
IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017 403

Accuracy Graphs of Spectrum-Based Fault
Localization Formulas

Chung Man Tang, W. K. Chan, Member, IEEE, Yuen Tak Yu, Member, IEEE, and Zhenyu Zhang, Member, IEEE

Abstract—The effectiveness of spectrum-based fault localization
techniques primarily relies on the accuracy of their fault local-
ization formulas. Theoretical studies prove the relative accuracy
orders of selected formulas under certain assumptions, forming a
graph of their theoretical accuracy relations. However, it is unclear
whether in such a graph the relative positions of these formulas may
change when some assumptions are relaxed. On the other hand,
empirical studies can measure the actual accuracy of any formula
in controlled settings that more closely approximate practical sce-
narios but in less general contexts. In this paper, we propose an
empirical framework of accuracy graphs and their construction
that reveal the relative accuracy of formulas. Our work not only
evaluates the association between certain assumptions and the the-
oretical relations among formulas, but also expands our knowledge
to reveal new potential accuracy relationships of other formulas
which have not been discovered by theoretical analysis. Using our
proposed framework, we identified a list of formula pairs in which
a formula is consistently statistically more accurate than or similar
in accuracy to another, enlightening directions for further theoret-
ical analysis.

Index Terms—Accuracy graph, accuracy relation, fault localiza-
tion, program debugging, relative accuracy.

ACRONYMS

ERAO Empirical rank-ahead-of (relation).
SBFL Spectrum-based fault localization.
TRAO Theoretical rank-ahead-of (relation).
XCKX Work of Xie, Chen, Kuo, and Xu [63].

Manuscript received June 8, 2016; revised October 31, 2016 and December
28, 2016; accepted February 26, 2017. Date of publication May 3, 2017; date
of current version May 31, 2017. This work was supported in part by the
General Research Fund of the Research Grants Council of Hong Kong under
Project 111313 and 125113, in part by grants from the National Key Basic Re-
search Program of China under Project 2014CB340702, in part by the National
Natural Science Foundation of China under Project 61379045, in part by the
China Scholarship Council under Project 201604910232, and in part by the
Open Project Fund of the State Key Laboratory of Computer Science, Insti-
tute of Software, Chinese Academy of Sciences, Beijing, China under Project
SYSKF1608. Associate Editor: S. Li. (Corresponding author: Yuen Tak Yu.)

C. M. Tang and Y. T. Yu are with the Department of Computer Science,
City University of Hong Kong, Hong Kong (e-mail: c.m.tang@my.cityu.edu.hk;
csytyu@cityu.edu.hk).

W. K. Chan is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, and also with the State Key Laboratory of Computer
Science, Institute of Software, Chinese Academy of Sciences, Beijing 100864,
China (e-mail: wkchan@cityu.edu.hk).

Z. Zhang is with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing 100864, China, and also with
the Institute for Software Research, University of California, Irvine, CA 92697
USA (e-mail: zhangzy@ios.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2017.2688487

NOTATION

aep , aef Number of passed runs (aep) and failed runs
(aef) in which a program entity is executed.

anp , anf Number of passed runs (anp) and failed runs
(anf) in which a program entity is not executed.

Dy Dataset y for analysis of accuracy relations.
Fj A spectrum-based fault localization formula.
Gx The accuracy graph constructed from a dataset.
N A node in an accuracy graph.
Pk A subject program in this study.
Rw , Rb, Ra Ranking schemes for worst, best, average cases.
S A set s1 , . . . , sm of program entities si .
susp Suspiciousness score of a program entity.
T A test suite, i.e., a set t1 , . . . , tn of test cases ti .
V A faulty version of a (subject) program.

I. INTRODUCTION

PROGRAM debugging is the de facto approach to improve
the reliability of program code. One major challenge is to

locate the faults that cause failures [1], [66]. The state-of-the-
art techniques for this purpose, such as slicing [29], [57], delta
debugging [66] and spectrum-based fault localization (SBFL)
[27], [62], seek to either reduce [29], [57], [66] or prioritize [27]
the program code for further examination by the developers.

SBFL has received great attention in the last decade [62]. It
utilizes a program spectrum, which is an execution profile that
records which parts of the program are active during execution.
SBFL applies a formula to assign a suspiciousness score [27]
to each program entity based on the program spectra obtained
through a test suite. Such a formula is called an SBFL formula
(or simply a formula). The program entities are then ranked (by
their suspiciousness scores) for subsequent debugging activities.
Various types of program entities have been studied in SBFL,
such as statement [1], branch [69], and path [8].

Many empirical studies [23], [24], [27], [34], [44], [45], [47],
[51], [59], [60] have investigated the accuracy of formulas in
various contexts [62]. The relative accuracy of formulas is com-
monly quantified by their difference in the sizes of the rec-
ommended program entity lists that include at least one target
(faulty) program entity. If the sublist size recommended by a for-
mula is smaller than the sublist size recommended by another
formula, then the former is deemed more accurate.

Some theoretical studies [41], [63] analyze the relative
accuracy of formulas by mathematical proofs under certain

0018-9529 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

404 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

assumptions adopted in the SBFL literature, which we refer
to as the required assumptions, or the assumptions for short.
For example, both the model in [41] and the analysis in [63] are
valid only for a program with the fault residing entirely in the
same program entity. Under these assumptions, some formulas
were proved to be never less accurate than some other formulas,
and the accuracy of formulas in some groups were proved to be
always identical [41], [63]. These studies pioneered to build a
partial order hierarchy of accuracy relations based on the rela-
tive accuracy order of formulas. We call such a pairwise relation
of formulas a theoretical rank-ahead-of (TRAO) relation and the
accuracy relation observed in empirical settings as an empirical
rank-ahead-of (ERAO) relation.

Many formulas associated with known TRAO relations are in-
terconnected [63], forming a directed graph Gtheory (see Fig. 2)
with each formula or each group of equally accurate formulas as
a node and the TRAO relation between two nodes as a directed
edge [63]. We refer to a graph that captures the TRAO or ERAO
relations of formulas as an accuracy graph.

The assumptions made in theoretical analyses are, however,
seldom all valid in every real scenario. We thus ask two ques-
tions: 1) What do the accuracy graphs look like when certain
assumptions do not hold? 2) How can one expand known accu-
racy graphs to include formulas with no currently known TRAO
relations?

To answer these questions, we have developed a novel
methodology that empirically discovers the ERAO relations
among SBFL formulas based on sound and reliable statistical
techniques, leading to the systematic construction of empirical
accuracy graphs. Section III reports our methodology in detail.

Using our methodology, we performed an empirical study on
a benchmark of 17 well-known C and Java programs with real or
seeded faults, including 7 programs in the Siemens suite, space,
4 UNIX utility programs, and 5 Defects4J programs. By execut-
ing each faulty version against each corresponding test suite, we
identified whether they satisfied the required assumptions. With
this information, we constructed four kinds of combinations of
subjects (faulty program versions and test suites).

1) The “base” set, which satisfies all the assumptions;
2) another set, which satisfies all the assumptions but one;
3) a third set, which satisfies all the assumptions but another

one;
4) the full set, which contains every valid combination.
We computed the accuracy of the 30 formulas analyzed in the

work of Xie, Chen, Kuo, and Xu [63] (abbreviated as XCKX).
These 30 formulas are hereafter called the XCKX formulas.

Specifically, for every pair of XCKX formulas computed over
each set of combinations, we analyzed whether 1) one formula
was statistically more accurate than another formula, or 2) the
two formulas were statistically not significantly different in ac-
curacy. We used the Kruskal–Wallis test, which is a nonpara-
metric test to get rid of the assumption of normal distributions
in the dataset, to compare the accuracy of every formula pair
and then the multiple comparison test to compare all formulas
as a whole. If the relative accuracy of two formulas Fi and Fj

is consistent across all subjects, one of the following ERAO
relations is established.

1) Fi is consistently more accurate than Fj .
2) Fi and Fj are consistently similar.
3) Fi is consistently less accurate than Fj (see Section III-E).
From these ERAO relations, we constructed accuracy graphs

for each set of combinations to enable us to compare the ERAO
relations of the XCKX formulas with the TRAO relations. The
resulting accuracy graphs are called XCKX-formula graphs or
unexpanded graphs. We then expanded the XCKX-formula
graphs with additional nodes by computing the accuracy of
12 other SBFL formulas, called non-XCKX formulas. The re-
sulting (expanded) accuracy graphs consist of both XCKX for-
mulas and non-XCKX formulas and are simply called expanded
graphs.

The results of our experiment showed that, when all the re-
quired assumptions were satisfied, both the expanded and un-
expanded graphs included all the TRAO relations in Gtheory
proved in [63] (see Table V). Thus, using our construction
methodology, we successfully obtained a set of ERAO rela-
tions consistent with Gtheory . Our results also revealed extra
ERAO relations not found by previous theoretical studies. We
have identified a set of these extra ERAO relations, which appear
consistently in every empirically constructed accuracy graph in
our experiments. Since our model is statistical in nature, this set
of relations suggests a potential probabilistic version of TRAO
dependencies among the formulas for further theoretical stud-
ies, which are more general than what we currently know from
the literature [63]. Moreover, in the accuracy graphs that relaxed
a specific assumption, no edge of TRAO relation was reversed,
that is, the TRAO relations were still held in our empirical setting
despite the removal of some assumption(s). Furthermore, while
previous theoretical results have only proved two formulas to
be maximal in accuracy, our results have revealed a superset of
maximal formulas under typical or more generalized settings.
Thus, whenever the original two maximal formulas are used in
practice or in an experimental investigation, we suggest to also
include the other formulas in this superset of maximal formulas.

To the best of our knowledge, this is the first work that can sta-
tistically simulate the TRAO relations (obtained from theory)
empirically using the ERAO relations (obtained from experi-
ment) constructed through our novel methodology. The ERAO
relations that consistently appear in all expanded graphs offer
clues that the corresponding formulas may have unrevealed the-
oretical dependencies, which may suggest preferential regions
in the accuracy graphs for further theoretical studies. Unlike
previous theoretical analysis frameworks that heavily depend
on the investigator’s personal insights and ad hoc inspirations
to discover and prove TRAO relations for constructing the cor-
responding accuracy graphs, our methodology has provided a
mechanical and objective technique for investigators to sys-
tematically reveal empirical accuracy relations and construct
the accuracy graphs of any sets of SBFL formulas of inter-
est given the appropriate available experimental subjects and
settings. More importantly, unlike mathematical proofs rely-
ing on the efforts and intellectual ability of the researchers,
our methodology can be automated and thus a mega-scale
experiment can be conducted in the future which accelerates
the pace of research discovery.

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 405

The rest of this paper is organized as follows. Section II
revisits the preliminaries. Section III presents our empirical
framework and methodology of constructing accuracy graphs.
Section IV analyzes the accuracy graphs constructed from
our experiment and benchmarks with existing work. Sec-
tion V reviews the related work. Section VI concludes this
paper.

II. PRELIMINARIES

In this section, we introduce the background, notations, and
definitions that are essential for understanding this paper.

A. Spectrum-Based Fault Localization

Consider a faulty program version V (e.g., by exposing a
failure through testing). SBFL aims at including a faulty entity
in the program in its recommendation list by evaluating the
program spectra obtained from executing V over a test suite T =
{t1 , . . . , tn}, where ti denotes the ith test case and n denotes
the number of test cases in the suite.

A SBFL formula utilizes four variables (called SBFL vari-
ables) to compute a suspiciousness score, denoted as susp, of
each program entity in the set S = {s1 , . . . , sm} of all entities
of the program V. The score, susp, is used as an indication of
the fault-suspiciousness of the program entity s.

The four SBFL variables are as follows.
1) aep , the number of passed runs in which s is executed;
2) aef , the number of failed runs in which s is executed;
3) anp , the number of passed runs in which s is not executed;
4) anf , the number of failed runs in which s is not executed.
Here, a run refers to the execution of a test case of the program.
We chose statements as the program entities for empirical

evaluation, but our methodology is applicable to other choices
of entities such as branch [69] or object code instruction [54].

The suspiciousness scores are ranked such that a higher rank
(which has a smaller rank value) indicates that the entity is more
suspicious to correlate to a fault. In empirical studies, the faulty
entity is known and its rank value is usually used to compose a
metric of the formula’s fault localization accuracy.

The term accuracy has different meanings in various contexts
[1], [8]. In this paper, it is used strictly as a measure of the
precision of a formula in recommending a true positive (faulty
statement). It is defined as follows, whereby a smaller accuracy
value indicates a higher precision in fault localization.

accuracy =
Smallest rank value of the faulty statement(s)

Total number of statements in the faulty version

For instance, the SBFL formula, Naish2 [41], is defined as

suspNaish2 = aef − aep

aep + anp + 1

Fig. 1 shows a code excerpt of the flex program version 1
[13]. The excerpt consists of six executable source statements
(s1 − s6) in the function readin(), in which s3 is the faulty
statement. The correct implementation for s3 is as follows:
if ((fulltbl || fullspd) && reject).

Fig. 1. Code excerpt of the flex program version 1 (lines 847–861) [13].
Note: For clarity, blank line and compiler directives are not shown here.

TABLE I
EXAMPLE SBFL VARIABLES, SUSPICIOUSNESS SCORES, AND RANK VALUES

Note: The first column refers to the statements s1 − s6 in Fig. 1. The bottom row shows
the test verdict of the six test cases t1 − t6 (p = passed, f = failed). The rank values were
assigned by three ranking schemes Rw , Rb , and Ra , that represent the worst case, best
case, and average case scenarios, respectively.

Table I illustrates the use of the formula Naish2 to com-
pute the suspiciousness scores and rank values of the exe-
cutable statements in the code excerpt. The first column refers to
the statements s1 − s6 . The next six columns show the coverage
statistics of the statements obtained from executing the six test
cases t1 − t6 whereby, a cell having the value 1 (respectively 0)
indicates that the corresponding statement is covered (respec-
tively not covered) by each test case. The next five columns
show, respectively, the computed values of the four SBFL vari-
ables and the suspiciousness score. The bottom row shows the
test verdict of the six test cases t1 − t6 , where “p” denotes a
passed run and “f” denotes a failed run.

Consider s3 , which is exercised by two failed (t5 and t6)
and three passed (t1 , t2 , and t3) test cases. The values of
aef , anf , aep , and anp for s3 are 2, 0, 3, and 1, respectively,
and the suspiciousness score of s3 is computed as 1.4. The sus-
piciousness scores of the other statements are computed in the
same way as shown in Table I. All the entities in the program are
then assigned rank values based on their suspiciousness scores
by using a ranking scheme [40]. In this example, s2 and s5
have the same suspiciousness score of –0.4. The three rightmost
columns in Table I show the rank values Rw , Rb , and Ra of
s1 − s6 assigned by three ranking schemes, respectively, which
differ only when assigning ranks to entities of equal scores, as
explained below.

406 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

Fig. 2. Accuracy graph Gtheory of relations discovered by Xie et al. [63].

In Table I, Rw , Rb , and Ra denote the rank values assigned
by the modified competition ranking scheme (or the “1-3-3-4”
scheme), the standard competition ranking scheme (or the “1-2-
2-4” scheme), and the fractional ranking scheme (or the “1-2.5-
2.5-4” scheme) [40], respectively. The three ranking schemes
assign the largest possible, smallest possible, and mean rank
value, respectively, to every element of the same value (causing
a “tie”) in the ordered list. In some SBFL empirical studies,
these ranking schemes have been used for assigning ranks to
program entities to represent, respectively, the worst case, best
case, and average case scenarios [59] in computing the accuracy
of formulas, hence the notations Rw , Rb , and Ra .

B. Accuracy Relations Proved by Theoretical Analysis

Xie et al. [63] reported a theoretical analysis on 30 formulas
(the XCKX formulas) under certain assumptions. They proved
the following two key results mathematically. For every possible
program that contains a single fault, that is, a fault solely resided
in a single program entity, 1) some formulas always assign either
the same or a smaller rank value to the faulty program entity s
than some other SBFL formulas, and 2) there exist groups (called
ER groups) of SBFL formulas such that each group contains
multiple formulas and, within each group, all formulas assign
the same rank value to s. The first result establishes the relative
ordering of the accuracy values of most of the XCKX formulas,
and the second result partitions the set of XCKX formulas into
equivalence classes (either ER groups or individual formulas)
in terms of accuracy values. As mentioned in Section I, we refer
to these ordering and equivalence relations together as TRAO
relations for brevity.

Specifically, Xie et al. [63] identified six ER groups, referred
to as ER1–ER6, respectively. All the TRAO relations they dis-

TABLE II
SBFL FORMULAS STUDIED IN OUR EXPERIMENTS

Non

covered can be depicted in the form of an accuracy graph, which
we denote as Gtheory , as shown in Fig. 2.

Each node of Gtheory contains either an individual XCKX
formula or an ER group of two or more XCKX formulas. In
Fig. 2, each node of an individual formula is labeled by its name
and a unique identifier (e.g., “Cohen” and “F26,” respectively),
and each node of an ER group is labeled by its identifier (e.g.,
“ER1”) and the names of its member formulas (e.g., “Naish1,
Naish2”). For simplicity of language, hereafter when discussing
accuracy graphs, we shall refer to the content of a node simply
as a “formula,” which may actually be a single SBFL formula
or a group of SBFL formulas having equal or similar accuracy.
A directed edge → from node N1 to node N2 (denoted as
N1 → N2) in Gtheory means that for any formula Fi in N1 and
Fj in N2 , Fi is never less accurate than Fj . Table II includes a
complete list of the 30 XCKX formulas, their identifiers, names,
and ER groups.

The TRAO relations in Gtheory shows the relative accuracy
between any two XCKX formulas in a theoretical context. If
there is no TRAO relation from node N1 to node N2 , then the
formulas in N1 have not been proven to be more accurate than
(or equally accurate as) those in N2 . For example, no XCKX
formula is known to be always not less accurate than those in
ER5, as seen from Fig. 2 that ER5 has no incoming edge.

C. SBFL Assumptions

To render their theoretical analysis tractable, Xie et al. [63]
made a number of simplifying assumptions, many of which are
fundamentally required for the SBFL technique or for many

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 407

SBFL formulas to be meaningful or feasible. But on the other
hand, some of the assumptions may not hold in practice. One
of the strongest assumptions is that all failures are due to the
presence of one and only one fault in the program, and the fault
resides in one and only one program entity that is being ranked
via a formula. Another assumption requires at least one passed
test case and one failed test case in the test suite. Some formulas
will become undefined if there is no passed test case or failed
test case. Nevertheless, previous work [67] has shown that even
when only failed test cases are present, some formulas can still
produce a similar accuracy compared with the presence of ad-
ditional passed test cases. On the other hand, the absence of
failed test case indicates that there is no detected failure and,
thus, no debugging is needed. Chen et al. [7] further presented
a comprehensive discussion on the various explicit and implicit
assumptions as well as other practical issues for the theoretical
analysis in [63] to be valid and consistent with empirical evalu-
ation results. Furthermore, Abreu et al. [1] have shown in their
experiment that the difference in accuracy of some SBFL for-
mulas could be small if fewer test cases were used. A thorough
treatment of the assumptions and issues is beyond the scope of
this paper. Interested readers are referred to the papers [1], [7],
[41], [62], and [63] for more details.

We have asked a question in Section I on what Gtheory would
look like when relaxing certain assumptions. In this work, we are
interested in two specific assumptions. First, both the mathemat-
ical proofs in [63] and the model for analysis in [41] have only
assumed the single-fault scenario. This assumption is popularly
made in many prior empirical studies, while it has also been
acknowledged to be unrealistic. Although some prior empirical
work (such as [12]) reports that the issue of multiple faults in the
same program can be addressed to a certain extent, a full picture
on the relationships among nonsingle faults, ERAO relations,
and the accuracy graph Gtheory is still missing.

Second, the program spectra of crash runs collected are af-
fected by the underlying platform. Some profiling tools can only
collect the coverage information of a failed execution up to the
last visited Ball–Larus path [6] – which is an acyclic path of
a program under path profiling. These tools may miss the cov-
erage on that path if the execution crashes. Some other tools
can collect up to the last entity being executed. For instance,
if the current entity is the only one following the last executed
entity, then the faulty program entity can always be identified;
but not otherwise. Thus, the presence of crash run may violate
the requirement of anf = 0 for the faulty program entity in
theoretical analyses [63] as well as the common SBFL assump-
tion that “every failed test case executes at least one fault whose
execution causes the failure” [53].

Besides assumptions, the theoretical analysis in [63] is also
limited by its scope of having proved only the TRAO relations
among the 30 XCKX formulas. In principle, Gtheory can be
expanded by analyzing more formulas mathematically to reveal
more TRAO relations, yet speculating which potential TRAO
relations might exist and which would be promising candidates
for analytical proofs to be successfully constructed is not easy.
We have also asked in Section I for a feasible and replica-
ble methodology to both validate and expand Gtheory , thereby

opening up a pathway and paving a bridge to the more difficult
task of theoretical analysis with relaxed assumptions and/or ex-
panded scope to analyze more formulas. In any case, the results
of this study alone can inform us the ERAO relations under less
restrictive and more realistic assumptions and complement our
knowledge of the TRAO relations. To the best of our knowl-
edge, no prior empirical study has achieved these goals nor
produced any graphs that are directly comparable to the one
proved in [63].

III. EMPIRICAL FRAMEWORK AND METHODOLOGY

In this section, we present our empirical framework and
methodology for accuracy graph construction.

A. Benchmark Suite

We selected the following 17 subject programs. Twelve
subject C programs were downloaded from SIR [13]: seven
programs (P1 − P7) in the Siemens suite, space (P8), four
UNIX utility programs flex, grep, gzip, and sed (P9 − P12 , re-
spectively). The other five subject programs were Java pack-
ages downloaded from Defects4J [28]: JFreeChart, Closure
Compiler, Commons Math, Joda-Time, and Commons Lang
(P13 − P17 , respectively). The Siemens suite and UNIX util-
ity programs are seeded-fault subjects, while the others contain
real faults. The faulty statement(s) in each faulty version of a
program were determined by comparing the difference between
its source code and that of the bug-fixed version of the same
program.

For subjects downloaded from SIR, we also downloaded the
test pool and 1000 test suites of each of the Siemens suite
programs and the space program from SIR. According to [13],
these test suites were constructed by iteratively adding test cases
(randomly from the test pool) to each individual test suite in at-
tempting to exercise uncovered branches [13]. The UNIX util-
ities were downloaded with test pools but no test suite was
available from SIR. We developed a tool to generate 1000 test
suites for each UNIX utility subject program using the same
procedure as described in SIR above except that it attempted to
exercise uncovered statements rather than branches, as our study
took statements as program entities. That is, our tool generated
each test suite by randomly picking test cases one by one from
the test pool until achieving the same statement coverage as the
accumulated statement coverage of the entire test pool.

For subjects downloaded from Defects4J, they were real Java
programs containing real faults. Each subject was packaged
with multiple classes, and every class in the Java package was
associated with its corresponding JUnit test class. Although the
JUnit test cases were designed to test the individual units of the
programs, when they were executed, not only the program units
were covered, but many other parts of the programs beyond
the units were also covered. In the benchmarks, most classes
were not faulty. Nonetheless, for debugging purpose, we did
not know which classes were responsible to fail a test case in a
JUnit test class. Therefore, in SBFL assessment, we included the
executable statements in all these application classes as potential
candidates of faulty statements.

408 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

TABLE III
BENCHMARK SUBJECT PROGRAMS

There were JUnit test classes that contained no failed test
case when executed. Our experiment excluded these JUnit test
classes and their induced statistics in the data analysis.

To investigate the influence of using different amounts of test
cases on the reproduction of ERAO relations, we varied the size
of the test suites by randomly picking 75%, 50%, and 25% of
the test cases from the original test suites while ensuring that the
resultant smaller test suites still satisfied the assumptions made
in constructing the original test suites, with the only exception
of their extents of statement/branch coverage.

To maintain compatibility with the assumptions made in
Gtheory and to avoid some SBFL formulas to become undefined,
our experiment chose to ensure that every test suite included at
least one passed test case and one failed test case. For the same
reason, we also excluded every faulty version for which all its
associated test suites contained no failed test cases. We further
excluded some versions whose faulty entities could not be local-
ized, such as omitting an entire method that could not be referred
by the surrounding entities. In the end, the full dataset of our
experiment included 127 faulty versions in the Siemens suite,
34 faulty versions of the space program, 105 faulty versions
of the UNIX utility programs, and 324 faulty versions of the
Java programs, together with all their corresponding applicable
test suites (except those excluded due to the reasons explained
above). Table III shows the descriptive statistics of the subject
programs and test suites.

B. SBFL Formulas

It is impractical for an experiment to study an exhaustive list
of formulas. Our empirical framework is generic enough to in-

corporate new formulas as needed. To demonstrate the potential
of our framework, our study included all the formulas analyzed
in the two recent theoretical studies [41], [63], as well as three
recent formulas (CBT [61], D2, and D3 [60]) that were reported
to have outstanding accuracy. In total, we studied 30 XCKX for-
mulas and 12 non-XCKX formulas. We assigned an identifier
to each formula (such as F1 to stand for Naish1). A list of the
identifiers (ID), names, and membership of ER group (where
applicable) of all the 42 formulas studied are shown in Table II.
The exact mathematical formulas and their sources of reference
are listed in the online Appendix.

C. Environment and Tools

We performed data collection in a virtual machine configured
with Intel Xeon CPU X5560 @ 2.8 GHz × 4, 16 GB physical
memory and 1 TB disk storage. We used Ubuntu 12.04 LTS
(64-bit) as the platform for executing the instrumented subject
programs. To instrument C subject programs, we built a tool
on Pin 4.13 [37] to probe the program entities before executing
them to collect statement coverage up to program termination.
We compiled the C subject programs by gcc 4.6.3 using the de-
fault (no optimization) option with an argument “-gdwarf-2”
for injecting debugging information. We executed the Java
subject programs under the configuration that came with the
Defects4J framework, including Java 1.7.0_55, Perl 5.18.2, Git
1.9.1, and SVN 1.8.8.

We performed data analysis in a virtual machine with the
same configuration as above but with MS Server installed. We
implemented the programs for compiling the empirical data and
various other automation codes in C# using VS 2012 R2. We

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 409

TABLE IV
DATASETS USED TO CONSTRUCT ACCURACY GRAPHS

analyzed the data using MATLAB R2104b (8.4.0.150421) and
rendered the accuracy graphs using Graphviz 2.38 [15].

D. Datasets for Construction of Accuracy Graphs

Recall that we intended to construct accuracy graphs that
satisfy all or all but one of the assumptions, and then expand the
graphs with non-XCKX formulas. We refer to an accuracy graph
that contains XCKX formulas only as a XCKX-formula graph
or an unexpanded graph, and one that includes both XCKX and
non-XCKX formulas as an expanded graph.

To begin with, we should first find a way of empirical evalu-
ation that assesses the accuracy of XCKX formulas, compares
their relative accuracy to extract ERAO relations, and then com-
pares the latter with the TRAO relations in Gtheory . As a re-
sult, we constructed three XCKX-formula graphs and four ex-
panded graphs that display the ERAO relations of formulas.
Table IV summarizes the constituent datasets of these accuracy
graphs.

The first graph Gbase was constructed from the “base” dataset
D2 that satisfied all the assumptions of Gtheory . Specifically, to
align with the theoretical study [63] that created Gtheory , all
program versions in D2 can be executed by each test case in
their test suites in D2 without crash runs and every fault in
every faulty program version resided in one single statement
only, bearing in mind that we used statement as the program
entity.

The second XCKX-formula graph Gcrash was constructed
from the dataset D3 that satisfied all the assumptions except that
all the test suites in D3 included crashing runs. The third XCKX-
formula graph Gnonsingle was constructed from the dataset D4
that satisfied all the assumptions except that all the faults in
D4 were nonsingle. To clearly distinguish a single fault from a
nonsingle fault, we define the following criteria for classifying
a fault as single fault: 1) the fault resides in a single program
entity (which in this study refers to a single line in the source
code file), and 2) the entity itself does not contain compound
entities (such as a line consisting of multiple statements which
may cause short-circuit evaluation). A faulty entity that satisfies
these two criteria is considered as a single fault; otherwise, it is
a nonsingle fault.

We note that Xie et al. [63] explicitly assumed the absence of
omission faults in their theoretical analysis. None of the datasets
D2 −D4 contained faulty versions with omission faults.

The three expanded graphs Gexp , Gexp crash , and
Gexp nonsingle , which correspond to Gbase , Gcrash , and
Gnonsingle , were constructed by evaluating both XCKX and

non-XCKX formulas based on the datasets D2 , D3 , and D4 , re-
spectively. Finally, the expanded graph Gtypical was constructed
from the full dataset D1 which contains all valid combinations
of subjects (faulty program versions and test suites) regardless
of whether the assumptions are satisfied or not.

E. Data Analysis and Accuracy Graph Construction

We executed each faulty version of each subject with each test
case and extracted the coverage profile. For each test suite of
each faulty version, we applied each SBFL formula to compute
the suspiciousness scores of all the statements of the faulty
version. We applied each of the three ranking schemes (see
Section II-A) to compute a rank value for each faulty statement
and then the accuracy of that SBFL formula.

To choose appropriate statistical tools for comparing the ac-
curacy of formulas, we had performed a normality test to the
accuracy values computed from the formulas and the datasets
(D1 to D4). The hypothesis of a normal distribution was rejected
at the 5% significance level. Hence, we chose to use the Kruskal–
Wallis test, which is a nonparametric counterpart of the classical
one-way analysis of variance (ANOVA), to determine whether
the accuracy values computed by different formulas and datasets
came from the same population. The multiple comparison test
[22] was then used in conjunction with the Kruskal–Wallis test
to compare all the studied formulas together to determine which
groups of them were statistically similar or different. Bonfer-
roni correction was used to compensate the familywise error
of both tests. All such analysis tasks were accomplished with
MATLAB.

To describe the groupings of formulas, we used a popular
community function of MATLAB called my_ph_letters [3] that
converted results of multiple comparison tests into letter groups,
that is, a list (string) of English alphabets representing the rel-
ative order of the accuracy of the formulas. For instance, letter
“A” refers to the group of the most accurate formulas, letter “B”
refers to the next most accurate group, and so on. A formula may
belong to a group labeled by a single letter (e.g., a group with
label “A” containing the most accurate formulas) or a string of
two or more consecutive letters (such as “DEF”) in alphabetical
order. We refer to such a label as letter label. Groups of formulas
that share a letter in their labels are said to be similar, mean-
ing that their differences of accuracy values are (statistically)
insignificant, whereas the accuracy values of groups that do not
share a letter in their labels are (statistically) significantly dif-
ferent (From hereon, to avoid verbosity, the word “statistically”
will be omitted when it is clear from the context). For example,
a formula with the letter label “CD” is significantly less accu-
rate than another one with the letter label “B,” but the former is
similar in accuracy to the formula whose letter label is “DEF”
which shares the letter “D” with “CD.”

From the letter labels of all formulas, we determined the
accuracy relation between two formulas f1 and f2 with respect
to a subject program and a ranking scheme as follows.

1) f1 and f2 are in the same letter group, denoted as f1 � f2,
if the letter labels of f1 and f2 are exactly the same. In this
case, f1 and f2 are similar in accuracy.

410 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

Fig. 3. Functions for extracting accuracy relations and ERAO relations.
Note: The function GetLetterLabel retrieves the respective letter label of f1
and f2 with respect to p and r from MATLAB using the community function
my_ph_letters [3] as explained in Section III-E of this paper.

2) f1 is more accurate than f2, denoted as f1 > f2, if all letters
in the label of f1 precede all those of f2, or equivalently,
the ending letter of the label of f1 precedes the begin letter
of the label of f2, e.g., when the labels of f1 and f2 are “A”
and “BC,” respectively.

3) f1 is less accurate than f2, denoted as f1 < f2, if f2 is more
accurate than f1.

4) Otherwise, if none of the above three cases apply, then f1
and f2 are not in the same letter group but are still similar
in accuracy (as they share at least one letter in their labels
and, hence, their difference in accuracy is statistically
insignificant), denoted as f1 � f2, e.g., when their labels
are “BC” and “CD,” respectively.

Fig. 3 shows the function, Compare, to implement the above
four cases for determining the accuracy relation between two

formulas f1 and f2 with respect to a subject program p and a
ranking scheme r, based on the letter labels returned by the
function GetLetterLabel which retrieves them from MATLAB
using the community function my_ph_letters [3] as explained
earlier in this section.

There were 17 subject programs and 3 ranking schemes,
yielding 51 accuracy relations for each formula pair and dataset.
By comparing the accuracy relations of each formula pair in
each dataset, we went on to analyze whether a formula in the
pair was, across all 17 subject programs and all three ranking
schemes, consistently similar to or consistently more accurate
than the other, or otherwise.

Two formulas f1 and f2 are said to be consistently similar (in
accuracy), denoted as f1 ∼ f2, if they are similar in accuracy to
each other (that is, f1 � f2 or f1 � f2) with respect to all subject
programs and all ranking schemes or, equivalently, f1 is neither
more accurate nor less accurate than f2 (that is, f1 � f2 and
f1 � f2) with respect to any subject program and any ranking
scheme.

A formula f1 is said to be consistently more accurate than
another formula f2, denoted as f1 → f2, if (a) f1 is more ac-
curate than f2 (that is, f1 > f2) with respect to at least one
subject program and one ranking scheme, and (b) f1 is not
less accurate than f2 (that is, f1 � f2) with respect to any sub-
ject program and any ranking scheme. In such a case, we also
say that f2 is consistently less accurate than f1, denoted as
f2← f1.

Two formulas f1 and f2 are said to have an ERAO relation
with each other if either one of the following is true: (f1→ f2)
or (f1← f2) or (f1 ∼ f2). On the other hand, if none of these is
true, then f1 and f2 have no ERAO relation, denoted as f1 Δ f2.

Fig. 3 also shows the function, Extract ERAO relations, for
extracting all ERAO relations for further data analysis.

The ERAO relations are our empirical analog of the TRAO
relations developed in the theoretical analysis of Xie et al. [63].
To ease comparison, we overload the same notations→,←, and
∼ to represent the corresponding TRAO relations even though
the latter were not defined in statistical terms. When all the
ERAO relations with respect to a dataset are extracted, an em-
pirical accuracy graph can be constructed in a similar way that
Gtheory can be constructed from the TRAO relations discovered
in [63], as elaborated toward the end of this section.

Fig. 4 illustrates the construction of an accuracy graph by
means of a small example. Fig. 4(a) shows a table of the letter
labels of seven formulas (Fa − Fg) with respect to six subject
programs (Pu − Pz) and a particular ranking scheme (for
simplicity, this example considers only one ranking scheme
instead of all three). The two functions shown in Fig. 3 can be
used to transform the table of letter labels in Fig. 4(a) to the table
of ERAO relations in Fig. 4(b), from which the accuracy graph
shown in Fig. 4(c) can then be constructed, as detailed below.

For instance, consider the formulas Fa and Fb . With respect to
Pu , the letter labels of Fa and Fb are “A” and “BC,” respectively.
Now we have Fa > Fb because “A” precedes “BC.” Similarly,
with respect to Pw and Px , we also have Fa > Fb . On the other
hand, with respect to Pv , we have Fa ≈ Fb because the letter
labels of Fa and Fb are “BC” and “AB,” respectively, which

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 411

Fig. 4. Example for constructing an accuracy graph of formulas∗. (a) Letter
groups of formulas with respect to subject programs. (b) The ERAO relations
extracted from the table in (a). (c) Legend for Fig. 5: the accuracy graph con-
structed from the table in (b).
Note:∼means that the two formulas are consistently similar.→means that the
formula at the left (row label) is consistently more accurate than the formula at
the top (column label).← means that the formula at the left is consistently less
accurate than the formula at the top. Δ means that no consistent ERAO relation
can be established between the formulas at the left and the top.
∗For simplicity of language, the term “formula” refers to either an individual
SBFL formula (e.g., F33) or an ER group of formulas (e.g., ER2).

share the letter “B” but are not identical. Finally, with respect
to Py and Pz , we have Fa ≡ Fb because their letter labels
are identical. Thus, the set of accuracy relations between Fa

and Fb is {>, �, �}, which contains > but not <. Therefore,
Fa → Fb . Thus, in Fig. 4(b), the symbol “→” is filled in the cell
that intersects the row Fa and the column Fb , and the symbol
“←” is filled in the cell that intersects the row Fb and the column
Fa .

As another instance, consider the formulas Fa and Fc . With
respect to Pu , their letter labels are “A” and “B,” respectively.
Now we have Fa > Fc because “A” precedes “B.” Similarly,
with respect to Pw − Py , we also have Fa > Fc , but with re-
spect to Pv and Pz , we have Fa < Fc . Thus, the set of accuracy
relations between Fa and Fc is {<, >}. As there is no consistent

accuracy relation, we have Fa ΔFc . Thus, in Fig. 4(b), the
symbol “Δ” is filled in the cell that intersects the row Fa and
the column Fc , as well as the cell that intersects the row Fc and
the column Fa . Other cells in Fig. 4(b) can be filled in a similar
way.

From the table in Fig. 4(b), we can construct the accuracy
graph in Fig. 4(c) as follows. We first construct a simple node
to represent each individual formula, using a rectangular shape
for an XCKX formula node and an oval shape for a non-XCKX
formula node. When a formula f1 is consistently more accurate
than another formula f2 (that is, f1→ f2), we construct a directed
edge (shown as dashed arrow) from the node f1 to the node f2,
such as the one from Fc to Fg . If a group of formulas (e.g.,
{Fb, Fe}) are consistently similar and all of their incoming and
outgoing edges are the same, we enclose the formulas in a larger
rectangle to form a composite node. If all the formulas in two
nodes (such as the simple node Fd and the composite node
containing {Fb, Fe}) are consistently similar but have different
incoming or outgoing edge(s), we join the two nodes with a thick
undirected edge. To avoid excessive edges that degrade graph
readability, we perform transitive reduction [2] before rendering
the graph. For instance, since Fa → Fb and Fb → Ff , the edge
that represents Fa → Ff is omitted in Fig. 4(c).

A formula in an accuracy graph [e.g., Fc in Fig. 4(c)] is called
maximal if no other formula is consistently more accurate than
it. A node is called maximal and shaded in yellow if it has
no incoming directed edge. At the other extreme, a formula is
called minimal [e.g., Fg in Fig. 4(c)] if it is not consistently
more accurate than any other formula, and a node is minimal if
it has no outgoing directed edge.

We extracted all ERAO relations among the XCKX formulas
from datasets D2 −D4 to construct the XCKX-formula graphs
Gbase , Gcrash , and Gnonsingle , respectively, and all ERAO rela-
tions among all the 42 formulas (30 XCKX and 12 non-XCKX
formulas) from datasets D1 −D4 to construct the expanded
graphs Gtypical, Gexp , Gexp crash , and Gexp nonsingle , respec-
tively.

IV. ANALYZING THE ACCURACY GRAPHS

This section analyzes the accuracy graphs constructed from
our experiment, summarizes our findings, and compares with
prior SBFL empirical results.

Fig. 5 shows the seven accuracy graphs constructed
from datasets D1 −D4 : the three XCKX-formula graphs
Gbase , Gcrash , and Gnonsingle in subfigures (b’), (c’),
and (d’), respectively, and the four expanded graphs
Gtypical, Gexp , Gexp crash , and Gexp nonsingle in subfigures (a)–
(d), respectively. The reader may refer to Fig. 4(c) which also
serves as a legend for interpreting the shapes of nodes and edges
of the graphs in Fig. 5.

A. Qualitative Analysis

1) Characteristics of XCKX-Formula Graphs: First, we ex-
amine the characteristics of XCKX-formula graphs. Gbase was
constructed from the dataset D2 . The ERAO relations in Gbase
depicted in Fig. 5(b’) are highly consistent to Gtheory . It shows

412 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

Fig. 5. Accuracy graphs constructed from this empirical study.
Note: Refer to Fig. 4(c) for the legend to the graphs in this figure. Graphs shown in (b), (c), and (d) were constructed from the same datasets as those for the graphs
shown in (b’), (c’), and (d’), respectively, but the former were expanded to include non-XCKX formulas in the analysis while the latter included XCKX formulas
only.

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 413

that through our methodology, we successfully constructed
Gbase , with Gtheory as its proper subgraph. Like Gtheory , Gbase
has two disjoint subgraphs with maximal nodes ER1 and ER5,
respectively, and the subgraph of ER1 forms a cluster of con-
nected nodes of all XCKX formulas except ER5. The least
accurate formulas are in the group ER4. Furthermore, Gbase
contains 13 new edges that are not present in Gtheory . The new
edges are ER2→ F25 , ER6→ ER4, F24 → ER6, F24 → F27 ,
F25 → ER6, F26 → F25 , F27 → ER4, F31 ∼ F33 , F33 → F34 ,
F33 → F38 , F34 → F24 , F34 → F26 , and F38 → ER4. That is,
the TRAO relations of Gtheory have been enriched to Gbase with
previously unknown ERAO relations.

Gcrash was constructed from the dataset D3 . Fig. 5(c’) shows
that, similar to Gbase , Gcrash has two subgraphs with maximal
nodes ER1 and ER5, respectively. The least accurate formulas
are also in the group ER4. Interestingly, while the layouts of
Gcrash and Gbase look different, none of their edges is in the
reverse direction of those in Gtheory . In addition, Gcrash contains
25 new edges that are not present in Gtheory . They are ER2→
ER6, ER2→ F24 , ER2→ F25 , ER2→ F26 , ER2→ F27 , ER2
∼ F31 , ER2 ∼ F34 , ER6 ∼ F27 , F25 ∼ F26 , F31 → ER6, F31
→ F24 , F31 → F25 , F31 → F26 , F31 → F27 , F31 ∼ F34 , F33 →
ER2, F33 → F31 , F33 → F34 , F33 → F38 , F34 → ER6, F34 →
F24 , F34 → F25 , F34 → F26 , F34 → F27 , and F38 → ER4.

Gnonsingle was constructed from the dataset D4 . Fig. 5(d’)
shows that Gnonsingle has two subgraphs, one with maxi-
mal node ER1, and the other with maximal node ER5. Like
Gtheory , Gbase , and Gcrash , a cluster is formed with ER1 while
ER5 forms a separate unconnected node, and the least accurate
formulas are in group ER4. Again, Gtheory is a proper subgraph
of Gnonsingle . Gnonsingle contains 13 new edges that are absent
in Gtheory , namely, ER2→ F25 , ER2→ F27 , ER6→ ER4, F24
→ F25 , F24 → F27 , F25 → ER3, F25 → ER6, F26 → F34 , F27
→ ER6, F31 → F24 , F31 ∼ F33 , F33 → F34 , and F38 → ER4.

Result 1a: The three XCKX-formula graphs reveal new
ERAO relations atop the TRAO relations of Gtheory . More-
over, none of the ERAO relations is contradictory to the
TRAO relations of Gtheory . All these three graphs are in-
deed strikingly similar in revealing TRAO relations. They
validate that the TRAO relations in Gtheory appear to be
robust with respect to the specific changes in assumption
under study represented by these datasets, and the proven
TRAO relations are empirically sound even when not all the
assumptions hold.

2) Bridging Relative Accuracy Between Experiment and
Theory: Next, we examine the extents of reproduction of TRAO
relations (in Gtheory) with ERAO relations in the empirical
graphs. Two kinds of TRAO relations can be revealed from
Gtheory : 1) direct TRAO relations that are shown as directed
edges (such as ER1→ ER6) in Gtheory , and 2) indirect TRAO
relations that can be inferred through the direct TRAO relations,
such as ER1→ F24 inferred from ER1→ F33 and F33 → F24 .

Table V shows whether the 14 direct and 10 indirect relations
in Gtheory are present in the empirical accuracy graphs. In the

TABLE V
REPRODUCTION OF TRAO RELATIONS IN EMPIRICAL ACCURACY GRAPHS

2nd to 5th columns of the table, the symbol � indicates that the
corresponding TRAO relation (→ or ∼) in Gtheory is observed
in the empirical graph, � indicates that the TRAO relation (→)
in Gtheory is observed as the “consistently similar” relation (∼)
in the empirical graph, and × indicates that the TRAO relation
in Gtheory “disappears” (i.e., is not found) in the empirical
graph.

Gtypical was constructed from the full dataset D1 that includes
all valid combinations of faulty program versions and test suites
regardless of whether the assumptions are satisfied or not. It
was chosen to reflect the typical scenarios in practice where
a myriad of realistic causes (such as the presence of omission
faults and/or platform dependent failures) might arise violating
one or more of the assumptions.

As seen from Table V, Gtypical only reproduces 5 (=36%
out of 14) direct TRAO relations and 6 (=60% out of 10)
indirect TRAO relations while the remaining TRAO relations
in Gtheory are all absent in Gtypical . The proportions of disap-
peared direct and indirect TRAO relations are 64% and 40%,

414 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

respectively. By contrast, both Gbase and Gexp reproduce all the
TRAO relations in Gtheory . This finding provides encouraging
supporting evidence that our framework and methodology of
empirically replicating and expanding the TRAO relations as
well as revealing new ERAO relations rests on a strong basis.

For the graphs constructed by relaxing a specific assump-
tion, each of Gcrash , Gexp crash , Gnonsingle , and Gexp nonsingle
reproduces 12–14 direct and 9–10 indirect TRAO relations,
constituting 86–100% and 90–100% of the TRAO relations,
respectively. The “disappeared” TRAO relations (F31 → F34 ,
F34→ ER2, and F31→ ER2) actually become consistently sim-
ilar relations (F31 ∼ F34 , F34 ∼ ER2, and F31 ∼ ER2) in the
empirical graphs. In other words, even though one formula in
such a pair is theoretically proved to be never less accurate than
the other, they are empirically found to be similar in statisti-
cal terms. This finding complements the theoretical analysis by
providing a more precise picture of the relationships in practical
scenarios.

Result 1b: The empirical accuracy graphs reproduce the
TRAO relations of Gtheory to different extents. Gtypical only
reproduces 36% direct and 60% indirect TRAO relations
in Gtheory ; the others disappeared in our empirical accu-
racy graphs. Gbase and Gexp reproduce all the TRAO rela-
tions of Gtheory . The graphs constructed by relaxing a spe-
cific assumption, Gcrash and Gnonsingle (or Gexp crash and
Gexp nonsingle), reproduce 86–100% direct and 90–100% in-
direct TRAO relations, while the remaining TRAO relations
become the “consistently similar” relation. The TRAO rela-
tions appear to be quite robust with respect to the violation of
only one of the required assumptions (single fault or absence
of crash run) of Gtheory , which is interesting. However, most
of the TRAO relations do not hold when multiple assump-
tions are violated.

Results 1a and 1b consolidate the underpinnings of our
methodology on how additional formulas can be incorporated
to expand accuracy graphs.

3) Characteristics of Expanded Graphs: We now exam-
ine the characteristics of the expanded graphs, beginning with
Gtypical .

First, we compare the ERAO relations of Gtypical with the
TRAO relations of Gtheory . Fig. 5(a) shows that Gtypical con-
sists of two clusters of connected nodes with the maximal
nodes ER1a , ER1b , ER5a , F39 , F41 , and F42 . We observe
that even if some formulas (in the same ER group) have
been proved to be equivalent in accuracy, they may exhibit
very different relative accuracy in typical scenarios, which is
interesting.

ER1 in Gtypical is one such instance. Its two member formulas
Naish1 and Naish2 have significantly different accuracy values
and they bear no ERAO relation. They are two separate nodes
labeled as ER1a and ER1b , respectively, in Gtypical . ER5 is an-
other instance, which is split into two connected nodes ER5a
and ER5b in Gtypical . It again illustrates that the TRAO rela-

tions do not necessarily hold in typical scenarios. Furthermore,
Gtypical also reveals new ERAO relations that do not appear in
Gtheory .

We next examine the characteristics of the expanded graphs
that supplement the existing theoretical framework with ERAO
relations derived from both XCKX and non-XCKX formulas.

Fig. 5(b)–(d) shows Gexp , Gexp crash , and Gexp nonsingle ,
respectively. After incorporating 12 non-XCKX formulas, as
expected, the graphs Gbase , Gcrash , and Gnonsingle were ex-
panded to include more nodes and edges in Gexp , Gexp crash ,
and Gexp nonsingle , respectively, rather than merging them into
the existing nodes and edges. In comparing the unexpanded
graphs with their expanded ones, we observe several common
characteristics. In each of the unexpanded graphs, both ER1 and
ER5 are the maximal nodes, while ER4 contains the least accu-
rate formulas. In all the expanded graphs except Gtypical , both
ER1 and ER5 remain to be maximal and ER4 remains to be the
least accurate group of formulas, but now ER1 is consistently
similar to the non-XCKX formula F39 , ER5 is consistently sim-
ilar to the non-XCKX formula F36 , and ER4 is consistently
similar to the non-XCKX formula F32 . Besides, ER2 is consis-
tently similar to the non-XCKX formula F30 .

4) Potential Theoretical Relations (TRAO or Beyond): We
found 21 new ERAO relations that consistently appear in all the
expanded graphs. Twelve of them involve pairs each containing
an XCKX formula and a non-XCKX formula: ER2∼ F30 , ER4
∼ F32 , F25 ∼ F28 , F25 ∼ F29 , F25 ∼ F40 , F31 ∼ F42 , F34 ∼
F41 , ER2 → F28 , ER2 → F29 , ER2 → F40 , F25 → F35 , and
F30 → F25 . The other nine ERAO relations are between pairs
of non-XCKX formulas: F28 ∼ F29 , F28 ∼ F40 , F29 ∼ F40 , F28
→ F35 , F29 → F35 , F30 → F28 , F30 → F29 , F30 → F40 , and
F40 → F35 . These relations seem robust enough to “withstand”
the change of the underlying datasets from closely satisfying
the required assumptions in Gexp to violating some of them in
Gtypical .

The ERAO relations of each graph were grounded on hy-
pothesis testing to ensure the pairs being statistically similar or
different in accuracy. Such relations are important as they were
found to consistently appear in all the expanded graphs. We
conjecture that such formula pairs potentially have yet-to-be-
discovered theoretical relations. It is thus worthy to set a higher
priority to investigate their potential theoretical dependency, for
instance, whether F30 and F32 are theoretically equivalent in
accuracy to ER2 and ER4, respectively, or whether F39 , a maxi-
mal node of all graphs, is provably never less accurate than ER3
given that all graphs contain F39 → ER3.

In reality, knowing in advance whether the fault under de-
bugging is single or not is out of the question. Moreover, a
given test suite for SBFL may not be chosen by a tester to
ensure no crash run (e.g., the only failed test is a crash run).
The prior theoretical study [63] conjectures that if Gtheory and
Gtypical are not very different, then researchers may focus on
the comparison of non-XCKX formulas against formulas in
ER1 and ER5 without bothering the assumptions of Gtheory .
Our results not only provide empirical evidence to support this
conjecture, but also quantify which parts of the two graphs

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 415

are consistently similar and which parts of them consistently
differ.

Result 2: We have identified new ERAO relations which
consistently appear in all expanded graphs. As these relations
were obtained through statistical hypothesis tests of whether
any two formulas have significantly different accuracy, we
conjecture that these relations are statistically reliable. We
recommend focusing on further investigation of these rela-
tionships, particularly those in connection with the existing
theoretical framework.

Result 3: Given the Results 1a, 1b, and 2, we observe that
Gexp crash and Gexp nonsingle (both constructed by relaxing
one specific assumption) are strikingly similar to Gexp in
retaining all or almost all of the TRAO relations of Gtheory .
Nevertheless, Gtypical (built on datasets that might violate
several assumptions) is very different from Gexp in its failure
to preserve most of the TRAO relations. Since the relaxation
of each of our two chosen specific assumptions does not
cause such a big difference, it is worthy to further investigate
whether the difference is caused by other factors such as
omission fault or platform-dependent issue.

The TRAO relations in [41], [63] were established based on a
number of required assumptions, some of which may not be sat-
isfied in practice. Gtypical has shown that the maximal formulas
within ER1 actually have different accuracy values in practice.
Gtypical shows that ER1 may be split into two groups of consis-
tently similar formulas, ER1a and ER1b , where ER1a actually
bears no ERAO relation with ER1b . Gtypical has also shown
that, in practice, the group ER5 should be split into ER5a and
ER5b , where ER5a is consistently more accurate than ER5b .
These empirical observations demonstrate that the current prov-
ing techniques presented in existing theoretical analysis are still
not powerful enough to either prove or disprove the TRAO re-
lations in practical scenarios when the assumptions do not hold.
New mathematical tools need to be developed to prove or dis-
prove the TRAO relations in practice.

On the other hand, although empirical studies suffer from
certain threats to validity, where the ERAO relations obtained
are often found inconsistent over different settings, such re-
searches can help to provoke debates of the actual accuracy in
practice over the theoretical work. Our work has broken the bar-
rier between theoretical and empirical studies by developing a
state-of-the-art empirical framework to validate or disprove the
theoretical accuracy relations of formulas. Our framework is ro-
bust enough to include any new SBFL formulas and to establish
new ERAO relations via accuracy graphs. For instance, Gtypical
has provided counter-examples for disproving the conjectures
of theoretical accuracy relations, while Gbase and Gexp help to
validate or discover new TRAO relations for further theoretical
analysis.

Fig. 6. Venn diagram of the distribution of ERAO relations in accuracy graphs.
Note: (1) Each oval shape represents two graphs: an XCKX-formula graph (e.g.,
Gbase) and its corresponding expanded graph (e.g., Gexp). (2) Since Gtyp ica l
is an expanded graph, its XCKX-formula subset (denoted as Gtyp ica l |XCKX)
will be compared with another XCKX-formula graph. (3) The four oval shapes
overlap to form 15 disjoint regions, indexed by the IDs 1–15, respectively, in the
above diagram. Each region represents the set of the ERAO relations that appear
in all of the graphs indicated by a tick (

√
) but in none of the graphs indicated by a

cross (✗) in the column of the region ID in the table above. For instance, Region
6 represents the subset (G2 ∩ G3) \ (G4 ∪ G1) where G2 , G3 , G4 , and
G1 are Gbase , Gcrash , Gnonsingle , and Gtyp ica l |XCKX for XCKX-formula
graphs, and Gexp , Gexp crash , Gexp nonsingle , and Gtyp ica l for expanded
graphs, respectively. (4) Below the ID of each region in the above Venn diagram
is a pair of numbers shown in the form of (x/y), where x (respectively y) is
the number of ERAO relations of the XCKX-formula graphs (respectively the
expanded graphs) in that region. For instance, the numbers (4/5) under region
ID 6 mean that in Region 6, there are 4 ERAO relations in Gbase and Gcrash
but in neither Gnonsingle nor Gtyp ica l |XCKX , and 5 ERAO relations in Gexp
and Gexp crash but in neither Gexp nonsingle nor Gtyp ica l .

B. Quantitative Analysis

This section reports a quantitative analysis of the accuracy
graphs comparing between satisfying versus not satisfying one
or all of the assumptions. In doing so, we observe interesting
results as elaborated in the two sections below.

Since Gtypical is an expanded graph constructed from the full
dataset without regard to the satisfaction of assumptions, we
will use its XCKX-formula subset, defined as Gtypical |XCKX
= {e ∈ Gtypical : e is an ERAO relation between two
XCKX formulas}, for comparing with other XCKX-formula
graphs.

1) Graph Dissimilarities Associated With Assumption Vio-
lation: Fig. 6 shows a Venn diagram populated with data that

416 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

TABLE VI
EXTENTS OF OVERLAP AMONG ACCURACY GRAPHS

overview the distribution of ERAO relations among accuracy
graphs. Mathematically, an accuracy graph is simply a set of
accuracy relations. So the extent of overlap (similarity) between
two graphs Gx and Gy , denoted as overlap(Gx, Gy), may be
quantified by the proportion of common elements in the sets,
that is

overlap(Gx, Gy) =
Number of elements in Gx ∩Gy

Number of elements in Gx ∪Gy
.

Table VI shows the extents of overlap between Gbase and
other XCKX-formula graphs, as well as those between Gexp
and other expanded graphs, respectively. We have the following
observations.

First, all percentages of overlap are moderate to high, ranging
between 64.2% and 88.9%.

Second, for XCKX-formula graphs, Gbase is most similar
to Gnonsingle but less similar to Gcrash and least similar to
Gtypical |XCKX (the extents of overlap being 88.9%, 69.7%, and
64.4%, respectively). For expanded graphs, Gexp is also most
similar to Gexp nonsingle but less similar to Gexp crash and least
similar to Gtypical (the extents of overlap being 86.7%, 67.8%,
and 64.2%, respectively).

By comparing Gbase with Gnonsingle and Gexp with
Gexp nonsingle , violating the single-fault assumption accounts
for 11.1% (= 1 – 88.9%), and 13.3% (= 1 – 86.7%) in differ-
ence, respectively. However, the differences when using crash
runs are larger, up to 32.2% (= 1 – 67.8%) for the expanded
graph Gexp crash . When violating multiple assumptions, the dif-
ferences are even larger, up to 35.8% (= 1 – 64.2%) for the
expanded graph Gtypical .

Third, the graph dissimilarities associated with violation of
assumptions are generally not substantially affected when ex-
panding from the XCKX-formula graphs to include non-XCKX
formulas. As seen in the bottom row of Table VI, the effects
of expanding from Gnonsingle to Gexp nonsingle , from Gcrash to
Gexp crash , and from Gtypical |XCKX to Gtypical are only 2.2%
(out of 88.9%), 1.9% (out of 69.7%), and 0.2% (out of 64.4%),
respectively, which are rather small.

Result 4: Violating the single-fault assumption alone
accounts for 11.1−13.3% difference in ERAO relations,
whereas the use of test suites having crash runs alone re-
sults in a difference of 30.3−32.2% in ERAO relations. Fur-
thermore, violating multiple assumptions leads to even larger
differences (35.6−35.8%). In comparison, the changes in ex-
panding the graphs with more formulas are rather small (only
2.2%, 1.9%, and 0.2%, respectively) in all these scenarios.

2) Regions to Which the Majority of ERAO Relations Be-
longs: In Fig. 6, the numbers (276/581) at the bottom of the
Venn diagram are the total numbers of ERAO relations iden-
tified from the XCKX-formula graphs and expanded graphs,
respectively. We examine the specific regions to which the
majority of ERAO relations belong and have the following
observations.

Graphs Gbase and Gexp contain 238 and 500 ERAO re-
lations, respectively, which constitute 86.2% and 86.1% of
all the ERAO relations found in this study. Outside these
two graphs, the majority of the ERAO relations reside
in Gnonsingle and Gexp nonsingle . Specifically, if our analy-
sis considers nonsingle faults, the combined sets Gbase ∪
Gnonsingle and Gexp ∪ Gexp nonsingle already constitute 262
(94.9%) and 555 (95.5%) of all the ERAO relations,
respectively.

Furthermore, if crash runs are also included, the
combined sets Gbase ∪ Gnonsingle ∪ Gcrash and Gexp ∪
Gexp nonsingle ∪ Gexp crash constitute 273 (98.9%) and 570
(98.1%) of all the ERAO relations, respectively. Only the 3
and 11 ERAO relations in Region 7 of Gtypical are not in
the combined sets Gbase ∪ Gnonsingle ∪ Gcrash and Gexp ∪
Gexp nonsingle ∪ Gexp crash , respectively.

Hence, more than 98% of all the ERAO relations in this study
can be found by constructing accuracy graphs from the datasets
D2 (that satisfy all assumptions), D3 (that include crash runs),
and D4 (that include nonsingle faults). Apparently, other viola-
tions of assumptions are associated with only a small proportion
of the ERAO relations.

Result 5: Utilizing Gbase , Gcrash , and Gnonsingle is suffi-
cient to identify 98.9% of the ERAO relations of XCKX for-
mulas, while utilizing Gexp , Gexp crash , and Gexp nonsingle
is sufficient to identify 98.1% of the ERAO relations of both
XCKX and non-XCKX formulas. It shows that to identify
ERAO relations in empirical studies, considering only nons-
ingle faults as well as faults that lead to crash runs might be
sufficiently close to the typical or practical scenarios.

C. Benchmarking Prior SBFL Empirical Results

In this section, we further apply our accuracy graphs to bench-
mark the results reported in the publications from four top-
tier software engineering venues [46]: FSE, ICSE, TOSEM,

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 417

TABLE VII
CROSS VALIDATION OF RESULTS OF RELATED WORK

and TSE, together with notable publications from JSS and the
present journal (TRel). We have selected eight representative
publications for which the SBFL formulas and/or empirical data
under study are closely relevant to this work. For brevity, we
overload the same notations →, ←, and ∼ to represent the
relative effectiveness among formulas observed in their exper-
iments. The results of validation with these publications are
summarized in Table VII. In the table, we highlight their major
results on SBFL formulas and indirectly connect them to the
theoretical results in [63] through comparing with our accuracy
graphs. Consistency between our results and the highlighted re-
sults helps to triangulate both results. Inconsistency between the
results suggests areas that require further investigation through
replication of experiments.

D. ERAO Relations With Different Test Suite Sizes

Empirical studies [1], [44] have identified that the accuracy of
SBFL formulas can be affected to different extents by varying
test suite sizes. Sometimes, the difference can be small.

TABLE VIII
REPRODUCTION OF ERAO RELATIONS WHEN THE TEST SUITE SIZE VARIES

We would like to verify the potential impact on the observed
ERAO relations if the test suite size is varied. We randomly
selected 75%, 50%, and 25% of the test cases from the original
test suites in this empirical study while preserving the assump-
tions made in constructing the original test suites except for the
extents of statement/branch coverage. The experimental proce-
dures are the same as those reported in Section III.

Table VIII summarizes the number and percentage of ERAO
relations reproduced (compared with the original test suites) in
the expanded accuracy graphs, Gtypical, Gexp , Gexp crash , and
Gexp nonsingle , by test suites constructed from 100%, 75%, 50%,
and 25% of the test cases in the original test suites.

As shown in Table VIII, a total of 175 ERAO relations are re-
vealed in Gtypical . When the test suite size drops to 75%, 50%,
and 25%, the percentages of ERAO relations in Gtypical that
can be obtained by the reduced test suites are 92%, 90%, and
86%, respectively. Gexp contains 246 ERAO relations. When
the test suite size drops to 75%, 50%, and 25%, the percentages
of ERAO relations in Gexp that can be obtained by the reduced
test suites are 98%, 94%, and 90%, respectively. Gexp crash and
Gexp nonsingle contain 220 and 249 ERAO relations, respec-
tively. When the test suite size drops as above, the percentages of
ERAO relations in Gexp crash that are preserved by the reduced
test suites are 97%, 95%, and 89%, respectively, whereas for
Gexp nonsingle , the corresponding percentages are 92%, 90%,
and 84%, respectively. Overall, the percentages of preserved
ERAO relations are very high, ranging from 84% to 98%. The
ERAO relations are not substantially affected even when the
size of the test suite drops to only 25%. Thus, the ERAO rela-
tions appear to be robust with respect to variations in test suite
sizes.

Result 6: For all accuracy graphs, when the number of
test cases is reduced to 75% from the original test suite,
92–98% of ERAO relations can still be reproduced. When
the number of test cases drops to 50% and 25%, 90–95%
and 84–90% of ERAO relations are preserved, respectively.
Hence, the ERAO relations appear to be robust with respect
to variations in test suite sizes.

E. Threats to Validity

The results of empirical studies invariably depend on the
subjects used. They may or may not hold for other programs,

418 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

test data, execution environments or platforms, and so on. To
facilitate cross-validation of results, our experiment studied 17
subject programs which have been widely used in existing soft-
ware testing and SBFL research. Building accuracy graphs using
other experimental setups can strengthen the generalizability of
our result.

Our experimental subjects include different sized programs
as well as spanning over two programming languages (C and
Java). Each C subject is a complete program executed as a whole
when running the test cases. Although the test suites of the Java
subjects were JUnit test cases, which were by design unit tests,
yet because the subjects are real and complete programs with
no artificial stubs or drivers, execution of the JUnit test cases in-
variably covers many parts of the programs other than the units
under test in such a way that the test executions were actually
extended to integration-level coverage beyond the pure unit-
level coverage. We are not aware of how test stubs or drivers
could be constructed while maintaining the integrity of the sub-
jects. If code development and debugging are conducted at the
class level, the code coverage achieved by test cases obtained
through the current experimental setup may likely be differ-
ent. Considering the above factors, readers should interpret the
results with caution. It is also unclear whether or how the vari-
ation of program sizes, different programming languages and
different types and levels of tests contribute to any effects on
the experimental results. Any such effects could be examined
by further experimentations with these varying characteristics
being separated for analysis.

In the data analysis of the experiment, we excluded the ex-
ecution profiles obtained from executing the JUnit test classes
whose corresponding test cases resulted in no failure. Inclusion
of these execution profiles will change the values of the set of
coverage variables of each exercised statement in the experi-
ment. It is interesting to know the extent of changes compared
to our current findings.

Program spectra can only be obtained on exercised program
entities (statements in this experiment). For some faulty versions
in which the faults reside in nonexecutable locations, we marked
the related executable statements proximate to the actual fault
positions. Other ways in deciding the faulty lines may produce
different results.

Our approach to building the accuracy graph was to en-
sure statistical consistency at the subject program level. Using
other notions of consistency may produce different accuracy
graphs.

We adopted the Kruskal–Wallis test, which is a nonparametric
test that does not require normality of the distribution of the data,
to compare the accuracy values of formulas. Nonparametric
tests are known to be less powerful than their parametric coun-
terparts such as ANOVA. Using other statistical tests to com-
pare the accuracy of formulas may result in different accuracy
graphs.

The ERAO relations of formulas were obtained by simply ag-
gregating the comparison results of letter groups in every subject
and ranking scheme. Other ways of summarizing the accuracy
values or aggregating the comparison results may produce dif-

ferent results. For example, if a formula Fx has more instances or
higher frequencies of being more accurate than another formula
Fy , then there is arguably stronger evidence that Fx is statis-
tically more accurate than Fy when compared to the situation
where Fx is more accurate than Fy in only one instance while
in a large number of other instances they have similar accuracy
values. Hence, aggregating the accuracy comparisons by using
a scheme that takes into account the “strength” of evidence may
result in different accuracy graphs.

The test verdicts were downloaded with the subject pro-
grams from their repositories. Similar to the findings of Zhang
et al. [69], some of the verdicts may not correctly describe
the faults. We had tried our best to ensure the correctness of
the verdicts including appropriate corrections. Also, as a test
oracle may not truly describe the absence of program faults
due to coincidental correctness, there may exist incorrect test
results. We aim to study single-fault programs in some ac-
curacy graphs, and yet when executing the subject programs
with their test suites, some not-yet-identified faults may be
unknowingly or unintentionally triggered. If this is the case,
the reproduction of the TRAO relations would become more
interesting.

V. RELATED WORK

In this section, we review some of the closely related work.
SBFL utilizes program spectra for distinguishing faulty pro-

gram entities. Harrold et al. [21] found that execution trace
spectrum was one of the most applicable spectra for debugging.
Santelices et al. [51] found that different entities had different
accuracy when localizing different kinds of faults. Tang et al.
[54] found that performing SBFL at the object code level may
be more accurate than at the statement level.

Tarantula [27] is one of the earliest techniques designed exclu-
sively for the purpose of SBFL. Later, various classical metrics
such as Jaccard [25], Ochiai [42], and Ample [1], [10] were im-
ported to SBFL, and some of them were widely adopted in vari-
ous empirical studies [1], [10], [68]. Wong et al. proposed many
SBFL techniques, including Wong 1–3 [62], cross-tab (CBT)
[61], and DStar [60]. Naish et al. [41] comprehensively evalu-
ated the relative accuracy of 33 popular formulas and proposed
two new formulas Naish1 and Naish2, which were also included
in our experiment. Empirical studies usually suffer from their
limited ability to generalize the results beyond the experimen-
tal context. Zhang et al. [69] proposed to study the effect of
evaluation sequences. Xie et al. [63] performed a theoretical
analysis on a set of formulas comparing their accuracy, which
has been discussed in this paper.

SBFL in general utilizes the coverage information of both
passed and failed runs. Some studies [1], [67] revealed that failed
runs were more dominant to the accuracy of SBFL formulas
than passed runs. The formulas Wong1 [62] and binary [35],
which were proved [63] to be theoretical maximal formulas,
solely utilize failed runs. Zhang et al. [67] proposed an improved
technique by contrasting only the failed runs.

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 419

Empirical accuracy of SBFL formulas varies among different
programs and faults. Studies have shown that using a combi-
nation of multiple formulas for fault localization can provide
more stable accuracy and reduce error rates. Xuan and Monper-
rus [64] proposed a learning-based framework called MULTRIC
that combined multiple formulas with learned weights from the
spectra of faulty and non-faulty entities. Le et al. [31] proposed
an information-retrieval-based technique that performs fault lo-
calization with multiple formulas together with analytical re-
sults from bug reports. Wang et al. [56] proposed using genetic
algorithm (GA) and simulated annealing (SA) to compute the
weights of multiple formulas.

Lucia et al. [36] proposed ways to construct fusion localizers
that fuse the adaptively selected formulas for locating faults.
They showed that certain variants of fusion localizers were more
effective than individual formulas. Tang et al. [55] proposed a
dual-service fault localization (DFL) model based on dynamic
construction of an ensemble SBFL formula that contrasts the
program spectra of a forthcoming version with the spectra of an
existing live version of program service, and demonstrated that
the DFL model could improve the accuracy of localizing faults
in the forthcoming version of the service.

SBFL techniques can also be used to locate faults in domains
other than conventional programs. Isolating faulty agents in a
multiagent system (MAS) is known to be error-prone and time
consuming and requires prior knowledge of the unexpected be-
havior of the agents. Passos et al. [44], [45] proposed a SBFL
alternative, coined extended SBFL for MAS, that locates faulty
agents by computing their fault suspiciousness in the MAS.
Their technique reduced the diagnosis effort with only some
minimal information from the system. Hofer et al. [23], [24]
used SBFL techniques to identify buggy cells in spreadsheet
applications. While program spectra were used to locate buggy
source code, hit-spectra matrix was used to compute the fail-
ure probability of each spreadsheet cell. Liu et al. [34] adopted
SBFL to aid the debugging of Simulink models, using an itera-
tive approach to locate multiple faults by eliminating them one
by one.

A recent survey [62] provides a comprehensive overview of
SBFL techniques and discusses key issues and concerns that are
pertinent to software fault localization as a whole.

VI. CONCLUSION

In this paper, we have revisited the accuracy graph Gtheory
of XCKX formulas. We have proposed a novel framework and
methodology to construct accuracy graphs with the notion of
monotonic ordering of accuracy among formulas over a series
of subjects empirically. We have validated that our framework
is robust through both experiments and systematic comparison
with existing results.

Our methodology has demonstrated its potential to simu-
late all theoretical relations successfully in the context as-

sumed by the prior theoretical study [63] on XCKX formu-
las, and uses the results of [63] as the basis to expand the
graph to include a set of non-XCKX formulas. We have ap-
plied this methodology to produce other graphs with relaxed
specific assumptions to reveal relations between non-XCKX
formulas and those between XCKX and non-XCKX formulas
found in practical scenarios, as summarized in Results 1–6 in
Section IV. We are not aware of any prior research proposing
empirical frameworks close to what we have developed in this
work.

Unlike theoretical analysis that relies on the investigator’s
own insights and inspirations to discover and prove accu-
racy relations, our methodology has provided a highly ap-
plicable and practical mechanism for an investigator to sys-
tematically reveal empirical accuracy relations. Different from
mathematical proofs that heavily rely on human intellec-
tual ability, our methodology can be highly automated, ren-
dering mega-scale graph construction a potential actionable
item.

Previous theoretical results have only identified two maximal
SBFL formulas (namely, ER1 and ER5 in Fig. 1). By extending
to non-XCKX formulas, our experiments have shown that a set
of other formulas may also be maximal, e.g., F39 , F41 , and F42
in Gtypical in Fig. 5(a) under the “typical” setting which makes
no assumption of the fault. That is, in our experiment, these
formulas, together with ER1 and ER5a , were ranked ahead of
other formulas while they were incomparable among themselves
in the sense that none is statistically ranked ahead of another.
Thus, whenever formulas in ER1 and ER5 are included in an
experiment, we suggest that these other potentially maximal
formulas should be included, too.

Moreover, the formulas of ER5a were statistically ranked
ahead of ER5b , which is contrary to the results of previous
theoretical analysis that they are equally accurate. Thus, for
practical use when the tester usually has no prior knowledge
of any faults in the program or whether the program under
test will crash or not, our results indicate that the tester may
apply the maximal formulas in Gtypical for performing SBFL in
preference of other formulas.

Our methodology and ERAO relations serve as a starting
point to align theoretical results with empirical data. In Gbase
and Gexp , their ERAO relations provide clues of potential TRAO
relations for facilitating new mathematical proofs. As reported
in Result 1b, Gcrash , Gexp crash , Gnonsingle , and Gexp can align
a majority of TRAO relations by considering off-by-one as-
sumption and crash runs only. On the other hand, Gtypical re-
veals counter-examples that reject the theoretical conjectures
of some TRAO relations. Further work should be done to fine-
tune the methodology, definition of ERAO relations as well
as a more generalized TRAO relation toward the development
of a theory that can better explain the empirical data without
contradiction.

420 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

APPENDIX

SUBJECT PROGRAMS (IN C LANGUAGE) AND THEIR FAULTY PROGRAM VERSIONS STUDIED IN THIS PAPER

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 421

(CONTINUED)
SUBJECT PROGRAMS (IN JAVA LANGUAGE) AND THEIR FAULTY PROGRAM VERSIONS STUDIED IN THIS PAPER

422 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

(CONTINUED) (CONTINUED)

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A practical
evaluation of spectrum-based fault localization,” J. Syst. Softw., vol. 82,
no. 11, pp. 1780–1792, 2009.

[2] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction of a
directed graph,” SIAM J. Comput., vol. 1, no. 2, pp. 131–137, 1972.

[3] G. Altieri, “MATLAB community function: Means with letters af-
ter a multiple comparison test,” [Online]. Available: http://www.
mathworks.com/matlabcentral/fileexchange/49696. Accessed on: Apr. 22,
2016.

[4] M. R. Anderberg, Cluster Analysis for Applications. New York, NY, USA:
Academic, 1973.

[5] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Fault localization for dynamic
web applications,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 314–335,
Mar./Apr. 2012.

[6] T. Ball and J. R. Larus, “Efficient path profiling,” in Proc. Annu.
ACM/IEEE Int. Symp. Microarchitecture, 1996, pp. 46–57.

[7] T. Y. Chen, X. Xie, F. C. Kuo, and B. Xu, “A revisit of a theoretical
analysis on spectrum-based fault localization,” in Proc. Annu. Comput.
Softw. Appl. Conf., 2015, vol. 1, pp. 17–22.

[8] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
“HOLMES: Effective statistical debugging via efficient path profiling,”
in Proc. Int. Conf. Softw. Eng., 2009, pp. 34–44.

[9] J. Cohen, “A coefficient of agreement for nominal scales,” Educ. Psychol.
Meas., vol. 20, no. 1, pp. 37–46, 1960.

[10] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization for
Java,” in Proc. Eur. Conf. Object-Oriented Program., 2005, pp. 528–550.

[11] L. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[12] N. DiGiuseppe and J. A. Jones, “On the influence of multiple faults on
coverage-based fault localization,” in Proc. Int. Symp. Softw. Testing Anal.,
2011, pp. 210–220.

[13] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[14] M. Dunham, Data Mining: Introductory and Advanced Topics. Englewood
Cliffs, NJ, USA: Prentice-Hall, 2002.

TANG et al.: ACCURACY GRAPHS OF SPECTRUM-BASED FAULT LOCALIZATION FORMULAS 423

[15] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz—Open source graph drawing tools,” in Graph Drawing. Berlin,
Germany: Springer, 2001, pp. 483–484.

[16] B. Everitt, Graphical Techniques for Multivariate Data. Amsterdam, The
Netherlands: North Holland, 1978.

[17] J. Fleiss, “Estimating the accuracy of dichotomous judgments,” Psychome-
trika, vol. 30, no. 4, pp. 469–479, 1965.

[18] A. Gonzalez, “Automatic error detection techniques based on dynamic
invariants,” M.S. thesis, Delft Univ. Technol., Delft, The Netherlands,
2007.

[19] L. Goodman and W. Kruskal, “Measures of association for cross-
classifications (Part I),” J. Amer. Statist. Assoc., vol. 49, no. 268,
pp. 732–764, 1954.

[20] R. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech.
J., vol. 29, no. 2, pp. 147–160, 1950.

[21] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An empirical
investigation of the relationship between spectra differences and regression
faults,” Softw. Testing, Verification Rel., vol. 10, no. 3, pp. 171–194, 2000.

[22] Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures. Hobo-
ken, NJ, USA: Wiley, 1987.

[23] B. Hofer, A. Perez, R. Abreu, and F. Wotawa, “On the empirical evaluation
of similarity coefficients for spreadsheets fault localization,” Autom. Softw.
Eng., vol. 22, no. 1, pp. 47–74, 2015.

[24] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner, “On the
empirical evaluation of fault localization techniques for spreadsheets,” in
Proc. Int. Conf. Fundam. Approaches Softw. Eng., 2013, pp. 68–82.

[25] P. Jaccard, “Étude comparative de la distribution florale dans une por-
tion des Alpes et du Jura,” Bulletin de la Société Vaudoise des Sciences
Naturelles, Impr. Corbaz, vol. 37, no. 142, pp. 547–579, 1901.

[26] W. Jin and A. Orso, “Automated support for reproducing and debugging
field failures,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 4, 2015,
Art. no. 26.

[27] J. A. Jones and M. J. Harrold, “Empirical evaluation of the Tarantula
automatic fault-localization technique,” in Proc. IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2005, pp. 273–282.

[28] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in Proc. Int.
Symp. Softw. Testing Anal., 2014, pp. 437–440.

[29] B. Korel and J. Laski, “Dynamic slicing of computer programs,” J. Syst.
Softw., vol. 13, no. 3, pp. 187–195, 1990.

[30] E. Krause, “Taxicab geometry,” Math. Teacher, vol. 66, no. 8,
pp. 695–706, 1973.

[31] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and spectrum
based bug localization: Better together,” in Proc . Joint Meeting Eur. Softw.
Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng., 2015, pp. 579–590.

[32] H. Lee, L. Naish, and K. Ramamohanarao, “Study of the relationship of
bug consistency with respect to performance of spectra metrics,” in Proc.
Int. Conf. Comput. Sci. Inf. Technol., 2009, pp. 501–508.

[33] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proc. ACM SIGPLAN Conf. Program. Lang.
Design Implementation, 2005, pp. 15–26.

[34] B. Liu, S. Nejati, L. C. Briand, and T. Bruckmann, “Simulink fault lo-
calization: An iterative statistical debugging approach,” Softw. Test., Verif.
Rel., vol. 26, no. 6, pp. 431–459, 2016.

[35] F. Lourenco, V. Lobo, and F. Bação, “Binary-based similarity measures
for categorical data and their application in self-organizing maps,” in Proc.
Conf. Classification Anal. Data, 2004, pp. 121–138.

[36] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in Proc. ACM/IEEE
Int Conf. Autom. Softw. Eng., 2014, pp. 127–138.

[37] C. K. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proc. ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2005, pp. 190–200.

[38] A. Maxwell and A. Pilliner, “Deriving coefficients of reliability and agree-
ment for ratings,” Brit. J. Math. Statist. Psychol., vol. 21, no. 1, pp. 105–16,
1968.

[39] A. Meyer, A. Garcia, A. Souza, and C. Souza, Jr., “Comparison of similar-
ity coefficients used for cluster analysis with dominant markers in maize
(Zea mays L),” Genetics Mol. Biol., vol. 27, no. 1, pp. 83–91, 2004.

[40] S. K. Mishra, “The most representative composite rank ordering of multi-
attribute objects by the particle swarm optimization,” Jan. 2009. [Online].
Available: http://dx.doi.org/10.2139/ssrn.1326386. Accessed on: Oct. 14,
2016.

[41] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
2011, Art. no. 11.

[42] A. Ochiai, “Zoogeographic studies on the soleoid fishes found in Japan
and its neighbouring regions,” Bull. Jpn. Soc. Sci. Fish, vol. 22, no. 9,
pp. 522–525, 1975.

[43] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proc. Int. Symp. Softw. Test. Anal., 2001,
pp. 199–209.

[44] L. S. Passos, R. Abreu, and R. J. Rossetti, “Empirical evaluation of sim-
ilarity coefficients for multiagent fault localization,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 47, no. 5, pp. 767–782, May 2017.

[45] L. S. Passos, R. Abreu, and R. J. F. Rossetti, “Sensitivity analysis of
spectrum-based fault localisation for multi-agent systems,” presented at
the Int. Workshop Principles of Diagn., 2014.

[46] J. Ren and R. N. Taylor, “Automatic and versatile publications ranking
for research institutions and scholars,” Commun. ACM, vol. 50, no. 6,
pp. 81–85, 2007.

[47] M. Renieres and S. P. Reiss, “Fault localization with nearest neigh-
bor queries,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2003,
pp. 30–39.

[48] D. Roger and T. Tanimoto, “A computer program for classifying plants,”
Science, vol. 132, no. 3434, pp. 1115–1118, 1960.

[49] E. Rogot and I. D. Goldberg, “A proposed index for measuring agreement
in test-retest studies,” J. Chronic Disease, vol. 19, no. 9, pp. 991–1006,
1966.

[50] P. Russel and T. Rao, “On habitat and association of species of anopheline
larvae in South-Eastern Madras,” J. Malaria Inst. India, vol. 3, no. 1,
pp. 153–178, 1940.

[51] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight fault-
localization using multiple coverage types,” in Proc. Int. Conf. Softw. Eng.,
2009, pp. 56–66.

[52] W. A. Scott, “Reliability of content analysis: The case of nominal scale
coding,” Public Opin. Q., vol. 19, no. 3, pp. 321–325, 1955.

[53] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and value
of empirical assessments of the accuracy of coverage-based fault locators,”
in Proc. Int. Symp. Softw. Test. Anal., 2013, pp. 314–324.

[54] C. M. Tang, W. K. Chan, and Y. T. Yu, “Extending the theoretical fault
localization effectiveness hierarchy with empirical results at different code
abstraction levels,” in Proc. Annu. Comput. Softw. Appl. Conf., 2014,
pp. 161–170.

[55] C. M. Tang, J. Keung, W. K. Chan, and Y. T. Yu, “DFL: Dual-service fault
localization,” in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur., 2016,
pp. 412–422.

[56] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based fault
localization,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2011,
pp. 556–559.

[57] M. Weiser, “Program slicing,” in Proc. Int. Conf. Softw. Eng., 1981,
pp. 439–449.

[58] D. A. Wheeler, “Counting source lines of code (SLOC),” [On-
line]. Available: http://www.dwheeler.com/sloc. Accessed on: Oct. 14,
2016.

[59] W. E. Wong, V. Debroy, and B. Choi, “A family of code coverage-
based heuristics for effective fault localization,” J. Syst. Softw., vol. 83,
pp. 188–208, 2010.

[60] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for effective
software fault localization,” IEEE Trans. Rel., vol. 63, no. 1, pp. 290–308,
Mar. 2014.

[61] W. E. Wong, V. Debroy, and D. Xu, “Towards better fault localization: A
crosstab-based statistical approach,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 42, no. 3, pp. 378–396, May 2012.

[62] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software
fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8, pp. 707–740,
Aug. 2016.

[63] X. Xie, T. Y. Chen, F. C. Kuo, and B. Xu, “A theoretical analysis of the risk
evaluation formulas for spectrum-based fault localization,” ACM Trans.
Softw. Eng. Methodol., vol. 22, no. 4, 2013, Art. no. 31.

[64] J. Xuan and M. Monperrus, “Learning to combine multiple ranking metrics
for fault localization,” in Proc. IEEE Int. Conf. Softw. Maint. Evol., 2014,
pp. 191–200.

[65] J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
2014, pp. 52–63.

[66] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2002, pp. 1–10.

[67] Z. Zhang, W. K. Chan, and T. H. Tse, “Fault localization based
only on failed runs,” IEEE Comput., vol. 45, no. 6, pp. 64–71,
Jun. 2012.

424 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 2, JUNE 2017

[68] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang, “Capturing
propagation of infected program states,” in Proc. ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2009, pp. 43–52.

[69] Z. Zhang, B. Jiang, W. K. Chan, T. H. Tse, and X. Wang, “Fault localization
through evaluation sequences,” J. Syst. Softw., vol. 83, no. 2, pp. 174–187,
2010.

Chung Man Tang received the B.Sc. degree in computer studies and the M.Phil.
degree in computer science from City University of Hong Kong, Hong Kong.

He is currently working toward the Ph.D. degree in the Computer Science
Department, City University of Hong Kong, Hong Kong.

His research interests include software engineering and computers in educa-
tion.

W. K. Chan (M’05) received the B.Eng., M.Phil., and Ph.D. degrees from The
University of Hong Kong, Hong Kong.

He is an Associate Professor in the Department of Computer Science, City
University of Hong Kong, Hong Kong. His current main research interests
include program analysis and testing for concurrent software and systems. He
has published extensively in venues such as TOSEM, TSE, TPDS, TSC, TRel,
JSS, IST, STVR, CACM, Computer, ICSE, FSE, ISSTA, ASE, WWW, ISSRE,
ICWS, QRS, ICDCS, and others.

Dr. Chan is the Special Issues Editor of the Journal of Systems and Software.

Yuen Tak Yu (M’98) received the Ph.D. degree from The University of
Melbourne, Australia.

He is an Associate Professor in the Department of Computer Science, City
University of Hong Kong, Hong Kong. His research interests include soft-
ware testing, e-commerce, and computers in education. His publications have
appeared in scholarly journals and leading international conferences, such as
TOSEM, TSE, TRel, TSC, JSS, IST, Information Research, Computers and
Education, ICSE, FSE, ISSRE, COMPSAC, QRS, ICCE, and others.

Dr. Yu is a past chair of the IEEE Hong Kong Section Computer Society
Chapter.

Zhenyu Zhang (M’10) received the Ph.D. degree from The University of Hong
Kong, Hong Kong.

He is an Associate Professor at the State Key Laboratory of Computer
Science, Institute of Software, Chinese Academy of Sciences, Beijing, China.
His current research interests are program debugging and testing for software
and systems, and the reliability issues of web-based services and cloud-based
systems. He has published research results in venues such as TSE, Computer,
ICSE, FSE, ASE, and WWW.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

