
A Fast and Practical Method to
Estimate Volumes of Convex

Polytopes

CunJing Ge, Feifei Ma, Jian Zhang and Xingming Wu

{gecj,maff,zj,wuxm}@ios.ac.cn

Institute of Software, Chinese Academy of Sciences

Abstract

The volume is an important attribute of a convex body. In general, it is quite diffi-

cult to calculate the exact volume. But in many cases, it suffices to have an approximate

value. Volume estimation methods for convex bodies have been extensively studied in

theory, however, there is still a lack of practical implementations of such methods.

In this paper, we present an efficient method which is based on the Multiphase Monte-

Carlo algorithm to estimate volumes of convex polytopes. It uses a simplified version of

hit-and-run method, and employs a technique of reutilizing sample points. The experi-

ments show that our method can efficiently handle instances with dozens of dimensions

with high accuracy.

1 Introduction

Volume computation is a classical problem in mathematics, arising in many appications
such as economics, computational complexity analysis, linear systems modeling, and statis-
tics. It is also extremely difficult to solve. Dyer et.al. [2] and Khachiyan [3, 4] proved
respectively that exact volume computation is #P-hard, even for explicitly described poly-
topes. Büeler et.al. [5] listed five volume computation algorithms for convex polytopes.
However, only the instances around 10 dimensions can be solved in reasonable time with
existing volume computation algorithms, which is quite insufficient in many circumstances.
Therefore we turn attention to volume estimation methods.

There are many results about volume estimation algorithms of convex bodies since the
end of 1980s. A breakthrough was made by Dyer, Frieze and Kannan [6]. They designed
a polynomial time randomized approximation algorithm (Multiphase Monte-Carlo Algo-
rithm), which was then adopted as the framework of volume estimation algorithms by
successive works. At first, the theoretical complexity of this algorithm is O∗(n23) 1, but it
was soon reduced to O∗(n4) by Lovász, Simonovits et. al. [7][8][9][10]. Despite the polyno-
mial time results and reduced complexity, there is still a lack of practical implementation.
In fact, there are some difficulties in applying the above volume estimation algorithms.
First, in theoretical research of randomized volume algorithms, oracle is usually used to
describe the convex bodies and the above time complexity results are measured in terms of
oracle queries. However, oracle is too complex and oracle queries are time-consuming. Sec-
ond, there exists a very large hidden constant coefficient in the theoretical complexity [9],
which makes the algorithms almost infeasible even in low dimensions. The reason leading
to this problem is that the above research works mostly focus on arbitrary dimension and
theoretical complexity. To guarantee that Markov Chains mix in high-dimensional circum-
stance, it is necessary to walk a large constant number of steps before determining the next
point.

1“soft-O” notation O∗ indicates that we suppress factors of log n as well as factors depending on other
parameters like the error bound

1

In this paper, we mainly focus on practical and applicable method. We only consider
specific and simple objects, i.e., convex polytopes. On the other hand, the size of problem
instances is usually limited in practical circumstances. With such limited scale, we find that
it is unnecessary to sample as many points as the algorithm in [9] indicates. We implement
a volume estimation algorithm which is based on the Multiphase Monte-Carlo method [11].
We make two improvements: (1) We simplify the original hit-and-run method [9], and find
that the simplified version not only runs faster, but also is more accurate; (2) We develop a
new technique to reutilize sample points. As a result, the number of sample points can be
further reduced. Besides, in order to better evaluate the performance of our tool, we also
introduce a new result checking method. Experiments show that our tool can efficiently
handle instances with dozens of dimensions. To the best of our knowledge, it is the first
practical volume estimation tool for convex polytopes.

We now outline the remainder of the paper: In section 2, we propose our method in
detail. In section 3, we show experimental results and compare our method with the exact
volume computation tool VINCI. Finally we conclude this paper in Section 4.

2 The Volume Estimation Algorithm

A convex polytope may be defined as the intersection of a finite number of half-spaces,
or as the convex hull of a finite set of points. Accordingly there are two descriptions for
a convex polytope: half-space representation (H-representation) and vertex representation
(V-representation). In this paper, we adopt the H-representation. A convex polytope P is
represented as P = {Ax ≤ b}, where A is an (m×n) matrix and A = (aij) = (a1, . . . , am)T .
For simplicity, we also assume that P is full-dimensional and not empty. We use vol(K)
to represent the volume of a convex body K, and B(x,R) to represent the ball with radius
R and center x.

Like the original multiphase Monte-Carlo algorithm [11], our algorithm consists of three
parts: rounding, subdivision and sampling.

Rounding: Find an affine transformation T on polytopeQ such that B(0, 1) ⊆ T (Q) ⊆
B(0, r) and a constant γ = vol(Q)

vol(T (Q)) . We can achieve r = n+1 by the Shallow-Cut Ellipsoid

Method [12]. Rounding can handle very “thin” polytopes which cannot be subdivided or
sampled directly. We use P to represent the new polytope T (Q) in the sequel. For more
details about the rounding procedure, one can refer to Appendix A.

The other two parts are to be elaborated in the following subsections.

2.1 Subdivision

To avoid curse of dimensionality2 (the possibility of sampling inside a certain space in target
object decreases very fast while dimension increases), we subdivide P into a sequence of
bodies so that the ratio of consecutive bodies is at most a constant, here we select 2 as the

2http://en.wikipedia.org/wiki/Curse of dimensionality

2

constant. Place l = ⌈n log2(n+ 1)⌉ concentric balls {Bi} between B(0, 1) and B(0, n+ 1),
where

Bi = B(0, ri) = B(0, 2i/n), i = 0, . . . , l.

Set Ki = Bi ∩ P , then K0 = B(0, 1), Kl = P and

vol(P) = vol(B(0, 1))
l−1
∏

i=0

vol(Ki+1)

vol(Ki)
= vol(B(0, 1))

l−1
∏

i=0

αi. (1)

So we only have to estimate the ratio αi = vol(Ki+1)/vol(Ki), i = 0, . . . , l − 1. Since
Ki = Bi ∩ P ⊆ Bi+1 ∩ P = Ki+1, we get αi ≥ 1. On the other hand, {Ki} are convex
bodies, then

Ki+1 ⊆
ri+1

ri
Ki = 21/nKi,

we have

αi =
vol(Ki+1)

vol(Ki)
≤ 2.

Specially, Ki+1 = 21/nKi if and only if Ki+1 = Bi+1 which equals to Bi+1 ⊆ P . That is,
αi = 2 ⇔ Bi+1 ⊆ P . It shows that each αi is bounded by constants. Hence sample size
would not grow too fast. Actually it is sufficient to estimate αi by generating a polynomial
number of random points.

2.2 Hit-and-run

From (1) we know that, to estimate vol(P), we only have to find the approximation of αi.
To approximate αi, we generate step size random points in Ki+1 and count the number
of points ci in Ki. Then αi ≈ step size/ci. It is easy to generate uniform distributions
on cubes or ellipsoids but not on {Ki}. So we use a random walk method for sampling.
Hit-and-run algorithm is a random walk which has been proposed and studied for a long
time [9][13][14][15]. It can generate points with almost uniform distribution in polynomial
time (“almost uniform” here means that the distribution of each point is at most a constant
away from the uniform in total variation distance). Hit-and-run walk starts from a point
x in Kk+1, and generates the next point x′ in Kk+1 by two steps:

Step 1. Select a line L through x uniformly over all directions.

Step 2. Choose a point x′ uniformly on the segment in Kk+1 of line L.

In practice, we apply a simplified version of hit-and-run algorithm. In step 1, we select
a direction uniformly from n fixed directions instead of all directions. The simplified hit-
and-run method is:

Step 1’. Select a line L through x uniformly over n fixed directions, e1, . . . en, where
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

3

Step 2. Choose a point x′ uniformly on the segment in Kk+1 of line L.

More specifically, we randomly select the dth component xd of point x and get xd’s bound
[u, v] that satisfies

x|xd=t ∈ Kk+1, ∀t ∈ [u, v] (2)

x|xd=u, x|xd=v ∈ ∂Kk+1 (3)

(“∂” denotes the boundary of a set). Then we choose x′d ∈ [u, v] with uniform distribu-
tion and generate the next point x′ = x|xd=x′

d
∈ Kk+1. It takes much less time to find

intersections of L and ∂Kk+1 than the original version.

Algorithm 1 Hit-And-Run Sampling Algorithm

1: function Walk(x, k)
2: d← random(n)
3: c← |x|2 − x2d

4: r ←
√

R2
k+1 − c

5: max← r − xd
6: min← −r − xd
7: for i← 1,m do

8: boundi ← (bi − aix)/aid
9: if aid > 0 and boundi < max then

10: max← boundi
11: else if aid < 0 and boundi > min then

12: min← boundi
13: end if

14: end for

15: xd ← xd + random(min, max)
16: return x
17: end function

Our hit-and-run algorithm is described in Algorithm 1. Ri = 2i/n is the radius of Bi.
Note that Kk+1 = Bk+1 ∩ P , so x′ ∈ Bk+1 and x′ ∈ P . We observe that

x′ ∈ Bk+1 ⇔ |x′| ≤ Rk+1 ⇔ x′2d ≤ R2
k+1 −

∑

i 6=d

x2i

x′ ∈ P ⇔ aix
′ ≤ bi ⇔ aidx

′
d ≤ bi −

∑

j 6=d

aijxj = µi, ∀i

4

Let

u = max{−
√

R2
k+1 −

∑

i 6=d

x2i ,
µi

aid
} ∀i s.t. aid < 0

v = min{
√

R2
k+1 −

∑

i 6=d

x2i ,
µi

aid
} ∀i s.t. aid > 0

then interval [u, v] is the range of x′d that satisfies Formula (2) and Formula (3), and
u = xd +min, v = xd +max in Algorithm 1.

Usually, Walk function is called millions of times, so it is important to improve its
efficiency, such as use iterators in for loop and calculation of |x|. At the same time, we
move the division operation (line 8), which is very slow for double variables, out of Walk
function because (bi − aix)/aid = bi

aid
− ai

aid
x, i.e., divisions only occur between constants.

However, we cannot avoid divisions in the original hit-and-run method.

2.3 Reutilization of Sample Points

In the original description of the Multiphase Monte Carlo method, it is indicated that the
ratios αi are estimated in natural order, from the first ratio α0 to the last one αl−1. The
method starts sampling from the origin. At the kth phase, it generates a certain number of
random independent points in Kk+1 and counts the number of points ck in Kk to estimate
αk. However, our algorithm performs in the opposite way: Sample points are generated
from the outermost convex body Kl to the innermost convex body K0, and ratios are
estimated accordingly in reverse order.

The advantage of approximation in reverse order is that it is possible to fully exploit the
sample points generated in previous phases. Suppose we have already generated a set of
points S by random walk with almost uniform distribution in Kk+1, and some of them also

hit the convex body Kk, denoted by S ′. The ratio αk is thus estimated with |S′|
|S| . But these

sample points can reveal more information than just the ratio αk. Since Kk is a sub-region
of Kk+1, the points in S ′ are also almost uniformly distributed in Kk. Therefore, S ′ can
serve as part of the sample points in Kk. Furthermore, for any Ki (0 ≤ i ≤ k) inside Kk+1,
the points in Kk+1 that hit Ki can serve as sample points to approximate αi as well.

Based on this insight, our algorithm samples from outside to inside. Suppose to estimate
each ratio within a given relative error, we need as many as step size points. At the kth
phase which approximates ratio αl−k, the algorithm first calculates the number count of
the former points that are also in αl−k+1, then generates the rest (step size−count) points
by random walk. It’s easy to find out that the expected number of reduced sample points
with our algorithm is

l−1
∑

i=1

(step size× 1

αi
). (4)

5

Since αi ≤ 2, we only have to generate less than half sample points with this technique.
Actually, results of expriments show that we can save over 70% time consumption on many
polytopes.

2.4 Framework of the Algorithm

Now we present the framework of our volume estimation method. Algorithm 2 is the
Multiphase Monte-Carlo algorithm with the technique of reutilizing sample points.

Algorithm 2 The Framework of Volume Estimation Algorithm

1: function EstimateVol

2: γ ← Preprocess()
3: x← O
4: for k ← l − 1, 0 do

5: for i← count, step size do

6: x←Walk(x, k)
7: if x ∈ B0 then

8: t0 ← t0 + 1
9: else if x ∈ Bk then

10: m← ⌈n2 log2 |x|⌉
11: tm ← tm + 1
12: end if

13: end for

14: count←∑k
i=0 ti

15: αk ← step size/count

16: x← 2−
1

nx
17: end for

18: return γ · unit ball(n) ·∏l−1
i=0 αi

19: end function

In Algorithm 2, the formula ⌈n2 log2 |x|⌉ returns index i that x ∈ Ki \Ki−1. We use ti
to record the number of sample points that hit Ki \Ki−1. Furthermore, the sum count of
t0, . . . , tk+1 is the number of reusable sample points that generated inside Kk+1. Then we
only have to generate the rest (step size− count) points inside Kk+1 in the kth phase. At

the end of the kth phase, we multiply x by a constant 2−
1

n to keep x ∈ Kk and employ it
as the starting point of the next phase. Finally, according to equation (1) and γ = vol(Q)

vol(P) ,

we achieve the estimation of vol(Q) .

3 Experimental Results

We implement the algorithm in C++ and the tool is named PolyVest (Polytope Vol-
ume Estimation). In all experiments, step size is set to 1600l for the reason discussed in

6

Appendix B. The experiments are performed on a workstation with 3.40GHz Intel Core
i7-2600 CPU and 8GB memory.

3.1 The Performance of PolyVest

Table 1 shows the results of comparison between PolyVest and VINCI [1]. VINCI is a
well-known package which implements the state of the art algorithms for exact volume
computation of convex polytopes. It can accept either H-representation or V-representation
as input. Both PolyVest and VINCI use a single core.

Table 1: Comparison between PolyVest and VINCI

PolyVest VINCI

Instance n m Result Time(s) Result Time(s)

cube 10 10 20 1016.2 0.372 1024 0.004
cube 14 14 28 17759.8 1.232 16384 0.160
cube 20 20 40 1.08805e+6 4.484 — —
cube 30 30 60 1.0902e+9 23.197 — —
cube 40 40 80 1.02491e+12 72.933 — —
rh 8 25 8 25 758.89 0.252 785.989 0.884
rh 10 20 10 20 13629.8 0.604 13882.7 0.284
rh 10 25 10 25 6149.25 0.576 5729.52 5.100
rh 10 30 10 30 1998.55 0.544 — —
cross 7 7 128 0.0250086 0.324 0.0253968 0.088
fm 6 15 59 283708 2.396 — —

cc 8 10 8 70 156062 0.584 156816 6.764
cc 8 11 8 88 1.42674e+6 0.636 1.39181e+6 34.430

Instances tested in Table 1 are the test cases from the website of VINCI [1]. The
parameters n and m represent the number of dimensions and the number of facets of each
instance respectively. “cube n” is an n-dimentional cube with side length 2, that is, the
volume of “cube n” is 2n. “rh n m” is an n-dimentional polytope randomly generated
with m hyperplanes. Though most instances in Table 1 have ristrictions that n ≤ 15 and
m ≤ 60, PolyVest can handle much larger problems in reasonable time. The dash symbol
“—” indicates that when VINCI computed the instance in H-representation, the computer
ran out of memory. Actually, it took over 3GB memory when computing “rh 10 25” and
hundreds of MB memory when computing most of the other instances. From computation
of VINCI with inputs in V-representation, we obtained the results of “rh 10 30” and “fm 6”,
which are 2015.58 and 286113 respectively.

From Table 1, we observe that VINCI usually takes much more time and space as the
scale of the problem grows a bit. On the contrary, the complexity of our algorithm is
polynomial about n and m, so the running times appear to be more ‘stable’. In addition,
PolyVest only has to store some constant matrices and variable vectors for sampling.

Since PolyVest is a volume estimation method instead of an exact volume computation
one like VINCI, we did more tests on PolyVest to see how accurate it is. We estimated
1000 times with PolyVest for each instance in Table 2 and listed the statistical results.

7

Table 2: Statistical Results of PolyVest

Instance Exact Average Std Dev 95% Confidence Interval Freq Error
Volume v Volume v σ I = [p, q] on I ǫ = q−p

v

cube 10 1024 1024.91 41.7534 [943.077, 1106.75] 947 15.9695%
cube 14 16384 16382.3 688.571 [15032.7, 17731.9] 949 16.4763%
cube 20 1.04858e+6 1.04551e+6 49092.6 [9.49284e+5, 1.14173e+6] 942 18.4067%
cube 30* 1.07374e+9 1.06671e+9 5.95310e+7 [9.50024e+8, 1.18339e+9] 96 21.8769%
cube 40* 1.09951e+12 1.09328e+12 4.85772e+12 [9.98073e+11, 1.18850e+12] 95 17.4175%
rh 8 25 785.989 786.240 23.5826 [740.018, 832.462] 956 11.7577%
rh 10 20 13882.7 13876.3 473.224 [12948.8, 14803.9] 953 13.3683%
rh 10 25 5729.52 5736.83 193.715 [5357.15, 6116.51] 945 13.2366%
rh 10 30 2015.58 2013.08 62.1032 [1891.35, 2134.80] 944 12.0932%
cross 7 2.53968e-2 2.53961e-2 4.76958e-4 [2.44613e-2, 2.63309e-2] 944 7.36205%
cross 9 1.41093e-3 1.41064e-3 2.80373e-5 [1.35568e-3, 1.46559e-3] 948 7.79126%
fm 6 2.86113e+5 2.85248e+5 10550.5 [2.64569e+5, 3.05927e+5] 952 14.4990%

cc 8 10 1.56816e+5 1.56699e+5 5384.98 [1.46144e+5, 1.67253e+5] 953 13.4712%
cc 8 11 1.39181e+6 1.39065e+6 49676.9 [1.29327e+6, 1.48801e+6] 953 14.0031%

simplex 10 2.75573e-7 2.75595e-7 1.08614e-8 [2.54306e-7, 2.96883e-7] 944 15.4491%
simplex 15 7.64716e-13 7.64678e-13 3.17676e-14 [7.02413e-13, 8.26942e-13] 946 16.2852%

*: “cube 30” and “cube 40” only estimated 100 times with PolyVest .

From Table 2, we observe that v ≈ v and the frequency on I is approximately 950 which
means Pr(p ≤ vol(P) ≤ q) ≈ 0.95. Additionally, values of ǫ (ratio of confidence interval’s
range to average volume v) are smaller than 20% for all instances except “cube 30”.

3.2 Result Checking

For arbitrary convex polytopes with more than 10 dimensions, there is no easy way to
evaluate the performance of PolyVest since the exact volumes cannot be computed with
tools like VINCI. However, we find that a simple property of geometric body is very helpful
for verifying the results.

Given an arbitrary geometric body P , an obvious relation is that if P is divided into
two parts P1 and P2, then we have vol(P) = vol(P1) + vol(P2). For a random convex
polytope, we randomly generate a hyperplane to cut the polytope, and test if the results
of PolyVest satisfy this relation.

Table 3 shows the results of such tests on random polytopes in different dimensions.
Each polytope is tested 100 times. Values in column “Freq.” are the times that (vol(P1)+
vol(P2)) falls in 95% confidence interval of vol(P), and these values are all greater than

95. The error |Sum−vol(P)|

vol(P)
is quite small. Therefore, the outputs of PolyVest satisfy the

relation vol(P) = vol(P1) + vol(P2). The test results further confirm the reliability of
PolyVest.

8

Table 3: Result Checking

n vol(P) 95% Confidence Interval vol(P1) vol(P2) Sum Error Freq.

10 916.257 [847.229, 985.285] 498.394 414.676 913.069 0.348% 98
20 107.976 [97.4049, 118.548] 50.4808 57.3418 107.823 0.142% 99
30 261424 [228471, 294376] 40332.7 218637 258969 0.939% 96
40 5.07809e+11 [4.58326e+11, 5.57292e+11] 9.43749e+10 4.14623e+11 5.08997e+11 0.234% 98

3.3 The Advantages of Simplified Hit-and-run Method

In Table 4, t1 and t2 represent the time consumption of simplified and original hit-and-run
method which each method is excuted 10 million times. We observe that simplified hit-
and-run method is faster than the original one. The reason is that the original hit-and-run
method has to do more vector multiplications to find intercestion points and m× n more
divisions during each walk step.

Table 4: Random walk by 10 million steps

n m time t1(s) time t2(s)

10 20 6.104 13.761
20 40 10.701 24.502
30 60 17.541 40.455
40 80 27.494 61.484

In addition, we also compare two versions of hit-and-run methods on accuracy. The
results in Table 5 show that the relative error and standard deviation of the simplified
version are smaller.

Table 5: Comparison about accuracy between two methods

Simplified Original

Instance Exact Vol v Volume v Err |v−v|
v

Std Dev σ Volume v′ Err |v−v|
v

Std Dev σ′

cube 10 1024 1024.91 0.089% 41.7534 1028.31 0.421% 62.6198
cube 14 16384 16382.3 0.010% 3.020 16324.6 0.363% 1145.76
cube 20 1.04858e+6 1.04551e+6 0.293% 49092.6 1.04426e+6 0.412% 81699.9
rh 8 25 785.989 786.240 0.032% 23.5826 791.594 0.713% 50.5415
rh 10 20 13882.7 13876.3 0.046% 473.224 13994.4 0.805% 963.197
rh 10 25 5729.52 5736.83 0.128% 193.715 5765.18 0.622% 368.887
rh 10 30 2015.58 2013.08 0.124% 62.1032 2041.60 1.291% 124.204
cross 7 2.53968e-2 2.53961e-2 0.003% 4.76958e-4 2.55068e-2 0.433% 1.27379e-3
cross 9 1.41093e-3 1.41064e-3 0.021% 2.80373e-5 1.41109e-3 0.011% 6.85675e-5
fm 6 286113 285248 0.302% 10550.5 287685 0.549% 23792.7

cc 8 10 156816 156699 0.075% 5384.98 156683 0.085% 10053.0
cc 8 11 1.39181e+6 1.39065e+6 0.087% 49676.9 1.40268e+6 0.781% 91891.0

simplex 10 2.75573e-7 2.75595e-7 0.008% 1.08614e-8 2.74047e-7 0.554% 2.11586e-8
simplex 15 7.64716e-13 7.64678e-13 0.005% 3.17676e-14 7.65066e-13 0.046% 6.83931e-14

9

3.4 The Advantage of Reutilization of Sample Points

In Table 6, we demonstrate the effectiveness of reutilization technique. Values of n1 are
the number of sample points without this technique. Since our method is a randomized
algorithm, the number of sample points with this technique is not a constant. So we list
average values in column n2. With this technique, the requirement of sample points is
significantly reduced.

Table 6: Reutilize Sample Points

Instance n1 n2 n2/n1

cube 10 2016000 535105.41 26.5%
cube 15 5856000 1721280.3 29.4%
cube 20 12249600 3789370.7 30.9%
rh 8 25 1040000 181091.13 17.4%
rh 10 30 2016000 304211.03 15.1%
cross 7 809600 78428.755 9.69%
fm 6 5856000 955656.79 16.3%

4 Related Works

To our knowledge, there are only two implementations of volume estimation methods in
literature. Liu et al. [16] developed a tool to estimate volume of convex body with a
direct Monte-Carlo method. Suffered from the curse of dimensionality, it can hardly solve
problems as the dimension reaches 5. The lastest work [17] is an implementation of the
O∗(n4) volume algorithm in [10]. Some interesting techniques are also discussed in the
paper. However, the algorithm is targeted for convex bodies, and only the computational
results for instances within 10 dimensions are reported. The authors also claim that they
could not experiment with other convex bodies than cubes, since the oracle describing the
convex bodies took too long to run.

5 Conclusion

In this paper, we propose an efficient volume estimation algorithm for convex polytopes
which is based on Multiphase Monte Carlo algorithm. With simplified hit-and-run method
and the technique of reutilizing sample points, we considerably improve the existing al-
gorithm for volume estimation and implement a practical tool. Our tool, PolyVest, can
efficiently handle instances with dozens of dimensions with high accuracy, while the exact
volume computation algorithms often fail on instances with over 10 dimensions. In fact,
the complexity of our method (excluding rounding procedure) is O∗(mn3) and it is mea-
sured in terms of basic operations instead of oracle queries. Therefore, our method requires
much less computational overhead than the theoretical algorithms. However, some of our
results still lack theoretical proof. It will be our primary concern in the future.

10

References

[1] http://www.math.u-bordeaux1.fr/˜aenge/index.php?category=software&page=vinci

[2] M. Dyer, A. Frieze. On the complexity of computing the volume of a polyhedron.
SIAM Journal on Computing 967-974 (1988)

[3] L.G. Khachiyan. On the complexity of computing the volume of a polytope. Izvestia
Akad. Nauk SSSR Tekhn. Kibernet 216217 (1988)

[4] L.G. Khachiyan. The problem of computing the volume of polytopes is NP-hard.
Uspekhi Mat. Nauk 44, 179180. In Russian; translation in Russian Math. Surveys 44,
no. 3, 199200 (1989)

[5] B. Büeler, A. Enge, K. Fukuda. Exact volume computation for polytopes: a practical
study. Polytopescombinatorics and computation. Birkhäuser Basel, 131-154. (2000)

[6] M. Dyer, A. Frieze, R. Kannan. A random polynomial time algorithm for approx-
imating the volume of convex bodies. 21st Annual ACM Symposium on Theory of

Computing 375381 (1989)

[7] L. Lovász, M. Simonovits. Mixing rate of Markov chains, an isoperimetric inequality,
and computing a the volume. 31st Annual Symposium on Foundations of Computer

Science, Vol. I, II, 346–354 (1990)

[8] R. Kannan, L. Lovász, M. Simonovits. Random walks and an O∗(n5) volume algorithm
for convex bodies. Random Structures & Algorithms, Volume 11, Issue 1, pages 150,
August 1997 (1996)

[9] L. Lovász. Hit-and-Run mixes fast. Mathematical Programming, Volume 86, Issue 3,
pp 443-461 (1999)

[10] L. Lovász, S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. Journal of Computer and System Sciences, Volume 72, Issue 2, pp 392417
(2006)

[11] M. Simonovits. How to compute the volume in high dimension? Mathematical Pro-

gramming, Volume 97, Issue 1-2, pp 337-374 (2003)

[12] M. Grötschel, L. Lovász, A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization. Springer Verlag (1993)

[13] R.L. Smith. Efficient Monte-Carlo procedures for generating points uniformly dis-
tributed over bounded regions. Operations Research, Vol. 32, pp. 12961308, (1984).

11

[14] H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Ran, C.L. Scheffer, R.L. Smith, J.
Telgen. Hit-and-run algorithms for the identification of nonredundant linear inequal-
ities. Mathematical Programming, Volume 37, Issue 2, pp 184-207 (1987)

[15] C.J.P. Belisle, H. Edwin Romeijn, R.L. Smith. Hit-and-run algorithms for generating
multivariate distributions. Mathematics of Operations Research, Vol. 18, No. 2, pp.
255-266 (1993)

[16] S. Liu, J. Zhang, B. Zhu. Volume computation using a direct Monte Carlo method.
Computing and Combinatorics. Springer Berlin Heidelberg 198-209 (2007)

[17] L. Lovász, I.Deák. Computational results of an O∗(n4) volume algorithm. European

Journal of Operational Research, Vol 216, pp. 152-161 (2012)

A Rounding

The pseudocode of rounding procedure and other preprocessings is presented in Algo-
rithm 3. We define ellipsoid E = {x ∈ Rn|(x−a)TA−1(x−a) ≤ 1}, where A is a symmetric
positive definite matrix. In function InitEllipsoid, we maximize each of the 2n linear func-
tions x1,−x1, . . . , xn,−xn subject to Ax ≤ b. So we get bounds UB1, LB1, . . . , UBn, LBn

of each dimension of P and 2n vertices v1, . . . , v2n (possible that vi = vj , i 6= j). Let
o0 = 1

2n

∑2n
i=1 vi and r =

√
∑n

i=1(UBi − LBi)2. Then we obtain the initial ellipsoid
E0(r

2I, o0) = B(o0, r) where o0 ∈ P (notice that P is a convex body) and P ⊆ E0.
Line 3–20 of Algorithm 3 is the implementation of Shallow-Cut Ellipsoid Method [12].

It is an iterative method that generates a series of ellipsoids {Ei(Ti, oi)} s.t. P ⊆ Ei, until
we find an Ek such that Ek((n+ 1)−2Tk, ok) ⊆ P .

The affine transformation is described through Line 21-24. Function Cholesky(Tk)
returns the Cholesky factorization L of Tk (that is, Tk = LTL and L is an upper triangular
matrix), since Tk is a symmetric positive definite matrix. Notice

Ek(Tk, ok) = Ek(L
TL, ok) = {x ∈ Rn|((LT)−1(x− ok))

T (LT)−1(x− ok) ≤ 1}.

Let y = (LT)−1(x− ok), then {y ∈ Rn|yT y ≤ 1} = B(0, 1). Thus

Ek(Tk, ok) = LTB(0, 1) + ok.

Substitute x in P = {Ax ≤ b} by x = LT y + ok, we get

P ′ = {A(LT y + ok) ≤ b} = {A′y ≤ b′}, B(0,
1

n+ 1
) ⊆ P ′ ⊆ B(0, 1), (5)

where A′ = ALT , b′ = b−Aok.
Resize P ′ by multiplying n, so B(0, 1) ⊆ P ′′ = (n+ 1)P ′ ⊆ B(0, n)

where P ′′ = {A′′x ≤ b′′}, A′′ = ALT , b′′ = (n+ 1)(b−Aok). (6)

12

Algorithm 3 The Ellipsoid Method and the affine transformation

1: function Preprocess

2: InitEllipsoid(r, o0)
3: T0 ← r2 · I
4: k ← 0
5: loop

6: i← −1
7: if ok /∈ P then

8: choose i that aix ≤ bi does not hold
9: else if E((n+ 1)−2Tk, ok) * P then

10: choose i such that (n+ 1)−2aiTka
T
i ≤ (bi − aiok) does not hold

11: end if

12: if i ≥ 0 then

13: c← Tka
T
i√

aiTka
T
i

14: ok+1 ← ok − cT

(n+1)2

15: Tk+1 ← (1 + 1
2n2(n+1)2

) n2

n2−1
n2+2n
(n+1)2

(Tk − 2ccT

n(n+1))

16: else

17: break loop
18: end if

19: k ← k + 1
20: end loop

21: L← Cholesky(Tk)
22: b← (n+ 1)(b−Aok)
23: A← ALT

24: return det(L)/(n+ 1)n

25: end function

13

The formulas in (6) are that of line 22, 23 in Algorithm 3. From (5) and (6), it is
obvious that

γ =
vol(P)

vol(P ′′)
=

det(L)

(n+ 1)n
. (7)

So in Algorithm 3, function Preprocess returns the ratio of γ.

B About the Number of Sample Points

From Formula (1) we have

vol(P)

vol(B(0, 1))
=

l−1
∏

i=0

αi =
l−1
∏

i=0

step size

ci
=

step sizel
∏l−1

i=0 ci
,

which shows that to obtain confidence interval of vol(P), we only have to focus on
∏l−1

i=0 ci.

For a fixed P , {αi} are fixed numbers. Let c =
∏l

i=1 ci and D(l, P) denote the distribution
of c. With statistical results of substantial expriments on concentric balls, we observe that,
when step size is sufficiently large, the distribution of ci is unbiased and its standard devi-
ation is smaller than twice of the standard deviation of binomial distribution in dimensions
below 80. Though such observation sometimes not holds when we sample on convex bodies
other than balls, we still use this to approximate the distribution of ci. Consider random
variables Xi following binomial distribution B(step size, 1/αi), we have

E(c) = E(c1) . . . E(cl) = E(X1) . . . E(Xl) = step sizel
l

∏

i=1

1

αi
,

D(c) = E((c1 . . . cl)
2)− E(c)2 =

l
∏

i=1

(D(ci) + E(ci)
2)− E(c)2

=
l

∏

i=1

(4D(Xi) + E(Xi)
2)− E(c)2

=
l

∏

i=1

step size2

α2
i

(1 +
4αi

step size
(1− 1

αi
))− E(c)2

= E(c)2(β − 1),

where β =
∏l

i=1(1 +
4αi

step size − 4
step size).

Suppose {ξ1, . . . , ξt} is a sequence of i.i.d. random variables following D(l, P). Notice
D(c), the variance of D(l, P), is finite because β − 1→ 0 as t→∞. According to central

limit theorem, we have
∑t

i=1 ξi − tE(c)√
tD(c)

d→ N(0, 1).

14

So we obtain the approximation of 95% confidence interval of c, [E(c) − σ
√

D(c), E(c) +
σ
√

D(c)], where σ = 1.96. And

Pr(
vol(B(0, 1))step sizel

E(c) + σ
√

D(c)
≤ vol(P) ≤ vol(B(0, 1))step sizel

E(c)− σ
√

D(c)
) ≈ 0.95.

Let ǫ ∈ [0, 1] denote the ratio of confidence interval’s range to exact value of vol(P), that
is

vol(B(0, 1))step sizel

E(c) + σ
√

D(c)
− vol(B(0, 1))step sizel

E(c)− σ
√

D(c)
≤ vol(P) · ǫ (8)

⇐⇒ 1

E(c)− σ
√

D(c)
− 1

E(c) + σ
√

D(c)
≤ ǫ

E(c)
(9)

⇐⇒ 1

1− σ
√
β − 1

− 1

1 + σ
√
β − 1

≤ ǫ (10)

⇐⇒ 4σ2(β − 1) ≤ ǫ2(1 + σ2 − σ2β)2 (11)

⇐⇒ ǫ2σ2β2 − 2ǫ2(1 + σ2)β − 4β + (
1

σ
+ σ)2 + 4 ≥ 0. (12)

Solve inequality (12), we get β1(ǫ, σ), β2(ǫ, σ) that β ≤ β1 and β ≥ β2 (ignore β ≥ β2
because 1− σ

√
β2 − 1 < 0). β ≤ (1 + 4

step size)
l, since 1 ≤ αi ≤ 2.

(1 +
4

step size
)l ≤ β1 ⇐⇒ step size ≥ 4

β
1/l
1 − 1

, (13)

(13) is a sufficient condition of β ≤ β1. Furthermore, 4/(lβ
1/l
1 − l) is nearly a constant as

ǫ and σ are fixed. For example, 4/(lβ
1/l
1 − l) ≈ 1569.2 ≤ 1600 when ǫ = 0.2, σ = 1.96. So

step size = 1600l keeps the range of 95% confidence interval of vol(P) less than 20% of
the exact value of vol(P).

15

	Introduction
	The Volume Estimation Algorithm
	Subdivision
	Hit-and-run
	Reutilization of Sample Points
	Framework of the Algorithm

	Experimental Results
	The Performance of PolyVest
	Result Checking
	The Advantages of Simplified Hit-and-run Method
	The Advantage of Reutilization of Sample Points

	Related Works
	Conclusion
	Rounding
	About the Number of Sample Points

