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ABSTRACT 
Regression testing assures the quality of modified service-oriented 
business applications against unintended changes. However, a 
typical regression test suite is large in size. Earlier execution of those 
test cases that may detect failures is attractive. Many existing 
prioritization techniques order test cases according to their respective 
coverage of program statements in a previous version of the 
application. On the other hand, industrial service-oriented business 
applications are typically written in orchestration languages such as 
WS-BPEL and integrated with workflow steps and web services via 
XPath and WSDL. Faults in these artifacts may cause the application 
to extract wrong data from messages, leading to failures in service 
compositions. Surprisingly, current regression testing research 
hardly considers these artifacts. We propose a multilevel coverage 
model to capture the business process, XPath, and WSDL from the 
perspective of regression testing. We develop a family of test case 
prioritization techniques atop the model. Empirical results show that 
our techniques can achieve significantly higher rates of fault 
detection than existing techniques. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging—Testing 
tools; D.2.8 [Software Engineering]: Metrics—Product metrics 

General Terms: Measurement, Reliability, Verification 

Keywords 
Test case prioritization, service orientation, XPath, WSDL 

1. INTRODUCTION 
Industrial leaders such as IBM, Microsoft, Oracle, and BEA 

promote the use of service-oriented business processes to build their 
enterprise applications. Process engineers may develop such 
applications using orchestration languages like the Web Service for 
Business Process Execution Language (WS-BPEL) [22] and 
Business Process Modeling Language (BPML). In a typical 
application, a business workflow (say, coded in BPEL) may use 
external web services to implement individual workflow steps. To 
transfer type-safe XML messages [22] among individual workflow 

steps and web services, process engineers write diverse 
specifications in Web Service Description Language (WSDL) [23] 
(dubbed WSDL specifications) to interpret different portions of the 
same or different XML documents for various workflow steps. Since 
a workflow step may use part of the content kept in an XML 
document, process engineers may define XPath expressions [25], 
which pairs with WSDL specifications, to extract the required 
contents from the document. 

To cope with changing business requirements, process engineers 
may modify the service-oriented business process [11][14][26]. 
Testers should assure the quality of such revised applications. 
Regression testing, aimed at detecting potential faults caused by 
software changes, is the de facto approach [8][20]. It reruns test cases 
from existing test suites to ensure that no previously working 
function has failed as a result of the modification [8]. Although many 
researchers point out that frequent executions of regression test are 
crucial in successful application development [8][15], rerunning the 
regression test suite for large and complex systems may take days 
and even weeks, which is time-consuming. In service-oriented 
computing, a business process may invoke external web services 
(such as viewing an article in Economist.com), which may incur 
charges. To reduce costs, it is desirable to detect failures as soon as 
possible when executing the test suite. The use of effective 
regression testing techniques is, therefore, crucial. 

Thus, test case prioritization [19] is important in regression testing 
[9][15]. It schedules the test cases in a regression test suite with a 
view to maximizing certain objectives (such as revealing faults 
earlier), which help reduce the time and cost required to maintain 
service-oriented business applications. Existing regression testing 
techniques for such applications focus on testing individual services 
[20] or workflow programs [6]. Surprisingly, to the best of our 
knowledge, the integration complexity raised by non-imperative 
artifacts such as XPath and WSDL among workflow steps has been 
inadequately addressed in regression testing research. 

Let us consider a simple example. Suppose an application aims to 
implement an XPath query to select (from a list of available hotel 
rooms kept in an XML document) all “single rooms” priced less than 
$100. Suppose also that the XPath expression has been implemented 
erroneously as selecting either “single rooms” or rooms priced less 
than $100. Using this incorrect XPath query, the application may 
select a “single room” priced at $100 or above. In general, an XPath 
query in a workflow step may introduce additional (conceptual) 
branch decisions (such as deciding whether a room can be selected), 
and thus affect the workflow logic. 

Furthermore, different XML messages that conform to the same 
WSDL specification may contain different sets of XML elements 
(including tags and attribute names). We refer to an XML element 
defined by at least one XML schema in a WSDL specification as a 
WSDL element. Incorrectly defining a WSDL element or failing to 
provide a definition may result in an integration error. 
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Faults may reside on the non-imperative artifacts (such as XPath 
and WSDL) in a service-oriented business application. To the best of 
our knowledge, however, prioritization techniques to effectively find 
test cases to reveal such implementation problems earlier during 
maintenance has not been studied. This paper tackles the problem.  

Following our previous work [12], we model an XPath query (in 
the presence of a WSDL specification) as an XPath Rewriting Graph 
(XRG). An XRG represents potential scenarios of content selections 
from XML messages. Each content selection scenario is captured as 
an XRG branch (see Section 2.2.2). We note that XRG branches for 
different XML messages that the XPath expression is querying on 
may be different. To account for the WSDL artifact, we say that a test 
case t has covered a WSDL element e if t contains an XML message 
m as input, or t causes the application to generate an XML message m, 
such that m has e as its entity tag. In a changing business application, 
every artifact (workflow, XPath, or WSDL) may be modified. As a 
result, fault(s) may be introduced to the artifacts. The use of 
workflow coverage data to prioritize test cases may be effective for 
detecting faults in the workflow program, such as wrong predicates. 
However, such prioritizations may be ineffective for handling faults 
in other artifacts. More examples will be given in Section 3.  

We propose a multilevel coverage model to capture the coverage 
requirements of these artifacts. Level 1 covers only the workflow, 
level 2 covers both workflow and XPath, and level 3 covers 
workflow, XPath, and WSDL. Through the level-by-level use of 
coverage data for test cases, we propose a new family of test case 
prioritization techniques. 

To handle multiple types of artifact in the family of test case 
prioritization techniques, we use two strategies. The first strategy is 
to treat different artifacts homogenously, which is akin to enlarging 
the coverage space from pure workflow-oriented coverage space to a 
space linked up to the coverage space of other artifact types. We call 
it a summation strategy. On the other hand, we appreciate that such a 
homogenous treatment of artifacts may not reflect the different roles 
of these artifacts in a service-oriented business application. For 
instance, from the perspective of process engineers who write such 
applications, a workflow program is more important than XPath 
expressions or WSDL specifications. Therefore, we propose another 
strategy called a refinement strategy. This strategy would refer to 
another type of artifact (such as WSDL) only if using the artifacts 
already referred to (such as workflow and XPath) cannot help a 
prioritization technique to select a test case. 

We develop a family of techniques using the above model and 
strategies. With the inclusion of more artifacts, our techniques can 
intuitively be more effective in detecting faults residing across 
various artifacts. Our experiment further shows that the family of 
techniques is effective to reveal regression faults in modified 
programs, and the techniques at a higher level is generally more 
effective than those at a lower level.  

The main contribution of this paper is threefold. (i) Through a 
multilevel coverage model, we propose a family of test case prioriti-
zation techniques that consider imperative and non-imperative 
artifacts (including workflow, XPath, and WSDL) in 
service-oriented business applications. (ii) We analyze the proposed 
prioritization techniques and present a hierarchy to capture their 
relations. To our best knowledge, this is the first logical hierarchy to 
relate test case prioritization techniques in the literature. (iii) We 
report an experimental study to verify the effectiveness of our 
proposal. 

The rest of the paper is organized as follows: Section 2 gives the 
preliminaries. Section 3 shows a motivating example to discuss the 
challenges. Section 4 presents our prioritization techniques. Section 5 
presents an experiment to validate our proposal, followed by 

discussions and related work in Sections 6 and 7, respectively. Finally, 
Section 8 concludes the paper. 

2. PRELIMINARIES 
2.1 Test Case Prioritization 

Test case prioritization [5][19] is an important kind of regression 
testing technique [9][18]. With the information gained in the 
previous software evaluation, we may design techniques to run the 
test cases to achieve a certain goal in the regression testing. For 
example, proper test case prioritization techniques increase the fault 
detection rate of a test suite and the chance of executing test cases 
with higher rates of fault detection earlier [5]. We adopt the test case 
permutation problem from [19] as follows: 

Given: T, a test suite; PT, the set of permutations of T; and f, a 
function from PT to real numbers. (For example, f may calculate the 
fault detection rate of a permutation of T.) 

Problem: To find T’∈PT such that, ∀T’’∈PT, T’’ ≠ T’ ⇒ f (T’) ≥ 
f (T’’). 

The metric of Average Percentage of Faults Detected (APFD) [5] 
is widely adopted in evaluating test case prioritization techniques 
[6][19]. A higher APFD value indicates faster (or better) fault 
detection rate [5]. Let T be a test suite containing n test cases, F be a 
set of m faults revealed by T, and TFi be the first test case index in 
ordering T’ of T that reveals fault i. The following equation gives the 
APFD value for ordering T’ [5]. 

nmn
TFTFTF

APFD m

2
1

 
  ...    

  1   21 +
+++

−=   

We provide an example to show how APFD measures the fault 
detection rate of different test suite ordering.  
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Test Case
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f1 f2 f3 f4 f5 f6 f7 f8

tA • • •

tB
tC • • • •

tD • • •

tE • •

Example on 
test suite and 
faults exposed

 
 

Figure 1. Example illustrating the APFD measure. 
A program may have multiple faults. A test case sometimes can 

detect zero, one, or more faults, however, it can hardly find out all 
faults. Suppose the faults that test cases tA to tE can detect are shown 
in Figure 1. Let the two permutations for tA to tE be T1 〈tB, tA, tD, tC, tE〉 
and T2 〈tC, tD, tE, tA, tB〉. The APFD measures on T1 and T2 are also 
given in Figure 1. 

Other metrics [9] can also be used to measure these techniques. 
Owing to space limit, we will report such results in future work. 

2.2 XPath and XPath Query Model 
2.2.1 XPath 

We adopt the definition of XPath expression in [13]. An XPath 
expression is defined using the following grammar:  

][|//|/|.|*| qqqqqqnq →  

The operators include the following: n ∈ Σ is any label, * denotes a 
label wildcard, and .  (the dot operator) denotes the current node. The 
constructions / and // mean child and descendant navigations, while 
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the square brackets [ ] enclose a predicate. The symbols in Σ 
represent the element labels and attribute labels that can occur in 
XML documents. The set of all trees are denoted by TΣ, and each tree 
represents an XML document satisfying the XML schema Ω. We 
also use Ω to represent the set of labels that can occur in the XML 
schema Ω. For a tree t ∈ TΣ, an XPath query q(t) is a query on t using 
an XPath expression q, and returns a set of nodes of t. NODES (t) and 
EDGES(t) denote the sets of nodes and edges, respectively. LABEL(x) 
is the label on node x, LABEL (x) ∈ Σ. The transitive closure of 
EDGES(t) is denoted by EDGES 

+
 (t), and the reflexive and transitive 

closure of EDGES(t) is denoted by EDGES*(t). 
Reference [13] gives the following definitions to represent a 

decidable fragment of XPath in Figure 2. According to [13], this 
fragment has provided representative XPath syntaxes and is 
sufficient to be the basis of studying XPath. 

n(x)
*(x)
.(x)

(q1/q2)(x) 
(q1//q2)(x) 
(q1[q2])(x) 

=
=
= 
=
=
=

Rule
1
2
3
4 
5
6 

…
…
…
…
…
…

{y | (x, y)∈EDGES(t), LABEL(y) = n}
{y | (x, y) ∈EDGES(t)}
{x}
{z | y∈q1(x), z∈q2(y)}
{z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)} 
{y | y∈q1(x), q2(y)≠Ø}  

Figure 2. Syntax of a decidable fragment of XPath [13]. 

2.2.2 XPath query model 
XPath queries are used to locate contents from an XML document. 

We have proposed in [12] an XPath Rewriting Graph (XRG) to 
represent an XPath with a document model Ω of XML documents. 
We revisit XRG here to facilitate the description of our techniques. 
An XRG is built on the definitions of XPath syntactic constructs [13]. 
We treat these definitions (Figure 2) as “left-to-right” rewriting rules, 
and through a series of rewriting [3], transform an XPath into a 
normal form or a fixed point. An XRG also records the intermediate 
rewriting steps, and links every two consecutive steps in the graph.  

To capture the notion of rewriting [3], there are two types of node 
in an XRG, namely rewriting node 〈q, Lc, rule〉 and rewritten node 〈q, 
Lc, Ln, S〉. q is an XPath expression. Lc and Ln are sets of nodes (Lc, Ln 
⊆ NODES(Ω)). They represent the sets of tags relevant to q. Lc is the 
set of nodes located by the previous rewriting step. Ln is the set of 
nodes that can be located by q starting from some node in Lc. S is a 
set-theoretic representation of the result of q. Besides, rule denotes 
the rewriting rule used to generate the sub-terms in this node. Initially, 
Lc is assigned to {ROOT}, where ROOT is the unique root node of Ω. 

 

1 <xsd:complexType name="hotel"> 
2     <xsd:element name="name" type="xsd:string"/> 
3     <xsd:element name="room" type="xsd:RoomType"/> 
4     <xsd:element name="error" type="xsd:string"/> 
5 </xsd:complexType> 

6 <xsd:complexType name="RoomType"> 
7     <xsd:element name="roomno" type="xsd:int" /> 
8     <xsd:element name="price" type="xsd:int"/> 
9     <xsd:element name="persons" type="xsd:int"/> 
10 </xsd:complexType> 

 

Figure 3. Part of WSDL document: XML schema of hotel. 
Let us show an example of an XRG. Suppose, during the reserva-

tion of a hotel room (see the example in Section 3), the booking 
information (in XML format) is kept in a BPEL variable 
HotelInformation. Figure 3 shows a simplified XML schema hotel 
for HotelInformation. (We have omitted relevant details from the 
schema to ease the discussion of the example in Section 3.) A room 
has three attributes (lines 7–9): roomno, price, and persons 
(indicating the maximum number of persons allowed). 

Consider an XPath query on HotelInformation, denoted by 

XQ(HotelInformation,  q), where q is //room[@price≤’Price’ and 

@persons=’Num’]/price/. Informally, q finds a room within the 
requested price that can accommodate the requested number of 
persons. The corresponding XRG is shown in Figure 4. 

We use the algorithm Compute_XRG from [12] to construct 
XRGs. We show the first rewriting step to illustrate how an XRG is 
computed. XQ (HotelInformation, q) is first identified by Rule 5 
(q1 = * and q2 = room[precondition]/price/*), where 
precondition is “@price≤’Price’ and @persons=’Num’ ”. Rewrit-
ing node R1 is thus generated. Next, the algorithm recursively 
processes three sub-terms: //, q1, and q2. The middle sub-term // 
matches Rule 5 (note that // is the same as .//.), and so R3 is generated. 
The left sub-term * matches Rule 2, and hence rewritten node R2 is 
generated. The right sub-term q2 matches Rule 4, and rewriting node 
R4 is generated. The remaining rewriting steps are similar. 

< //price/, A={ROOT},(q1//q2)>

<room[precondition]/price/*, C,(q3/q4)>

q7(E),q7=(price) q8(F), q8=*

q1(A), q1= * q2(C), q2=(room[precondition]/price/*)

R1

R3R2 R4

R9 R10

XQ(HotelInformation, //room[precondition]/price/)Rewriting Node

Rewritten Node

precondition: (@price≤‘Price’ and @persons=’Num’)
A = {ROOT} B = {hotel} C = {name, room, roomno, price, persons, error}      D = {room}    E = {room}    
F = {price} G = {g | g is the price value} 
Rule 1: n(x) = {y|(x, y)∈EDGES(t), LABEL(y) = n}     Rule 2: *(x) = {y|(x, y)∈EDGES (t)}   
Rule 4: (q1/q2)(x) = {z| y∈q1(x), z∈q2(y)}                Rule 5: (q1//q2)(x) = {z|y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u) }   
Rule 6: (q1[q2])(x) ={y| y∈q1(x), q2(y) ≠ Ø }

< *, A, B, Rule2>

< price, E, F, Rule1> < *, F, G, Rule2>

q5(C),q5=(precondition) q6(D), q6=room
R7 R8

<precondition, C, 
D, Rule 1>

< room, D, E, Rule 1>

<room[precondition], C,(q5[q6])> <price/*, E,(q7/q8)>

R5 R6
q3(C),q3=room[precondition]) q4(E),q4= price/*

< //, B, C, Rule5>

 

Figure 4. Example of XPath Rewriting Graph (XRG). 

Following [12], we can obtain a conceptual path that models a 
logical computation of an XPath via an inorder traversal of the XRG 
with all the rewriting nodes dropped (as illustrated in Figure 8). Such 
a path contains implicit predicates that decide on the legitimate 
branch (called XRG branch) to be taken. For example, if no element 
in the XML document can be selected for the set B in R2, B would be 
empty. This will result in no more applicable rewriting. A succeeding 
rewritten node will be appeared on a conceptual path only if its 
preceding rewritten node provides a non-empty set of Lc. Therefore, 
a branch can be modeled by whether Lc on a node is empty or not. 

3. MOTIVATING EXAMPLE 
We adapt the business process HotelBooking from the 

TripHandling project [21] to introduce the challenges in a typical 
service-oriented business application. HotelBooking offers the hotel 
booking service. Since showing the actual BPEL code in XML 
format is quite lengthy, we follow [12] to use an UML activity 
diagram to depict this business process to ease the illustration (Figure 
5(a)). We also present two changes that may result in integration 
failures in Figures 5(b) and 5(c). 

We use a node to represent a workflow node, and a link to 
represent a transition between two activities. We also annotate the 
nodes with information extracted from the program, such as the 
input-output parameters of the activities and XPath. The nodes are 
numbered as Ai (for i from 1 to 8) to ease the illustration. The process 
HotelBooking in Figure 5(a) is described as follows: 
(a) A1 receives a user’s hotel booking request, and stores it in the 

variable BookRequest. 
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(b) A2 extracts the inputted room price and number of persons via 
XPath //price/ and //persons/ from BookRequest, and stores 
them in the variables Price and Num, respectively. 

(c) A3 invokes the service HotelPriceService to find available hotel 
rooms with prices within budget (not exceeding Price), and 
keeps the result in HotelInformation (defined in Figure 3). 

(d) A4 assigns RoomPrice using the price extracted via the XPath 
//room[@price≤’Price’ and @persons=’Num’]/price/.  

(e) A5 further verifies locally that the price in HotelInformation 
should not exceed the inputted price (the variable Price).  

(f) If the verification passes, A7 will execute HotelBookService to 
book a room, and A8 returns the result to the customer.  

(g) If RoomPrice is erroneous or HotelBookService (A7) produces a 
failure, A6 will invoke a fault handler, i.e., 〈A7, A6〉 is executed. 

For ease of understanding, we summarize the artifacts and their 
relationships in UML class diagram notation (as shown in Figure 6). 
The description has been given in Section 1. 

Workflow WSDL

XPath (XRG)

web services

see example 
in Figure 3

see example 
in Figure 4

see example 
in Figure 5

SO business application Level-1:
Workflow

Level-2:
Workflow, XPath

Level-3:
Workflow, XPath, 
WSDL

see example 
in Figure 7

XML messages

 
Figure 6. Key artifacts and their relationships in typical 

service-oriented business application. 
Suppose a process engineer Rick decides that the precondition at 

node A4 in Figure 5(a) should be changed to that at node A4 in Figure 
5(b). (He attempts to allow customers to select any room that can 
provide accommodation for the requested number of persons.) 
However, he wrongly changes the precondition in the XPath (namely, 
changing “and” to “or”). While he intends to provide customers 
more choices, the process does not support his intention (for instance, 
the process is designed to immediately proceed to book rooms, rather 
than providing choices for customers to select). Further, suppose 
another engineer May wants to correct this fault. She plans to change 
node A4 in Figure 5(b) back to that in Figure 5(a). However, she 
considers that the precondition at node A5 is redundant (i.e., no need 
to require RoomPrice ≥ 0). Therefore, she changes the node A5 in 
Figure 5(b) to become the node A5 in Figure 5(c), and forgets to 
handle a potential scenario (Price < 0). Her change thus introduces a 
regression fault into the original program. 

We use a set of test cases (t1 to t6) to illustrate the challenges in test 
case prioritization. The inputs to WS-BPEL applications are XML 
documents. We simply use the price value of the variable Price to 
stand for the variable to save space. Due to page limit, the XML 
schema that defines BookRequest is not shown. Let us discuss A4. 
Figure 7 shows the messages used at A4 for t1 to t6. 

 <Price, Num>  <Price, Num> 
Test case 1 (t1): <200, 1> Test case 2 (t2): <150, 2>  
Test case 3 (t3): <125, 3> Test case 4 (t4): <100, 2> 
Test case 5 (t5): <  50, 1> Test case 6 (t6): <  –1, 1> 

<hotel>
<name>Hilton Hotel</name>   
<room>

<roomno>R106</roomno>
<price>105</Price>
<persons>1<persons>

</room>  
<room>

<roomno>R101</roomno>
<price>150</price>
<persons>3<persons>

</room>
</hotel >

Test Case 1 Test Case 2 Test Case 3

Test Case 5

<hotel>
<room>

<price>-1</Price>
<persons>1<persons>

</room>
<error>InvalidPrice<error>

</hotel >
Test Case 4 Test Case 6

<hotel>
</hotel >

<hotel>
<name>Hilton Hotel</name>
<room>

<roomno>R106</roomno>
<price>105</Price>
<persons>1<persons>

</room>
</hotel >

<hotel>
<room>

<roomno></roomno>
<price>100</Price>
<persons>2<persons>

</room>
</hotel >

<hotel>
<name>Hilton Hotel</name>
<room>

<roomno>R106</roomno>
<price>105</Price>
<persons>1<persons>

</room>
<room>

<roomno>R101</roomno>
<price>150</price>
<persons>3<persons>

</room>
</hotel >

  

Figure 7. XML messages for XQ(HotelInformation, 
//room[@price ≤ ’Price’ and @persons = ’Num’]/price/). 

When executing t1 to t6 on the program in Figure 5(b), t1 extracts a 
right room price; t4 to t6 extract no price value; both t2 and t3 extract 
the price 105 of the single room, however, they actually need to book 
a double room and a family room, respectively. Observe that, t2 and 
t3 can detect the fault in Figure 5(b). Similarly, for the program in 
Figure 5(c), t1 and t2 can extract the right room prices; t3 to t5 extract 
no price value; t6 extracts a room price –1, although it should not 
extract any price. Only t6 can detect the fault in Figure 5(c). 

Regression testing uses the coverage data achieved from previous 
execution round over a preceding version of the application to guide 
the current round of test case prioritization before executing these 
test cases on the modified application. Table 1 shows the workflow 
branch coverage of t1 to t6 on the original program of HotelBooking 
(i.e., Figure 5 (a)). We use a “•” to represent the item covered by test 
cases in Figure 8 and Tables 1, 2, and 3. 

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≥ 0

&& RoomPrice ≤ Price

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

RoomPrice =  XQ(HotelInformation,
//room[@price≤’Price’ and 

persons≥‘Num’]/price)

if XQ(HotelInformation, //roomno/) ≠ null
&& RoomPrice ≤ Priceif RoomPrice ≥ 0

&& RoomPrice ≤ Price

No

RoomPrice =  XQ(HotelInformation,
//room[@price≤’Price’ and 
@persons=‘Num’]/price)

Yes
Input: 
RoomPrice
Output: 
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault 
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)
Num= XQ(BookRequest, //persons/)

Input:    Price
Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign 
RoomPrice

(a) Original Program (b) Changed Program - 1 (c) Changed Program - 2

No Yes
Input: 
RoomPrice
Output: 
BookingResult

Input: BookRequest

A5:
Validate

Price

A6: Fault 
Handling
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Figure 5. Activity diagram of a WS-BPEL application. 
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We observe that the workflow branches covered by t2, t3, t5, and t6 
are same (Table 1). A conventional branch-coverage prioritization 
technique may simply order them randomly, and thus ignore much 
useful information that potentially helps prioritize test cases to 
achieve a higher fault detection rate. Therefore, we introduce how 
XPath and WSDL can be used to address the challenges. Figure 8 
shows the XRG nodes covered by t1 to t6 on the XRG (Figure 4) at 
node A4 of Figure 5(a). 

Table 1. Workflow branch coverage for t1 to t6. 
Branch t1 t2 t3 t4 t5 t6 
〈A1, A2〉 • • • • • • 
〈A2, A3〉 • • • • • • 
〈A3, A4〉 • • • • • • 
〈A4, A5〉 • • • • • • 
〈A5, A6〉  • •  • • 
〈A5, A7〉 •   •   
〈A7, A6〉       
〈A7, A8〉 •   •   

Total 6 5 5 6 5 5 
 

Price = XQ(HotelInformation, q)

R2

R3

R8

R7

A4

< *, A, B, Rule2>

< //, B, C, Rule 5>

<precondition, C, D, Rule 1>

< room, D, E, Rule 1>

< price, E, F, Rule1>

< *, F, G, Rule2>

R9

R10

t1 t2 t3 t4 t5 t6
• • • • • •

• • • • • •

• • • • •

• • • • •

• • •

• • •

• • •

• •

•

 
Figure 8. Example of XRG conceptual path. 

Different XRG branches may lead to different content selections, 
and return different values to the workflow (see [12] for how to find 
out such a path). For example, the XRG branch of t1 extracts the 
value 150 from the price tag and assigns the value to the variable 
Price. However, for t2 and t5, it will return no value (referred to as the 
null value for the ease of discussion) to Price. We further present 
Table 2 to show how t1 to t6 cover different XRG branches in the 
above XRG at node A4 of Figure 5(a). 

Table 2. XRG branch coverage for t1 to t6. 
XRG branch t1 t2 t3 t4 t5 t6 

〈R2, R3〉 • • • • • •
〈R2, A4〉       
〈R3, R7〉 • • • •  •
〈R3, A4〉     •  
〈R7, R8〉 • • • •  •
〈R7, A4〉       
〈R8, R9〉 •   •  •
〈R8, A4〉  • •    
〈R9, R10〉 •   •  •
〈R9, A4〉       
Total 5 4 4 5 2 5 

We observe that the XRG branches covered by t1 and t4 are iden-
tical. On the other hand, the branches covered by t2 and t3 are differ-
ent from those covered by t5 and t6. Let the tuple 〈top, bottom〉 denote 
the theoretical highest (top) and lowest (bottom) priority orders of a 
test case determined by a potential prioritization technique. If we use 
the additional coverage data on the XRG branch, the tuples for both 
t2 and t3 are 〈2, 3〉. However, using the additional branch coverage 
data, the tuples for both t2 and t3 are 〈2, 6〉. This shows that the use of 
additional XRG branch coverage may increase the chance of 
achieving a higher fault detection rate. 

To explore the difference between test cases like t1 and t4, we 
further present Table 3 on how test cases t1 to t6 cover the WSDL 
elements (the schema is given in Figure 3) at node A4. Table 3 shows 
that t1 to t3 cover the same set of WSDL elements, and are different 
from t4, t5, or t6. Intuitively, if we use the additional coverage data on 
WSDL elements, the couple for t6 will be 〈2, 2〉. However, the couple 
for t6 is 〈2, 6〉 if using the additional branch coverage data, and is 〈1, 
6〉 if using the additional XRG branch coverage data. It shows that 
using WSDL elements has the potential to increase the chance of 
achieving a higher fault detection rate. 

Table 3. Statistics of WSDL elements for t1 to t6. 
XML schema t1 t2 t3 t4 t5 t6 

hotel • • • • • •
name • • •    
room • • • •  •

roomno • • • •   
price • • • •  •

persons • • • •  •
error      •

val(name) • • •    
val(roomno) • • •    

val(price) • • • •  •
val(persons) • • • •  •
val(error)      •

Total 10 10 10 7 1 8 
 

We have shown that merely using the workflow branch coverage 
data may not reveal the internal conceptual branches and message 
types caused by the XPath and WSDL, and thus the performance of 
test case prioritization has not been fully maximized. This 
observation motivates us to present new techniques that take the 
XRG and WSDL coverage data into consideration.  

4. OUR TEST CASE PRIORITIZATION 
Given a test suite T for a service-oriented business application, our 

target is to reorder T according to the coverage data of the test cases 
in T when P is executed, with a view to effective regression testing of 
modified versions of P. In this section, we present a family of new 
test case prioritization techniques for such regression testing. 

In view of the presence of heterogeneous artifacts, we propose a 
new coverage model to facilitate the development of our test case 
prioritization techniques. A coverage model for a service-oriented 
business application P is a 4-tuple 〈T, Ґα, Ґβ, Ґγ〉, where (a) T is a 
regression test suite for P; (b) Ґα, Ґβ, and Ґγ represent, respectively, 
sets of workflow branches, sets of XRG branches, and sets of WSDL 
elements collected from various executions of P; and (c) Ґα(t), Ґβ(t), 
and Ґγ(t) represent, respectively, the set of workflow branches, the set 
of XRG branches, and the set of WSDL elements covered by the 
execution of P with respect to a test case t ∈ T. 

We propose to utilize the coverage data of the test cases by levels. 
Level 1 covers only workflow, which is the basis of a business 
process. Next, since workflow may use XPath expressions to 
manipulate XML messages, level 2 covers both workflow and XPath. 
Finally, since XML messages must conform to the WSDL 
specification, level 3 covers workflow, XPath, and WSDL. For ease 
of presentation, we refer to the three levels of coverage data as CM-1, 
CM-2, and CM-3, respectively, where CM stands for Coverage 

Model. Through the level-by-level use of coverage data, we propose 
a new family of test case prioritization techniques. 

4.1 Our Prioritization Techniques 
This section presents our test case prioritization techniques. If we 

considered a workflow program as a conventional program, the first 
two techniques (M1 and M2) would resemble to the branch coverage 
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techniques of conventional programs [5][19]. Examples of each 
technique are shown in Table 4. 

4.1.1 CM-1 (Level 1): Using Ґα only. 
M1 (Total-CM1) [19]: This technique sorts the test cases in T in 

descending order of the total number of workflow branches executed 
by each test case. If multiple test cases cover the same number of 
workflow branches, M1 orders them randomly. 

M2 (Addtl-CM1) [19]: This technique iteratively selects a test 
case t that yields the greatest cumulative workflow branch coverage, 
and then removes the covered workflow branches, Γα(t), from all 
remaining test cases to indicate that those removed workflow 
branches have been covered by the selected test cases. Additional 
iterations will be conducted until all workflow branches have been 
covered by at least one selected test case. If multiple test cases cover 
the same number of workflow branches in the current round of 
selection, the technique selects one of them randomly. If no 
remaining test cases can further improve the cumulative workflow 
branch coverage, the technique resets the workflow branch covered 
of each remaining test case to its original value. It applies the above 
procedure until all test cases in T have been selected. 

Let m and n be the test suite size and the maximum number of 
workflow branches covered by a test case t, respectively. Collecting 
the branch coverage of test cases will take O(mn) time. Sorting test 
cases will take O(m log m) time. Therefore, M1 can be finished in 
O(mn + m log m) time and M2 can be finished in O(m2 n + m2 log m) 
time. 

4.1.2 CM-2 (Level 2): Using Ґα and Ґβ. 
M3 (Total-CM2-Sum): This technique is the same as Total- 

CM1, except that it uses the total number of workflow and XRG 
branches covered by each test case, rather than only the total number 
of workflow branches as in Total-CM1. It treats workflow branches 
and XRG branches in the same way. 

M4 (Addtl-CM2-Sum): This technique is the same as Addtl- 
CM1, except that it uses the set of workflow and XRG branches 
covered by each test case, rather than only the set of workflow 
branches as in Addtl-CM1. It also treats workflow branches and 
XRG branches in the same manner. 

Another way to prioritize test cases is to reorder test cases using 
the number of workflow branches, and when encountering a tie, in 
which multiple test cases have the same number of workflow 
branches, a technique may use the number of XRG branches to break 
the tie.  

M5 (Total-CM2-Refine): This technique is the same as Total- 
CM1 except that, if multiple test cases cover the same number of 
workflow branches, to break the tie, M5 orders them in descending 
order of the total number of XRG branches covered by each test case 
involved in the tie. If there is still a tie, M5 randomly orders the test 
cases involved. 

M6 (Addtl-CM2-Refine): This technique is the same as 
Addtl-CM1 except three things. First, in each iteration, M6 removes 
the covered workflow branches and the XRG branches of the 
selected test cases from the remaining test cases to indicate that those 
removed workflow branches and XRG branches have been covered 
by the selected test cases (despite that M6 still selects test cases based 
on the workflow branch coverage as in Addtl-CM1). Second, if 
multiple test cases cover the same number of workflow branches in 
the current round of selection, rather than selecting one of them 
randomly, the technique selects the test case that has the maximum 
number of uncovered XRG branches. If there is still a tie, it randomly 
selects one of the test cases involved. Third, when resetting is 
needed, the technique resets each remaining test case to its original 
workflow branch coverage and XRG branch coverage. 

Let m, n, and x be the test suite size, the maximum number of 
workflow branches, and XRG branches covered by a test case t, 
respectively. Collecting the branch coverage and XRG branch 
coverage of test cases will take O(mn + mx) time. Sorting test cases 
will take O(m log m) time. Therefore, M3 can be finished in O(mn + 
mx + m log m) time and M4 can be finished in O(m2 n + m2 x + m2 log 
m) time. The time complexity of M5 and M6 are the same with those 
of M3 and M4, respectively. 

4.1.3 CM-3 (Level 3): Using Ґα, Ґβ, and Ґγ. 
M7 (Total-CM3-Sum): This technique is the same as Total- 

CM2, except that it uses the total number of workflow branches, 
XRG branches, and WSDL elements covered by each test case, 
rather than only the total number of workflow and XRG branches as 
in Total-CM2. It treats workflow branches, XRG branches, and 
WSDL elements in the same way. 

M8 (Addtl-CM3-Sum): This technique is the same as 
Addtl-CM2-Sum, except that it uses the set of workflow branches, 
XRG branches, WSDL elements covered by each test case, rather 
than just the set of workflow and XRG branches as in 
Addtl-CM2-Sum. It also treats workflow branches, XRG branches, 
and WSDL elements in the same fashion. 

M9 (Total-CM3-Refine): This technique is the same as 
Total-CM2-Refine, except that in the case of a tie, M9 arranges the 
test cases in descending order of the total number of WSDL elements 
covered by each test case involved. If it still cannot resolve a tie, the 
technique randomly orders the test cases involved. 

M10 (Addtl-CM3-Refine): This technique is the same as 
Addtl-CM1, except three things. First, in the each iteration, M10 
removes the covered workflow branches, the covered XRG branches 
and the covered WSDL elements of the selected test cases from the 
remaining test cases to indicate that those removed workflow 
branches, XRG branches and WSDL elements have been covered by 
the selected test cases (despite that M10 still selects test cases based 
on the workflow branch coverage as in Addtl-CM1). Second, if 
multiple test cases cover the same number of workflow branches in 
the current round of selection, the technique selects the test case that 
has the maximum number of uncovered XRG branches. If there is a 
tie, it selects the test case that has the maximum number of 
uncovered WSDL elements. If there is still a tie, it randomly selects 
one of the test cases involved. Third, if resetting is needed, the 
technique resets each remaining test case to its original workflow 
branch coverage, XRG branch coverage, and WSDL element 
coverage. 

Let m be the test suite size; n, x, and w be the maximum numbers 
of workflow branches, XRG branches, and WSDL elements covered 
by a test case t, respectively. Collecting the coverage data of 
workflow branches, XRG branches, and WSDL elements of m test 
cases takes O(mn + mx + mw) time. Sorting m test cases takes O(m 
log m) time. Hence, M7 can be completed in O(mn + mx+ mw + m 
log m) time while M8 can be completed in O(m2

 n + m2
 x + m2

 w + m2 
log m) time. The time complexities of M9 and M10 are the same as 
those of M7 and M8, respectively. 

4.2 Benchmark Techniques 
In Section 5, we will follow [5][19] and compare our test case 

prioritization techniques with two control techniques, namely 
random and optimal. For the sake of completeness, we revisit them 
in this section. 

C1: Random prioritization [19]. This technique randomly orders 
the test cases in a test suite T. 

C2: Optimal prioritization [19]. Given a program P and a set of 
known faults in P, if we know the specific test cases in a test suite T 
that expose specific faults in P, then we can determine an optimal 
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ordering of the test cases to maximize the fault detection rate of T. 
Such a prioritization is an approximation to the optimal case [19]. 

4.3 Analysis of Prioritization Techniques 
In total, we have reported 10 techniques. The acronyms of these 

techniques are listed in Table 4. We use the motivating example 
prioritization results on t1–t6 to help illustrate each technique. 
Table 4. Categories of prioritization techniques and examples. 
Category Name Index t1 t2 t3 t4 t5 t6 

CM-1 
(workflow) 

Total-CM1 M1 1 6 4 2 5 3 

Addtl-CM1 M2 1 5 6 3 2 4 

CM-2 
(summation) 

Total-CM2-Sum M3 2 4 5 1 6 3 

Addtl-CM2-Sum M4 1 5 2 4 3 6 

CM-2 
(refinement) 

Total-CM2-Refine M5 2 4 5 1 6 3 

Addtl-CM2-Refine M6 1 6 4 3 2 5 

CM-3 
(summation) 

Total-CM3-Sum M7 2 1 3 4 6 5 

Addtl-CM3-Sum M8 1 5 3 6 4 2 

CM-3 
(refinement) 

Total-CM3-Refine M9 1 4 5 2 6 3 

Addtl-CM3-Refine M10 1 4 2 3 6 5 
 

Inspired by subsumption relations among the coverage criteria in 
unit testing, we propose a notion of subsumption for test case 
prioritization techniques.  

Subsumption: Given two test case prioritization techniques X and 
Y, we say that X subsumes Y if and only if any permutation of any test 
suite produced by Y can also be produced by X. 

Obviously, subsumption is reflexive, transitive, and anti- 
symmetric. It is, therefore, an equivalence relation. We have 
analyzed the subsumption relations among our techniques, and the 
result is summarized in Figure 9. For instance, we have proved that 
(M1) Total-CM1 subsumes (M5) Total-CM2-Refine, and we use an 
arrow from M1 to M5 to represent this relation in the figure. Other 
arrows can be interpreted similarly.  

The proof of the subsumption relations is straightforward and 
hence we omit the details because of space limit. The basic idea is 
that, if random selection in resolving ties in one technique is replaced 
by a more deterministic procedure in another technique, then the 
former technique subsumes the latter. For instance, unlike M1 
(which always use the random selection approach to resolve tie 
cases), M5 references the XRG branch coverage of test cases to 
resolve tie cases before using a random selection as the last resort. 
Because any test case that M5 can pick to resolve a tie may also be 
selected by chance in M1, any test case permutation produced by M5 
must be a permutation that can be produced by M1. Other 
subsumption relations shown in Figure 9 can also be reasoned 
similarly.  

random

Total-CM-1 Addtl-CM-1

Total-CM2-Refine Addtl-CM2-Refine

Total-CM3-Refine Addtl-CM3-Refine

Optimal

(C1)

(M1) (M2)

(M5)

(M9)

(C2)

(M6)

(M10)

 
Figure 9. Hierarchy of test case prioritization techniques. 

5. THE EXPERIMENT 
5.1 Experimental Design 

We choose WS-BPEL [22], a representative type of service- 
oriented business application [1][16][24], to evaluate our approach. 
The Software Engineering community also uses these applications to 
evaluate approaches related to service-oriented business applications 
(e.g., see [12]). We adopt the set of applications evaluated in [12] as 
our subject. Table 5 shows the descriptive statistics of the subject 
applications. For example, the size of each application is described 
using the number of XML elements (“Element”) and the lines of 
code (“LOC”). 

Table 5. Subject programs and their descriptive statistics. 

Ref. Applications 
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A atm [1] 8 94 180 3 12 12 5 
B buybook [16] 7 153 532 3 16 14 5 
C dslservice [24] 8 50 123 3 16 20 5 
D gymlocker [1] 7 23 52 2 8 8 5 
E loanapproval[1] 8 41 102 2 8 12 7 
F marketplace [1] 6 31 68 2 10 10 4 
G purchase [1] 7 41 125 2 8 10 4 
H triphandling [1] 9 94 170 6 36 20 8 
 Total 60 527 1352 23 114 106 43 

  
 

We use the known faults and associated test suites to measure the 
effectiveness of different prioritization techniques. The faults in the 
modified versions have been reported by [12] (in which faults are 
created following the methodology presented in [7]). We then follow 
[4][5][7] and discard any fault version if more than 20 percent of test 
cases can detect failures due to its fault. The statistics of the selected 
modified versions from [12] are shown in the rightmost column of 
Table 5. 

We implement a tool to automatically generate test cases for each 
application. Based on WSDL specifications, XPath queries, and 
workflow logics of the application (not using modified versions), we 
generate test cases to ensure that the generated test cases can cover 
all workflow branches, XRG branches, and WSDL elements 
(dubbed CM-3 elements) at least once. In total, for each application, 
1000 test cases are generated and formed up a test pool. This 
construction process is also adopted in [5][19].  
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 Figure 10. Overall comparisons using APFD measurement. 
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Figure 11. Comparisons on each application using APFD measurement (CM-3 techniques always outperform random). 

Table 6. Statistics of test suite sizes. 
  Ref. 

Size A B C D E F G H Avg. 

Maximum 146 93 128 151 197 189 113 108 140.6 
Average 95 43 56 80 155 103 82 80 86.8 
Minimum 29 12 16 19 50 30 19 27 25.3 

We select test cases one by one randomly from a test pool and put 
them into a test suite (which is initially empty). Such selection is 
iteratively done until all the CM-3 elements have been covered at 
least once (and each fault has been detected by at least one selected 
test case). The process is similar to the test suite construction in 
[5][17]. We apply each test suite to applicable modified versions of 
corresponding application. In total, we successfully generate 100 test 
suites for each application. Table 6 shows the statistics of the test 
suites. 

For each subject program and for each constructed test suite, our 
tool applies C1, C2, and M1–M10 to prioritize the test suite. For 
every prioritized test suite, the tool executes each modified version of 
the corresponding subject program over the test cases according to 
their order in the prioritized test suite. Since all the test case 
execution results on these applications are determined, we can figure 
out whether a fault has been revealed by a test case through 
comparing the test result on the modified version to that on the 
original program. Our tool automates the comparisons. 

5.2 Data Analysis 
5.2.1 Prioritization effectiveness 

For each application, we apply C1, C2, and M1–M10 on a test 
suite, run the modified applications over the test suite, and then 
calculate APFD values. We repeat this procedure 100 times using the 
generated test suites. In total, 69,440 test cases have been executed, 
and we collect 833,280 APFD values. The results are represented 
using box-plots in Figures 10 and 11. A box-plot shows the 25th 
percentile, median, and 75th percentile of a technique in a graph. We 
summarize the overall results using the 25th percentile, median, 75th 
percentile, and mean APFD in Figure 10, respectively. The results 
for individual applications are given in Figure 11.  

In Figure 10, we find that M6 and M7–M10 (i.e., one technique at 
level 2 and all techniques at level 3) are generally better than all the 
other techniques except the optimal technique (C2). When we focus 
on the techniques M1–M6, M2 and M4 are the best two techniques 

among the techniques in the same level. Both M3 and M5 are better 
than M1. M1 reports the worst performance among M1–M10 in this 
experiment. 

The overall result may not represent the result of each benchmark 
application, and hence we further compare C2 and M1–M10 with the 
random technique (C1). If the APFD achieved at the 25th percentile 
of a technique is larger than, equal to or smaller than the random 
technique (C1), then we add 1 at the category “> Random”, “= 
Random”, and “< Random” of the technique, respectively. Similarly, 
we compare C2 and M1–M10 with C1 using the median and 75th 
percentile APFD values. Table 7 shows the comparison results. 

Table 7. Comparisons with random technique. 
  Technique 

Category C
2 

M
1 

M
2 

M
3 

M
4 

M
5 

M
6 

M
7 

M
8 

M
9 

M
10

 

25% > Random 8 5 7 6 8 5 8 7 8 7 8 
< Random 0 3 1 2 0 3 0 1 0 1 0 

Median > Random 8 6 7 6 8 6 7 8 8 8 8 
< Random 0 2 1 2 0 2 1 0 0 0 0 

75% > Random 8 6 7 7 8 6 7 8 8 7 8 
< Random 0 2 1 1 0 2 1 0 0 1 0   

From Table 7, we note that C2, M4, M8, and M10 outperform the 
random technique (C1) in all categories. It is not surprising that C2 is 
better than C1, since C2 is an optimal approximation technique. C1 
shows the worst performance generally. Among our techniques 
(M1–M10), M1, M3, and M5 show the worst performance when 
comparing to C1. This observation also holds when using the mean 
APFD values, as shown in Figure 10(d). 

5.2.2 Hypothesis analysis 
We further apply hypothesis analysis on the results to identify the 

differences among different techniques. We follow [9] to explore 
where the differences lie by using a multiple-comparison procedure. 
The Least Significant Difference (LSD) method was employed in 
multiple-comparison to compare test case prioritization techniques 
[9]. If the significance level is less than 0.05, the difference among 
the metrics is statistically significant.  

We compare each pair of techniques for each application, and 
categorize the results into two groups (> 0.05 and < 0.05) using the 
significance of the mean difference. We do not show the cases when 
x – y = 0. The results are shown in Table 8.  

We group M1–M10 into three groups according to the coverage 
model: M1–M2 (CM-1), M3–M6 (CM-2), and M7–M10 (CM-3). 
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The between-group comparisons measure the differences between 
M1–M2 and M3–M6, between M1–M2 and M7–M10, and between 
{M4, M6} and M7–M10. The within-group comparisons measure 
the differences within M1–M2, M3–M6, and M7–M10. Due to page 
limit, we only report the results on comparing M4 and M6 in the 
group M3–M6 (CM-2) to compare with M7–M10. We choose M4 
and M6 as the representative techniques for M3–M6 because these 
two techniques show a better performance in Figure 10. We mark the 
rows which indicate CM-2 techniques and CM-3 techniques are 
significantly better than CM-1 techniques into gray in background. 

Table 8. Multiple comparisons (least significance differences). 

Category Techniques 
(x, y) 

Sig. < 0.05 Sig. > 0.05 
x–y>0 x–y<0 x–y>0 x–y<0 

Between 
Group 

M1–M2 
vs. 

M3–M6 

M1, M3 1 2 4 1 
M1, M4 0 6 1 1 
M1, M5 1 2 4 1 
M1, M6 0 3 2 3 
M2, M3 3 2 3 0 
M2, M4 0 6 1 1 
M2, M5 2 2 4 0 
M2, M6 0 3 1 4 

M1–M2 
vs. 

M7–M10 

M1, M7 0 5 3 0 
M1, M8 0 6 1 1 
M1, M9 1 5 0 2 
M1, M10 0 6 0 2 
M2, M7 2 4 1 1 
M2, M8 0 7 1 0 
M2, M9 2 5 1 0 
M2, M10 0 5 2 1 

M4, M6 
vs. 

M7–M10 

M4, M7 3 2 1 0 
M4, M8 0 2 0 5 
M4, M9 2 1 2 2 
M4, M10 1 2 3 1 
M6, M7 2 3 1 1 
M6, M8 0 6 1 0 
M6, M9 2 4 1 0 
M6, M10 0 2 1 4 

Within 
Group 

M1–M2 M1, M2 0 2 0 6 

M3–M6 

M3, M4 0 4 2 1 
M3, M5 0 0 4 3 
M3, M6 1 3 1 2 
M4, M5 4 0 1 2 
M4, M6 4 0 2 1 
M5, M6 1 2 1 3 

M7–M10 

M7, M8 1 4 2 0 
M7, M9 1 0 3 3 
M7, M10 2 3 0 2 
M8, M9 3 1 2 1 
M8, M10 3 0 1 3 
M9, M10 2 3 0 2 

 

In the between-group category, M4 and M6–M10 all show 
significantly better results than both M1 and M2 (using the workflow 
coverage data). The difference between {M3, M5} and {M1, M2} 
are not significant. In the within-group category, we note that both 
M4 and M6 are significantly better than M3 and M5, which confirms 
our observation in Figure 10. The techniques within M7–M10 are 
similar in performance, and we only find the significant differences 
between M8 and {M7, M9, M10}. 
5.2.3 Adequacy of coverage data 

This section analyzes the impact of different levels of coverage 
data on the effectiveness of the technique. We use the overall mean 
APFD result of each technique in Figure 10(d). C1 and C2 report the 
worst and best mean result using the mean APFD in the box-plot of 
Figure 10(d).  

Let us focus on the mean effectiveness of M1–M10. Using the 
mean APFD in Figure 10(d), the techniques using the additional 
coverage data are better those using the total coverage data. The pairs 
of techniques (M1, M2), (M3, M4), (M5, M6), (M7, M8), and (M9, 
M10) all demonstrate this conclusion. 

We also check the subsumption relations (Figure 9) and overall 
effectiveness (Figure 10) for two groups of techniques: (M1, M5, 

M9) and (M2, M6, M10). The comparison result indicates a 
technique being subsumed may achieve a higher fault detection rate. 
For example, M5 is better than M1, and M9 is better than M5. 

We observe that the mean effectiveness increases when more 
types of artifact have been considered in test case prioritization 
technique (i.e., as we include Ґα, to Ґα and Ґβ, and finally Ґα, Ґβ, and 
Ґγ). For example, when we categorize the techniques at Level 2 and 
Level 3 into pairs (M3, M7), (M4, M8), (M5, M9), and (M6, M10), 
the differences between two techniques in each pair support our 
observation. Similar observation can also be found in the 
between-group comparisons in Table 8. 

5.3 Threats to Validity 
The construct validity of our experiment relates to the metrics used 

to evaluate the effectiveness of test case prioritization. We use the 
metrics APFD in the experiment. Although normally knowing the 
faults exposed by a test case in advance is impractical, and hence an 
APFD value cannot be estimated before testing has been done. 
However, APFD can be used as a measure to show the feedback of 
prioritization techniques when testing has finished. 

The external validity is whether the experiment can be generalized. 
We use WS-BPEL applications as subjects. They are a representative 
kind of service-oriented business application. Our experiments can 
be conducted using other service-oriented applications that use 
XPath queries and WSDL specifications. We will find more such 
applications to evaluate our techniques. 

6. DISCUSSIONS 
First, we use XRGs to model XPath queries in the presence of 

WSDL specifications. Other models to represent the XPath queries 
can also be used after defining coverage properly. However, the 
effectiveness of different XPath models may be different. In addition, 
our coverage model arranges the three artifacts in a particular order: 
〈workflow, XPath, WSDL〉. It would be interesting to study the 
effectiveness of other potential orders (such as 〈workflow, WSDL, 
XPath〉), and compare them with our proposed techniques. Other 
such orders may result in different test case prioritization techniques. 
We plan to collaborate with the industry to apply our techniques in 
real-world projects and study the effectiveness of our presented 
techniques. We also plan to apply other statistical analyses of the 
results to gain more insights in the future. 

Second, test case prioritization techniques can be categorized 
generally into two types [19]: general test case prioritization and 
version-specific test case prioritization. General test case priori-
tization reorders a test suite T for a program P to be useful in 
subsequent revised versions of P. Version-specific test case priori-
tization reorders test cases in a test suite T to be useful in a specific 
version P’ of P. Our work is under the category of general test case 
prioritization. It would be interesting to extend our techniques to 
version-specific test case prioritization. 

7. RELATED WORK 
This section reviews the related literature. In the context of test 

suite construction, Martin et al. [10] generated test cases based on 
WSDL specifications and treated them as requests for web services. 
Their technique perturbed the web requests, in the spirit of mutation 
testing, to test whether web services may robustly handle the pertur-
bation. Their work discussed briefly the potential usage of the 
technique in regression testing of web services. Our previous work [2] 
applied metamorphic relations to construct test cases for stateless 
web services. Our previous work [12] proposed XPath Rewriting 
Graphs (XRGs) to represent conceptual paths (see Section 2.2). The 
XRGs help reveal the connection between WSDL and Workflow. It 
also proposed several unit testing criteria to exploit such connections 
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to guide the construction of test suites. In this paper, we do not 
generate test suites but study the techniques to reorder existing test 
suites for regression testing. 

Next, we review the research on test case selection for service- 
oriented applications. Ruth and Tu [20] proposed to conduct impact 
analysis to identify revised fragments of code in a service by compar-
ing the control flow graph (CFG) of the new version with that of the 
preceding version. Their technique selected test cases associated 
with modified edges of the CFG. We study the test case prioritization 
problem in regression testing, rather than the test case selection 
problem. According to [15], these are distinct (but important) 
problems in regression testing research. 

Hou et al. [6] proposed to add quota to constraint the number of 
requests to specific web services. They further developed techniques 
to prioritize test cases to maximize test requirement coverage under 
such quota constraints. Our work studies the internal organization of 
service-oriented business applications (representing the internal 
organization using a multilevel coverage model) and prioritizes test 
cases according to such properties. 

8. CONCLUSION 
Regression testing is the de facto means to assure the quality of a 

program against unintended effects of maintenance. Test case 
prioritization has been an effective means to order test cases in 
regression test suites so that faults can be detected earlier. When 
maintaining a service-oriented business application such as one 
written in WS-BPEL, process engineers may unintentionally 
introduce faults into various artifacts including the workflow pro-
grams, XPath queries, and WSDL specifications. Traditional test 
case prioritization techniques, which do not take all the artifacts into 
consideration, may no longer be effective for such an application. 

In this paper, we have examined the important impact of 
considering these heterogeneous artifacts on test case prioritization 
in the regression testing of service-oriented business applications, 
and demonstrated the shortcomings of traditional test case priori-
tization techniques in this aspect. We have proposed a family of test 
case prioritization techniques that take into account the coverage data 
of test cases at three levels (workflow, XPath, and WSDL). We have 
further presented a hierarchy of subsumption relations among the test 
case prioritization techniques. To the best of our knowledge, this is 
the first hierarchy to relate test case prioritization techniques in the 
literature. The experiment results show that our techniques 
significantly outperform conventional test case prioritization 
techniques in terms of the fault detection rate (the most widely used 
metric for evaluating test case prioritization techniques in the 
software engineering community). Our experiment results also 
confirm that considering the artifacts level by level is an effective 
strategy in regression testing for assuring the quality of 
service-oriented business applications. 

In the future, we will continue to study how to make use of non- 
imperative artifacts to develop effective techniques to address other 
challenges in the regression testing of service-oriented business 
applications. It would also be interesting to adapt our techniques to 
other service-oriented applications. 
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