

A Community-Centric Model for
Service Publication, Discovery, Selection, Binding, and Maintenance†

W. K. Chan ‡

Department of Computer Science
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

Lijun Mei
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

ljmei@cs.hku.hk

Zhenyu Zhang
State Key Laboratory of Computer Science

Institute of Software Chinese Academy of Sciences
Beijing, China

zhangzy@ios.ac.cn

Xiaopeng Gao
School of Computer Science and Technology

Beihang University
Beijing, China

gxp@buaa.edu.cn

Abstract— Services discovery, selection, composition, verification,
and adaptation are important in service-oriented computing.
Existing researches often study techniques to maximize the
benefits of individual services. However, following the power
laws, a small fraction of quality services offers their executions to
support a significant portion of all service requests. We argue
that locating and maintaining such a small and significant set of
services is important to the development of service-oriented
computing. In this paper, we propose the notion of adaptive
service-oriented community. A community consists of peer-
reviewed services, and only those operations of member services
that the community collectively exceeds a significance threshold
are discoverable and bondable. Services also select such
communities to bind to its requested operations primarily based
on their significance. Our proposal essentially raises a service
ecosystem from pursuing the benefits of individual services to
that of the community as a whole. Our model also has features to
make a namespace or a web service privacy-aware.

Keywords—service community, significance, adaptation,
privacy-awareness

I. INTRODUCTION

A web service is a process with public interface in a
standardized format. It sends messages to, and receives
messages from, other web services over standardized protocols.
To compose an application, multiple web services may
collaborate to form a service composition [17]. To ease our

presentation, this paper also refers a service composition to a
web service.

A precursor of such a collaboration is a criterion to locating
a set of candidate web services [11][13][21] followed by
matchmaking of their interfaces and protocols [9][18], ranking
of these candidate web services [8][11][22], and finally
identifying (i.e., selecting) a subset of these web services to
build a target application. Service discovery is the usual name
to describe such a mechanism.

Traditionally, process engineers conduct service discovery
at design time, and codify their service discovery decisions as,
for example, locators in WS-BPEL applications [20]. However,
design-time service discovery makes resultant service
compositions harder to respond to unplanned changes. For
instance, supposed that a trip planner service having a lower
brokerage fee than that of a participating service of an
application has published its interface publicly, a design-time
service discovery could be unable to alter the service
composition dynamically to use this newly published service.
A simple and existing solution is for a process engineer to
maintain the configuration or the code of a web service to
implement a required change, publish the interface of the new
service, and withdraw the preceding version of the interface.

A natural step toward automation is to let the service
deployment, publication of new interfaces and withdrawal of
existing interfaces be handled by a web service environment.
For instance, developers may add an interception level at the
underlying middleware of such applications so that a service
request can be diverted to a web service locator selectable at
run time [17]. Although such a mechanism dynamically binds a
service request to various web services, yet such an underlying
interception approach still requires the process engineers to
provide a designated web service (locator) in advance. In other
words, the problem of dynamic service discovery is still
outstanding.

__

† This research is supported in part by the General
Research Fund of the Research Grants Council of Hong
Kong (project no. 123207 and 717308), the Strategic
Research Grant of City University of Hong Kong (project
7002464), and the National High Technology Research and
Development Program of China (project no.
2007AA01Z145).

‡ Correspondence author.

2010 Fifth IEEE International Symposium on Service Oriented System Engineering

978-0-7695-4081-8/10 $26.00 © 2010 IEEE

DOI

303

To design a dynamic service discovery mechanism is
however challenging, which notably includes solving the
service matchmaking problem and the service selection
problem. Concisely, the service matchmaking problem is to
determine whether a pair of web services can collaborate, and
the service selection problem is to identify a candidate service
from a set of matched web services.

To address the matchmaking problem, researchers propose
techniques to determine whether the syntactic interface
protocols of web services are type-compatible, and if feasible,
to generate interface adapters to chain up these web services
[5]. Some techniques associate web services with semantics
information, usually in the form of an ontology, which
describes how a tag inscribed in a public syntactic interface is
related to some tags (through hypernym, hyponym, synonym,
antonym, and aggregation relations) inscribed on the public
syntactic interface of another web service.

Syntactic matchmaking [9][13] is more general than the one
using an ontology because the former kind does not assume the
existence of any semantic relations among the tags used by
different web service interfaces. Nonetheless, multiple
operations or web services with different behaviors may share
the same syntactic interface. Using pure syntactic matchmaking
may result in selecting candidate web services with unintended
behaviors.

To use syntactic matchmaking effectively, one needs a
follow-up service selection technique to address this problem
of incompatible behaviors or a similar kind. For instance, one
of the existing service selection techniques is to apply the
notion of majority voting strategy [19] as in fault tolerant
systems: All candidate web services execute the same set of
test cases. Their corresponding results are mutually compared
by stages, where at each stage, the current subset of candidate
web services with a non-majority result is discarded. Finally,
the technique identifies a pool of candidate web services with
identical test results. One may then select a web service from
this restricted candidate pool randomly or according to certain
functional or emerging requirements. Nonetheless, such a web
service may not match the expected behavior of the service to
be discovered.

Semantic matchmaking addresses the above-mentioned
unintended behavior problem, yet having an ontology or a
precise pre- and post-conditions for every operation of every
web service may severely compromise large-scale deployments
of web services. For instance, many successful medium to
large-scale software applications have no formal specification,
and existing web services APIs (such as the API provided by
Google, Amazon or Microsoft) are documented informally.

We observe that real-world web services usually provide
their clients a set of cohesive services, such as medical
services, trip planning services, or zip code lookup services. In
theory, the kinds of services provided by one web service can
be unlimited. In practice, a vast majority of web services is
domain-specific. That is, the kinds of functions offered by a
web service usually belong to the same domain. For instance,

http://www.webservicelist.com shows that there are service
categories for Stock Quotes, Payment API, Retail API, Healthcare,
Search, Content, Address, Access, to name a few. We also
observe that some generic services may merely aim at passing
the service test suites provided by Sun or Microsoft.

In each domain, each web service provides a kind of
services meaningful to the domain. For instance, on a Yellow
Page directory, we do not expect to find a hairdresser in the list
of medical doctors. Indeed, Yellow Page enforces this kind of
classification. Similarly, there are many research communities.
Each research community has its own signature conferences.
Each signature community talks in the same jargons, yet
different communities may use the same terminology to refer to
different concepts.

A namespace is a domain that can be codified in software
artifacts. Existing web services already use namespaces to
resolve various name references. Moreover, following the
notion of power laws, a small fraction of quality services offers
their executions to support a significant portion of all service
requests. Motivated by this widely accepted real-world
practice, in this article, we propose the notion of adaptive
service-oriented community, which is a namespace-centric
strategy, for service-oriented computing.

A community contains peer-reviewed services that they
may vote to accept a candidate service to join the community,
but are free to leave. Each service offers the community its set
of operations, which have been peer-reviewed by the current or
former member services of the community. On the other hand,
only those operations of member services that the community
collectively exceeds a significance threshold can be
discoverable by other services and bondable to service
requests. Services also select communities to bind to its
requested operations based on their significance, relevance and
quality requirements. Our proposal essentially raises a service
ecosystem from pursuing or maximizing the benefits of
individual services to that of a community.

Apart from using the notion of significance as an indicator
of the quality of a namespace, our model has a number of
unique features. A namespace may contain many web services
that have previously been validated to be compatible to existing
web services in providing a function with the same interface.
Our model probabilistically verifies the namespace in the spirit
of regression testing of software programs whenever there is
any change in its constitution.

Moreover, unlike many existing proposals essentially treat
a web services repository as a passive collection of web
services, a namespace in our model has its own behavior,
which is a collection of the non-deterministic choice
compositions of the compatible operations of the namespace.
Web services may rely on a namespace to select a requested
operation from a non-deterministic choice composition of the
namespace. Hence, rather than individual services being
benefited from the community, the services that support the
same non-deterministic choice compositions can collectively
benefit from such a design.

304

Moreover, the privacy of web services under a namespace
is protected by a few ways in our model. For instance, web
services may hide some operations when they join a
namespace. They may also choose to join a non-deterministic
choice composition for the namespace to resolve a web service
to fulfill a web request. Moreover, operations of a web service
that are not significant enough will remain unknown to other
web services or namespaces.

The main contribution of this paper is to propose a
significance-led model to formulate the notion of adaptive
service-oriented community.

We organize the rest of the paper as follows. In Section II,
it presents our model, followed by a review of related work and
a conclusion in Section III and Section IV, respectively.

II. MODEL

A. Namespace, Web Services, and Operations

In this section, we define some basic terminologies and
present our model.

Namespace: The basis of our model is a namespace. A
namespace models a community that a web service may join
and offers its (“professional”) behavior on behalf of the
community to other web services. We abstractly identify each
namespace by a unique identifier (i.e., an alphabet).

A namespace query q is a characterization of the intended
namespaces. We suppose that a global namespace repository is
available for q to operate. For instance, all namespaces can be
registered as entries in a UDDI repository, and one can use an
XQuery q to extract the matched namespaces kept in the
repository. To activate a query, there are many approaches such
as using an event-condition-action (ECA) approach where the
action is the query. Alternatively, it may on the process of a
web service to invoke such a query.

We proceed to define what a web service is and come back
to present additional properties of a namespace.

Web Services: We model a web service as a triple 〈w,Ψ, Ω〉.
In the triple, w is a unique identifier of the web service, Ψ is a
set of operation signatures provided by the web service, and Ω

is a set of triple in the form of 〈q, Δ, o〉. Each triple 〈q, Δ, o〉 is a
namespace query q, an operation signature Δ, and the operation
o (of a particular web service) to bind to this operation request.
A triple 〈q, Δ, o〉 models that w requests an operation with an
operation signature Δ from a namespace that is retrievable by
the query q (which can be a wildcard, denoted by *), and
finally resolves to use (i.e., bind to) o by w. To ease our
reference, we say such o as a requested operation.

When o is a wildcard, it means that no service has been
selected to bind to this service operation. A few possible
scenarios may lead to this condition. For instance, the service w
has not discovered any concrete service to implement this
requested operation. Alternatively, the requested operation has

been depreciated or is no longer available, and therefore, the
original bond defined in the above-mentioned triple in Ω is
outdated. If the requested operation is no longer available, our
model treats it as an undefined operation implementation as in
the first scenario.

To ease our reference, we use the notation namespace(o) to
refer to the namespace of the web service that binds to this
operation o. We refer to the set of concrete namespace captured
in Ω to be namespace(Ω).

Abstraction Operations of Namespaces: Whenever a web
service w joins a namespace n, in our model, the signature α of
each provided operation o of w is also appeared as an abstract
operation (signature) α of n. It is this abstract operation α to be
matched with a requested operation signature Δ specified in Ω
component of a web service.

In our model, a namespace may use its set of available
abstract operations to determine whether their requested
operations are accessible by web services, and to select one of
the operations to communicate with the requested web service.
We will present our idea in the section “Web Services
Joining/Leaving Namespaces”.

We recall that the namespace represents a community of its
joined web services. We further define the behavior of a
namespace (aka community) n as a collection of compositions
(in the sense of process algebra), each of which is a non-
deterministic choice composition of the compatible provided
operations of its member web services. Therefore, the behavior
of the namespace n changes as web services join n or leave it.

 Definition of Namespace: Put it all together, a namespace
is a triple 〈n, A, M〉 where n is the unique identity (alphabet) of
the namespace, A is the set of abstract operations currently
available at the namespace, M is the set of web services
currently joined the namespace.

Web Services Joining/Leaving Namespaces: A web
service w may join a namespace 〈n, A, M〉 or leave n
dynamically. To join n, the namespace employs a scenario-
based voting strategy to determine whether the community M
accepts w to join the namespace. Specifically, a web service 〈w, Ψ, Ω〉 has a set of provided operations Ψ, each of which shares
an abstract operation α (∈A) with an existing set Xα of web
services that currently join n. For each such abstract operation
α, the web service w submits a non-empty set of service
composition scenarios (denoted by SC) to the namespace n.
Each such service composition scenario is an operation
sequence (or a process) that w offers α to collaborate with a set
of “significant” web services from various namespaces (see
Section II.B for more details about significance.)

For each submitted service composition sc in SC, the
namespace executes the given scenario sc to ensure that the
scenario is also feasible with respect to w. Moreover, the
namespace randomly selects, with a uniform distribution, zero
or more web services from Xα. Such a selected web service w’
is to replace the position of w in sc so that the namespace can

305

“run” the service composition scenario sc[w’/w] to determine
whether w is behaviorally compatible with w’ in supporting sc.
(Note that sc[w’/w] stands for a service composition that every
occurrence of w is replaced by w’). To ease our reference, we
call w’ as a replacement candidate of w.

Each replacement candidate (say w’) in Xα votes on behalf
of the namespace on whether the namespace may accept w to
provide α. Moreover, the namespace also selects a subset of
existing service composition scenarios that offer α (each of
which is submitted by a current web service of the namespace)
and test w to provide α in executing these scenarios. These
current web services then vote to accept w to provide α or
decline w. We have obtained two voting decisions. The
namespace accepts w to provide α only if the results of both
votes are for w to provide α. We further note that this
bidirectional testing scenarios provide a continuous monitoring
and assurance on the quality of the namespace.

For instance, a resultant service abortion of sc[w’/w] may
indicate that w is incompatible to w’, or the resultant quality as
specified by sc is unacceptable to w’. In the former case, it
reveals that w does not provide compatible services as required
by the community M. In the latter case, the quality of w has not
reached the perceived average quality of the community that
offers α. Our model chooses to use the average quality rather
than the minimal quality of the community because our model
uses a random approach to selecting the set of replacement
candidates in the above-mentioned testing phase. In either case,
service abortion may result, which leads the replacement
candidate to vote for rejection.

As described above, a namespace uses a voting strategy
(e.g., majority voting strategy) to determine whether the
corresponding community accepts w to provide α. The web
service w is accepted by n only if every provided operation in a
given subset ΨS of Ψ is accepted by n. To ease our
presentation, we use a predicate vote(n,w) to denote whether or
not the namespace n accepts w.

Note that we choose to allow a web service to expose a
subset ΨS of Ψ for the web service to join a namespace. It is because a web service may choose to hide some of its operations from a namespace.

Adding an operation α1 by a web service w1 to a
namespace n1 is handled by the same scenario testing-voting
strategy to evaluate vote(n1,w1). Revoking an operation α1 of
w1 from n1 can be done by w1 without any precondition. A
revision of α1 of w1 is modeled by revoking α1 from n1
followed by adding α1 to n1 (or the other way round). To leave
a namespace n1, a web service must remove all its operations
from n1.

Namespace Maintenance: To maintain the community of a
namespace automatically, we observe that a web service may
cease to exist, an existing operation of a web service may be
obsolete, or the quality of an operation of a web service may
evolve and become below the average quality of the

community in the above-mentioned bidirectional continuous
testing.

To handle the first case, a namespace may invoke each web
service occasionally. To handle the remaining two cases, our
model uses the scenarios provided by “new” members as test
cases to validate existing members. We recall that adding an
operation α by a web service w to a namespace n must
accomplish with a non-empty set of service composition
scenarios SC. Whenever an operation α is accepted by the
namespace 〈n, A, M〉, the model randomly selects a subset
(probably empty) SCX of SC, and randomly selects a subset MX
of M such that each web service in MX has an operation
corresponding to the abstract operation α (∈ A). It then uses the
above-mentioned testing-voting strategy to decide whether
each selected web service w1 in MX can lead vote(n,w1) to be
evaluated to be true.

If vote(n,w1) is false, every operation α of this web service
w1 will be revoked from n. This mechanism is similar to
regression testing to assure software programs. Intuitively, all
requested operations specified in each web service will be
delinked (see Web Services section for more details).

There are several outstanding problems to be addressed.
First, a web service may add a provided operation with a new
signature to a namespace. Therefore, in principle, many
namespaces may offer operations sharing the same signature.
Existing web services may aim to limit the amount of
competing services in the same namespace. Second, if a web
service decides to offer an operation publicly, the web service
may wish to join a namespace that may maximize the potential
usage of the web service. We address these problems in the
next section.

B. Selection of Services by Significance

In Section II.A, each namespace 〈n, A, M〉 contains a set of
web services M, and each web service w (∈ M) links its set of
requested operations to a set of operations of some
namespaces. Conversely, each abstract operation α of n is
bound by a set of operations of web services that currently join
n or other namespaces. Using this link information, our model
computes the citation significance of the namespace, and uses
these significance indices to guide service selections.

Namespace Significance: Let us denote the number of web
services bound to an abstract operation α of the namespace n
by |α(n)|. To know the significance of a namespace n, we
apply the notion of h-index h(n) [10]: A namespace has an
index h if h of its abstract operations have at least h number of
web services bound to, and each of the remaining abstract
operations has at most h web services bound to. That is, h(n) =
|X| and X = {α ∈ A | 〈n, A, M, N〉 is a namespace ∧ |α(n)| ≥
h(n) ∧ |{ β ∈ A\X | h(n) ≥ |β(n)| }| = | A| − |X|}.

A necessary condition of an abstract operation α of n to
contribute to the h-index h(n) of the namespace is |α(n)| ≥
h(n). Our model restricts the selectable web services to be

306

those having |α(n)| ≥ h(n). In this connection, no abstract
operation χ having h(n) > |χ(n)| would be selectable until at
least h(n) competing web services offers χ in the same
namespace. This restriction aims to assure any selectable
abstract operations to be relatively significant (with respect to
the abstract operations of the namespace).

In our model, every selectable abstract operation α of a
namespace n (having |α(n)| ≥ h(n)) will share the same h-index
h(n). In other words, this h-index value becomes a threshold
for a service to be discoverable, selectable and bondable by
web services.

Hence, if the namespace n votes to reject a new candidate
operation α of a web service to join n aggressively, the h-
index of α of n may remain small in value. If there are
multiple namespaces providing the same abstract operation,
our service selection scheme (see below) will select a
namespace for the service discovery of the requested operation
based on their relative significance. Therefore, a namespace
having a smaller h-index value will receive fewer binding
opportunities than another namespace having a larger h-index
value. On the other hand, if a namespace is non-selective to
allow web services to join the namespace, many service
compositions using the operations of the namespace may
experience service transaction problems. Our model also has a
special feature in service selection to cope with this issue (see
Service Selection section for detail).

Service Selection: To locate a namespace to provide an
operation α, a web service w first discovers a series of
namespaces 〈n1, n2, …., nk〉, each of which offers α with a
parallel series of h-index values Hw,α = 〈h1, h2, …., hk〉. We
define Hw,α[i] = hi to ease our subsequent presentation.

Our model uses the normalized ratio of these h-index
values as the first estimate of the probabilities of selecting
individual namespaces to provide a requested operation: the
first estimate of the probability pi to select ni is Hw,α[i] / ∑j=1…k

Hw,α[j]. We call this estimate as the significance component of
our service selection assessment.

However, the operation provided by a namespace may be
irrelevant to w. Our model addresses this problem by using the
popularity of the requested link statistics of other web services
who share the same namespace with w in addition to the
above-mentioned probability.

Suppose that 〈n1, A, M〉 is a namespace such that w ∈M.
Let a web service in M \{w} be a triple 〈w2, Ψ, Ω〉, in which
the third component of each triple in Ω is an operation of a
web service.

Our model collects the set of namespaces from all such
web services in M−{w} that each web service has replied the
namespace that the web service is willing to fulfill the web
request. To simplify our presentation, we simply use M−{w}
rather than its subset under the above-mentioned restriction to
describe our model. In other words, we collect the set Z = ∪j∈Y

namespace(j) where Y = { o | 〈w2, Ψ, Ω〉 ∈ M−{w} and Ω =
〈q, Δ, o〉}. A namespace then computes the number of
occurrences of each namespace in the set Z, and let us denote
such a number for a namespace ni as ri. Our model further
computes the probability qi to select the namespace ni by ri /
∑j=1…|∇| rj, and we call it the relevance component of our
service selection assessment.

Our third component is the service quality experienced by
w. Each web service keeps the history of successful and failed
service collaborations (i.e., service transaction) with each
invoked service. We recall that each web service that provides
a requested operation joins exactly one namespace. Our model
computes the total number of successful service transactions
and failed service transactions for each namespace that w
perceives. Our model further uses the following ratio to stand
for the perceived execution quality of the namespace of w:
Number of successful service transactions ÷ (Number of failed
service transactions + Number of successful service
transactions). A web service w can maintain one such ratio for
each namespace. We use si to denote the normalized ratio for
the namespace ni and use it as the probability to select the
namespace as the quality component of our service selection
assessment.

Our model finally computes the geometry mean of the
above-mentioned three probability values, that is, the cubic
root of pi×qi×si to denote the relative probability of the service
to select the namespace to provide the operation. Nonetheless,
a relevant namespace may not be in the list of namespaces
whose provide the required operation. To address the zero
probability problem, in case that qi is zero but not pi, our
model substitutes this zero by a small positive constant ε,
which is defined as one-tenth of the mini{ non-zero sqrt(pi × qi
) } (i.e., the smallest non-zero geometric mean obtained) for
all discovered namespaces by the web service w for the
operation α.

The web service w finally uses this modified geometric
mean as the relative probability to select a namespace among
the discoverable namespaces to bind its α in its 〈q, Δ, α〉 to a
web service in the namespace, which is determined by the
namespace internally. Once this bond is established, the web
service uses this operation to serve its transaction.

C. Discussion

In this sub-section, we discuss various design decisions
made in our model.

Significance: The first aspect is the usage of significance.
H-index is based on the notion of power law. Apart from using
the current significance component formula, one may use
exp(Hw,α[i]) / ∑j=1…k exp(Hw,α[j]) or other strategies that align
with the power law property. Moreover, apart from using h-
index, there are quite a number of significance indexes such as
g-index. Our model can use these indexes instead of using h-
index. Finally, all available operations of the same namespace
share the same h-index value. This reduces the complexity of

307

our model and its presentation. A more dynamic design may
allow individual operations of each namespace to have their
own h-indexes.

Model Setting: The second aspect is about our model
setting. To estimate the relative probability of a namespace is
selected, this paper presents a model having three components,
namely, significance, relevance, and quality. Our model uses
geometric mean to integrate these three components to yield
one value. This approach can be extended in a similar way to
handle different combinations of components. Moreover, one
may replace geometric mean by other integrators.

However, to cope with some practical issue, we use a
modified geometric mean, which introduces an artificial
parameter in our model. Currently, we arbitrarily choose it to
be one-tenth of the smallest non-zero uses geometric mean of
two chosen components. It is interesting to replace it by a non-
parametric approach. However, our model has not formulated
it yet.

In the quality component, we use the ratio of two types of
service transactions as a criterion. We may further factor in the
Quality of Services (QoS) if there is a scalar metric to measure
the corresponding QoS dimension (e.g., performance).
Integrating multiple QoS dimensions can be done by the
geometric mean approach. Let us consider an example.
Suppose that x is a QoS random variable and x0 is the required
QoS threshold. we may compute the change in quality
between successful service transactions and failed ones:
Probability(x ≥ x0| service transactions are successful) −
Probability(x ≥ x0| service transactions are failed). Many
formulas can be set up to assess the quality. It is interesting to
explore them.

Second, our model assumes that after having the bond is
determined, services may use the bound services and evaluate
their suitability to serve the objectives of the former services.
We tend to believe that the best (i.e., the most significant) slice
of the namespaces as a whole would attract those widely used,
highest quality web services. At the same time, because these
widely used services are successful. They naturally attract
many other web services to offer similar functionality.

Our setting is designed to encourage providers of small
web services to offer individual (but compatible)
functionalities to compete with these widely used services. In
this case, the h-indices of these web services or the threshold
of the namespace may improve.

Efficiency and Effectiveness: The third aspect is about
the efficiency and the effectiveness of the model. Currently, to
maintain a community, there is a bidirectional testing, which
incurs many overheads. Our current solution is to apply a
sampling approach to selecting services to be “audited”. For a
large namespace or many test scenarios being available, the
approach can still be inefficient. It is interesting to study how
to improve the effectiveness of the model maintenance. One
of the concerns is our aggressive way to enforce an existing
web service to leave a namespace. Currently, the model

chooses to use the perceived average quality of the namespace
in a testing-voting mechanism for benchmarking. One may
choose other levels such as the 25% percentile or the
minimum rather than the perceived average quality.

Privacy-Awareness: The fourth aspect is about privacy-
awareness. In our model, there are a number of privacy
controls. First, an operation of a web service cannot be seen by
other web services until the corresponding abstract operation
reaches the significance threshold of the namespace.
Therefore, the web services that provide less significant
operations will remain unknown (i.e., undiscoverable) to the
other web services or namespaces.

Second, in fulfilling an operation request, our model
chooses to use a non-deterministic choice composition. It does
not allow a caller to identify a particular web services. Rather,
our model provides the namespace in question an opportunity
to resolve the web services to fulfill the web request. For
instance, the web request from a client web service can be
forwarded to individual web services for them to reply to the
namespace whether they allow the client web services to be
selectable. Based on the replies, the namespace may resolve
the non-deterministic choice composition internally. In this
design scenario, the web services involved in the choice
composition can be invisible to the client. Even the set of web
services can be somehow determined by the client, the non-
deterministic choice composition makes the client unable to
determine whether their target web service says “no” and
whether it is simply the choice resolution selects another web
service to fulfill the web request.

Third, a web service may hide some operations to be
visible to a namespace to be joined. This design further
protects the privacy of the web services under a namespace.

III. RELATED WORK

WS-Agreement [9] aimed to describe the (syntactic)
interface of service compositions. Oldham et al. [18] enhanced
it with semantics information. Based on such schemes or its
kind, researchers proposed to generate composition plans.

For instance, Mokhtar et al. [16] constructed such a plan
based on the automata descriptions of services. However, even
with such a plan, applications still need mechanisms to select
services to implement them. Casati et al. [4] pointed out that a
static service binding is often too rigid to adapt changes in
user requirements, to decouple service selection from process
definition, and to dynamically discovering the best available
service that satisfies a specific process definition. They used
rules and policies to guide the selection of services.

Other researchers also studied the problem of service
selection using static approaches such as pattern recognition
[24], Petri nets [23], and graph network analysis [8], or using
dynamic approaches to support diverse types of application
[4][13][16]. These ideas focused on the benefits of the service
consumers; whereas, our model focuses on the benefits of the
community of web services as a whole.

308

Many existing techniques selected services by using
nonfunctional quality attributes [1][2][11][18][21]. There are
also proposals to select services based on the functional aspect
such as the perceived successful executions [13] .

For instance, Bonatti and Festa [2] designed algorithms to
optimize the service matchmaking procedure at the service
level under different selection criteria. In our model, we
propose using a significance index as the primary criterion.
Our model also associates this criterion to operations, web
services, and namespaces. It seems to us that their algorithms
may be adaptable to operate on our criterion.

Ardagna and Pernici [1] proposed a flexible approach to
optimizing individual service compositions, in which they
modeled policies as user-provided utility functions. Similar to
[1], Xiong and Liu [21] studied a similar problem from the
trustworthiness perspective. Our model has not extended to
handle policies.

In service matchmaking, Lamparter et al. [11] captured
constraints in ontology and formulated efficient algorithms
based on their ontology proposal. In our model, we select
services based on their community significances, which can be
classified as a syntactic approach.

Like [13], we use a kind of link analysis technique to
formulate significance. Unlike [13], we do not use a random
walk approach to computing the popularity of node. Rather,
we use significance indexes directly with the aim of reducing
the computation overheads.

Bonatti and Festa [2] examined the service selection
problem as a multi-attribute decision problem. Unlike their
proposal, we use the notion of geometric mean to combine
multiple attributes to make decisions. Zeng et al. [22]
developed a middleware platform to select web services. They
performed service selection at the task level and globally,
which aims at maximizing user satisfactions. We have not
explored the efficient support from middleware yet.

Zhang et al. [23] proposed to use a Petri-net based
specification model for web services to facilitate verification
and monitoring of web service integration. In our model,
collaboration scenarios can be reused not only in testing, but
also in joining or monitoring web services of a namespace.

None of the above-reviewed studies considered service
activities at the community level. With the advance of cloud
computing [12][15], we may virtually consider that all web
services are kept in a cloud. Thus, distribution of significance
and binding information can be handled by the underlying
cloud infrastructure. This paper has not explored the execution
model of a service in a cloud [7].

Bucchiarone et al. [3] reported a survey in 2007. We
observed from their surveys and our own studies [6][14] that
many existing testing, analysis, and verification techniques
focused on checking individual service compositions or
services. It is interesting to know how to verify and validate a
service community. In our model, we test a community
whenever there is a change in membership.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have proposed a new kind of model to
formulate the notion of adaptive service-oriented community.
Our model essentially promotes to raise a service ecosystem
from pursuing or maximizing the benefits of individual services
to these of a community as a whole.

A pool of peer-reviewed web services may form a
community, in which compatible operations may be grouped
together by the community. We refer to a community as a
namespace. When a critical mass is reached, these operations
can be discoverable, selectable and bondable under the
namespace by other web services. We have proposed to use a
significance-centric metric to determine the threshold of
attaining the critical mass for individual namespaces.

In our model, a namespace has its own behavior, which is
the collection of all non-deterministic choice compositions of
the compatible operations of the namespace. Individual web
services may rely on the namespace to select a requested
operation from the non-deterministic choice Composition. We
have proposed to combine the namespace significance, the
relevance of the namespace of the web service to the
namespace that provides the operation, and the perceived
quality of the web services on the operation into one value, and
use this value to select a namespace probabilistically and select
a web service of a selected namespace non-deterministically. In
particular, the services that support the same non-deterministic
choice composition can benefit from such a design. The
significance-centric operation discovery and the non-
deterministic resolution of web services in a choice
composition provide opportunities for namespace and web
services to be privacy-aware.

Moreover, a namespace may contain web services that have
historically been verified to be compatible to the current or
former member web services of the namespace. Our model
probabilistically verifies the namespace in the sense of
continuous regression testing whenever there is any change in
its constitution.

Our model can be extended in multiple dimensions and still
have many rooms for improvements. It is interesting to conduct
experimentation to evaluate our proposal, and simplify our
model so that the model can be more usable in practice. We are
aware that we have not incorporated QoS or web services
semantics in a significant way. It is still unclear how web
services can be reasoned in our model.

REFERENCES

[1] D. Ardagna and B. Pernici. Adaptive service composition in
flexible processes. IEEE Transactions on Software Engineering
(TSE) 33 (6): 369–384, 2007.

[2] P. A. Bonatti, and P. Festa. On optimal service selection. In
Proceedings of 14th International Conference on World Wide
Web (WWW2005), pages 530–538, 2005.

309

[3] A. Bucchiarone, H. Melgratti, and F. Severoni. Testing service
composition. In Proceedings of the 8th Argentine Symposium on
Software Engineering (ASSE 2007). Mar del Plata, Argentina,
2007.

[4] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan.
Adaptive and dynamic service composition in eFlow. In
Advanced Information Systems Engineering, volume 1789 of
Lecture Notes in Computer Science (LNCS), pages 13–31.
Springer, Berlin, Germany, 2000.

[5] G. Castagna, N. Gesbert and, L. Padovani. A theory of contracts
for Web services. ACM Transsactions on Programming
Languages and Systems (TOPLAS), 31 (5): Article 19, 2009.
http://doi.acm.org/10.1145/1538917.1538920

[6] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. A
metamorphic testing approach for online testing of service-
oriented software applications. International Journal of Web
Services Research, 4 (2): 60–80, 2007.

[7] W.K. Chan, L. Mei, and Z. Zhang. Modeling and testing of
cloud applications. To appear in Proceedings of 2009 IEEE
Asia-Pacific Services Computing Conference (APSCC 2009),
2009.

[8] J. Gekas and M. Fasli. Automatic Web service composition
based on network analysis metrics. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3761 of LNCS, pages 1571–1587. Springer,
Berlin, Germany, 2005.

[9] Global Grid Forum. Web Services Agreement Specification (WS-
Agreement). Available at www.ogf.org/documents/GFD.107.pdf
(Last accessed Feb 10, 2010)

[10] J.E. Hirsch. An index to quantify an individual's scientific
research output. Proceedings of the National Academy of
Sciences of the United States of America (PNAS), 102 (46):
16569–16572, 2005.

[11] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm.
Preference-based selection of highly configurable web services.
In Proceedings of 16th International Conference on World Wide
Web (WWW2007), pages 1013−1022, 2007.

[12] L. Mei, W.K. Chan, and T.H. Tse. A tale of clouds: paradigm
comparisons and some thoughts on research issues. In
Proceedings of 2008 IEEE Asia-Pacific Services Computing
Conference (APSCC 2008), pages 464−469, 2008.

[13] L. Mei, W.K. Chan, and T.H. Tse. An adaptive service selection
approach to service composition. In Proceedings of the 6th IEEE
International Conference on Web Services (ICWS 2008), pages
70−77, 2008.

[14] L. Mei, W.K. Chan, and T.H. Tse. Dataflow testing of service
choreography. In Proceedings of the 7th Joint Meeting of the

European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundation of Software
Engineering (ESEC 2009/FSE-17), pages 151–160, 2009.

[15] L. Mei, Z. Zhang, and W.K. Chan. More tales of clouds:
software engineering research issues from the cloud application
perspective. In Proceedings of the 33rd Annual IEEE
International Computer Software and Applications Conference
(COMPSAC 2009), vol. 1, pages 525−530, 2009.

[16] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. In Rapid Integration of Software Engineering
Techniques, volume 3943 of LNCS, pages 129–144. Springer,
Berlin, Germany, 2006.

[17] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive
monitoring and service adaptation for WS-BPEL. In
Proceedings of Proceedings of 17th International Conference on
World Wide Web (WWW2008), pages 815–824, 2008.

[18] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic
WS-agreement partner selection. In Proceedings of 15th
International Conference on World Wide Web (WWW2006),
pages 697−706, 2006.

[19] W.T. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and R. Paul.
Testing Web services using progressive group testing. In
Content Computing, volume 3309 of Lecture Notes in Computer
Science, pages 314–322. Springer, Berlin, Germany, 2004.

[20] Web Services Business Process Execution Language Version 2.0.
OSAIS. Available at http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsbpel/ . (Last accessed 10 Feb 2010)

[21] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 16(7):179−194,
2004.

[22] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalag-
nanam, and H. Chang. QoS-aware middleware for Web services
composition. IEEE Transactions on Software Engineering
(TSE), 30 (5): 311–327, 2004.

[23] J. Zhang, C. K. Chang, J.-Y. Chung, and S. W. Kim. WS-Net: a
Petri-net based specification model for Web services. In
Proceedings of 2nd International Cofnerence on Web Servces
(ICWS 2004), pages 420–427, 2004.

[24] L.-J. Zhang, S. Cheng, Y.-M. Chee, A. Allam, and Q. Zhou.
Pattern recognition based adaptive categorization technique and
solution for services selection. In Proceedings of 2007 IEEE
Asia-Pacific Services Computing Conference (APSCC 2007),
pages 535–543, 2007.

310

