

Where to Adapt Dynamic Service Compositions*
Bo Jiang

The University of Hong Kong
Pokfulam, Hong Kong

bjiang@cs.hku.hk

W. K. Chan
City University of Hong Kong

Tat Chee Avenue, Hong Kong
wkchan@cs.cityu.edu.hk

Zhenyu Zhang, T. H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
{zyzhang,thtse}@cs.hku.hk

ABSTRACT
Peer services depend on one another to accomplish their tasks,
and their structures may evolve. A service composition may be
designed to replace its member services whenever the quality of
the composite service fails to meet certain quality-of-service
(QoS) requirements. Finding services and service invocation end-
points having the greatest impact on the quality are important to
guide subsequent service adaptations. This paper proposes a tech-
nique that samples the QoS of composite services and continually
analyzes them to identify artifacts for service adaptation. The
preliminary results show that our technique has the potential to
effectively find such artifacts in services.
Categories and Subject Descriptors
D.2.5 [SOFTWARE ENGINEERING]: Testing and Debugging
– Monitors.

D.2.8 [SOFTWARE ENGINEERING]: Metrics – Product
metrics.

General Terms
Measurement, Reliability, Verification

Keywords
Service composition, service adaptation

1. INTRODUCTION
Web services, a kind of web-based service-oriented technology,
encompass a set of application functions for service consumers to
accomplish their business processes and for composite services to
invoke one another’s functions [1]. A business process may
evolve, the functions of supportive services may change, and a
service composition may shift from a set of services to another
set. Providing alerts on the weak parts of business processes or
service compositions that potentially require service adaptation
are fundamental to effective service adaptation. We propose such
a technique in this paper.

Let us motivate our work via a mortgage loan scenario. Sup-
pose Ricky applies for a mortgage loan via InstantLoan, which is a
bank service that appoints AskGrace, a risk assessor service, to
estimate Ricky’s chance of breaching the loan contract. Suppose
further that AskGrace rates the loan higher in credit risk than it
should be. InstantLoan accepts this assessment result and sends it
to RecommendMe, a service of loan interest recommendation,
which in turn recommends an approval of the loan despite a high
interest rate. Ricky judges the interest rate to be too high and turns
down the loan offer. Thus, the bank loses business, an innocent
service (RecommendMe) suffers, and the root cause of the problem
(AskGrace) remains concealed. If InstantLoan had identified the

inadequacy of AskGrace early, it might have adapted its service
composition by, say, using another risk assessor to avert the prob-
lem. On the other hand, condemning AskGrace to be guilty is only
a straightforward solution in a simple illustrative example. In real
life, a service composition may be large in scale, deep in service
invocation chains, data-dependent on the dynamic behaviors of
member services, and complex to analyze in detail.

Other risk assessors selectable by InstantLoan may also incur
similar problems. If this is the case, from the perspective of
InstantLoan, the current risk assessment workflow does not fully
support the needs of the banking business. One design solution is
to adapt InstantLoan to include a quick scan of a loan application
and to invoke multiple risk assessors to obtain a consensus. For an
effective adaptation, InstantLoan must identify its workflow inade-
quacy first. We observe, however, that existing research has not
adequately studied the mechanism to recommend fragments of a
service composition to ease dynamic service adaptation.

Engineers may specify the business process in, say, WS-
BPEL (the de facto language). To support service adaptation,
Moser et al. [3] extend a WS-BPEL engine by an interception and
adaptation layer to enable dynamic service selection. This layer
monitors WS-BPEL programs over a set of specified Quality-of-
Service (QoS) constraints and dynamically invokes services that
satisfy the constraints. Nevertheless, invocating a replaced service
at an arbitrary invocation endpoint may not be effective in
alleviating the QoS problem. The Pareto Principle (also known as
the 80-20 rule) suggests that most of such invocations can be in
the “long tail”. Finding the right services and invocation endpoints
(which we call cracks) for effective adaptation helps reduce the
problem of high cost in maintaining dynamic service composi-
tions.

We outline our technique in Section 2 and evaluate it in
Section 3. Section 4 concludes the paper.

2. OUR TECHNIQUE
This section describes how our technique samples QoS values at
service invocation endpoints, ranks services repeatedly, analyzes
the rank history of the services, and suggests the cracks.

2.1 Service Monitor and QoS Collection
To be scalable, our technique samples service endpoints (such as
an <invoke> statement of a WS-BPEL program [2][3]) in a com-
posite service. To be non-intrusive, similarly to [3], it intercepts
and records the invocation history at the middleware tier.

During the execution of a service composition, whenever a
sampled service endpoint invokes another service, we record the
invocation. At the same time, we also collect the QoS values of
the invoker. As such, our technique records a sequence of invoca-
tions among collaborating services and models the sequence as a
list of invocation history, denoted by H. For each invocation, we
collect a value vector v = 〈v1, v2, …, vm〉 representing the set of
given QoS metrics values at the endpoint. We further denote the
pool of services invoked by the endpoints in H and the set of QoS
values associated with H by Φ and V, respectively. For ease of
presentation, we assume that all the collected QoS values have
been normalized between 0 (worst) and 1 (best).

* This work is partially supported by GRF grants of the Research Grants
Council of Hong Kong (project nos. 111107, 123207, and 717308).

Copyright is held by the author/owner(s).
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

WWW 2009 MADRID! Poster Sessions: Thursday, April 23, 2009

1123

2.2 Detection of Cracks
During the collection of the execution data and QoS data of the
sample service invocations, our technique conducts an online
statistical analysis of the dataset and computes the relative ranks
of the services in Φ according to their chances of being a crack.

For each service s in Φ, we compute the sensitivity of being a
crack (dubbed crack-sensitivity) by the equation

ሻݏሺܯ ൌ
 ሺ1 െ ҧሻݒ ڄ ܰሺݒ, ሻݏ

ܰሺݒሻ ൨
௩א

 ܰሺݒ, ሻݏ
ܰሺݒሻ ൨

௩א

Here, N(v) is the total number of service invocations in the current
H. Every such service is associated with a QoS value vector x =
〈x1, x2, ..., xm〉 such that xi ≥ vi for all i = 1, 2, ..., m. N(v, s) is the
number of innovations for service s. Further, ݒҧ is the mean value
of all the elements vi in v.

For such an evaluation step, the technique sorts the services
(in Φ) in descending order of metrics values into a list. We deem
that those services having consistently received higher metrics
values than other services in the generated lists are more crack-
sensitive. To categorize a service to have consistently received
higher ranks than others, the technique first conducts analysis of
variance (ANOVA) on the above lists of ranked services to check
whether the means of the crack-sensitivity values are significantly
different from one another. If so, the technique further performs a
multiple statistical comparison procedure to find out whether the
topmost services significantly differs from the rest. If it is also the
case, the technique reports that crack-related services are found.

Having identified such a service, the technique searches its
corresponding endpoints from the latest H. It reports these end-
points as cracks (for subsequent service adaptations) if such end-
points are still on the latest dynamic service composition.

3. EVALUATION
We have conducted a simulation experiment in a case study of

a real-life insurance application for damage claim service [4][5].
Case study: A motor vehicle insurance policyholder first calls

the Europe Assist service (EA for short) to initiate a damage claim
procedure. EA then submits a claim form to AGFIL and assigns a
garage service (G for short) for repair. AGFIL forwards a copy to
Lee Consulting Services (Lee for short). Based on the claim form,
Lee appoints a loss adjustor (LA for short) to inspect the damage
of the claimed vehicle and to negotiate the repair price with G.
Once Lee approves the quotation of the repair price with G, the
garage commences the repair work. Lee then sends AGFIL an
adjustor’s report. Finally, AGFIL pays G and LA.

Experimental Setup: The experiment sets up 10 instances of
each kind of service for selection. We randomly assigned one
garage (referred to as G1) to exhibit 1% chance of producing
results with abnormal size under uniform distribution. The experi-
ment composes services according to [5], and invokes the service
of damage claim application 100,000 times. The service G1 may
reply to the invoker with abnormally huge results, which deplete
the processing resources of the invoker and lead to the abortion of
the composite service. We consider such an abortion as an occur-
rence of QoS violation (that is, binary metrics). We evaluated the
crack-sensitivity at each invocation of EA.

Experimental Result: Figure 1 shows the crack-sensitivity dis-
tribution of each service. An ANOVA test (which checks whether
the mean crack-sensitivity of services differ significantly from one
another) further confirms that their means differ at the 0.1% sig-
nificance level. Following the ANOVA result, we further perform
a multiple comparison procedure to check which pairs of such

means are significantly different from each other, which further
strengthens the observation from Figure 1 that G1 is more crack-
sensitive than all other services. Figure 2 depicts the result of the
multiple comparison procedure, which confirms that G1 differs
significantly from all other 49 services in terms of mean crack-
sensitivity. The p-values of the multiple comparison procedure are
small enough to reject the null hypotheses. For example, the p-
value of the comparison between G1 and G2 is 7.9578 × 10–6.
Based on G1, the service endpoint “Assign garage” in EA (in the
case study [5]) is reported as a crack.

G1G2 … G10 LA … LA10 Lee1 … Lee10AGFIL1 …AGFIL5 EA1 … EA10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cr
ac

k-
se

ns
iti

vit
y

Services
Figure 1: ANOVA of Service Crack-Sensitivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
EA10

EA1
AGFIL10

AGFIL1
Lee10

Lee1
LA10

LA1
G10

G2
G1

49 groups have means significantly different from G1

Se
rv

ice
s

Crack-sensitivity
Figure 2: Finding Cracks (G1) with Multiple Comparisons

4. CONCLUSION
In this paper, we have proposed a statistical framework to assess
member services and to identify vulnerable areas called cracks to
support service adaptation. We will improve our algorithm and
investigate an effective and lightweight online metrics evaluation
strategy (including better evaluation metrics) to support contin-
uous assessment of potential cracks and reduce false positive
reports. To cater for long-running services, we will also explore
different sampling strategies to make use of subsets of available
historical data for analysis. Ontology-based service composition
(via OWL-S, for instance) and the testing of adaptation patterns
will also be interesting areas for future study.

5. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services:

Concepts, Architectures and Applications. Springer, Berlin, 2004.
[2] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-

oriented workflow applications. In Proceedings of ICSE 2008, pages
371–380. ACM Press, New York, NY, 2008.

[3] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring
and service adaptation for WS-BPEL. In Proceedings of WWW 2008,
pages 815–824. ACM, New York, NY, 2008.

[4] CrossFlow Consortium/AGFIL. Insurance requirements. CrossFlow
deliverable D1.b. La Gaude, March 1999.

[5] C. Ye, S.C. Cheung, W.K. Chan, and C. Xu. Atomicity analysis of
service composition across organizations. IEEE Transactions on
Software Engineering 35(1):2–28, 2009.

WWW 2009 MADRID! Poster Sessions: Thursday, April 23, 2009

1124

