
P(ti) is a tuple. We use ocvi(bj) to retrieve the j-th element in 
the tuple, where ocvi(bj) = 1 means the basic block bj is 
exercised in the execution, ocvi(bj) = 0 means bi is not 
exercised in the execution. For the coverage vector ocvi with 
respect to execution P(ti), we also say P(ti) covers ocvi.

In Figure 1, there are six original coverage vectors. The 
coverage vector with respect to test case t1 is ocv1 = 1, 0, 0, 
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Statements 
Test cases Previous techniques Distinct paths

t1 t2 t3 t4 t5 t6 Tarantula Jaccard SBI SAFL ICST10 p1 p2

F P P P F P score rank score rankscorerank scorerankscorerank t1 t2,t3,t4 t5 t6 score rank

b1

s1
0.50 4 0.33 4 0.50 4 0.81 6 0.50 4 0.50 2s2

s3
b2 s4 0.67 2 0.33 4 0.67 2 1 5 0.67 2   0.33 6 
b3 s5         
b4 s6 0.67 2 0.33 4 0.67 2 1 5 0.67 2   0.33 6 
b5 s7          
b6 s8 0.40 6 0.20 6 0.40 6 1 5 0.40 6  0.33 6 
b7 s9       
b8 s10 0.40 6 0.20 6 0.40 6 1 5 0.40 6  0.33 6 
b9 s11          
b10 s12 0.50 4 0.33 4 0.50 4 1 5 0.50 4 0.50 2 

Code examining effort to locate fault: 66% 66% 66% 100% 66% 33%
Figure 1. Motivating example – the program Mid
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0, 0, 1, 0, 1, 0, 1 . Apparently, an original coverage vector 
can be covered by many different executions (even by both 
some passed executions and some failed executions). So let 
us move to Definition II.

[Definition II] The distinct coverage vector set CV = 
{cv1, cv2, ..., cvp} is the distinct set (with no repeating 
elements) of all original coverage vectors ocvi with respect 
to the program execution P(ti) of each test case ti. Each 
element cvi  CV is called a coverage vector. Similarly, we 
use cvi(bj) to retrieve the j-th element in the tuple of cvi.

By such definition, we know that we have cvi cvj for 
any two coverage vectors cvi and cvj (1 i < j p). In Figure 
1, there are two coverage vectors, namely, cv1 = 1, 0, 0, 0, 0, 
1, 0, 1, 0, 1  and cv2 = 1, 1, 0, 1, 0, 0, 0, 0, 0, 1 .

B. Failing Rate of Coverage Vector 
Since a coverage vector may be covered by both passed 

executions and failed executions, we are also interested in 
the ratio of failed executions that covers the coverage vector 

the term failing rate of a coverage vector to denote such a 
ratio, which is calculated using equation (1). 

(1)

In equation (1), failed (cvi) and passed (cvi) respectively 
refer to the number of failed and passed executions that 
cover cvi. They are calculated using equation (2) and (3). 

 (2)
(3)

Here, we adopt the formula of SBI in equation (1) 
because it gives a best estimation to the probability of an 
exercised program entity causing a failure [14]. 

For a coverage vector cvi with (cvi)  greater than zero, it 
indicates that cvi is covered by at least one failed execution, 
and it is also denoted as a failed coverage vector. For a 
coverage vector cvi with (cvi) equals to zero, it indicates that 
cvi is covered by no failed execution, and it is also denoted as 
a passed coverage vector.

According to equation (1), the failing rates of cv1 and cv2
are (cv1) = 0.25 and (cv2) = 0.50, respectively. Both of 
them are failed coverage vectors. 

C. Suspiciousness Scores of Blocks 
After we have identified all the coverage vectors, we also 

need to calculate suspiciousness scores for basic blocks. 
Inspired by previous study [6], we employ the Jaccard 
similarity coefficient to evaluate the suspiciousness scores 
for basic blocks, by contrasting the execution spectra of basic 
blocks on the coverage vector level. In this paper, we use the 
term susp(bi) to denote such suspiciousness score of basic 
block bi, which is calculated using equation (4). 

(4)

The numerator represents the number of failed coverage 
vectors that cover bi, the denominator represents the number 
of coverage vectors that are either failed coverage vectors or 
cover bi. Here, we adopt the similarity coefficient Jaccard 
because it has mature mathematical basis. Further, it has 

been used in previous techniques and empirically shown 
effective in locating faults in programs [1].  

Equation (4) estimates the extent of how much a basic 
block is related to faults. The greater the value, the more the 
basic block will be related to fault. According to equation (4), 
we can recall the motivating example in Section II and revisit 
the suspiciousness scores calculated in Section II. The 
suspiciousness scores for b1 is calculated as .

D. Tie breaking 
After all the blocks are sorted according to their 

suspiciousness of relating to fault and form a list, 
programming may search along the generated list for the 
fault. Particularly, when some basic blocks have identical 
suspiciousness scores, we use equation (5) to break tie. 

(5)

Equation (5) calculates the average failing rate of the 
coverage vectors that exercising basic block bi. The rational 
is that for two basic blocks having identical probability of 
causing failure, we deem the one whose appearance in a path 
has higher chance to reveal a failure as more related to faults. 

For example, in Figure 1, basic blocks b1 and b10 form a 

 so that the tie still cannot be break and thus b1 and b10
are evaluated as a whole. Finally, we need to examine 33% 
of all code to locate the fault. 

A.  Experiments Setup 
In this paper, we use the 7 Siemens programs and 3 

several faulty versions (downloaded from the SIR repository 
[3]). They have been used in previous studies [9][13][14]. 

the experiments.  
In our experiment, we select techniques Tarantula [7], 

Jaccard [1], SBI [13], SAFL [4], and ICST10 [10] to 
compare with. Tarantula is an old technique and has a lot of 
variants [7][13]. Jaccard is evaluated very effective in 

Table 1. Statistics of subjects 

Subjects # of faulty 
versions

# of 
test cases Description 

print_tokens 7 4130 lexical analyzer 
print_tokens2 10 4115 lexical analyzer 
replace 32 5542 pattern replacement 
schedule 9 2650 priority scheduler 
schedule2 10 2650 priority scheduler 
tcas 40 1578 altitude separation 
tot_info 23 1054 information measure
flex 56 567 lexical parser 
grep 21 809 text processor 
gzip 18 213 compressor 

in total 226   
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previous studies [10][14]. SBI is the statement-level version 
of CBI [9], while the latter is a classic predicate-level 
technique. SAFL and ICST10 investigate execution 
similarity to reduce the noise from coincidental correctness 
and relates to them. 

B. Effectiveness on Subject Programs 
To know the overall effectiveness of the studied 

techniques, we take the average of the 10 programs to show 
in Figure 2. In Figure 2, the x-coordinates mean the 
percentage of code examined in each faulty version; the y-
coordinates show the percentage of faulty versions, in which, 
faults can be located within the code examining effort 
specified by the x-coordinates.  

From Figure 2, we observe that at most checkpoints 
(except the 50% checkpoint), PAFL is more effective than, 
or at least comparable to, the other techniques. For example, 
on average, by examining up to 5% of all the code in faulty 
versions, PAFL can locate faults in 34% of all faulty 
versions, Jaccard can locate 33%, Tarantula can locate 23%, 
SBI can locate 22%, SAFL can locate 6%, and ICST10 can 
locate 26%. It shows that PAFL has an overall better 
effectiveness than the other techniques studied. 

Table 2 shows the mean effectiveness of these 
techniques on each program. Limited by the space, we 
cannot show results of the minimum, maximum, and 
standard deviation measurements. This table shows that for 
these programs, PAFL is often, but not always, the best 
among the four techniques.  

In this paper, we demonstrate that frequently occurred 
execution similarity may affect the effectiveness of existing 
fault localization techniques and propose PAFL to alleviate 

coverage vector to count distinct execution paths, and 
calculate failing rate for each coverage vector, thus refine the 
executions spectra to reduce noise. The empirical study 
shows that our technique outperforms five previous 

also shows that our technique is particularly effectiveness to 
alleviate the impact of execution similarity and coincidental 

correctness. The future work is to investigate the impact of 
test case selection to PAFL and adapt PAFL to locate faults 
in multi-fault programs.  

This work is supported by the National Natural Science 
Foundation of China (nos. 60970114, 61003027, 61073006) 
and the Scholarship Award for Excellent Doctoral Student 
granted by Chinese Ministry of Education. 
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Table 2. Mean effectiveness on individual programs 

Subjects PAFL Jaccard Tarantula SBI SAFL ICST10

print_tokens 72% 74% 77% 77% 84% 74% 
print_tokens2 22% 24% 25% 25% 55% 24% 
replace 24% 21% 24% 24% 37% 21%
schedule 23% 24% 25% 25% 53% 24% 
schedule2 85% 85% 85% 85% 82% 84%
tcas 54% 56% 58% 58% 66% 51%
tot_info 37% 43% 47% 47% 64% 43% 
flex 27% 27% 30% 32% 45% 30% 
grep 21% 21% 23% 26% 34% 23% 
gzip 12% 12% 14% 15% 18% 14% 

Figure 2. Overall effectiveness 
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