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ABSTRACT 
Peer services depend on one another to accomplish their tasks, 
and their structures may evolve. A service composition may be 
designed to replace its member services whenever the quality of 
the composite service fails to meet certain quality-of-service 
(QoS) requirements. Finding services and service invocation end-
points having the greatest impact on the quality are important to 
guide subsequent service adaptations. This paper proposes a tech-
nique that samples the QoS of composite services and continually 
analyzes them to identify artifacts for service adaptation. The 
preliminary results show that our technique has the potential to 
effectively find such artifacts in services. 
Categories and Subject Descriptors 
D.2.5 [SOFTWARE ENGINEERING]: Testing and Debugging 
– Monitors.  

D.2.8 [SOFTWARE ENGINEERING]: Metrics – Product 
metrics. 

General Terms 
Measurement, Reliability, Verification 

Keywords 
Service composition, service adaptation 

1. INTRODUCTION 
Web services, a kind of web-based service-oriented technology, 
encompass a set of application functions for service consumers to 
accomplish their business processes and for composite services to 
invoke one another’s functions [1]. A business process may 
evolve, the functions of supportive services may change, and a 
service composition may shift from a set of services to another 
set. Providing alerts on the weak parts of business processes or 
service compositions that potentially require service adaptation 
are fundamental to effective service adaptation. We propose such 
a technique in this paper.  

Let us motivate our work via a mortgage loan scenario. Sup-
pose Ricky applies for a mortgage loan via InstantLoan, which is a 
bank service that appoints AskGrace, a risk assessor service, to 
estimate Ricky’s chance of breaching the loan contract. Suppose 
further that AskGrace rates the loan higher in credit risk than it 
should be. InstantLoan accepts this assessment result and sends it 
to RecommendMe, a service of loan interest recommendation, 
which in turn recommends an approval of the loan despite a high 
interest rate. Ricky judges the interest rate to be too high and turns 
down the loan offer. Thus, the bank loses business, an innocent 
service (RecommendMe) suffers, and the root cause of the problem 
(AskGrace) remains concealed. If InstantLoan had identified the 

inadequacy of AskGrace early, it might have adapted its service 
composition by, say, using another risk assessor to avert the prob-
lem. On the other hand, condemning AskGrace to be guilty is only 
a straightforward solution in a simple illustrative example. In real 
life, a service composition may be large in scale, deep in service 
invocation chains, data-dependent on the dynamic behaviors of 
member services, and complex to analyze in detail. 

Other risk assessors selectable by InstantLoan may also incur 
similar problems. If this is the case, from the perspective of 
InstantLoan, the current risk assessment workflow does not fully 
support the needs of the banking business. One design solution is 
to adapt InstantLoan to include a quick scan of a loan application 
and to invoke multiple risk assessors to obtain a consensus. For an 
effective adaptation, InstantLoan must identify its workflow inade-
quacy first. We observe, however, that existing research has not 
adequately studied the mechanism to recommend fragments of a 
service composition to ease dynamic service adaptation. 

Engineers may specify the business process in, say, WS-
BPEL (the de facto language). To support service adaptation, 
Moser et al. [3] extend a WS-BPEL engine by an interception and 
adaptation layer to enable dynamic service selection. This layer 
monitors WS-BPEL programs over a set of specified Quality-of-
Service (QoS) constraints and dynamically invokes services that 
satisfy the constraints. Nevertheless, invocating a replaced service 
at an arbitrary invocation endpoint may not be effective in 
alleviating the QoS problem. The Pareto Principle (also known as 
the 80-20 rule) suggests that most of such invocations can be in 
the “long tail”. Finding the right services and invocation endpoints 
(which we call cracks) for effective adaptation helps reduce the 
problem of high cost in maintaining dynamic service composi-
tions.  

We outline our technique in Section 2 and evaluate it in 
Section 3. Section 4 concludes the paper. 

2. OUR TECHNIQUE 
This section describes how our technique samples QoS values at 
service invocation endpoints, ranks services repeatedly, analyzes 
the rank history of the services, and suggests the cracks. 

2.1 Service Monitor and QoS Collection 
To be scalable, our technique samples service endpoints (such as 
an <invoke> statement of a WS-BPEL program [2][3]) in a com-
posite service. To be non-intrusive, similarly to [3], it intercepts 
and records the invocation history at the middleware tier.  

During the execution of a service composition, whenever a 
sampled service endpoint invokes another service, we record the 
invocation. At the same time, we also collect the QoS values of 
the invoker. As such, our technique records a sequence of invoca-
tions among collaborating services and models the sequence as a 
list of invocation history, denoted by H. For each invocation, we 
collect a value vector v = 〈v1, v2, …, vm〉 representing the set of 
given QoS metrics values at the endpoint. We further denote the 
pool of services invoked by the endpoints in H and the set of QoS 
values associated with H by Φ and V, respectively. For ease of 
presentation, we assume that all the collected QoS values have 
been normalized between 0 (worst) and 1 (best). 
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2.2 Detection of Cracks 
During the collection of the execution data and QoS data of the 
sample service invocations, our technique conducts an online 
statistical analysis of the dataset and computes the relative ranks 
of the services in Φ according to their chances of being a crack. 

For each service s in Φ, we compute the sensitivity of being a 
crack (dubbed crack-sensitivity) by the equation 
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Here, N(v) is the total number of service invocations in the current 
H. Every such service is associated with a QoS value vector x = 
〈x1, x2, ..., xm〉 such that xi ≥ vi for all i = 1, 2, ..., m. N(v, s) is the 
number of innovations for service s. Further, ݒҧ is the mean value 
of all the elements vi in v. 

For such an evaluation step, the technique sorts the services 
(in Φ) in descending order of metrics values into a list. We deem 
that those services having consistently received higher metrics 
values than other services in the generated lists are more crack-
sensitive. To categorize a service to have consistently received 
higher ranks than others, the technique first conducts analysis of 
variance (ANOVA) on the above lists of ranked services to check 
whether the means of the crack-sensitivity values are significantly 
different from one another. If so, the technique further performs a 
multiple statistical comparison procedure to find out whether the 
topmost services significantly differs from the rest. If it is also the 
case, the technique reports that crack-related services are found. 

Having identified such a service, the technique searches its 
corresponding endpoints from the latest H. It reports these end-
points as cracks (for subsequent service adaptations) if such end-
points are still on the latest dynamic service composition. 

3. EVALUATION 
We have conducted a simulation experiment in a case study of 

a real-life insurance application for damage claim service [4][5]. 
Case study: A motor vehicle insurance policyholder first calls 

the Europe Assist service (EA for short) to initiate a damage claim 
procedure. EA then submits a claim form to AGFIL and assigns a 
garage service (G for short) for repair. AGFIL forwards a copy to 
Lee Consulting Services (Lee for short). Based on the claim form, 
Lee appoints a loss adjustor (LA for short) to inspect the damage 
of the claimed vehicle and to negotiate the repair price with G. 
Once Lee approves the quotation of the repair price with G, the 
garage commences the repair work. Lee then sends AGFIL an 
adjustor’s report. Finally, AGFIL pays G and LA. 

Experimental Setup: The experiment sets up 10 instances of 
each kind of service for selection. We randomly assigned one 
garage (referred to as G1) to exhibit 1% chance of producing 
results with abnormal size under uniform distribution. The experi-
ment composes services according to [5], and invokes the service 
of damage claim application 100,000 times. The service G1 may 
reply to the invoker with abnormally huge results, which deplete 
the processing resources of the invoker and lead to the abortion of 
the composite service. We consider such an abortion as an occur-
rence of QoS violation (that is, binary metrics). We evaluated the 
crack-sensitivity at each invocation of EA. 

Experimental Result: Figure 1 shows the crack-sensitivity dis-
tribution of each service. An ANOVA test (which checks whether 
the mean crack-sensitivity of services differ significantly from one 
another) further confirms that their means differ at the 0.1% sig-
nificance level. Following the ANOVA result, we further perform 
a multiple comparison procedure to check which pairs of such 

means are significantly different from each other, which further 
strengthens the observation from Figure 1 that G1 is more crack-
sensitive than all other services. Figure 2 depicts the result of the 
multiple comparison procedure, which confirms that G1 differs 
significantly from all other 49 services in terms of mean crack-
sensitivity. The p-values of the multiple comparison procedure are 
small enough to reject the null hypotheses. For example, the p-
value of the comparison between G1 and G2 is 7.9578 × 10–6. 
Based on G1, the service endpoint “Assign garage” in EA (in the 
case study [5]) is reported as a crack. 
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Figure 1: ANOVA of Service Crack-Sensitivity 
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Figure 2: Finding Cracks (G1) with Multiple Comparisons 

4. CONCLUSION 
In this paper, we have proposed a statistical framework to assess 
member services and to identify vulnerable areas called cracks to 
support service adaptation. We will improve our algorithm and 
investigate an effective and lightweight online metrics evaluation 
strategy (including better evaluation metrics) to support contin-
uous assessment of potential cracks and reduce false positive 
reports. To cater for long-running services, we will also explore 
different sampling strategies to make use of subsets of available 
historical data for analysis. Ontology-based service composition 
(via OWL-S, for instance) and the testing of adaptation patterns 
will also be interesting areas for future study. 
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