arXiv:2511.08555v1 [cs.FL] 11 Nov 2025

RESTL: Reinforcement Learning Guided by Multi-Aspect Rewards for Signal
Temporal Logic Transformation

Yue Fang'?, Zhi Jin'?*, Jie An>***, Hongshen Chen’, Xiaohong Chen®, Naijun Zhan'?
!School of Computer Science, Peking University, Beijing, China
ZKey Laboratory of High Confidence Software Technologies (PKU), MOE, China
3National Key Laboratory of Space Integrated Information System
“Institute of Software, Chinese Academy of Sciences, Beijing, China
5JD.com, Beijing, China
®East China Normal University, Shanghai, China

y.fang @stu.pku.edu.cn, zhijin @pku.edu.cn, anjie @iscas.ac.cn

Abstract

Signal Temporal Logic (STL) is a powerful formal language
for specifying real-time specifications of Cyber-Physical Sys-
tems (CPS). Transforming specifications written in natural
language into STL formulas automatically has attracted in-
creasing attention. Existing rule-based methods depend heav-
ily on rigid pattern matching and domain-specific knowl-
edge, limiting their generalizability and scalability. Recently,
Supervised Fine-Tuning (SFT) of large language models
(LLMs) has been successfully applied to transform natural
language into STL. However, the lack of fine-grained supervi-
sion on semantic fidelity, atomic proposition correctness, and
formula readability often leads SFT-based methods to pro-
duce formulas misaligned with the intended meaning. To ad-
dress these issues, we propose RESTL, a reinforcement learn-
ing (RL)-based framework for the transformation from nat-
ural language to STL. RESTL introduces multiple indepen-
dently trained reward models that provide fine-grained, multi-
faceted feedback from four perspectives, i.e., atomic propo-
sition consistency, semantic alignment, formula succinctness,
and symbol matching. These reward models are trained with
a curriculum learning strategy to improve their feedback ac-
curacy, and their outputs are aggregated into a unified signal
that guides the optimization of the STL generator via Proxi-
mal Policy Optimization (PPO). Experimental results demon-
strate that RESTL significantly outperforms state-of-the-art
methods in both automatic metrics and human evaluations.

Introduction

Signal Temporal Logic (STL) (Maler and Nickovi¢ 2004),
an extension of classical Temporal Logic (TL) (Pnueli
1977), is currently a well-known specification language for
formally specifying requirements of cyber-physical systems
(CPS) with dense-time real-valued signals. STL has been ap-
plied to critical tasks such as model checking and runtime
monitoring of CPS in both academia and industry (Maier-
hofer et al. 2020; Tellex et al. 2020). However, most of
the requirements regarding the timing constraints of CPS
are typically specified informally in domain documentation

*Corresponding author
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

written in natural language by domain experts. The lack of
an effective method for transforming informal requirements
into corresponding formal STL specifications has become a
critical challenge, limiting its broader adoption in real-world
CPS design and analysis.

Manually writing accurate STL formulas is a burdensome
task for domain experts because it is time-consuming and
error-prone. Consequently, many studies have explored au-
tomatic methods for transforming natural language descrip-
tions into STL specifications to alleviate this burden and
improve accuracy. Among existing methods, rule-based and
pattern-based approaches are widely adopted. For example,
fixed patterns have been used to transform natural language
into intermediate forms in previous work (Lignos et al. 2015;
Ghosh et al. 2016). Then, with a set of manually designed
rules, the intermediate forms are further transformed into
temporal logic formulas. These methods rely on meticu-
lously crafted templates, which require substantial expert ef-
fort and steep learning curves (Kulkarni, Fisher, and Myers
2013). Moreover, they are typically limited to highly restric-
tive and structured natural language expressions that strictly
match predefined patterns.

Advancements in natural language processing (NLP), par-
ticularly the impressive capabilities demonstrated by large
language models (LLMs), have sparked a strong interest in
employing these techniques for transforming natural lan-
guage into STL. Recent techniques have explored differ-
ent strategies for tackling the Natural Language to STL
(NL-to-STL) transformation problem. For example, Deep-
STL (He et al. 2022) uses grammar-guided data synthesis
to train transformer-based models that learn to map natural
language inputs to STL formulas. NL2TL (Chen et al. 2023)
is a method based on Supervised Fine-Tuning (SFT) that
constructs synthetic NL-STL pairs and performs instruction
tuning on LLMs, relying solely on paired data as supervi-
sion to allow the generation of STL formulas from natural
language instructions. KGST (Fang et al. 2025) is a two-
stage method that first fine-tunes an LLM on NL-STL pairs
and then refines its outputs using external knowledge.

While current methods have made notable progress in au-
tomating the transformation from natural language to STL,

https://arxiv.org/abs/2511.08555v1

Case 1 — Temporal Semantic Error

Natural Language Description:

During 10-150 time units, if signal 2 is less than 0.2, then signal
72 remains less than 0.3 from 1 to 3 time units later.

LLaMA 3-8B (fine-tuned):
CGrowso((21<0.2) 5 Fpygy(22<03)

Ground Truth:
Gi10,150((71 < 0.2) — Q[L?,](zg <0.3))

Case 2 — Atomic Proposition Error

Natural Language Description:

If the rear radar detects an obstacle and the reverse gear is en-
gaged, then the rear brake signal brake_rear should be acti-
vated within 2 seconds.

' LLaMA 3-8B (fine-tuned):
G[OA,T] (radar_rear.detect_obstacle —
Fpo(brake rear = 1))

Ground Truth:

Gpo,r]((radar_rear.detect_obstacleAgear.rev = 1)
— Fo,9)(brake_rear = 1))

Case 3 — Formula Redundancy

Natural Language Description:

The temperature 7" is consistently above 22°C during the first 2
hours and then rises above 30°C sometime between 2 and 4 hours.

LLaMA 3-8B (fine-tuned):
(G[07120] (T > 22) A F[07240] (T > 30) A G[1201240] (T > 30))

Ground Truth:
G[OA,Z] (T >22) A F[2,4] (T > 30)

Table 1: Examples of common errors in NL-to-STL transfor-
mation by the fine-tuned LLM. Underlined parts of formu-
las indicate incorrect outputs in LLaMA3 and correct ones
in the ground truth.

their accuracy in generating correct STL formulas remains
insufficient. Table 1 illustrates representative examples of
common errors made by a fine-tuned LLaMA 3-8B model
compared to the ground-truth. Specifically, Case 1 shows a
temporal semantic error where the model fails to capture the
meaning of “remains”, leading to the incorrect temporal op-
erator “F”. Case 2 reflects atomic proposition misalignment,
as the model omits the condition “reverse gear is engaged”.
Case 3 illustrates formula redundancy, as the model gener-
ates unnecessary temporal constraints. These issues reflect
the limitations of existing SFT-based approaches, which of-
ten rely on coarse-grained supervision and static training ob-
jectives, providing limited guidance for learning the precise
semantic information required for accurate STL generation.

To address the limitations arising from coarse-grained
supervision, we propose RESTL, a multi-aspect reward-
guided reinforcement learning framework for transforming
natural language into STL. RESTL introduces four com-
plementary reward metrics to provide fine-grained super-
vision from multiple perspectives: (1) Atomic Proposition
Alignment, which checks whether all key variables are ac-
curately captured; (2) Templated Natural Language Simi-

larity, which evaluates semantic alignment by focusing on
semantic content and logical consistency; (3) Formula Suc-
cinctness, which measures the difference between the length
of the output formula and its ground truth to improve suc-
cinct yet faithful expressions. Normally, a smaller differ-
ence is better. and (4) STL-level Similarity, which measures
the similarity between the generated and reference formu-
las, providing global supervision for the formula generation.
Each metric corresponds to a lightweight reward model,
which is trained via preference learning on multiple gener-
ated STL outputs to provide evaluative feedback for guid-
ing the generator. To improve learning accuracy, we em-
ploy a curriculum learning strategy that gradually increases
task difficulty for each reward model. Finally, the outputs
of these reward models are aggregated into a unified scalar
signal to optimize the STL generator using Proximal Pol-
icy Optimization (PPO) (Schulman et al. 2017). During this
optimization, we incorporate a Kullback-Leibler (KL) regu-
larization strategy to constrain drastic policy updates while
maximizing the reward and enhancing training stability.

Experimental results show that our RESTL framework
significantly outperforms baseline methods in both auto-
matic and human evaluations. It achieves higher accuracy
in transforming natural language descriptions into STL for-
mulas, with better semantic alignment and readability.

In summary, our main contributions include:

* We propose RESTL, the first reinforcement learning
framework for transforming natural language into STL.
RESTL learns from multiple dimensions of feedback, in-
cluding atomic proposition consistency, semantic align-
ment, formula succinctness, and symbol matching.

* We introduce a curriculum learning strategy to train each
reward model from easier to harder examples, improving
the accuracy of the reward and training stability.

» Experimental results on two datasets show that RESTL
outperforms baselines in both automatic and human eval-
uations.

Related Work

In this section, we present the most relevant related work,
more details can be found in the Appendix A. Many ef-
forts have been made to transform natural language (NL)
into TL specifications. For example, a catalog of temporal
logic formulas that capture common specification patterns in
the design of concurrent and reactive systems was proposed
in (Dwyer, Avrunin, and Corbett 1999). Controlled English
has also been transformed into TL through the use of syntac-
tic and grammatical dependency parsing, together with pre-
defined mapping rules (Zilka 2010; Santos, Carvalho, and
Sampaio 2018). Although these methods are effective in spe-
cific domains, they rely on handcrafted rules and restricted
language inputs, which limit their ability to handle more di-
verse and complex expressions. To overcome these limita-
tions, the nl2spec method (Cosler et al. 2023) integrates hu-
man feedback and LLMs to automatically derive TL formu-
las. However, these TL-focused methods are not readily ex-
tended to STL, because STL introduces real-valued signals

and continuous-time constraints, which pose challenges not
typically addressed by traditional TL.

As an extension of TL that incorporates real-valued
dense-time signals, STL has gained widespread use in
both academia and industry to meet the requirements of
CPS (Madsen et al. 2018). Consequently, numerous efforts
have been made to transform natural language into STL. For
example, DeepSTL (He et al. 2022) trains a Transformer
model using grammar-based synthetic data. Although this
approach ensures formal consistency, it heavily relies on
handcrafted rules and artificial data, which fail to capture
the diversity in real-world natural language. In addition,
NL2TL (Chen et al. 2023) mitigates the reliance on rule de-
sign by fine-tuning a TS model on NL-TL pairs generated
by LLMs. KGST (Fang et al. 2025) uses a generate-then-
refine approach by first fine-tuning LLMs to generate initial
STL formulas, then refining them with external knowledge.
However, as supervised fine-tuning methods, both NL2TL
and KGST optimize fixed training objectives, lacking fine-
grained feedback and struggling to accurately represent the
semantics of the input natural language. To address these
limitations, we propose RESTL, a reinforcement learning-
based framework for NL-to-STL transformation that incor-
porates multi-aspect supervision and curriculum-guided re-
ward modeling to enhance both the accuracy and readability
of generated STL formulas.

Preliminary

STL is a widely used formalism for specifying the real-time
properties of CPS, such as autonomous vehicles, robotic sys-
tems, etc (Maierhofer et al. 2020; Tellex et al. 2020).

Let R denote the set of real numbers, and let R> and R
denote the sets of non-negative and positive real numbers,
respectively. We denote N>(and N the set of non-negative
integers and the set of positive integers, respectively.

Given a time horizon T' € R and a signal dimension d €
Ny, a d-dimensional signal is a function v : [0,7] — R%.
For any time ¢t € [0, 7], v(t) € R? represents the values of d
signal variables at time ¢. Each component may correspond
to physical quantities such as velocity, RPM, or accelera-
tion. In this paper, we fix a set X of such variables and refer
to one-dimensional signals as signal variables.

Definition 1 (STL Syntax) STL formulas ¢ are con-
structed from atomic propositions o as follows:

a= f(z1,...,2x) >0

pu=alLl-¢[e1Aps | Gro | Fro| o1l s
Here, o represents atomic proposition, where f is a real-
valued function over variables x1,...,xx € X. I =
[l,u] C Ry is a closed interval with | < u, and |, u € Nx.

The temporal operators G, F, and U denote “always”,
“eventually”, and “until” respectively.

The Boolean semantics of an STL formula are evaluated
over a signal v at time ¢ as follows:

(v,t) = & fv(t) =0
(v,t) = o & (i) e

-~
2 Initial STL Generator
,) N R S
[{ | s [|
STL _|i_T___Generated STL______! | :

T | oo 2eneraed otk i

R
Curriculum Sort i RMr, RM 1, RMr. RMr,
S il At i I
RMr, RM
RM r, RMrg é
'\\ Reward Model Training /: Reward

Figure 1: The RESTL framework. First, initialize the STL
generator with NL-STL pairs. Then, natural language inputs
with both reference and generated STL formulas are used to
train multi-aspect reward models based on curriculum learn-
ing. Finally, the STL generator is optimized using PPO.

Vit)Ee1Aps & (Vi) E@ AV E e

(v,t) E Gpue s Velt+lt+ul.(vit) Ee
(v,t) EFpe & Helt+lt+ul.(v,t)Ee
(Vi) Eorlpype & 3t eft+lt+ul.(v,t') = e

AV € [t t]. (v,t") E o1

For example, considering one of safety requirements of a
vehicle’s transmission controller (Ernst et al. 2022): “During
the next 21 time units, whenever the velocity exceeds 40, the
RPM must drop below 2500 within four time units.”, it can
be expressed as an STL formula over real-valued signals as
follows: G[0721] (VeIOC|ty > 40 — F[1,4](RPM < 2500))

Method

In this section, we present RESTL, a reinforcement learn-
ing framework for transforming natural language into STL.
RESTL integrates four distinct reward models trained
through curriculum learning to provide multi-aspect feed-
back, which is then aggregated to guide the optimization of
the STL generator using the PPO algorithm, as illustrated
in Figure 1. First, we fine-tune a LLaMA 3-8B model on a
dataset of NL-STL pairs to obtain an initial STL generator.
Second, for each metric, we train a separate reward model
using preference-based paired examples and apply a curricu-
lum learning strategy to improve the accuracy of the reward
model feedback. Finally, the reward outputs from all mod-
els are aggregated into a unified scalar signal that provides
feedback for PPO to optimize the STL generator.

STL Generator Initialization

We fine-tune the LLaMA 3-8B model on a dataset of NL-
STL pairs to obtain an initial STL generator capable of
transforming natural language into STL. Each pair includes
an Instruction guiding the transformation, an Input

NL description, and the target Output STL formula. The
model learns to generate the STL formula from the input
and instruction.

After training, the model serves as the initial STL genera-
tor with basic NL-to-STL transformation capabilities, ready
for further fine-tuning on downstream tasks.

Multi-aspect Metric

To address common issues in transforming natural language
into STL formulas using LLMs, we design four reward func-
tions as reinforcement learning feedback as shown in Fig-
ure 2. These reward functions guide the model toward gen-
erating more accurate STL formulas.

Atomic Proposition Alignment A common issue in NL-
to-STL transformation is the incorrect identification or omis-
sion of atomic propositions, which are the fundamental vari-
ables in the formula. To evaluate the alignment between
the generated formula ¢ and the ground truth y*, we ex-
tract their atomic propositions A(7) and A(y*) respectively
using LLMs, then compute the precision metric: m, =

[A(9) N A(y)I/|AY)]-

Templated NL Similarity LLMs often produce seman-
tic errors in NL-to-STL transformation, such as incorrect
temporal logic operators, thresholds, or time ranges, which
cause mismatches with the original intention of natural lan-
guage. To enforce consistency at the semantic level, we
reverse-map the generated STL formula g into a templated
natural language T(g). These templated natural language
sentences are generated by LLMs based on templates de-
fined by STL syntax rules. We then use a pre-trained lan-
guage model encoder (e.g., BERT) to convert both T(3) and
the original input x into dense vector representations v(g)
and v,.. Their semantic similarity is computed by cosine sim-
ilarity as the metric m = CoS(vz, vr(y)).

Formula Succinctness To encourage the generation of
concise and human-readable STL formulas, we design a re-
ward function based on length difference. Let || and |y*|
denote the number of characters in the generated STL for-
mula and the ground truth formula, respectively. We de-
fine the normalized length difference metric m; as: m; =
1 —1ly*| = 19| |/|y*| This metric rewards formulas close in
length to the reference. Formulas that are too long may in-
clude redundant or unnecessary components, while formulas
that are too short may omit important logical content. For-
mulas with length near the reference get higher scores.

STL-level Similarity To measure the overall similarity
between the generated STL formula and the ground truth,
we adopt the ROUGE-L (Lin 2004) score as the metric m;.
ROUGE-L evaluates the longest common subsequence be-
tween two sequences, capturing both content overlap and
order information. This makes it suitable for assessing the
structural and semantic consistency of STL formulas. Given
the generated formula ¢ and ground truth y*, the metric is
defined as: ms = ROUGE-L(y*, 7).

Reward Model Training

We introduce reward models based on LLaMA 3-8B to eval-
uate generated STL formulas. For a given input z, the ini-
tial STL generator produces multiple candidate formulas
U1, - .-, Yk selected by minimizing pairwise ROUGE simi-
larity, where k is a hyperparameter. All candidate formulas
are evaluated with the four reward functions based on the
metrics m,, my, my, and mg. For each reward metric, we
compute scores for the candidates and compare them to con-
struct (‘chosen’, ‘rejected’) pairs, where the higher-scoring
candidate is labeled as ‘chosen’. For example, for the metric

ms, if ms(99) > my(917)), we collect the following pair:
{(chosen: [z, 9], rejected : [z,§)) ‘ ms(5) > ms(gj(j>)}.

This process creates preference data that enables reward
models to learn fine-grained preferences for STL generation
quality.

When training the reward models, we use the Bradley-
Terry model (Bradley and Terry 1952) to formulate the pref-
erence distribution with the reward model r,, as follows:

Py (ye = yrlz) = o(ry(z,ye) —ry(2,9:)),

where o is the logistic function, y. denotes the chosen STL,
and y, represents the rejected STL. This is treated as a bi-
nary classification task, yielding the following negative log-
likelihood loss function:

Ly = _EDrm [IOgO—(TVﬁ(wvyC) - r?l)(m?yr))])

where D, is the preference dataset.

In this work, we initialize the reward models using the ini-
tial STL generator. Additionally, a linear layer is added on
top of the final transformer layer to produce a scalar predic-
tion representing the reward value.

Let r,, 7, 1, and r¢ denote the reward models for the
metrics m,, My, My, and mg, respectively. Given the input
natural language x and the generated STL formula ¢, the
corresponding rewards can be computed as r, (2, §), r(z, §),
ri(x, 9), and rs(x, §), abbreviated as r,(§), r(4), r1(J), and
rs(¢). To facilitate aggregation of the rewards, the scores
from each reward model are scaled to the range [0, 1].

Curriculum Learning for Reward Models

To improve the effectiveness of reward models, we incor-
porate curriculum learning by organizing training examples
from easy to more challenging cases. We define separate cur-
ricula based on the four reward metrics, each capturing dis-
tinct reward model evaluation criteria.

Atomic Proposition Curriculum for », This curriculum
is used for training the atomic proposition alignment reward
model. We count the number of atomic propositions in the
ground truth STL formula and sort the training samples in
ascending order of this count. Samples with fewer atomic
propositions are considered easier and are prioritized, en-
abling the model can gradually learn to assess atomic propo-
sition alignment.

Atomic Proposition (AP) Alignment Metric m,,

Gror)(Gpo.10)(temp > 50)
- Fpsi(alarm = 1))

{temp > 50, alarm = 1}

Formula Conciseness Metric m,

AG): AP of §

{temp > 50, alarm = 1}

A(y*): AP of y*

Generated STL y

Gox)(Fro.10) (temp > 50)
- Fos(alarm = 1))

LLM-driven
AP Extraction

Reference STL y*

Templated NL Similarity Metric m,

If the temperature stays above
50 degrees for at least 10...

6pn(Groo (temp > 50)
- Fpg(alarm = 1)) |

1A n]IAGI
4G9

11
Length of
Generated STL *— P
—1.0 1-— M — 1.0
e . |)’ | m
ly*l
Length of

Reference STL

STL-level Similarity Metric m,

Gro(Gpo.10) (temp > 50)
— Fo5)(alarm = 1))

o, 155,

CoS (vx, vT@))

Generated STL

ROUGE-L(y", 9) }-—»o 92

mg

Grom (Fro.10(temp > 50)

Generaled STLy Input Natural Language x
-
Always between 0 and T, if
always between 0 and 10, ...
Templated Natural Language
LLM-guided T(9)

Template NL Generation

— Fps)(alarm = 1))

Reference STL y*

Figure 2: Design of the four reward metrics m,, m, m;, and ms. We present the evaluation process of the same natural language
input and its corresponding generated STL formula under different reward metrics.

NL Similarity Curriculum for »¢ When training the re-
ward model of templated natural language similarity, for
each natural language description in the preference dataset,
we first convert the corresponding three generated STL
formulas into three templated natural language sentences.
Then, we compute the cosine similarity between the origi-
nal natural language sentence and each templated sentence,
and use the average similarity of the three pairs to determine
the sample order. These training data are sorted in ascending
order of difficulty scores.

STL Formula Length Curriculum for r; For training the
formula succinctness reward model, samples are sorted by
the length of the ground truth STL formula. Shorter STL for-
mulas are regarded as easier and introduced earlier, with pro-
gressively longer formulas introduced as training proceeds.

STL Similarity Curriculum for s This curriculum is de-
signed to train the STL-level similarity reward model. For
each group of three generated STL formulas in the prefer-
ence dataset, we first calculate the ROUGE-L score between
each generated formula and the ground truth STL formula.
The average of these three ROUGE-L scores is then used to
compute the difficulty score. Training samples are sorted in
ascending order of difficulty scores.

Reinforcement Learning for STL Generator

Given a natural language instruction x and the generated
STL formula g, the overall reward is computed as:

rrL(Y) = A17a() + Ao (9) + Asri(9) 4+ Aars(9),

where the hyperparameters A1, A2, Az, A4 control the rela-
tive importance of each reward. The reward objective i 1S
to maximize expected reward while constraining deviation
from the initial policy Gy, .

Ttotal = TRL(ZJ) -n: KL(G9 H G90)7

where 1 is a KL penalty coefficient. This term stabilizes
training by penalizing large shifts from the pre-trained gen-
erator.

Finally, we apply the PPO algorithm (Schulman et al.
2017) to optimize the STL generator Gy using the KL-
regularized reward signal.

Experiments

In this section, we conduct comprehensive experiments to
evaluate our proposed method RESTL.

Experimental Settings

We first introduce the empirical settings, including datasets,
baselines, evaluation measures, and implementation details.

Datasets We conduct experiments on two datasets for NL-
to-STL transformation, including the DeepSTL dataset (He
et al. 2022) and STL-DivEn dataset (Fang et al. 2025).
The DeepSTL dataset is synthetically generated using a
grammar-based generator that samples STL formulas from
predefined templates and operator distributions. STL-DivEn
is created through a hybrid approach that integrates GPT-4-
based generation and human verification. For a fair compar-
ison, we randomly select 14,000 samples from each dataset
for training and 2,000 samples for testing.

Baselines We compare RESTL with five baseline meth-
ods: DeepSTL (He et al. 2022), GPT-3.5' , GPT-42,
DeepSeek (Guo et al. 2025), and KGST (Fang et al. 2025).
In our implementation, we adopt the “gpt-4-0125-preview”
version of GPT-4, the “gpt-3.5-turbo-1106" version of
GPT-3.5, and the “DeepSeek-V1” version of DeepSeek.

"https://platform.openai.com/docs/models/gpt-3-5-turbo
Zhttps://platform.openai.com/docs/models/gpt-4-turbo-and-
gpt-4

DeepSTL adopts the Transformer architecture for train-
ing and optimizes model parameters using the Adam al-
gorithm (Kingma 2014). KGST is the SOTA model, which
adopts a two-stage architecture: it first fine-tunes a LLaMA
3-8B model on an NL-STL dataset to produce preliminary
STL formulas. In the second stage, it retrieves the top-5 most
similar NL-STL pairs from the training set as reference ex-
amples, and leverages GPT-4 to refine the initial outputs,
generating the final STL formulas.

Evaluation Measures To evaluate STL generation qual-
ity, we use both automatic metrics and human evaluation.
Following prior work (He et al. 2022), we adopt formula ac-
curacy, template accuracy, and BLEU (Papineni et al. 2002).
Formula accuracy measures exact token-level matches, tem-
plate accuracy assesses structural alignment, and BLEU cap-
tures n-gram overlap for lexical similarity. Definitions of for-
mula and template accuracy are provided in the Appendix C.

For human evaluation, we randomly sample 100 NL-STL
pairs from testing sets of STL-DivEn and DeepSTL. Five
trained annotators, familiar with STL semantics and syntax,
assess the output without knowing the model source. The
evaluation is based on three criteria: readability (i.e. ease of
understanding), syntactic correctness, and consistency with
the original semantics. Readability is judged only if the first
two criteria are met. This evaluation is designed to comple-
ment metric-based methods, which may miss cases where
STL formulas differ in form but share the same meaning.
Each comparison between RESTL and a baseline is labeled
as win, loss, or tie, reflecting overall clarity and correctness.

Implementation Details Our experiments run on 8§
NVIDIA GeForce RTX 4090 GPUs (24GB each). Each re-
ward model is fine-tuned on LLaMA 3-8B with a linear
value head for 5 epochs using Adam (Ir=5e-5, batch=16).
The STL generator is fine-tuned via PPO for 80,000 steps
(batch=32, Ir=1.41e-5, KL penalty = 0.05). The combined
reward uses weighted scores with Ay = 0.2, Ay = 0.25,
Az = 0.35, and Ay = 0.2. More details, including hyperpa-
rameter discussions, are in Appendix D.

Main Results
We demonstrate results on two datasets to evaluate RESTL.

Metric-Based Evaluation As shown in Table 2a, on the
STL-DivEn dataset, RESTL reaches a formula accuracy of
68.38%, exceeding the strongest baseline KGST (55.87%).
It also achieves a template accuracy of 69.74% (vs. KGST’s
56.27%) and a BLEU score of 0.3347, higher than KGST’s
0.2142. These results demonstrate RESTL’s superior abil-
ity in generating more accurate STL formulas. Similarly,
as shown in Table 2b, RESTL achieves the best perfor-
mance on the DeepSTL dataset, with a formula accuracy
of 59.85%, a template accuracy of 63.27%, and a BLEU
score of 0.6783. Compared to KGST (45.38%, 49.39%, and
0.5686, respectively), RESTL demonstrates clear improve-
ments across all metrics. We conduct a significance test, con-
firming that RESTL significantly outperforms existing mod-
els across datasets and metrics, i.e., p-value < 0.01. Experi-
mental results including measures of variability are provided

(a) STL-DivEn dataset

Model Formula Acc. Template Acc. BLEU
DeepSTL 0.1986 0.1883 0.0293
GPT-3.5 0.3018 0.3034 0.0424
GPT-4 0.4733 0.4741 0.0831
DeepSeek 0.4790 0.4825 0.0791
KGST 0.5587 0.5627 0.2142
RESTL (Ours) 0.6838 0.6974 0.3347
(b) DeepSTL dataset
Model Formula Acc. Template Acc. BLEU
DeepSTL 0.2002 0.2916 0.3332
GPT-3.5 0.2145 0.3002 0.2249
GPT-4 0.2262 0.3048 0.2881
DeepSeek 0.2537 0.3254 0.3982
KGST 0.4538 0.4939 0.5686
RESTL (Ours) 0.5985 0.6327 0.6783

Table 2: Performance comparison of RESTL and baselines
on STL-DivEn and DeepSTL datasets.

Model

vs. STL-DivEn vs. DeepSTL
Win Loss Tie Win Loss Tie

DeepSeek 642 123 235 563 172 265
GPT-4 61.0 135 255 547 186 26.7
KGST 587 159 254 528 197 275

Table 3: Human evaluation (%) of RESTL vs. baselines.

in Appendix E.1.

Human Evaluation The results shown in Table 3 indi-
cate that annotators consistently prefer formulas generated
by RESTL, as they exhibit more concise and readable ex-
pressions while maintaining semantic consistency. For ex-
ample, RESTL achieved win rates of 64.2%, 61.0%, and
58.7% against DeepSeek, GPT-4, and KGST, respectively.
We attribute this readability advantage to the introduction of
the formula succinctness reward (m;) during reinforcement
learning, which explicitly encourages the model to generate
STL formulas with lengths close to the reference, thereby
improving clarity and readability.

Ablation Study

We conduct ablation studies on both datasets by removing
one reward metric at a time and training the model with the
remaining three. The results are shown in Table 4, and more
details are provided in the Appendix E.2.

(1) Impact of m, for atomic proposition alignment: for
STL-DivEn dataset, removing m, yields 65.73% formula
accuracy, 65.94% template accuracy, and a BLEU score of
0.3117, all outperforming the fine-tuned LLaMA 3-8B base-
line. For DeepSTL dataset, removing m, still better than
baseline. However, these improvements remain limited com-
pared to the full multi-reward combination in RESTL. These
results indicate that m, as a reward feedback is effective.

(2) Impact of m; for templated NL similarity: without

(a) STL-DivEn dataset

Model Formula Acc. Template Acc. BLEU
RESTL 0.6838 0.6974 0.3347
- w/om, 0.6573 0.6594 0.3117
- wlo my 0.6424 0.6503 0.3095
- wlomy 0.6642 0.6709 0.3294
- w/o myg 0.6314 0.6393 0.2913
LLaMA3 (Fine-tuned) 0.4956 0.5007 0.1784
(b) DeepSTL dataset
Model Formula Acc. Template Acc. BLEU
RESTL 0.5985 0.6327 0.6783
- wlom, 0.5571 0.5642 0.6129
- w/o my 0.5683 0.5782 0.6293
-w/omy 0.5832 0.5927 0.6473
- w/o myg 0.5409 0.5503 0.6091
LLaMA3 (Fine-tuned) 0.2850 0.3285 0.5579

Table 4: Ablation study of different reward feedback on
STL-DivEn and DeepSTL datasets.

Model #AP #Operator #Value #Redundancy
LLaMA3-8B (Fine-tuned) 19 39 27 22
KGST 15 27 25 26
RESTL 6 15 18 14

Table 5: Error analysis of RESTL, KGST, and fine-tuned
LLaMA3-8B. #AP, #Operator, #Value, and #Redundancy
denote counts of atomic proposition, operator, value, and re-
dundancy errors, respectively.

my, formula accuracy drops to 64.24% on STL-DivEn and
56.83% on DeepSTL, with template accuracies of 65.03%
and 57.82% and BLEU scores of 0.3095 and 0.6293, respec-
tively, showing that m, is effective.

(3) Impact of m,; for formula succinctness: removing my
yields the highest automatic scores among all ablation set-
tings, with 66.42% formula accuracy and a BLEU score of
0.3294 on STL-DivEn, and 58.32% formula accuracy and
0.6473 BLEU on DeepSTL, indicating that m; has limited
metric impact but improves readability.

(4) Impact of m for STL-level similarity: removing m
leads to the largest performance drop among all ablations,
with 63.14% formula accuracy and a BLEU score of 0.2913
on STL-DivEn, and 54.09% accuracy and 0.6091 BLEU on
DeepSTL, showing that my is the most significant reward for
improving accuracy.

Error Analysis

As shown in Table 5, we analyze 100 STL formulas gener-
ated by RESTL, KGST, and fine-tuned LLaMA 3-8B, cat-
egorizing errors into four types: atomic proposition (AP),
operator, numerical value, and redundancy. Compared to
the baselines, RESTL shows fewer AP errors due to the
AP Alignment reward, and fewer operator and value errors
thanks to the Templated NL Similarity metric. The Formula
Conciseness reward also helps reduce redundancy, whereas
KGST tends to include more irrelevant content, likely due

E=3 Formula Acc. [CT1 Template Acc. 77 BLEU

0.8
0.6840-697

071" = I 0.6330:645 0.625
—] 6337 0.6130-62

0.6 —

o5 — —

0.4 — 0.335 — —
| | 0.299 |

03 0.274
—_ —_— // —_

0.2 — — / —

Shuffle Curriculum
on Reward Model

Reverse Curriculum
on Reward Model

Forward Curriculum
on Reward Model

Figure 3: Scheduling strategy impact of different curricula.

0.62 Formula Accuracy 0.32 BLEU Score
RL w/ Metric

0.60 0.30 RL w/ Reward Model
0.58 0.28

0.56 0.26

RL w/ Metric
0.54 RL w/ Reward Model 0.24
1000 2000 3000 4000 1000 2000 3000 4000

Training Steps Training Steps

Figure 4: Comparison of reinforcement learning feedback
strategies: reward model vs. metric supervision on STL-
DivEn.

to its retrieval-augmented design. The STL-level Similarity
metric is excluded from this analysis as it serves as a global
training signal.

Impacts of Curriculum Learning

As shown in Figure 3, we compare how different training
data orders for reward models affect the performance of the
RESTL framework. The results show that reward models
trained with curriculum learning more effectively improve
formula accuracy, template accuracy, and BLEU scores, sig-
nificantly enhancing the overall performance of RESTL. De-
tailed impacts on individual reward models are provided in
Appendix E.3.

Reward Model vs. Direct Metric in RL

To compare reward model feedback with direct metric su-
pervision in reinforcement learning, we evaluate their per-
formance on the STL-DivEn dataset. As shown in Figure 4,
models trained with reward models achieve higher gains in
formula and template accuracy. Specifically, template accu-
racy reaches 61.2% with reward models versus 60.3% with
metric-based supervision, and BLEU improves from 0.267
to 0.276. This advantage is due to the reward model’s ability
to capture deeper NL-STL correspondence through prefer-
ence learning, while metric supervision may introduce noise.
These results suggest reward models provide more effective
guidance for RL in this task.

Conclusion

In this work, we propose RESTL, a reinforcement learn-
ing framework for transforming natural language into STL
specifications. It employs multi-aspect reward models to
ensure semantic correctness and uses curriculum learning
to improve training efficiency. Experiments on two bench-
marks show that RESTL outperforms existing methods in
formula accuracy, template accuracy, and BLEU. By inte-
grating structured rewards with progressive training, RESTL
provides an effective solution for formal specification gen-
eration of cyber-physical systems.

Acknowledgement

We sincerely thank the anonymous reviewers for their valu-
able comments and suggestions. This work is supported by
the National Natural Science Foundation of China under
Grant Nos. 62192731, 62192732, 62192730, and 62272166.

References

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41-48.

Bradley, R. A.; and Terry, M. E. 1952. Rank analysis of
incomplete block designs: I. The method of paired compar-
isons. Biometrika, 39(3/4): 324-345.

Chen, Y.; Gandhi, R.; Zhang, Y.; and Fan, C. 2023. NL2TL:
Transforming Natural Languages to Temporal Logics using
Large Language Models. In Bouamor, H.; Pino, J.; and Bali,
K., eds., Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, 15880-15903. Associa-
tion for Computational Linguistics.

Christiano, P. F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.;
and Amodei, D. 2017. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30.

Cosler, M.; Hahn, C.; Mendoza, D.; Schmitt, F.; and Trip-
pel, C. 2023. nl2spec: Interactively Translating Unstruc-
tured Natural Language to Temporal Logics with Large Lan-
guage Models. In Enea, C.; and Lal, A., eds., Computer
Aided Verification - 35th International Conference, CAV
2023, Paris, France, July 17-22, 2023, Proceedings, Part I1,
volume 13965 of Lecture Notes in Computer Science, 383—
396. Springer.

Dann, C.; Mansour, Y.; and Mohri, M. 2023. Reinforcement
learning can be more efficient with multiple rewards. In In-
ternational Conference on Machine Learning, 6948—6967.
PMLR.

Dwyer, M. B.; Avrunin, G. S.; and Corbett, J. C. 1999. Pat-
terns in property specifications for finite-state verification.
In Proceedings of the 21st international conference on Soft-
ware engineering, 411-420.

Ernst, G.; Arcaini, P.; Fainekos, G.; Formica, F.; Inoue, J.;
Khandait, T.; Mahboob, M. M.; Menghi, C.; Pedrielli, G.;
Waga, M.; Yamagata, Y.; and Zhang, Z. 2022. ARCH-
COMP 2022 Category Report: Falsification with Ubounded

Resources. In Frehse, G.; Althoff, M.; Schoitsch, E.; and
Guiochet, J., eds., Proceedings of 9th International Work-
shop on Applied Verification of Continuous and Hybrid Sys-
tems (ARCH22), volume 90 of EPiC Series in Computing,
204-221. EasyChair.

Fang, Y.; Jin, Z.; An, J.; Chen, H.; Chen, X.; and Zhan, N.
2025. Enhancing Transformation from Natural Language
to Signal Temporal Logic Using LLMs with Diverse Exter-
nal Knowledge. In Che, W.; Nabende, J.; Shutova, E.; and
Pilehvar, M. T., eds., Findings of the Association for Com-
putational Linguistics, ACL 2025, Vienna, Austria, July 27
- August 1, 2025, 10446-10458. Association for Computa-
tional Linguistics.

Ghosh, S.; Elenius, D.; Li, W.; Lincoln, P.; Shankar, N.; and
Steiner, W. 2016. ARSENAL: automatic requirements spec-
ification extraction from natural language. In NASA Formal
Methods: 8th International Symposium, NFM 2016, Min-
neapolis, MN, USA, June 7-9, 2016, Proceedings 8, 41-46.
Springer.

Graves, A.; Bellemare, M. G.; Menick, J.; Munos, R.; and
Kavukcuoglu, K. 2017. Automated curriculum learning for
neural networks. In international conference on machine
learning, 1311-1320. Pmlr.

Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.;
Zhu, Q.; Ma, S.; Wang, P.;; Bi, X.; et al. 2025. Deepseek-rl:
Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948.

He, J.; Bartocci, E.; Nickovic, D.; Isakovic, H.; and Grosu,
R. 2022. DeepSTL - From English Requirements to Sig-
nal Temporal Logic. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022, 610-622. ACM.
Justesen, N.; Rodriguez Torrado, R.; Bontrager, P.; Khalifa,
A.; Togelius, J.; and Risi, S. 2018. Illuminating General-
ization in Deep Reinforcement Learning through Procedural
Level Generation. In NeurIPS Workshop on Deep Reinforce-
ment Learning.

Kingma, D. P. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

Kulkarni, D.; Fisher, A. N.; and Myers, C.J. 2013. A new as-
sertion property language for analog/mixed-signal circuits.
In Proceedings of the 2013 Forum on specification and De-
sign Languages (FDL), 1-8. IEEE.

Li, R.; Jabri, A.; Darrell, T.; and Agrawal, P. 2020. To-
wards practical multi-object manipulation using relational
reinforcement learning. In 2020 ieee international confer-
ence on robotics and automation (icra), 4051-4058. IEEE.
Lignos, C.; Raman, V.; Finucane, C.; Marcus, M. P.; and
Kress-Gazit, H. 2015. Provably correct reactive control from
natural language. Auton. Robots, 38(1): 89-105.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, 74-81.
Madsen, C.; Vaidyanathan, P.; Sadraddini, S.; Vasile, C. L;
DeLateur, N. A.; Weiss, R.; Densmore, D.; and Belta, C.
2018. Metrics for Signal Temporal Logic Formulae. In 57k
IEEE Conference on Decision and Control, CDC 2018, Mi-
ami, FL, USA, December 17-19, 2018, 1542—1547. IEEE.

Maierhofer, S.; Rettinger, A.-K.; Mayer, E. C.; and Althoff,
M. 2020. Formalization of interstate traffic rules in temporal
logic. In 2020 IEEE Intelligent Vehicles Symposium (IV),
752-759. IEEE.

Maler, O.; and Nickovi¢, D. 2004. Monitoring temporal
properties of continuous signals. In FORMATS/FTRTFT
2004, volume 3253 of LNCS, 152-166. Springer.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928-1937.
PmLR.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311-318.
Paszke, A. 2019. Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint
arXiv:1912.01703.

Pnueli, A. 1977. The Temporal Logic of Programs. In FOCS
1977,46-57. IEEE.

Ryu, S.; Do, H.; Kim, Y.; Lee, G.; and Ok, J. 2024. Multi-
Dimensional Optimization for Text Summarization via Re-
inforcement Learning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 5858-5871.

Santos, T.; Carvalho, G.; and Sampaio, A. 2018. For-
mal modelling of environment restrictions from natural-
language requirements. In Formal Methods: Foundations
and Applications: 21st Brazilian Symposium, SBMF 2018,
Salvador, Brazil, November 2630, 2018, Proceedings 21,
252-270. Springer.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Team, K.; Du, A.; Gao, B.; Xing, B.; Jiang, C.; Chen, C.;
Li, C.; Xiao, C.; Du, C.; Liao, C.; et al. 2025. Kimi k1.
5: Scaling reinforcement learning with llms. arXiv preprint
arXiv:2501.12599.

Tellex, S.; Gopalan, N.; Kress-Gazit, H.; and Matuszek, C.
2020. Robots that use language. Annual Review of Control,
Robotics, and Autonomous Systems, 3(1): 25-55.

Wang, R.; Lehman, J.; Clune, J.; and Stanley, K. O. 2019.
Paired open-ended trailblazer (poet): Endlessly generating
increasingly complex and diverse learning environments and
their solutions. arXiv preprint arXiv:1901.01753.

Wang, Y.; Zhang, H.; Pang, L.; Guo, B.; Zheng, H.; and
Zheng, Z. 2025. MaFeRw: Query rewriting with multi-
aspect feedbacks for retrieval-augmented large language
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 39, 25434-25442.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2020. Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 conference on empirical

methods in natural language processing: system demonstra-
tions, 38-45.

Xie, T.; Gao, Z.; Ren, Q.; Luo, H.; Hong, Y.; Dai, B.; Zhou,
J.; Qiu, K.; Wu, Z.; and Luo, C. 2025. Logic-rl: Unleashing
IIm reasoning with rule-based reinforcement learning. arXiv
preprint arXiv:2502.14768.

Zheng, R.; Dou, S.; Gao, S.; Hua, Y.; Shen, W.; Wang, B ;
Liu, Y.; Jin, S.; Liu, Q.; Zhou, Y.; et al. 2023. Secrets of
rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964.

Zheng, Y.; Zhang, R.; Zhang, J.; YeYanhan, Y.; and Luo, Z.
2024. LlamaFactory: Unified Efficient Fine-Tuning of 100+
Language Models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 3: System Demonstrations), 400—410.

Ziegler, D. M.; Stiennon, N.; Wu, J.; Brown, T. B.; Radford,
A.; Amodei, D.; Christiano, P.; and Irving, G. 2019. Fine-
tuning language models from human preferences. arXiv
preprint arXiv:1909.08593.

Zilka, L. 2010. Temporal logic for man. Ph.D. thesis, Mas-
ter’s thesis, Brno University of Technology.

A The Appendix of Related Work
Reinforcement Learning for LLMs

With the rapid development of LLMs, reinforcement learn-
ing (RL) has been widely adopted to further improve their
capabilities (Ziegler et al. 2019; Christiano et al. 2017).
One representative approach is reinforcement learning from
human feedback (RLHF) (Christiano et al. 2017), which
optimizes model performance using reward scores gener-
ated by reward models, combined with policy gradient al-
gorithms such as PPO (Schulman et al. 2017). To provide
more fine-grained supervision signals, prior work has in-
troduced critic models to compute intermediate-stage re-
wards (Mnih et al. 2016; Zheng et al. 2023). Recent stud-
ies have shown that reinforcement learning with multiple re-
ward signals can lead to more efficient training (Dann, Man-
sour, and Mohri 2023). For example, multi-dimensional op-
timization has been used to balance various quality aspects
such as consistency and relevance (Ryu et al. 2024). In the
RAG domain, MaFeRw (Wang et al. 2025) integrates multi-
aspect feedback from both retrieval and generation stages to
improve output quality and training stability. In this study,
we apply reinforcement learning with multi-aspect dense re-
ward signals to enhance the model’s ability to transform nat-
ural language descriptions into accurate STL specifications.

Curriculum Learning for LLMs

Curriculum Learning (CL)(Bengio et al. 2009; Graves et al.
2017) is a training paradigm that organizes training sam-
ples in order, guiding the model to learn from easier exam-
ples before gradually progressing to more complex ones. In
the context of Reinforcement Learning (RL), curricula are
typically designed for specific tasks by incrementally in-
creasing the complexity of the environment(Justesen et al.
2018; Wang et al. 2019; Li et al. 2020), thereby improv-
ing the generalization and transferability of the learned poli-
cies. Recently, with the growing application of RL in the
post-training phase of LLMs, curriculum learning has shown
great potential for improving both training efficiency and
model performance. For instance, Kimi k1.5 (Team et al.
2025) and LogicRL (Xie et al. 2025) train models on “easy”
samples for a fixed number of steps before switching to
more “difficult” examples. In this work, we apply curricu-
Ium learning to train the reward models by ranking NL-to-
STL transformation difficulty across multiple dimensions,
enabling them to start from simple samples and progres-
sively adapt to accurately evaluate more difficult tasks.

B The Appendix of Method
Details of Reinforcement Learning in RESTL

The RL training process of RESTL is shown in Algorithm 1.
It starts with the prepared initial STL generator Gy, .

In each training epoch, we compute the aggregated multi-
aspect reward for each sample (¥ € D (Line 3). First, for
each NL description ("), we generate a corresponding STL
formula (") (Line 4). Then, we compute its scores using
the four reward models and aggregate them into an overall
reward (Line 5 to 10). Formally, given a natural language

Algorithm 1: Training STL Generator with Multi-
Reward PPO
Input: Training data D = {1} | pretrained
generator G, , reward models 74, 7,77, 7's,
reward weights A1, Ao, A3, Ay, PPO
parameters, KL coefficient n
Output: Optimized STL generator G¢
1 Initialize generator Gy < Go,;
2 for each training epoch do
3 | foreach z(€ D do
// Sample a generated STL
formula
4 Sample) ~ Gy(z™);
// Compute multi-aspect
rewards
5 Compute atomic proposition alignment:

ri) = ra(@®, 50);
6 Compute templated NL similarity:
) (2@, g0y,
7 Compute formula succinctness:
8 Compute STL-level similarity:
) (@, 0);
// Aggregate overall reward

9 rl({ﬁ —)xlrt(li) +)\gr]gi) +)\37“1('0 + /\4r§i);
// Apply KL-regularized
objective
0 || rig il 0 KL(Gy | Gay):
// Update generator using PPO
1 Compute PPO loss:
L+ PPOJ_,oss(rt(;tll, Gy);
12 Update policy parameters: 0 <— 6 — Vo L;

13 return Gy;

instruction x and the generated STL formula g, the overall
reward is computed as:

TRL(T) = A17a(9) + Aare(9) + Asni(9) + Aars(9),

where r,, 7, 11, and rg are the reward scores corresponding
to the atomic proposition alignment m,, templated NL sim-
ilarity m,, formula conciseness m;, and STL-level similar-
ity my, proposed in Section , respectively. The hyperparam-
eters A1, A2, A3, A4 control the relative importance of each
reward. The reward objective 7, is to maximize expected
reward while constraining deviation from the initial policy
Go,.
Ttotal = TRL(/Q) -n- KL(GQ ” Geo)’

where 1 is a KL penalty coefficient. This term stabilizes
training by penalizing large shifts from the pre-trained gen-
erator.

Finally, we apply the PPO algorithm (Schulman et al.
2017) to optimize the STL generator Gy using the KL-
regularized reward signal (Line 11 to 12).

Model STL-DivEn DeepSTL
Formula Acc. Template Acc. BLEU Formula Acc. Template Acc. BLEU

DeepSTL 0.1986 = 0.0182 0.1883 £0.0109 0.0293 4 0.0043 0.2002 £+ 0.0146 0.2916 £ 0.0172 0.3332 +0.0192
GPT-3.5 0.3018 £ 0.0208 0.3034 £ 0.0223 0.0424 +£0.0182 0.2145 £ 0.0137 0.3002 £ 0.0162 0.2249 + 0.0203
GPT-4 0.4733 £0.0284 0.4741 £0.0293 0.0831 £ 0.0196 0.2262 + 0.0172 0.3048 £ 0.0192 0.2881 £ 0.0217
DeepSeek 0.4790 £ 0.0195 0.4825 +£0.0206 0.0791 £0.0175 0.2537 £0.0182 0.3254 +£0.0193 0.3982 + 0.0233
KGST 0.5587 £0.0263 0.5627 £ 0.0276 0.2142 +0.0187 0.4538 £ 0.0207 0.4939 £ 0.0264 0.5686 + 0.0301
RESTL (Ours) 0.6838 + 0.0243 0.6974 + 0.0255 0.3347 £ 0.0177 0.5985 + 0.0183 0.6327 £ 0.0192 0.6783 + 0.0177

Table 6: Experimental results on performance and variability measures of RESTL and baselines on STL-DivEn and DeepSTL

datasets.

C The Appendix of Evaluation Metric

STL Formula Accuracy Measure the alignment accuracy
between the reference and prediction sequences at the string
level.

Template Accuracy First transform the reference and pre-
diction instances into STL templates, then calculate the
alignment accuracy of the resulting template sequences.

The following example shows both the formula and its
corresponding template for the reference and predicted out-
puts.

Formula: G (z > 8) — F(y < 3) = Template: G (¢) — F(¢)
Formula: G (z > 8) — F(z < 3) = Template: G (¢) — F(¢)

The formula contains 13 tokens. All tokens coincide except
for the variable “y” vs “z” in the atomic proposition, result-
ingin Ap = % When both formulas are converted to tem-
plates by replacing atomic propositions with placeholders

(e.g., ¢), all tokens align perfectly: Ay = 1.

D The Appendix of Implementation Details

Our experiments are carried out on § NVIDIA GeForce RTX
4090 GPUs (24GB VRAM each). We implement our frame-
work using PyTorch (Paszke 2019) and Huggingface Trans-
formers (Wolf et al. 2020), with LLaMA-Factory (Zheng
et al. 2024) as the base for model customization. Each
reward model is fine-tuned in LLaMA 3-8B with a lin-
ear value head and trained for 5 epochs using Adam op-
timizer (Kingma 2014), with a learning rate of 5e-5 and a
batch size of 16. The STL generator is fine-tuned using PPO
for 80,000 steps, with a batch size of 32, a learning rate of
1.41e-5, and a KL penalty coefficient 7 set to 0.05. The com-
bined reward signal is computed using weighted scores with
A1 = 0.2, Ay = 0.25, A3 = 0.35, and A\, = 0.2, where
these hyperparameters control the weights of different re-
ward components. Their initial values were assigned based
on the proportional contribution of each individual metric to
the model’s performance improvement. Subsequently, grid
search was performed to fine-tune these weights, resulting
in the final values above. We found that this combination
achieves superior performance across different datasets.

E The Appendix of Experimental Results
E.1 Experimental Results on Variability Measures

Table 6 presents experimental results on performance and
variability measures of RESTL and baseline models on the

(a) STL-DivEn dataset

Model Formula Acc. Template Acc. BLEU
RESTL 0.6838 0.6974 0.3347
My 0.6027 0.6152 0.2824
my 0.6172 0.6137 0.2652
m 0.5952 0.6072 0.2636
ms 0.6282 0.6299 0.2892
LLaMA3 (Fine-tuned) 0.4956 0.5007 0.1784
(b) DeepSTL dataset
Model Formula Acc. Template Acc. BLEU
RESTL 0.5985 0.6327 0.6783
my 0.5203 0.5182 0.5872
mg 0.5182 0.5191 0.5925
my 0.4952 0.5001 0.5782
mg 0.5373 0.5407 0.6093
LLaMA3 (Fine-tuned) 0.2850 0.3285 0.5579

Table 7: Ablation analysis of different reward feedback
mechanisms on each metric for STL-DivEn and DeepSTL
datasets.

STL-DivEn and DeepSTL datasets. It is evident from the
table that RESTL outperforms all other baselines across both
datasets.

E.2 Ablation Study Details

From Table 7, we can see that each individual reward metric
contributes positively to model performance, outperforming
LLaMA3 (Fine-tuned) but falling short of RESTL.

E.3 Accuracy of Reward Models

We analyze the impact of curriculum learning on training re-
ward models. As shown in Table 8, we evaluate the accuracy
of four reward models: r,, ¢, 77, and r in distinguishing be-
tween “chosen” and “rejected” outputs across two datasets,
and compare three curriculum ordering strategies, which are
the easy-to-hard (Forward), hard-to-easy (Reverse), and ran-
dom shuffle (Shuffle).

The results demonstrate that the forward ordering
achieves the highest accuracy. For instance, r, achieves
80.1% accuracy on the STL-DivEn dataset, outperforming
Reverse (74.6%) and Shuffle (76.9%). This trend is observed
consistently across all reward models and both datasets, sug-

Reward Model Order STL-DivEn DeepSTL Avg.

Forward 80.1 78.4 79.3
7o (AP Align) Reverse 74.6 73.1 73.9
Shuffle 76.9 75.5 76.2
Forward 82.3 80.2 81.3
r¢ (NL Sim.) Reverse 76.2 74.4 75.3
Shuffle 78.5 76.7 77.6
Forward 81.7 79.1 80.4
7 (Length) Reverse 74.1 72.5 73.3
Shuffle 772 74.9 76.1
Forward 84.0 82.1 83.1
rs (STL Sim.) Reverse 77.6 75.9 76.8
Shuffle 79.3 77.4 78.4

Table 8: Accuracy (%) of reward models under different
curriculum learning orderings on STL-DivEn and DeepSTL
datasets.

Prompts for STL Transformation

Please transform the natural language description into an STL specification.
Let a and b be two variables, and let ¢ be the specification. The rules are as
follows:

1. @1 U[a,b] 92 indicates that there exists a moment t' such that ¢1 holds
continuously before t', and ¢2 holds at t', where t' € [a, b].

2. F[a,b]o indicates that ¢ holds at some point within the interval [a, b].

3. G[a,b]e indicates that ¢ holds at every point within the interval [a, b].
Additionally, assume signals x1[t], x2[t], . . ., xn[t], the atomic predicates
are of the form: f(x1[t], .. ., xn[t]) > 0.

The STL formula should only contain atomic propositions, Boolean
operators A, —, ->, <->, and temporal operators U[a,b], G[a,b], F[a,b].

Figure 5: The prompts for STL Transformation.

gesting that progressively increasing task difficulty facili-
tates more effective stepwise learning and better capture of
reward characteristics.

F LLM Prompts for STL Transformation

We provide the prompt to LLMs to guide the transformation
of natural language into STL, as shown in Figure 5.

