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ABSTRACT
An oracle in software testing is a mechanism for checking whether
the system under test has behaved correctly for any executions. In
some situations, oracles are unavailable or too expensive to apply.
This is known as the oracle problem. It is crucial to develop
techniques to address it, and metamorphic testing (MT) was one
of such proposals. This paper conducts a controlled experiment to
investigate the cost effectiveness of using MT by 38 testers on three
open-source programs. The fault detection capability and time cost
of MT are compared with the popular assertion checking method.
Our results show that MT is cost-efficient and has potentials for
detecting more faults than the assertion checking method.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; D.2.8 [Software Engineering]: Metrics—Product metrics

General Terms
Experimentation
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1. INTRODUCTION
Software testing assures programs by executing test cases over

the programs with the intent to reveal failures [3]. To do so,
software testers need to evaluate test results through an oracle,
which is a mechanism for checking whether a program has behaved
correctly [35]. In many situations, however, oracles are unavailable
or too expensive to apply. This is known as the oracle problem [35].
Usually, the main purpose of implementing a specific program is to
compute unknown results. If the expected results could easily be
computed through other automatic means, then there would not be
a need to implement the program in the first place. On the other
hand, manual checking of program outputs is slow, ineffective, and
costly, especially for a large number of test cases. Assessing the
correctness of program outcomes has, therefore, been recognized
as “one of the most difficult tasks in software testing” [27].

As we shall review in Section 2, assertion checking [4] and
metamorphic testing (MT) [9, 17, 18, 11] are techniques to alleviate
the oracle problem. Assertion checking verifies the result or
intermediate program states of a test case. It directly confirms the
execution behavior of a program in terms of a checking condition.
MT takes another direction, which verifies follow-up test cases
based on existing test cases. It cross-checks the test results
of existing test cases and their follow-up test cases. In other
words, MT indirectly verifies the behaviors of multiple program
executions in terms of a checking condition. It would be interesting
to compare the two approaches on their effectiveness to identify
failures.

There have been various case studies in applying metamorphic
testing to different types of programs, ranging from conventional
programs and object-oriented programs, to pervasive programs
and web services. Chen et al. [16] reported on the testing of
programs for solving partial differential equations. They further
investigated the integration of metamorphic testing with fault-
based testing and global symbolic evaluation [18]. Gotlieb and
Botella [22] developed an automated framework to check against
a restricted class of metamorphic relations. Tse and others applied
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metamorphic approach to the unit testing [33] and integration
testing [10] of context-sensitive middleware-based applications.
Chan et al. [13, 14] developed a metamorphic approach to
the online testing of service-oriented software applications.
Throughout these studies, both the testing and the evaluation of
experimental results were conducted by the researchers themselves.
The programs under test were from academic sources and relatively
small. There is a need for systematic empirical research on how
well MT can be applied in practical situations and how effective it
is compared with other testing strategies 1.

Like other comparisons of testing strategies such as between
control flow and data flow criteria [21] and among different data
flow criteria [25], controlled experimental evaluations are essential.
They should answer the following research questions: (a) Can
testers be trained to apply MT properly? (b) How does the
fault detection effectiveness of MT compare with other effective
strategies? (c) What is the effort for applying MT?

This paper reports and discusses the results in such a controlled
experiment. We restricted the scope to object-oriented testing
at class level [4]. The subjects were 38 postgraduate students
enrolled in an advanced software testing course. Before doing
the experiment, they were taught the concepts of MT and a
reference strategy — assertion checking [4] — to alleviate the
oracle problem. The training sessions for either concept were
similar in duration. Three open-source programs were selected as
target programs. The subjects were required to apply both MT and
assertion checking strategies to test these programs independently.
We ran their test cases over faulty versions of the target programs
to assess the capability of these two testing strategies in detecting
faults [1]. Results were analyzed to compare the costs and
effectiveness between MT and assertion checking.

The main contributions of this paper are four-fold: (i) It is the
first controlled experiment to study the above questions. (ii) The
experiment shows that metamorphic testing is more effective
than assertion checking for identifying faults for object-oriented
programs. (iii) It confirms the belief that the subjects can formulate
metamorphic relations and implement MT without much difficulty.
In fact, the experiment shows that all subjects manage to propose
metamorphic relations after a brief introduction, and identical
or very similar metamorphic relations are proposed by different
subjects. (iv) It also indicates that metamorphic testing is worth
applying in terms of time cost.

The paper is organized as follows: Section 2 discusses the
related literature. Section 3 introduces the fundamental notions
and procedures of metamorphic testing. Section 4 describes the
experiment, and the result is presented and discussed in Section 5.
Finally, Section 6 concludes the paper.

2. RELATED WORK
Many approaches have been proposed to alleviate the test oracle

problem. Instead of checking the output directly, these approaches
generated various types of oracle to verify the correctness of a
program. Chapman [15] suggested that a previous version of a
program could be used to verify the correctness of the current
version. Weyuker [35] suggested checking whether some identity
relations would be preserved by the program under test. Blum and
others [6, 2] proposed a program checker, which was an algorithm
for checking the output of computation for numerical programs.

1 Other researchers have evaluated the selection of metamorphic
relations. However, their work is not yet publicly accessible at the
time of submission of this paper. Thus, we shall exclude them from
our discussions.

Their theory was subsequently extended into the theory of self-
testing/correcting [5]. Xie and Memon [36] studied different types
of oracle for graphic user interface (GUI) testing. Binder [4]
discussed four categories and eighteen oracle patterns in object-
oriented program testing.

Assertion checking [32] is another method to verify the
execution results of programs. An assertion, which is embedded
directly in the source code, is a Boolean expression that verifies
whether the execution of a test case satisfies some necessary
properties for correct implementation. Assertions are supported
by many programming languages and are easy to implement.
Assertion checking has been widely used in object-oriented testing.
For example, state invariants [4, 23], represented by assertions, can
be used to check the stated-based behaviors of a system. Briand
et al. [8] investigated the effectiveness of using state-invariant
assertions as oracles and compared it with the results using precise
oracles for object-oriented programs. It was shown that state-
invariant assertions were effective in detecting state-related errors.

Since our target programs are also object-oriented programs, we
have chosen assertion checking as the alternative testing strategy in
our experimental comparison.

Some researchers have proposed to prepare test specifications,
either manually or automatically, to alleviate the test oracle
problem. Memon et al. [28] assumed that a test specification of
internal object interactions was available and used it to identify
non-conformance of the execution traces. This type of approach is
common in conformance testing for telecommunication protocols.
Sun et al. [31] proposed a similar approach to test the harnesses
of applications. Last and others [24, 34] trained pattern classifiers
to learn the casual input-output relationships of a legacy system.
They then used the classifiers as test oracles. Podgurski and others
[30, 20] classified failure reports into categories via classifiers, and
then refined the classification by further means. Bowring et al. [7]
used a progressive approach to train a classifier to help regression
testing. Chan et al. [12] used classifiers to identify different types
of behaviors related to the synchronization failures of objects in a
multimedia application.

3. PRELIMINARIES OF METAMORPHIC
RELATIONS AND TESTING

This section introduces metamorphic testing. As we have
briefed in Section 1, metamorphic testing relies on a checking
condition that relates multiple test cases and their results in order
to verify whether any failures are revealed. Such a checking
condition is known as a metamorphic relation. We shall first revisit
metamorphic relations and then discuss how they are used in the
metamorphic approach to software testing.

3.1 Metamorphic Relations
A metamorphic relation (MR) is an existing or expected relation

over a set of distinct inputs and their corresponding outputs for
multiple executions of the target function [17]. Consider, for
instance, the sine function. For any inputs x1 and x2 such that
x1 + x2 = π, we must have sin x1 = sin x2.

Definition 1 (Metamorphic Relation) [11] Let 〈x1, x2, . . . , xk〉
be a series of inputs to a function f , where k ≥ 1,
and 〈 f (x1), f (x2), . . . , f (xk)〉 be the corresponding series of
results. Suppose 〈 f (xi1), f (xi2), . . . , f (xim)〉 is a subseries,
possibly an empty subseries, of 〈 f (x1), f (x2), . . . , f (xk)〉. Let
〈xk+1, xk+2, . . . , xn〉 be another series of inputs to f , where n ≥
k + 1, and 〈 f (xk+1), f (xk+2), . . . , f (xn)〉 be the corresponding
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series of results. Suppose, further, that there exists relations
r(x1, x2, . . ., xk, f (xi1), f (xi2), . . ., f (xim), xk+1, xk+2, . . ., xn) and
r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) such that r′ must be true
whenever r is satisfied. We say that

MR = { (x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) |
r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim),

xk+1, xk+2, . . . , xn)
→ r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)) }

is a metamorphic relation. When there is no ambiguity, we simply
write the metamorphic relation as

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim),
xk+1, xk+2, . . . , xn)

then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn)).

Furthermore, x1, x2, . . ., xk are known as source test cases and
xk+1, xk+2, . . ., xn are known as follow-up test cases.

Similar to assertions in the mathematical sense, metamorphic
relations are also necessary properties of the function to be
implemented. They can, therefore, be used to detect inconsistencies
in a program. They can be any relations involving the inputs and
outputs of two or more executions of the target program. They may
include inequalities, periodicity properties, convergence properties,
subsumption relationships, and so on.

Intuitively, human testers are needed to study the problem
domain related to a target program and formulate metamorphic
relations accordingly. This is akin to requirements engineering,
in which humans instead of automatic requirements engines are
necessary for formulating systems requirements. Is there a
systematic methodology guiding testers to formulate metamorphic
relations like the methodologies that guide systems analysts to
specify requirements? This remains an open question. We shall
further investigate along this line in the future. We observe
that other researchers are also beginning to formulate important
properties in the form of specifications to facilitate the verification
of system behaviors [19].

3.2 Metamorphic Testing
In practice, if the program is written by a competent programmer,

most test cases are “successful test cases”, which do not reveal any
failure. These successful test cases have been considered useless in
conventional testing. Metamorphic testing (MT) uses information
from such successful test cases, which will be referred to as source
test cases.

Consider a program p for a target function f in the input
domain D. A set of source test cases T = {t1, t2, . . . , tk} can be
selected according to any test case selection strategy. Executing
the program p on T produces outputs p(t1), p(t2), . . . , p(tk).
When there is an oracle, the test results can be verified against
f (t1), f (t2), . . . , f (tk). If these results reveal any failure, testing
stops. On the other hand, when there is no oracle or when
no failure is revealed, the metamorphic testing approach can
continue to be applied to automatically generate follow-up test
cases T ′ = {tk+1, tk+2, . . . , tn} based on source test cases T , so that
the program can be verified against metamorphic relations. For
example, given a source test case x1 for a program that implements
the sine function, we can construct a follow-up test case x2 based
on the metamorphic relation x1 + x2 = π.

Definition 2 (Metamorphic Testing) [11] Let P be an imple-
mentation of a target function f . The metamorphic testing of the
metamorphic relation

MR: If r(x1, x2, . . . , xk, f (xi1), f (xi2), . . . , f (xim),
xk+1, xk+2, . . . , xn),

then r′(x1, x2, . . . , xn, f (x1), f (x2), . . . , f (xn))

involves the following steps: (1) Given a series of source test cases
〈x1, x2, . . . , xk〉 and their respective results 〈P(x1), P(x2), . . . ,
P(xk)〉, generate a series of follow-up test cases 〈xk+1, xk+2, . . . , xn〉
according to the relation r(x1, x2, . . . , xk, P(xi1), P(xi2), . . . , P(xim),
xk+1, xk+2, . . . , xn) over the implementation P. (2) Check the
relation r′(x1, x2, . . . , xn, P(x1), P(x2), . . . , P(xn)) over P. If r′ is
false, then the metamorphic testing of MR reveals a failure.

3.3 Metamorphic Testing Procedure
Gotlieb and Botella [22] developed an automated framework for

a subclass of metamorphic relations. The framework translates
a specification into a constraint logic programming language
program. Test cases can be automatically be generated according to
metamorphic testing. Their framework only works on a restricted
subset of the C language and is not applicable to test cases involving
objects. Since we want to apply MT to test real-world object-
oriented programs, we adopt the original procedure [9] as follows:

Firstly, testers identify and formulate metamorphic relations
MR1, MR2, . . ., MRn from the target function f . For each
metamorphic relation MRi, testers construct a function gen i to
generate follow-up test cases from the source test cases. Next,
for each metamorphic relation MRi, testers construct a function
ver i, which will be used to verify whether multiple inputs and
the corresponding outputs satisfy MRi. After that, testers generate
a set of source test cases T according to a preferred test case
selection strategy. Finally, for every test case in T , the test driver
invokes the function gen i to generate follow-up test cases and
apply the function ver i to check whether the test cases satisfy the
given metamorphic relation MRi. If a metamorphic relation MRi is
violated by any test case, ver i reports that an error is found in the
program under test.

4. EXPERIMENT
This section describes the set up of the controlled experiment. It

firstly formulates the research questions to be investigated and then
describes the experimental design and experimental procedure.

4.1 Research Questions
The research questions to be investigated are summarized as

follows:

(a) Can the subjects properly apply MT after training? Can the
subjects identify correct and useful metamorphic relations
from target programs?

(b) Is MT an effective testing method? Does MT have a
comparative advantage over other testing strategies such
as assertion checking in terms of the number of mutants
detected? To address this question, we shall use the standard
statistical technique of null hypothesis testing.

Null Hypothesis H0: There is no significant
difference between MT and assertion checking in
terms of the number of mutants detected.

Alternative Hypothesis H1: There is a
significant difference between MT and assertion
checking in terms of the number of mutants
detected.

We aim at applying the standard concept of the p-value in
the Mann-Whitney test to find the confidence level that H0
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should be rejected, with a view to supporting our claim
that the difference between MT and assertion checking is
statistically significant rather than by chance.

(c) What is the effort, in terms of time cost, in applying MT?

4.2 Experimental Design
Our experiment identifies four independent and three dependent

variables. The independent variables are testing strategies,
subjects, target programs, and faulty versions of target programs.
The dependent variables are effort in terms of time cost, number
of metamorphic relations/assertions, and testing effectiveness in
terms of mutation detection ratio. For the variable on testing
strategies, we incorporate MT and assertion checking. In the rest
of this section, we describe the other three independent variables.
Section 5 will analyze the results according to the dependent
variables.

Subjects: All the 38 subjects were graduate students in
computer science who attended the course “Advanced Topics in
Software Engineering: Software Testing” at The University of
Hong Kong. These students had at least a bachelor degree in
computer science, computer engineering, or electronic engineering.
The majority of them were part-time MSc students with some
industrial experience. The rests were MPhil and PhD students.
We controlled that the training sessions of either approach are
comparable in duration and in content.

Since differences in software engineering background might
affect the students’ capability to apply metamorphic testing or
assertion checking, we conducted a brief survey prior to the
experimentation. It showed that most of them had real-life or
academic experience in object-oriented design, Java programming,
software testing, and assertion checking.

Figure 1 lists the survey result. As most of subjects
were knowledgeable about object-oriented design and Java
programming, they were deemed to be competent in the
experimental tasks. On the other hand, we found a few students
having rather limited experience in software testing and assertion
checking. Since they did not have prior concepts of metamorphic
testing either, the experiment did not specifically favor the
metamorphic approach.

Target Programs: We used three open-source programs as
target programs. All of them were Java programs selected from
real-world software systems.

The first target program Boyer is a program using the Boyer-
Moore algorithm to support the applications in Canadian Mind
Products, an online commercial software company 2. The program
returns the index of the first occurrence of a specified pattern within
a given text.

The second target program BooleanExpression evaluates
Boolean expressions and returns the resulting Boolean value. For
example, the evaluation result of “!(true && false) || true” is “true”.
The program is part of a popular open-source project jboolexpr 3

in SourceForge 4, which is the largest open-source project website.
The target program is a core part of the project.

The third target program is TxnTableSorter. It is taken from
a popular open-source project Eurobudget 5 in the SourceForge
website. Eurobudget is an office application written in Java, similar
to Microsoft Money or Quicken.

2 URL http://mindprod.com/products1.html.
3 Available at http://sourceforge.net/projects/jboolexpr.
4 URL http://www.sourceforge.net.
5 Available at http://eurobudget.sourceforge.net.
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Figure 1: Experience of Subjects in Object-Oriented Design,
Java, Testing, and Assertions

Table 1: Statistics of Target Programs
Number of

Class Output-
LOC Methods Affecting

Methods
Boyer 241 16 9

BooleanExpression 231 15 12
TxnTableSorter 281 18 15

Table 2: Categories of Mutation Operators
Category Description

AOD Delete Arithmetic Operators
AOI Insert Arithmetic Operators
AOR Replace Arithmetic Operators
ROR Replace Relational Operators
COR Replace Conditional Operators
COI Insert Conditional Operators
COD Delete Conditional Operators
SOR Replace Shift Operators
LOR Replace Logical Operators
LOI Insert Logical Operator
LOD Delete Logical Operator
ASR Replace Assignment Operators

Table 1 specifies the statistics of the three target programs. The
sizes of these programs are in line with the sizes of the target
programs used in typical software testing researches such as [1]
or the famous Siemens test suites. The first program is a piece
of commercial software. The second program is a core part of a
standard library. The third one is selected from real office software
with hundreds of classes and more than 100,000 lines of code in
total. All of them are open source.

Faulty Versions of Target Programs: To investigate the
relative effectiveness of metamorphic testing and assertion
checking, we used mutation operators to seed faults to programs.
A previous study [1] showed that well-defined mutation operators
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were valid for testing experiments 6.
In our experiment, mutants were seeded using the tool

muJava [26]. The tool uses two types of mutation operator: class
level and method level. Class level mutation operators are operators
specific to generating faults in object-oriented programs at the class
level. Method level mutation operators defined in [29] are operators
specific for statement faults. We only seeded method level mutation
operators to the programs under study, because our experiment
concentrated on unit testing and because this set of operators had
been studied extensively [29, 1]. Table 2 list all the mutation
operators used in the controlled experiment.

A total of 151 mutants were generated by muJava for the
class Boyer, 145 for the class BooleanExpression, and 378 for
TxnTableSorter. Note that faults were only seeded into the methods
supposedly covered by the test cases for unit testing. Table 3 lists
the number of mutants under each category of operators. We used
all of them in the controlled experiment.

4.3 Experimental Procedure
Before the experiment, the subjects were given a six-hour

training to use MT and assertion checking. The target programs and
the tasks to be performed were also presented to the subjects. The
subjects were briefed about the main functionality of each target
program and the algorithm used, thus simulating the process in
real-life in which a tester acquires the background knowledge of
the program under test. They were blind to the use of mutants
in the controlled experiment. For each program, the subjects
were required to apply MT strictly following the procedure in
Section 3.3, as well as to add assertions to the source code for
checking. We did not restrict the number of metamorphic relations
and assertions. The subjects were told to develop metamorphic
relations and assertions as they saw fit, with a view to thoroughly
test each target program.

We did not mandate the use of a particular testing case generation
strategy, such as all-def-use criterion, for MT or assertion checking.
The subjects were simply asked to provide adequate test cases for
testing the target programs. This avoided the possibility that some
particular test case selection strategy, when applied in large scale,
might favor either MT or assertion checking.

We asked the students to submit metamorphic relations,
functions to generate follow-up test cases, functions to verify
metamorphic relations, test cases for metamorphic testing, source
code with inserted assertions, and test cases for assertion checking.
They were also asked to report the time costs in applying
metamorphic testing and assertion checking. Before testing the
faulty versions with these functions, assertions, and test cases, we
checked the student submissions carefully to ensure that there was
no implementation error.

4.4 Addressing the Threats to Validity
We briefly describe the threats to validity in this section before

we present our main results in the next section.
Internal Validity: Internal validity refers to whether the

observed effects depend only on the intended experimental
variables. For this experiment, we provided the subjects with all
the background materials and confirmed with them that they had
sufficient time to perform all the tasks. On the other hand, we
appreciate that students might be interrupted by minor Internet
activities when they performed their tasks. Hence, the time costs

6 We also attempted to use publicly accessible real faults of these
programs to conduct the experiments. However, descriptions of
these faults in the source repositories were either too vague or not
available.

reported by the subjects should be conservative. Furthermore, the
subjects did not know the nature and details of the faults seeded.
This measure ensured that their “designed” metamorphic relations
and assertions were unbiased with respect to the seeded faults.

External Validity: External validity is the degree to which the
results are generalizable to the testing of real-world systems. The
programs used in our experiment were from real-life applications.
For example, Eurobudget is widely used and has been downloaded
more than 10 000 times from SourceForge. On the other hand,
some real-world programs can be much larger and less well
documented than the open-source programs studied. More future
studies may be in order for the testing of large complex systems
using the MT method.

5. EXPERIMENTAL RESULTS
This section presents the experimental results of applying

metamorphic testing and assertion checking. They are structured
according to the dependent variables presented in the last section.

5.1 Metamorphic Relations and Assertions
A critical and difficult step in applying MT and assertion

checking is to develop metamorphic relations and assertions for
target programs. Table 4 reports on the number of metamorphic
relations and assertions identified by the subjects for the three
target programs. The mean numbers of metamorphic relations
developed by the subjects for the respective programs were 2.79,
2.68, and 5.00. The total numbers of different metamorphic
relations identified by all subjects for the respective programs were
18, 39, and 25. The mean numbers of assertions for the respective
programs were 6.96, 11.35, and 10.97. For the sake of brevity,
we list in Table 5 only the metamorphic relations identified by the
subjects for the Boyer program.

The results show that all the subjects could properly apply
metamorphic testing and assertion checking after training. In
general, they could identify a larger number of assertions than
metamorphic relations. Furthermore, their abilities to identify
metamorphic relations varied.

In particular, we observe that all 38 subjects managed to propose
metamorphic relations after some training for each of the three
open-source programs. It confirms the belief by the originators of
MT that testers can formulate metamorphic relations effectively.

5.2 Comparison of Fault Detection
Capabilities

We use the subjects’ metamorphic relations, assertions, and
source and follow-up test cases to test the faulty versions of
the target programs. The mutation detection ratio [1] is used
to compare the fault detection capabilities of MT and assertion
checking strategies. The mutation detection ratio of a test set is
defined as the number of mutants detected by the test set over the
total number of mutants. For metamorphic testing, a mutant is
detected if a source test case and follow up test cases executed
on the mutant do not satisfy some metamorphic relations. For
assertion checking, a mutant is detected if a mutated statement is
executed by a test case to enter an erroneous state that triggers an
assertion statement.

For the sake of fairness, we applied these two methods to the
same set of test cases separately. The source and follow-up test
cases from metamorphic testing were both applied to assertion
checking. The average sizes of the test suites (including source and
follow-up test cases) used by all students for the three programs
were 19.9, 22.2, and 16.8, respectively. We also analyzed all
the mutants manually before testing and removed the equivalent

Proceedings of the Third International Workshop on Software Quality Assurance (SOQUA’06)

10



Table 3: Number of Mutants by Operator Category
AOD AOI AOR COD LOI ROR LOR COR COI ASR Total

Boyer 1 85 14 0 24 16 3 2 1 5 151
BooleanExpression 3 86 3 1 22 27 0 3 0 0 145

TxnTableSorter 8 226 16 0 71 43 2 7 5 0 378

Table 4: Number of Mutation Operators and Assertions
Metamorphic Relations Assertions

Class Total Mean Max Min StdDev Mean Max Min StdDev
Boyer 18 2.79 5 1 1.66 6.96 43 1 8.94

BooleanExpression 39 5.00 12 1 3.01 11.35 49 1 9.69
TxnTableSorter 25 2.68 7 1 1.59 10.97 36 2 10.97

Table 5: Metamorphic Relations for Boyer Program
Description

1 (x2 = x1 + s) & (y2 = y1) & ( f (x1, y1) >−1)⇒ f (x1, y1) = f (x2, y2)
2 (x3 = x1 + x2) & (y1 = y2 = y3) & ( f (x1, y1) =−1)⇒ f (x3, y3)≤ f (x2, y2)+ len(x1)
3 (x1 = x2) & (y2 = y1.substr(0, len(y1)−1))⇒ f (x2, y2)≤ f (x1, y1)
4 (x3 = x1 + x2) & (y1 = y2 = y3) & ( f (x1, y1) =−1) & ( f (x2, y2) >−1)⇒ f (x3, y3)≤ f (x2, y2)+ len(x1)
5 (x2 = upperlowercase(x1)) & (y2upperlowercase(y1))⇒ f (x1, y1) = f (x2, y2)
6 (x2 = offset(x1)) & (y2offset(y2))⇒ f (x1, y1) = f (x2, y2)
7 (x1 = x2) & (y2 = y1.substr(0, len(y1)/2))⇒ f (x2, y2)≤ f (x1, y1)
8 (x2 = x1.substr(1, len(x1)−1)) & (y1 = y2)) & ( f (x1, y1)≥ 1)⇒ f (x2, y2) = f (x1, y1)−1
9 (x2 = x1 + y1) & (y1 = y2)) & ( f (x1, y1) =−1)⇒ f (x2, y2)≥ len(x1)− len(y1)

10 (x2 = reverse(x1)) & (y2 = reverse(y1))) & ( f (x1, y1) >−1)⇒ f (x2, y2) >−1
11 (x2 = x1.substr(0, f (x1, y1)) & (y1 = y2) & ( f (x1, y1) >−1)⇒ f (x2, y2) =−1
12 (x2 = x1.substr( f (x1, y1), len(x1)− f (x1, y1))) & (y1 = y2)) & ( f (x1, y1) >−1)⇒ f (x2, y2) = 0
13 (x2 = reverse(x1)) & (y2 = reverse(y1)) & ( f (x1/y1, y1) =−1)⇒ f (x1, y1)+ f (x2, y2)+2∗ len(y1)≥ len(x1)
14 (x2 = duplicate(x1)) & (y2 = duplicate(y1)) & ( f (x1, y1) >−1)⇒ f (x2, y2) = f (x1, y1)∗2
15 (x2 = x1.substr(0, f (x1, y1)+ len(y1)) & (y1 = y2)) & ( f (x1, y1) >−1)⇒ f (x2, y2) = f (x1, y1)
16 (x2 = reverse(x1)) & (y2 = reverse(y1)) & ( f (x1, y1) >−1)⇒ f (x1, y1)+ f (x2, y2)+ len(y1)≤ len(x1)
17 (x2 = reverse(x1)) & (y2 = reverse(y1))) & ( f (x1, y1) =−1)⇒ f (x2, y2) =−1
18 (x2 = x1.substr(0, f (x1, y1)+ len(y1))) & (y1 = y2) & ( f (x1, y1) >−1)⇒ f (x2, y2) = len(x2)− len(y2)
The function f (x, y) returns the index of pattern y within the string x if x contains y; otherwise, return −1.
(x1, y1), (x1, y1), and (x3, y3) are test cases for the function f (x, y). x1, x2, x3, y1, y2, y3, and s are arbitrary strings.
x+ y appends string y to string x. x/y removes string y from string x.
x.substr(m, n) returns a new string that is a substring of x. len(x) returns the length of string x.
upperlowercase(x) changes each character in string x from lower case to upper case and vice versa.
offset(x) offsets each character in string x to get a new string. reverse(x) reverses the string x.
duplicate(x) duplicates each character in string x to get a new string.

Table 6: Mutation Detection Ratios for Metamorphic Testing and Assertion Checking
Metamorphic Testing Assertion Checking p-

Class Mean Max Min StdDev Aggregate Mean Max Min StdDev Aggregate Value
Boyer 60% 93% 44% 0.13 98% 40% 66% 27% 0.12 81% < 0.001

BooleanExpression 63% 89% 46% 0.11 95% 39% 66% 30% 0.10 78% < 0.001
TxnTableSorter 59% 74% 32% 0.14 83% 37% 58% 22% 0.11 63% < 0.001

mutants. There were 19, 18, and 61 equivalent mutants for program
Boyer, BooleanExpression, and TxnTableSorter, respectively. We
did not include them when calculating mutation detection ratios as
these mutants cannot be detected by any test cases.

Table 6 reports on the mutation detection ratios for each program
using the two testing methods. It shows that the mutation detection
ratios by applying MT ranged from 44% to 93% for program Boyer,
from 46% to 89% for program BooleanExpression, and from 32%
to 74% for program TxnTableSorter.

Under the “Aggregate” columns are the percentages of mutants
detected by all subjects. For MT, the mutation detection ratios
were 98%, 95%, and 83%, respectively. They were significantly
better than the corresponding mutation detection ratios for assertion
checking. The p-value of the Mann-Whitney test was less than
0.001 in all cases. Hence, we reject the null hypothesis H0 on the

effectiveness of fault detection at a 99.9% confidence level.
Our empirical results show that metamorphic testing is effective

for object-oriented testing. On the other hand, there is a need
to propose more systematic methods for creating metamorphic
relations and assertions, since individual tester’s results were lower
than the aggregated results of all testers in either approach. The
average differences between the mean column and the aggregate
column for MT and assertion checking were 41.3% and 35.3%,
respectively. The standard derivations did not differ much
statistically. They ranged from 0.10 to 0.14, as shown in Table 6.

5.3 Comparison of Efforts
We would like to compare the time costs between metamorphic

testing and assertion checking. From the subjects’ submissions, we
found that they spent less time on applying assertion checking than
metamorphic testing.
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Figure 2: Box-and-Whisker Plots of Time Costs for Applying Metamorphic Testing and Assertion Checking

Figure 2 shows box-and-whisker plots of the time costs for
applying the respective strategies to the target programs. The
time cost for MT includes the time to identify and formulate
test cases, write functions to generate follow-up test cases, and
write functions to verify metamorphic relations. The time cost for
assertion checking includes the time to add assertions to the source
code.

The vertical axis of the figure shows the time cost in number of
hours. The bottom and top horizontal lines of each box indicate the
lower and upper quartiles. The whiskers, drawn as dotted vertical
lines, show the full range of the data. The median is drawn as
a horizontal line inside each box. A notch is added to each box
to show the uncertainty interval for each median. If two median
notches do not overlap, it indicates that there is a statistically
significant difference between the two medians at a 95% confidence
level.

The difference in time cost is acceptable, because the majority
of the subjects have had prior experience in assertion checking.
Figure 2 also indicates that the time cost for applying MT to
object-oriented testing is acceptable compared to that of assertion
checking. When we consolidate the comparisons in Sections 5.2
and 5.3, we find that MT provides a stronger oracle check with a
tradeoff of slightly more effort for preparation.

5.4 Further Discussions on MT
In general, we observe that the more MRs being used, the higher

would be the mutation detection ratio. As we have indicated in
Section 5.2, there is a need to propose more systematic methods
for creating metamorphic relations. The effectiveness of using an
MR also increases as we increase the number of test cases. Since
software testing resources are limited in real-life, it is also worth
investigating on the number of test cases adequate for MT.

Furthermore, it is desirable to know which MRs should be given
a higher priority. We analyzed the experimental results of Boyer
program as an example. A total of 18 metamorphic relations
were identified for this program. The fault detection capability of
each MR was different. In particular, four subjects only identified
metamorphic relation 1 in Table 5. The mutation detection ratios
resulting from the work by these subjects were no more than
60% no matter how many test cases they used. Other subjects
using metamorphic relation 4 or 12 in Table 5 achieved mutation
detection ratios higher than 80%, although some of them only
proposed four source test cases. It indicates that the quality of MR
can be a key factor in determining the effectiveness of MT. More
investigations are vital.

6. CONCLUSION
This paper reports on a controlled experiment to study the

application of metamorphic testing (MT). The main objective is
to evaluate whether MT is a useful and viable strategy and to
assess the cost and effectiveness of MT. The experiment indicates
that, after training, the subjects could apply MT to test programs
effectively. For all the three open-source programs under study, the
subjects could identify many useful metamorphic relations. The
results also suggest that MT is an effective testing strategy in terms
of fault detection capability. The time cost for applying MT is
acceptable compared with assertion checking.
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