
Springer Nature 2021 LATEX template

A Decision Procedure for String Constraints
with String-Integer Conversion and Flat

Regular Constraints

Hao Wu1,2, Yu-Fang Chen3, Zhilin Wu1,2, Bican Xia4 and Naijun
Zhan1,2*

1*State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China.

2University of Chinese Academy of Sciences, Beijing, China.
3Institute of Information Science, Academia Sinica, Taiwan, Republic

of China.
4School of Mathematical Sciences, Peking University, Beijing, China.

*Corresponding author(s). E-mail(s): znj@ios.ac.cn;
Contributing authors: wuhao@ios.ac.cn; yfc@iis.sinica.edu.tw;

wuzl@ios.ac; xbc@math.pku.edu.cn;

Abstract
String constraint solving is the core of various testing and verification approaches
for scripting languages. Among algorithms for solving string constraints, flatten-
ing is a well-known approach that is particularly useful in handling satisfiable
instances. As string-integer conversion is an important function appearing in
almost all scripting languages, Abdulla et al. extended the flattening approach
to this function recently. However, their approach supports only a special flat-
tening pattern and leaves the support of the general flat regular constraints
as an open problem. In this paper, we fill the gap by proposing a com-
plete flattening approach for the string-integer conversion. The approach is
built upon a new quantifier elimination procedure for the linear-exponential
arithmetic (namely, the extension of Presburger arithmetic with exponential
functions, denoted by ExpPA) improved from the one proposed by Cherlin
and Point in 1986. We analyze the complexity of our quantifier elimination
procedure and show that the decision problem for existential ExpPA for-
mulas is in 3-EXPTIME. Up to our knowledge, this is the first elementary
complexity upper bound for this problem. While the quantifier elimination

1

Springer Nature 2021 LATEX template

2 Article Title

procedure is too expensive to be implemented efficiently, we propose var-
ious optimizations and provide a prototypical implementation. We evaluate
the performance of our implementation on the benchmarks that are gener-
ated from the string hash functions as well as randomly. The experimental
results show that our implementation outperforms the state-of-the-art solvers.

Keywords: String-integer conversion, flat regular constraints, exponential function,
Presburger arithmetic, quantifier elimination

1 Introduction
The emerging of scripting languages boosts the needs of efficient approaches and
tools to ensure program quality. Comparing with traditional programming languages,
string data type plays a more critical role in its analysis. String constraint solvers are
the engine of modern scripting program analysis techniques. Due to the high demand,
in recent years, there is a boosting amount of publications on this subject.

However, research progress of string constraint solving has been hampered by
many major challenges in both theory and tool implementation aspects (including
long-standing open problems). Logical theories over strings have to allow string
concatenation, which is arguably the most fundamental operation of strings. The
most celebrated result concerning theories of strings is Makanin’s result on decid-
ing the satisfiability problem for word equations [1]. A simple example of a word
equation is xaby = ybax, where x, y are variables, and a, b ∈ Σ are constant let-
ters. A word equation is satisfiable if it has a solution, i.e., an assignment that maps
variables to strings over the alphabet Σ which equates the left-hand side with the
right-hand side of the equation. The correctness proof of Makanin’s algorithm is
arguably one of the most complex termination proofs in computer science. Makanin’s
result can be extended to include regular constraints (a.k.a. regular expression match-
ing, e.g., x ∈ (ba)∗), and arbitrary Boolean connectives. This extension is called
word equations with regular constraints. However, the satisfiability problem of word
equations together with length constraints (e.g., |x| = |y|+1∧wx = yx) is still open.
The complexity of the satisfiability of word equations with regular constraints was
proven to be PSPACE-complete by Plandowski [2], after decades of improvement of
the original algorithm by Makanin.

Satisfiability of word equations is a special instance of Hilbert’s 10th problem. In
the past, the original motivation of studying word equations was to find an undecid-
ability proof of Hilbert’s 10th problem. However, the motivation is no longer valid
since Makanin finds a decision procedure. Recently, driven by the need for pro-
gram analysis, people started to revisit the problem and its extensions to describe the
complete string library APIs in conventional programming languages. Many highly
efficient solvers for string constraints, to name a few, CVC4 [3], Z3 [4], Z3-Str3 [5],
S3 [6], Norn [7], Ostrich [8], Sloth [9], ABC [10], Stranger [11], Trau [12] and
so on, are developed in the last decade. The satisfiability of string-integer conver-
sion constraints, e.g., wx = yx ∧ |x| > parseInt(y), has been proven undecidable

Springer Nature 2021 LATEX template

Article Title 3

in [13]. However, this kind of constraints is pervasive in scripting language pro-
grams. For example, it is common that programs read string inputs from text files and
converts a part of the string input to integers. Even more crucially, in many program-
ming languages, the string-integer conversion is a part of the definition of their core
semantics [14]. JavaScript, which powers most interactive content on the Web and
increasingly server-side code with Node.js, is one of such languages.

Due to the inherent difficulties and practical importance of solving string con-
straints, one idea is to have separate specialized procedures for solving satisfiable
sub-problems. Currently, there are two main specialized approaches for proving sat-
isfiability. The first is to consider only strings of bounded length. This approach is
taken in the first-generation solvers such as Hampi [15] and Kuluza [16]. Although
they are useful in handling many practical cases, they fail to find an answer when
all string solutions exceed the selected bound. For example, a constraint of the form
xy ̸= z ∧ |x| > 2000 would be quite challenging using those solvers.

One more recent approach is flattening [12, 17, 18]. The idea is to restrict the
solution space of string variables to (parametric) flat languages (see Section 3). The
major benefit of considering this class is two-fold. First, under the restriction, the
potential solution space is still infinite, which gives us a higher potential of finding
solutions. For instance, we can find a solution for xy ̸= z ∧ |x| > 2000 under a
very simple restriction: all variables are in a∗, where a is an element of the alphabet.
Second, more importantly, because we can convert the membership problem of a flat
language to the satisfiability problem of a Presburger arithmetic formula, the class of
word equations + flat languages + length constraints is decidable.

The paper of Abdulla et al. [17] considered adding string-integer conversion con-
straints to the above class, and proposed an algorithm for a restricted form of flat
languages and left the support of general flat languages as an open problem. For
string-integer conversion constraints, their approach projects the solution to a finite
solution space (in a way similar to the PASS approach [19]).

In this paper, we give a complete solution to this problem. We propose a deci-
sion procedure for the class of word equations + flat languages + length constraints +
string-integer conversion. The basic idea of our approach can be sketched as follows:
we first reduce the satisfiability problem to the corresponding satisfiability prob-
lem of ExpPA, more precisely, the existential fragment of ExpPA; then, according
to the decidability of ExpPA, we obtain the decidability of the original satisfiability
problem.

The decidability of ExpPA was first shown by Semenöv in [20]. Nevertheless,
Semenöv did not provide an explicit decision procedure. To remedy this, in [21],
Cherlin and Point presented the first quantifier elimination procedure for the satisfia-
bility of ExpPA; later Point revisited the procedure in [22]. Partially attributed to its
non-elementary complexity, this quantifier elimination procedure has mostly eluded
the attentions of computer science community. To the best of our knowledge, no
implementation based on Cherlin and Point’s procedure was available up to now.

Aiming at utilizing Cherlin and Point’s procedure in practice, we reformulate the
underlying theory ExpPA and improve the algorithm by incorporating Cooper’s quan-
tifier elimination procedure for PA, which is another main contribution of this paper

Springer Nature 2021 LATEX template

4 Article Title

(Section 4). We analyze the complexity of our improved algorithm and show that
existentially quantified ExpPA formulas are decidable in 3-EXPTIME (Section 5).
To the best of our knowledge, this is the first elementary complexity upper bound
for decision problems in ExpPA. Furthermore, we propose various optimizations
(Section 6) and achieve the first prototypical implementation (Section 7).

In fact, other than the theoretical difficulties, in practice, the string-integer conver-
sion is quite challenging for state-of-the-art solvers. Here we illustrate a toy example
that mimic the “mining” step of block-chain construction. Essentially, given a string
hash function hash : Σ∗ → N , the goal of the mining step is to find a string v such
that when inserting v into the text to be protected, say w1 and w2, the hash value
hash(w1 · v · w2) satisfies a certain pattern, e.g., the last k digits are zeros. Here, the
string v is also called a nonce for it is used only once. If w1 or w2 are modified, one
needs to compute another v which satisfies the desired pattern. Below we consider a
simple hash function: hash(w) =

∑n
i=1 aip

n−i mod m, where w = a1 . . . an ∈ Σ∗

with Σ ⊆ N and p,m ∈ Z+ are user-defined numbers. It is easy to see that hash(w)
can be seen as a generalization of parseInt followed by a modulo operation. In par-
ticular, if Σ = {0, 1, . . . , 9} and p = 10, then hash(w) = parseInt(w) mod m.
Thus, the problem of finding a suitable input w such that the last k digits of hash(w)
are zeros can be modeled as a string constraint with parseInt. Although the exam-
ple is seemingly simple, it is already challenging for most state-of-the-art solvers, as
shown by our experiment results in Section 7. With the optimizations introduced in
Section 6, our implementation manages to solve several variants of the string-hash
examples as well as some randomly generated arithmetic problem instances better
than the state-of-the-art solvers (Section 7).

Structure
After introducing preliminaries in Section 2, we present how to flatten a string con-
straint with string-integer conversion to an existential ExpPA formula in Section 3.
We describe the quantifier elimination procedure for ExpPA in Section 4 and analyze
the complexity of deciding existential ExpPA formulas in Section 5. Several opti-
mization techniques are provided in Section 6. Finally, we report the implementation
and experiment results in Section 7.

2 Preliminaries
In this section, we fix the notations and introduce some basic concepts, including
Presburger arithmetic, finite-state automata, and flat languages.

Integers, strings, and languages
Let N denote the set of natural numbers, Z denote the set of integers, and Z+ denote
the set of positive integers. For n ∈ Z+, let [n] denote the set {1, . . . , n}.

An alphabet Σ is a finite set. Each element of Σ is called a letter. A string w
over Σ is a (possibly empty) finite sequence a1 . . . an with ai ∈ Σ for every i ∈ [n].
Let ε denote the empty string, namely, the empty sequence. Let Σ∗ denote the set

Springer Nature 2021 LATEX template

Article Title 5

of all strings over Σ. Let Σ+ denote the set of nonempty strings over Σ. For con-
venience, we also use Σϵ to denote Σ ∪ {ϵ}. For a string w = a1 . . . an ∈ Σ∗,
let len(w) denote the length of w, i.e., n. In particular, len(ε) = 0. For w1 =
a1 . . . am, w2 = b1 . . . bn ∈ Σ∗, let w1 · w2 denote the concatenation of w1 and w2,
that is, a1 . . . amb1 . . . bn. A language L over Σ is a subset of Σ∗.

Presburger Arithmetic
Presburger Arithmetic (PA) is the first-order logic of integers with addition. A term
of PA, denoted by t, is of the form

t =̂ c | x | t+ t | t− t,

where x and c represent integer variables and integer constants respectively. A
formula of PA, denoted by ϕ, is of the form

ϕ =̂ t ⊙ t | c ⋄ t | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∀x. ϕ,

where ⊙ ∈ {=, <,>,≤,≥}, ⋄ ∈ {|, ∤}.
An occurrence of a variable x in ϕ is bounded if it occurs in a subformula of ϕ

with the form ∃x.ϕ′ or ∀x.ϕ′; otherwise, it is called free in ϕ. A variable of ϕ is
said to be free if it has free occurrences, and bounded otherwise. The set of free
variables of ϕ is denoted by Free(ϕ). We usually write ϕ(x1, · · · ,xk) to denote an
PA formula ϕ such that Free(ϕ) ⊆ {x1, · · · ,xk}. Given an PA formula ϕ and an
integer interpretation of Free(ϕ), i.e., a function I : Free(ϕ) → Z, we denote by
I |= ϕ that I satisfies ϕ (which is defined in the standard manner, with +, −, | and ∤
interpreted as the integer addition, subtraction, divisibility and indivisibility relation
respectively), and call I a model of ϕ. We use JϕK to denote the set of models of ϕ.
By convention, we write I ̸|= ϕ if I |= ¬ϕ.

A quantifier-free PA (QFPA) formula is a PA formula containing no quanti-
fiers. We say a PA formula is in prenex normal form (PNF) if it has the form
Q1x1 . . . Qnxn.φ with Qi ∈ {∃,∀} for i ∈ [n] and φ ∈ QFPA. A PA formula is
called existential if it is in PNF and contains no occurrences of universal quantifiers.

In the rest of the paper, we assume, without loss of expressiveness, that QFPA
formulas contain no negations, because a formula can be first equivalently trans-
formed into negation normal form, and negations before atomic formulas can be then
absorbed by changing the predicates (for example, ¬(x ≥ y) ≡ x < y). The only
cases where we deal with negations is to transform an universal quantifier ∀ into an
existential one ¬∃¬.

It is well-known that PA admits quantifier elimination, for example, Cooper’s
algorithm [23]. In Section 4, we will use this fact and apply Cooper’s algorithm as a
subprocedure.

Finite state automata
A finite state automaton (FA) is a tuple A = ⟨Q,Σ,∆, qinit, F ⟩, where Q is a finite
set of states, Σ is a finite alphabet, ∆ ⊆ Q × Σϵ × Q is the transition relation, qinit

Springer Nature 2021 LATEX template

6 Article Title

is the initial state, and F ⊆ Q is the set of accepting states. A run of A on a string

w = a1 . . . an is a sequence q0
b1−→ q1

b2−→ . . .
bm−1−−−→ qm−1

bm−−→ qm such that
q0 = qinit, (qi−1, bi, qi) ∈ ∆ for every i ∈ [m], and a1 . . . an = b1 . . . bm (in general,

m ≥ n since bi may be ϵ). We say a run q0
b1−→ q1

b2−→ . . .
bm−1−−−→ qm−1

bm−−→ qm
is accepting if qm ∈ F . A string w is accepted by A if there is an accepting run
of A on w. Let L(A) denote the set of strings accepted by A. A language L ⊆ Σ∗ is
regular if it can be defined by some FA A, namely, L = L(A).

Flat languages and parametric flat languages
We now define flat languages and parametric flat languages from a high level,
language-theoretical view [17].

A flat language (FL) over Σ is the set of strings that conform to a regular
expression of the form v1(w1)

∗v2(w2)
∗ . . . vn(w

∗
n)vn+1, where wi, vj ∈ Σ∗ for

i ∈ [n], j ∈ [n + 1]. Intuitively, an FL is a sequence of loops connected by finite
strings.

A parametric flat language (PFL) is a FL defined on an alphabet V of character
variables. Specifically, a PFL is of the form v1(w1)

∗v2(w2)
∗ . . . vn(w

∗
n)vn+1, where

wi = ai1 · · · aiki
and vj = bj1 · · · b

j
k′
j

with ai, bj ∈ V . Moreover, it is required that

all ai and bj represent distinct elements in V . An interpretation of V is a mapping
Ip : V → Σϵ. Given a PFL L and an interpretation Ip, one can translate L into a FL
over Σϵ, denoted by Ip(L).

Example 1 The language defined by b11b
1
2(a

1
1a

1
2)

∗b21(a
2
1a

2
2)

∗ is a PFL. When given the inter-
pretation Ip = {b11 7→ 1, b12 7→ 1, a11 7→ 1, a12 7→ 0, b21 7→ ϵ, a21 7→ 0, a22 7→ 0}, one can
translate the PFL into the FL 11(10)∗(00)∗.

3 Flattening string constraints with parseInt
In this section, we first define the class of string constraints with string-integer
conversion, denoted by STRparseInt. Then we define the extension of Presburger arith-
metic with exponential functions, denoted by ExpPA. Finally, we show how to flatten
the string constraints in STRparseInt into the arithmetic constraints in the existential
fragment of ExpPA.

3.1 String constraints with string-integer conversion (STRparseInt)
In the sequel, we shall define STRparseInt, the class of string constraints with the
string-integer conversion function parseInt.

The function parseInt takes a decimal string as input and returns the integer
represented by the string. For example,

parseInt(‘0123’) = parseInt(‘123’) = 1 ∗ 102 + 2 ∗ 10 + 3 = 123

Springer Nature 2021 LATEX template

Article Title 7

where we use the quotation marks to delimit strings. One should note that, in scripting
languages like Javascript, parseInt is more general in the sense that the base can be a
number between 2 and 36. Although our approach works for arbitrary positive bases,
we choose to focus on the base 10 in this paper for simplicity.

Formally, the semantics of the parseInt function is defined as follows. In order
to simplify the presentation, we assume all string variables ranging over numerical
symbols Σnum = {0, 1, . . . , 9}. Note that one can easily extend our approach to allow
arbitrary finite alphabet. Then parseInt : Σ+

num 7→ N is recursively defined by, for
every w ∈ Σ+

num,

• if w =‘i’ for i ∈ Σnum, then parseInt(‘i’) = i;
• if w = w′·‘i’ for i ∈ Σnum with len(w′) ≥ 1, parseInt(w) = 10 ∗ parseInt(w′)+

parseInt(‘i’).

Note that parseInt is undefined with ε as the input.
In STRparseInt, there are two types of variables, i.e., the string variables

x, y, . . . ∈ X and the integer variables x,y, . . . ∈ X. The syntax of STRparseInt is
defined as follows: a string term, denoted by t, is of the form

t =̂ a | x | t · t,

an integer term, denoted by t, is of the form

t =̂ c | x | len(t) | parseInt(t) | t+ t | t− t,

and a STRparseInt formula, denoted by φ is of the form

φ =̂ t = t | t ∈ A | t ⊙ t | φ ∧ φ | φ ∨ φ | ¬φ

where a ∈ (Σnum)ε, c ∈ Z, A is an FA, ⊙ ∈ {=, <,>,≤,≥} and len(t) denotes the
length of a string t. Let us call t = t as string equality constraints, t ∈ A as regular
constraints, t⊙ t as arithmetic constraints. Let SVar(φ) and IVar(φ) denote the set
of string variables and integer variables occurring in φ respectively.

An interpretation I over X and X is a tuple I=̂(IS , IN) with IS : X → Σ∗
num

and IN : X → Z. We lift the interpretation I = (IS , IN) to string terms and linear
terms in the standard manner. For a STRparseInt formula φ, let JφK denote the set of
all interpretations that satisfy φ. JφK is defined inductively as follows:

Jt1 = t2K=̂{I = (IS , IN) | IS(t1) = IS(t2)}
Jt ∈ AK=̂{I = (IS , IN) | IS(t) ∈ L(A)}

Jt1 ⊙ t2K=̂{I = (IS , IN) | IN (t1)⊙ IN (t2)}
Jφ1 ∧ φ2K=̂Jφ1K ∩ Jφ2K
Jφ1 ∨ φ2K=̂Jφ1K ∪ Jφ2K

J¬φK=̂(JφK)C

Springer Nature 2021 LATEX template

8 Article Title

The satisfiability problem of STRparseInt is to decide, for a given constraint φ ∈
STRparseInt, whether JφK is nonempty.

Example 2 Given a FA A, the constraint

x ∈ A ∧ parseInt(x) = 109x ∧ len(x) < 100

is a STRparseInt formula.

3.2 Presburger Arithmetic with exponential functions (ExpPA)
ExpPA extends Presburger arithmetic with two partial functions, the exponential
function 10x and the integer logarithmic function ℓ10(x) [21]. The function 10x is
defined for x ∈ N in the normal sense. The function ℓ10(x) is defined for positive
integers n ≥ 1: ℓ10(n) = m if 10m ≤ n < 10m+1. Note that 10x is undefined for
x < 0 and ℓ10(x) is undefined for x ≤ 0.

The syntax of ExpPA is obtained from that of PA by adding 10t and ℓ10(t) to the
definition of terms. An ExpPA term, denoted by t, is of the form

t =̂ c | x | t+ t | t− t | 10t | ℓ10(t),

where x is an integer variable and c ∈ Z is a constant integer. In addition, we require
that 10t and ℓ10(t) terms are well-defined, which restricts the interpretations of t
therein.

A formula of ExpPA, denoted by ϕ, is of the form

ϕ =̂ t ⊙ t | c ⋄ t | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∀x. ϕ,

where ⊙ ∈ {=, <,>,≤,≥}, ⋄ ∈ {|, ∤}.
The semantics of ExpPA are defined similarly to that of PA with the only dif-

ference that partial functions are required to be well-defined. The quantifier-free
and existential ExpPA formulas are defined similarly as well. We also assume that
quantifier-free ExpPA formulas are free of negations, for the same reason we have
explained for PA.

For convenience, when working with exponential and logarithmic functions, we
denote λ10(t) = 10ℓ10(t). It is easy to show that for all n ≥ 1, λ10(n) ≤ n and
n < 10λ10(n) holds.

Example 3 1010
x

+ 10x+y + 3y ≤ 2z+ 1 is an ExpPA formula.

3.3 Flattening STRparseInt into ExpPA

We first recall the flattening approach for string constraints in [17], then show how to
extend it to deal with parseInt.

A flat domain restriction for a string constraint φ ∈ STRparseInt is a function
Fφ that maps each string variable x ∈ SVar(φ) to a tuple (Lx, ψx), where Lx is a

Springer Nature 2021 LATEX template

Article Title 9

PFL over character variables V and ψx is a PA formula over V . In the following, we
slightly abuse the notation (Σnum)ϵ to consider it as a subset of Z, by sending ‘0’→ 0,
‘1’→ 1 . . . , and ϵ→ 10. By doing so, we can treatψx as constraints on interpretations
from V to (Σnum)ϵ. The intention of Fφ is to first translate the PFL Lx into FLs
via interpretations satisfying ψx, and then restrict the domain of x to those (finitely
many) feasible FLs. Formally, the flattened semantics of φ ∈ STRparseInt is defined
as JφKFφ = {(I, Ip) | I ∈ JφK, Ip ∈ JψxK and I(x) ∈ Ip(Lx) for all x ∈ SVar(φ)}.

Under a flat domain restriction Fφ, the flattening of φ ∈ STRparseInt is an arith-
metic formula, denoted by flattenFφ

(φ), that encodes the flattened semantics JφKFφ .
Theorem 1 below shows how to construct such flattenFφ

(φ), here we briefly explain
its idea. When the domain of a string variable x ∈ SVar(φ) is restricted to a FL
Lx = vx,1(wx,1)

∗vx,2 · · · (wx,kx)
∗vx,kx+1, we can express x as

x = vx,1(wx,1)
lx,1vx,2 · · · (wx,kx

)lx,kx vx,kx+1

where lx,i are fresh (non-negative) integer variables, called flattening variables, rep-
resenting the number of iterations of wx,i. Let us denote PVarFφ(x) = {lx,i |
i ∈ [kx]} and PVarFφ(φ) =

⋃
x∈SVar(φ) PVarFφ(x) the set of introduced flat-

tening variables for φ. Concretely speaking, flattenFφ
(φ) is a formula over the

integer variables IVar(φ) and flattening variables PVarFφ
(φ) (plus some other aux-

iliary variables), such that the interpretations Ie : IVar(φ) ∪ PVarFφ
(φ) → Z

in JflattenFφ
(φ)K and the interpretations I in JφKFφ

have the following correspon-
dence:

I(x) = vx,1w
Ie(lx,1)
x,1 vx,2 . . . w

Ie(lx,kx)
x,kx

vx,kx+1 for x ∈ SVar(φ)

I(x) = Ie(x) for x ∈ IVar(φ).

Theorem 1 Under the flat domain restriction Fφ, the satisfiability of a STRparseInt for-
mula φ can be reduced to the satisfiability of an existential ExpPA formula flattenFφ

(φ) in
exponential time.

Proof We aim to show that flattenFφ
(φ) is a ExpPA formula. The formula flattenFφ

(φ) is
constructed inductively on the structure of φ:

flattenFφ
(φ1 o φ2) = flattenFφ

(φ1) o flattenFφ
(φ2)

flattenFφ
(¬φ1) = ¬flattenFφ

(φ1)

where o ∈ {∧,∨}. Therefore, it is sufficient to show how to construct flattenFφ
(φ) for atomic

constraints φ. When φ is a string equality constraint t1 = t2 or a regular constraint t ∈ A,
since parseInt will not occur in φ, the construction of flattenFφ

(φ) is essentially the same as
that in [17, Section 7], thus omitted here. In this case, flattenFφ

(φ) is a PA formula and can be
computed in polynomial time. In the following, we show how to construct flattenFφ

(t1⊙t2)
where parseInt(t) may occur in t1 or t2.

Note that the flat domain restriction Fφ maps a string variable x to (Lx, ψx), since Σnum
is a finite alphabet, the number of FLs corresponding to the PFL Lx is also finite. Therefore,
we can enumerate all flat languages {Lx} corresponding to Lx, then check that if the string

Springer Nature 2021 LATEX template

10 Article Title

constraint φ and the interpretation restriction ψx are both satisfiable with x ∈ Lx for each Lx.
In the rest of the proof, we will assume that, for each x ∈ SVar(φ), x belongs to a flat language
Lx = vx,1(wx,1)

∗vx,2 · · · (wx,kx
)∗vx,kx+1 with vx, , wx, ∈ Σ∗

num instead of a parametric
flat language Lx.

For simplicity, we assume that each occurrence of parseInt (resp. len(t)) in t1 ⊙ t2

is of the form parseInt(x) (resp. len(x)) for a string variable x. Otherwise, we intro-
duce a fresh variable x′ to replace t in parseInt(t) or len(t) and add the constraint
x′ = t. Then flattenFφ

(t1 ⊙ t2) is obtained from t1 ⊙ t2 by replacing parseInt(x) with
flattenFφ

(parseInt(x)) and len(x) with flattenFφ
(len(x)), where

• flattenFφ
(parseInt(x))=̂tx,1 such that (tx,i)i∈[kx+1] are inductively defined as

follows:

– for i = kx + 1,
tx,i = parseInt(vx,kx+1)

– for i ∈ [kx],

tx,i = parseInt(vx,i)10l
suf
i +len(wx,i)lx,i +

parseInt(wxi)
(10len(wx,i)lx,i − 1)

(10len(wx,i) − 1)
10l

suf
i + tx,i+1

where lsuf
i =

∑
i+1≤j≤kx

len(wx,j)lx,j +
∑

i+1≤j≤kx+1

len(vx,j).

• flattenFφ
(len(x))=̂

∑
i∈[kx]

len(wx,i)lx,i +
∑

i∈[kx+1]

len(vx,i).

As a result, we eliminate all occurrence of string variables in φ by introducing flatten-
ing variables. The obtained formula flattenFφ

(φ) is an existential ExpPA formula. Since the
enumeration of all possible FLs requires exponential time, while other operations require only
polynomial time, the whole procedure can be carried out in exponential time. Therefore the
theorem is proved.

□

Later in this paper, we will prove that the decision problem for existential ExpPA
formulas is in 3-EXPTIME (see Theorem 10 in Section 5). Utilizing this fact, we
have

Theorem 2 The satisfiability problem of STRparseInt under flat domain restrictions is in 3-
EXPTIME.

The following example helps to illustrate the main idea of the flattening tech-
nique.

Example 4 Suppose parseInt(x) = 2x is an atomic constraint and Fφ(x) = (1∗2∗, true).
Then

flattenFφ
(parseInt(x) = 2x)=̂ 1 · 10

lx,1 − 1

10− 1
· 10lx,2 + 2 · 10

lx,2 − 1

10− 1
= 2x

Springer Nature 2021 LATEX template

Article Title 11

≡ 10lx,1+lx,2 − 10lx,2 + 2 · 102lx,2 − 2 = 18x

≡ 10lx,1+lx,2 + 10lx,2 = 18x+ 2.

Remark 1 In [17, Section 8], the authors have already informally described the ExpPA encod-
ing for the parseInt functions. However, they only pointed out the difficulties brought by
exponential functions without providing a decision procedure. The algorithm of [17] allowed
only a very restricted form of flat domain restrictions for parseInt constraints. Namely, for
a term parseInt(x), Lx should be of the form (a1)

∗b1 . . . bm where a1 must be interpreted
to 0. Consequently, the treatment of general flat domain restrictions has been left as an open
problem. In this paper, we present a complete solution to this problem.

4 Quantifier elimination procedure for ExpPA
Semënov first proved that ExpPA admits quantifier elimination in [20], thus its
satisfiability problem is decidable; however, he did not give a concrete quantifier
elimination procedure. Later in [21], Cherlin and Point proposed the first quantifier
elimination procedure for ExpPA, which is referred to as Cherlin and Point’s proce-
dure in this paper. In [22], Point revisited this problem and rewrite the procedure for
better clarity.

In this section, we first present our new quantifier elimination procedure for
ExpPA, which is improved from Cherlin and Point’s procedure. Then, we discuss
the differences between the two procedures. Throughout this section, we will always
assume that formulas are in PNF.

Theorem 3 ([21, Prop. 1]) ExpPA admits quantifier elimination.

As ∀x. φ is equivalent to ¬∃x. ¬φ, to prove Theorem 3, we only need to show
that every existentially quantified ExpPA formula ∃x. φ ∈ ExpPA, where φ is
quantifier-free, can be transformed into an equivalent quantifier-free formula. We use
the abbreviation ∃x(∈ N).φ for ∃x.φ∧ x ≥ 0 to stress that the quantified variable x
is non-negative. A sketch of our procedure is presented in Algorithm 1.

4.1 Normalization
Given an ExpPA formula ∃x.φ with φ quantifier-free, in general, the structure of φ
can be quite complicated due to nested applications of exponential and integer loga-
rithm functions. The normalization step rewrites φ into a simpler but equivalent form
so that there exist only two kinds of atomic formulas: inequality atomic formulas of
the form

n∑
j=1

aj10
xj +

n∑
k=1

bkxk ≤ t(y⃗) (1)

Springer Nature 2021 LATEX template

12 Article Title

Algorithm 1: ExpPA quantifier elimination procedure
Input : ExpPA formula ∃x.φ with φ quantifier-free.
Output: an equivalent quantifier-free formula

φ′ ← normalize φ with respect to x (Sect. 4.1)
▷ ∃x⃗(∈ Nn).φ′ is equivalent with ∃x.φ
Sn ← enumerate linear orders among x1, · · · ,xn (Sect. 4.2)
foreach σ ∈ Sn do

φ′
σ ← φ′ ∧

∧
i∈[n−1] xσ(i) ≤ xσ(i+1)

i← n
while i > 0 do

eliminate exponential occurrences of xσ(i) in φ′
σ (Sect. 4.3)

eliminate linear occurrences of xσ(i) in φ′
σ (Cooper’s algorithm [23])

▷ variable xσ(i) is removed

i← i− 1

end
▷ all quantified variables in φ′ are removed

φ′′
σ ← φ′

σ

end
return

∨
σ∈Sn

φ′′
σ

and (in)divisibility atomic formulas of the form

d ⋄
(n∑
j=1

aj10
xj +

n∑
k=1

bkxk + t(y⃗)
)
, ⋄ ∈ {|, ∤} (2)

where {xi}i∈[n] represent the introduced (existentially quantified) variables during
rewriting, y⃗ is the set of free variables and t(y⃗) collects all terms not containing xi.

Let us say a term t properly contains a variable x if x occurs in t and t ̸= x.
Formally speaking, we would like to rewrite ∃x.φ into an equivalent formula
∃x1 . . . ∃xn.φ

′ such that: 1) φ′ contains no occurrences of ℓ10(t) where t contains
some xi; 2) φ′ contains no occurrences of 10t where t properly contains some xi;
3) all atomic formulas are of the form Eq. (1) or Eq. (2); 4) all quantified vari-
ables {xi}i∈[n] are non-negative. We say a formula is normalized if it satisfies these
constraints.

The normalization step comprises following four sub-steps that guarantee the
above four requirements respectively. For consistency and simplicity, we first rename
the original quantified variable x as x1; when a fresh variable xj is introduced, we
assume j ∈ Z+ is the smallest positive integer such that xj has not been used. We
now describe the four sub-steps of normalization:

(1) Encode logarithm functions. For each occurrence of ℓ10(t) in φ such that t
contains some xi, introduce a fresh variable xj and replace all occurrences of ℓ10(t)
by xj , moreover, add the constraint 10xj ≤ t < 10 · 10xj as a conjunct. Let the
resulting formula be φ1, then φ1 contains no ℓ10(t) terms with xi in t.

Springer Nature 2021 LATEX template

Article Title 13

(2) Flatten exponential terms. For each occurrence of the 10t in φ1 such that t
properly contains some xi, introduce a fresh variable xj and replace all occurrences
of 10t by 10xj , moreover, add the constraint xj = t as a conjunct. Let φ2 denote the
resulting formula, then φ2 has no 10t terms in which t properly contains some xi.

(3) Transform atomic formulas. Replace every occurrence of t1 ≥ t2 with
t2 ≤ t1; replace every occurrence of t1 < t2 (resp. t1 > t2) with t1 ≤ t2 − 1
(resp. t2 ≤ t1 − 1); replace every occurrence of t1 = t2 with t2 ≤ t1 ∧ t1 ≤ t2.
Let φ3 denote the resulting formula, then all atomic formulas in φ3 are of the form
Eq. (1) or Eq. (2).

(4) Rename variables. Note that all introduced variables xj with j ̸= 1 in sub-
step (1) and (2) should be non-negative due to the existence of 10xj terms. For
consistency, we also want x1 to be non-negative, so we do as follows: if 10x1 does
not appear in φ3, we introduce a fresh variable xj and substitute all occurrences of x1

by x1−xj ; otherwise x1 ≥ 0 can be guaranteed. Let φ′ denote the resulting formula.
Let x⃗ = x1, . . . ,xn be an enumeration of introduced variables together with

original x1, the result of the normalization procedure is ∃x⃗(∈ Nn). φ′, which is
equivalent to ∃x.φ. We use the following example to illustrate the whole procedure.

Example 5 Consider ∃x1.φ(x1,y) with

φ =̂ 3y ≤ ℓ10(9 · 102x1 + 200x1).

In step (1), since ℓ10(9 · 102x1 + 200x1) contains x1, we replace this term by a fresh
variable x2:

φ1 =̂ 3y ≤ x2 ∧ 10x2 ≤ 9 · 102x1 + 200x1 < 10 · 10x2 .

In step (2), note that the exponent 2x1 properly contains x1, we replace 2x1 by a fresh
variable x3:

φ2 =̂ 3y ≤ x2 ∧ 10x2 ≤ 9 · 10x3 + 200x1 < 10 · 10x2 ∧ x3 = 2x1.

In step (3), we rewrite all (in)equalities into the form t1 ≤ t2:

φ3 =̂ 3y ≤ x2 ∧ 10x2 ≤ 9 · 10x3 + 200x1 ∧ 9 · 10x3 + 200x1 ≤ 10 · 10x2 − 1

∧ x3 ≤ 2x1 ∧ 2x1 ≤ x3.

Finally, in step (4), since x1 does not occur as an exponent in φ3, we replace x1 by x1 − x4

with x4 a fresh variable:

φ′ =̂ 3y ≤ x2 ∧ 10x2 ≤ 9 · 10x3 + 200(x1 − x4) ∧ 9 · 10x3 + 200(x1 − x4)

≤ 10 · 10x2 − 1 ∧ x3 ≤ 2(x1 − x4) ∧ 2(x1 − x4) ≤ x3.

After separating terms containing xi and y, all atomic formulas are of the form Eq. (1).

4.2 Enumerating all variable orders
After normalization, the formula becomes ∃x⃗(∈ Nn). φ′. Next, we enumerate all
linear orders of {x1, . . . ,xn} and represent each linear order by a permutation
σ ∈ Sn (where Sn is the permutation group on [n]), with the intention that
xσ(n) ≥ · · · ≥ xσ(1)(≥ 0).

Springer Nature 2021 LATEX template

14 Article Title

Assuming a linear order σ ∈ Sn of {x1, . . . ,xn}, we then consider φ′
σ =

∃x⃗. φ′ ∧
∧

i∈[n−1] xσ(i) ≤ xσ(i+1) and eliminate the quantifiers one by one and
from ∃xσ(n) to ∃xσ(1). To eliminate the quantifier of xσ(i), we first eliminate all
exponential occurrences of xσ(i), i.e., 10xσ(i) , using the fact that xσ(i) is the largest
among the remaining quantified variables (see Lemma 4); linear occurrences are
eliminated further, by applying Cooper’s algorithm [23]. Let φ′′

σ denote the resulting
formula.

Finally, after repeating this procedure for all linear orders, ∃x⃗. φ′ is transformed
into the quantifier-free formula

∨
σ∈Sn

φ′′
σ.

4.3 Elimination of exponential occurrences of variables
For i ∈ [n], let ∃xσ(1) . . . ∃xσ(i). φ

′′
σ,i(xσ(i), . . . ,xσ(1), y⃗) be the formula obtained

from φ′
σ by eliminating the quantifiers ∃xσ(n), . . ., ∃xσ(i+1). In what follows, we

show how to eliminate the exponential occurrences of xσ(i) in φ′′
σ,i. The elimination

is local in the sense that it is applied to the atomic formulas independently.
Recall that after normalization, the atomic formulas are of the form Eq. (1) or

Eq. (2), the two cases are treated differently in the following.

4.3.1 Inequality atomic formulas

In the following, we illustrate how to eliminate the exponential occurrences of xσ(i)

from inequality atomic formulas of the form

τ(xσ(i), . . . ,xσ(1), y⃗)=̂

ai10
xσ(i) +

i−1∑
j=1

aj10
xσ(j) +

i∑
k=1

bkxσ(k) ≤ t(y⃗)
(3)

where ai ̸= 0, and t(y⃗) is the sum of all other terms without xσ(1), . . . ,xσ(i). The
elimination of the exponential occurrences of xσ(i) in τ(xσ(i), . . . ,xσ(1), y⃗) relies
on the following lemma.

Lemma 4 Let τ(xσ(i), . . . ,xσ(1), y⃗) be of form Eq. (3) with ai ̸= 0. Let A=̂1+
∑i−1

j=1 |aj |,
B=̂1 +

∑i
j=1 |bj |, δ=̂ℓ10(A) + 2, and γ=̂2ℓ10(B) + 3. For a given interpretation I such

that I |= xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ, we have

• for ai > 0, let α(y⃗)=̂ℓ10(t(y))− ℓ10(ai), then

– if α(y⃗) is undefined, i.e., I |= t(y⃗) ≤ 0, then I ̸|= τ(xσ(i), . . . ,xσ(1), y⃗);
– if I |= xσ(i) ≥ α(y⃗) + 2, then I ̸|= τ(xσ(i), . . . ,xσ(1), y⃗);
– if I |= xσ(i) ≤ α(y⃗)− 1, then I |= τ(xσ(i), . . . ,xσ(1), y⃗).

• for ai < 0, let α(y⃗)=̂ℓ10(−t(y))− ℓ10(−ai), then

– if α(y⃗) is undefined, i.e., I |= t(y⃗) ≤ 0, then I |= τ(xσ(i), . . . ,xσ(1), y⃗);
– if I |= xσ(i) ≥ α(y⃗) + 2, then I |= τ(xσ(i), . . . ,xσ(1), y⃗);
– if I |= xσ(i) ≤ α(y⃗)− 1, then I ̸|= τ(xσ(i), . . . ,xσ(1), y⃗).,

Springer Nature 2021 LATEX template

Article Title 15

Intuitively, the lemma states that, when ai10xσ(i) dominates the left-hand-side of
τ(xσ(i), . . . ,xσ(1), y⃗) and t(y⃗) > 0, if either xσ(i) ≤ α(y⃗)− 1 or xσ(i) ≥ α(y⃗)+2
holds, the truth value of τ(xσ(i), . . . ,xσ(1), y⃗) can be determined directly. The proof
of Lemma 4 is based on the following Proposition 5 and Proposition 6.

Proposition 5 Given n ≥ 1, if x ≥ 2ℓ10(n) + 1, then nx ≤ 10x holds.

Proof For 1 ≤ n ≤ 9, i.e., ℓ10(n) = 0, we have nx ≤ 10x ≤ 10x for all x ∈ N.
For n ≥ 10, i.e., ℓ10(n) ≥ 1, then we have

10x = 10ℓ10(n)+110x−ℓ10(n)−1

≥ 10ℓ10(n)+110(x− ℓ10(n)− 1)

≥ 10ℓ10(n)+1((5x− 10ℓ10(n)− 5) + (5x− 5)
)

≥ 10ℓ10(n)+1(5x− 5) (by x ≥ 2ℓ10(n) + 1)

≥ 10ℓ10(n)+1(
x+ (4x− 5)

)
≥ 10ℓ10(n)+1

x (by x ≥ 2ℓ10(n) + 1 ≥ 3)

≥ nx

□

Proposition 6 can be seen as a special case of Lemma 4 where the left-hand-
side of τ(xσ(i), . . . ,xσ(1), y⃗) contains only one term ai10

xσ(i) . In the following, we
allow constants in ExpPA formulas to be fractions. For instance, x + 1

2 ≤ y can be
understood as 2x+ 1 ≤ 2y.

Proposition 6 Given a > 0, if x ≤ ℓ10(y) − ℓ10(a) − 1, then (a + 1
2) · 10

x ≤ y; if
x ≥ ℓ10(y)− ℓ10(a) + 2, then (a− 1

2) · 10
x ≥ y.

Proof Recall that λ10(t) = 10ℓ10(t) and λ10(n) ≤ n < 10λ10(n) for all n ≥ 1. If
x ≤ ℓ10(y)− ℓ10(a)− 1, we have

(a+
1

2
) · 10x ≤ (a+

1

2
) · λ10(y)

10λ10(a)
=

a+ 1
2

10λ10(a)
λ10(y) ≤ λ10(y) ≤ y.

Now, suppose that x ≥ ℓ10(y)− ℓ10(a) + 2,

(a− 1

2
) · 10x ≥ (a− 1

2
)
100λ10(y)

λ10(a)
=

10(a− 1
2)

λ10(a)
10λ10(y) ≥ 10λ10(y) ≥ y

□

Proof of Lemma 4 We only prove for the case ai > 0, the ai < 0 case is symmetric. The proof
is twofold, given an interpretation I |= xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ:

Springer Nature 2021 LATEX template

16 Article Title

1) First, we prove that the left-hand-side of τ(xσ(i), . . . ,xσ(1), y⃗) is dominated
by ai10xσ(i) , i.e. ,

(ai −
1

2
)10xσ(i) < ai10

xσ(i) +

i−1∑
j=1

aj10
xσ(j) +

i∑
k=1

bkxσ(k) < (ai +
1

2
)10xσ(i) (4)

To obtain the formula above, we need to bound the absolute values |
∑i−1

j=1 aj10
xσ(j) |

and |
∑i

k=1 bkxσ(k)| by some fraction of 10xσ(i) respectively. Here we choose the bound to
be 1

1010
xσ(i) .

Using xσ(i) ≥ xσ(i−1) + δ and the linear order xσ(i) ≥ xσ(i−1) ≥ · · · ≥ xσ(1), we
can prove that

|
i−1∑
j=1

aj10
xσ(j) | ≤

i−1∑
j=1

|aj |10xσ(j)

< A · 10xσ(i)−δ

≤ A

100λ10(A)
10xσ(i)

<
1

10
10xσ(i) . (by x < 10λ10(x))

Similarly, using xσ(i) ≥ γ, we have

|
i∑

k=1

bkxσ(k)| ≤
i∑

k=1

|bk|xσ(k)

< B · xσ(i)

=
1

10
· 10B · xσ(i)

≤ 1

10
10xσ(i) . (by setting n = 10B in Prop. 5)

Combining the two inequalities above, we have

|
i−1∑
j=1

aj10
xσ(j) +

i∑
k=1

bkxσ(k)| <
3

10
10xσ(i) <

1

2
10xσ(i) ,

from which Eq. (4) can be obtained.
2) Then, we give the sufficient conditions for τ(xσ(i), . . . ,xσ(1), y⃗) to hold or not by

comparing t(y⃗) with (ai± 1
2)10

xσ(i) . Note that when t(y⃗) ≤ 0, τ(xσ(i), . . . ,xσ(1), y⃗) does
not hold since 0 < (ai − 1

2)10
xσ(i) , so we only need to consider the t(y⃗) > 0 case.

Utilizing Proposition 6, we obtain that

xσ(i) ≤ α(y⃗)− 1 =⇒ (ai +
1

2
) · 10xσ(i) ≤ t(y⃗)

=⇒ τ(xσ(i), . . . ,xσ(1), y⃗) is satisfied
(5)

and
xσ(i) ≥ α(y⃗) + 2 =⇒ (ai −

1

2
) · 10xσ(i) ≥ t(y⃗)

=⇒ τ(xσ(i), . . . ,xσ(1), y⃗) is unsatisfied
(6)

Thus, the lemma is proved. □

Springer Nature 2021 LATEX template

Article Title 17

For ai > 0, by Lemma 4, τ(xσ(i), . . . ,xσ(1), y⃗) (for readability, denoted by τ
below) can be replaced by an equivalent formula without exponential occurrences
of xσ(i):

τ ↔ (τ ∧ xσ(i) < γ)

∨(τ ∧ xσ(i) < xσ(i−1) + δ)

∨(τ ∧ xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ)

↔ (τ ∧ xσ(i) < γ)

∨(τ ∧ xσ(i) < xσ(i−1) + δ)

∨(τ ∧ xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ ∧ t(y⃗) ≤ 0)

∨(τ ∧ xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ ∧ xσ(i) ≤ α(y⃗)− 1)

∨(τ ∧ xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ ∧ α(y⃗)− 1 < xσ(i) < α(y⃗) + 2)

∨ (τ ∧ xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ ∧ xσ(i) ≥ α(y⃗) + 2).

Finally, we have:

τ ↔
γ−1∨
p=0

(xσ(i) = p ∧ τ [p/xσ(i)])

∨
δ−1∨
p=0

(xσ(i) = xσ(i−1) + p ∧ τ [xσ(i−1) + p/xσ(i)])

∨
(
xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ ∧ xσ(i) ≤ α(y⃗)− 1

)
∨
∨

p=0,1

(
xσ(i) ≥ γ ∧ xσ(i) ≥ xσ(i−1) + δ
∧xσ(i) = α(y⃗) + p ∧ τ [α(y⃗) + p/xσ(i)]

)
(7)

The elimination of the exponential occurrences of xσ(i) for the case ai < 0 is
similar.

We would like to make a few remarks about Lemma 4: 1) when i = 1, we remove
the constraint xσ(i) ≥ xσ(i−1) + δ, 2) The constant 1 in the definition of A,B is
to ensure that ℓ10(A), ℓ10(B) are well-defined. Besides, the lemma still holds when
the base of exponential functions is changed to any natural number n ≥ 2 (constants
in δ, γ should be changed accordingly).

4.3.2 Divisibility atomic formulas

For divisibility atomic formulas, we can enumerate xσ(i) within a finite range thanks
to the periodic property of divisibility relation. Consider a divisibility atomic formula

τ(xσ(i), . . . ,xσ(1), y⃗)=̂

d
∣∣ (ai10xσ(i) +

i−1∑
j=1

aj10
xσ(j) +

i∑
k=1

bkxσ(k) + t(y⃗)
) (8)

Springer Nature 2021 LATEX template

18 Article Title

with ai ̸= 0 and d ≥ 1. The indivisibility case can be treated analogously.
Let d = 2r15r2d0 such that d0 is divisible by neither 2 nor 5. Denote r =

max(r1, r2), we have d|(10rd0). Since 10 and d0 are relatively prime, according to
Euler’s theorem (cf. [24]), 10ϕ(d0) ≡ 1 mod d0, where ϕ is the Euler function, i.e.,
ϕ(d0) counts the positive integers up to d0 that are relatively prime to d0. Suppose
10ϕ(d0) = kd0 + 1 for some k ∈ N, we have, for every n ∈ N with n ≥ r,

10n+ϕ(d0) ≡ 10n−r10r(kd0 + 1) mod d

≡ 10n−r(k10rd0 + 10r) mod d

≡ 10n−r(0 + 10r) mod d

≡ 10n mod d.

Therefore, τ(xσ(i), . . . ,xσ(1), y⃗) is equivalent to the following formula:

r−1∨
p=0

τ(xσ(i), . . . ,xσ(1), y⃗)[p/xσ(i)]

∨


xσ(i) ≥ r ∧
ϕ(d0)−1∨

p=0

 ϕ(d0)
∣∣ (xσ(i) − r − p) ∧

d
∣∣(ai10r+p +

∑i−1
j=1 aj10

xσ(j)+∑i
k=1 bkxσ(k) + t(y⃗)

)
 ,

(9)

where the exponential occurrences of xσ(i) disappear. When xσ(i) > r, we only need
to enumerate xσ(i) in one period, i.e., from r to r + ϕ(d0)− 1.

For a special case d0 = 1, Eq. (9) can be simplified into the form

r−1∨
p=0

τ [p/xσ(i)] ∨
(
xσ(i) ≥ r ∧ d

∣∣(i−1∑
j=1

aj10
xσ(j) +

i∑
k=1

bkxσ(k) + t(y⃗)
))
.

4.4 Comparison with Cherlin and Point’s procedure
In the following, we discuss the differences between our ExpPA quantifier elimina-
tion procedure (Algorithm 1) with Cherlin and Point’s procedure described in [22]
(essentially same as [21]), summarized in Algorithm 2.

Firstly, the underlying theory of [22] differs from ExpPA in two aspects: 1) the
domain is limited to N, instead of Z; 2) the vocabulary includes integer division
functions t

d (d ∈ Z+), instead of divisibility predicates d | t(d ∈ Z+). Despite these
differences in definition, we can always translate a formula in the theory of [22] into
an equivalent ExpPA formula. To achieve this, we change the domain of variables
from N to Z and require variables to be non-negative; furthermore, we replace each
term of the form t

d (d ∈ Z+) with a fresh variable z and add dz ≤ t < dz + d as a
conjunct. In other words, ExpPA is a strict superset of the theory in [22], when the
base of exponential functions is fixed.

In the sequel, we refer to both divisibility predicates and integer division
functions as divisibility constraints. The overall frameworks of Algorithm 1 and

Springer Nature 2021 LATEX template

Article Title 19

Algorithm 2: Cherlin and Point’s quantifier elimination procedure
Input : ExpPA formula ∃x.φ with φ quantifier-free
Output: an equivalent quantifier-free formula

φ′ ← normalize φ with respect to x (Sect. 4.1 or [21, First step]), moreover,
replace each term t

d where d ∈ Z+ by a fresh variable xj and add
dxj ≤ t ≤ dxj + d− 1 as a conjunct

▷ ∃x⃗(∈ Nn).φ′ is equivalent with ∃x.φ
▷ φ′ contains only inequality atomic formulas

Sn ← enumerate linear orders among x1, · · · ,xn (Sect. 4.2 or [21, Second
step])

foreach σ ∈ Sn do
φ′
σ ← φ′ ∧

∧
i∈[n−1] xσ(i) ≤ xσ(i+1)

i← n
while i > 0 do

eliminate exponential occurrences of xσ(i) in φ′
σ (Sect. 4.3.1 or [21,

Third step B])
convert φ′

σ to Disjunctive Normal Form
eliminate linear occurrences of xσ(i) in φ′

σ ([21, Third step A])
▷ variable xσ(i) is removed

i← i− 1

end
▷ all quantified variables in φ′ are removed

φ′′
σ ← φ′

σ

end
return

∨
σ∈Sn

φ′′
σ

Algorithm 2 are quite similar. However, the significant difference between them is in
the way they handle divisibility constraints.

Cherlin and Point’s procedure eliminates all integer division functions during
the normalization step by encoding them with fresh variables and inequalities. As
a result, when variables are eliminated according to an order σ ∈ Sn, eliminating
exponential occurrences of xσ(i) becomes more straightforward because the tar-
get formula only contains inequality atomic formulas. However, eliminating linear
occurrences of xσ(i) using Cooper’s algorithm [23] is not practicable since Cooper’s
algorithm generates new divisibility constraints containing xσ(i−1), . . . ,x1. These
new constraints must be encoded with new variables, rendering the algorithm
non-terminating.

To address this issue, Cherlin and Point developed a complex sub-procedure
to eliminate linear occurrences of xσ(i) from a conjunction of inequalities [22,
Theorem 3.3, third step]. This sub-procedure ensures that the new divisibility con-
straints only contain free variables y⃗. The two side effects of using this sub-procedure
are: 1) the formula should be converted into Disjunctive Normal Form each time

Springer Nature 2021 LATEX template

20 Article Title

linear occurrences of xσ(i) are to be eliminated for i ∈ [n], and 2) even though Cher-
lin and Point did not conduct a precise complexity analysis of their algorithm, [22]
implies that the algorithm’s complexity upper-bound is non-elementary at worst. In
essence, Cherlin and Point’s procedure bounds the original variable x by a multiple
of

22
...2

t(y)

,

where t(y) is a term in φ, and the number of iteration is n, i.e., the number of
introduced quantified variables after normalization step [22, p. 6].

We have improved Cherlin and Point’s procedure in two ways in this paper.
Firstly, inspired by the third step of [22, Thm. 3.3], we designed a sub-procedure
to eliminate exponential occurrences of a quantified variable in divisibility atomic
formulas locally. Secondly, we incorporated Cooper’s algorithm [23] to deal with
divisibility atomic formulas in an inductive manner, which also facilitates the
complexity analysis in Section 5.

Besides, our presentation is more accessible and natural for computer science
researchers because the underlying theory ExpPA is defined more intuitively. In [22],
the theory is defined over N, and the subtraction .− over N is defined as x .− y = 0 if
x < y and x .− y = x− y is x ≥ y. This definition is rarely used and can be easily
confused with subtraction over Z.

5 Complexity analysis
In this section, we analyze the complexity of the proposed quantifier elimination
procedure. Consider an existential ExpPA formula of the form

∃x1 · · · ∃xm.φ(x1, · · · ,xm)

with no free variables. Let n denote the length of the formula. We will prove that the

time required to eliminate all its (existential) quantifiers is bounded by 22
2pn log n

for
some constant p. In other words, the decision problem for existential ExpPA formulas
(or equivalently, the satisfiability problem for quantifier-free ExpPA formulas) is in 3-
EXPTIME. Up to our knowledge, this is the first upper bound for deciding existential
ExpPA formulas.

We first give a brief analysis of the normalization step, in which fresh variables
are introduced and the length of the formula grows linearly at most. For the rest of
the algorithm, we adopt the strategy of Oppen’s analysis of Cooper’s algorithm, i.e.,
to bound the formula length by the product of the number of atomic formulas, the
number of coefficients, and the length of the maximum constant (cf. [25]). The crit-
ical point of our analysis is that only coefficients of linear occurrences of quantified
variables need to be considered.

Normalization
In the normalization step, we normalize the formula with respect to quantified vari-
ables from xm to x1. Suppose that fresh variables xi

1, · · · ,xi
Ni

are introduced for

Springer Nature 2021 LATEX template

Article Title 21

each xi(1 ≤ i ≤ m), the formula becomes

∃x1
1 · · · ∃x1

N1
· · · ∃xm

1 · · · ∃xm
Nm

.φ′(x1
1, · · · ,xm

Nm
).

Clearly, the number of newly introduced variables is less than the length of the
original formula, i.e., we have at most

∑m
i=1Ni ≤ n quantified variables after

normalization.
The increase in the length of the formula during normalization comes from two

sources: the additional constraints for introduced variables and the additional formu-
las for translating ̸=,= relations to ≤. Both transformations will increase the length
of the formula by a constant factor at most.

After normalization, to avoid redundant symbols, we still denote the number of
quantified variables by m, and we have m ≤ n.

Enumeration of linear orders (the outer for-loop in Algorithm 1)
Denote the normalized formula by ∃x⃗.φ(x⃗) with x⃗ = (x1, . . . ,xm). By Point’s pro-
cedure, a linear order should be first specified before eliminating quantified variables.
Since there arem! possible linear orders form quantified variables, the outer for-loop
terminates in m! iterations at most.

Elimination of quantified variables (the inner for-loop in Algorithm 1)
Suppose the specified linear order is xm ≥ · · · ≥ x1. Let ∃x1 . . . ∃xm−k.φk

denote the formula obtained by eliminating k quantifiers ∃xm, . . . ,∃xm−k+1

from ∃x⃗.φ(x⃗). Let ∃x1 . . . ∃xm−k.φ
′
k denote the formula obtained by further

eliminating exponential occurrences of xm−k. Let φ0 denote φ.
Let ck be the number of distinct divisors in atomic formulas of the form d | t

and d ∤ t plus the number of distinct coefficients of linear occurrences of quantified
variables in φk. Let sk be the largest constant (including coefficients and divisors)
and ek be the number of atomic formulas in φk. Similarly, we define c′k, s′k and e′k
for φ′

k.

Example 6 Consider a normalized formula with 2 quantified variables as follows

∃x1∃x2.10
x1 + 2x2 ≤ 200 ∧ 7|4 · 10x2 + 2x1 + 3x2.

Clearly, the formula has two atomic formulas, so e0 = 2. Among all constants in the formula
(note that the base 10 is not a constant), 200 is the largest, so s0 = 200. It contains one divisor
(i.e., 7) and two distinct coefficients of linear occurrences (i.e., 2 and 3), so c0 = 3.

We analyze the elimination process as follows. Since the formula φ′
k is

transformed from φk by eliminating exponential occurrences of xm−k, we can
bound c′k, s

′
k, e

′
k by ck, sk, ek (Lemma 7). Similarly, the formula φk+1 is trans-

formed from φ′
k by eliminating linear occurrences of xm−k, so we can bound

ck+1, sk+1, ek+1 by c′k, s
′
k, e

′
k (Lemma 8). Combining Lemma 7 and Lemma 8, the

relation between ck, sk, ek and ck+1, sk+1, ek+1 is obtained, and, by induction on k,
we can bound cm, sm, em by c0, s0, e0 (Lemma 9).

Springer Nature 2021 LATEX template

22 Article Title

Lemma 7 When the formula ∃x1 . . .∃xm−k.φk is transformed into ∃x1 . . .∃xm−k.φ
′
k by

eliminating exponential occurrences of xm−k, for 0 ≤ k ≤ m− 1, we have

c′k ≤ ck
2 s′k ≤ msk

2 e′k ≤ 2skek.

Proof Since the elimination of exponential occurrences of variables are local, we only need to
discuss two extreme cases where all atomic formulas are of the same form.

When all atomic formulas are inequalities, by Lemma 4, we know that each atomic for-
mula with exponential occurrence of xm−k is replaced by a new formula. Note that only the
coefficients of linear occurrences of xm−k and xm−k−1 are changed: constant 1 is introduced
as a coefficient for xm−k, and if xm−k is substituted by xm−k−1 + p for some constant p,
coefficient of linear occurrence of xm−k will become bm−k + bm−k−1 (bm−k, bm−k−1 are
coefficients for xm−k and xm−k−1, see Lemma 4).

• New coefficients of linear occurrences are obtained by adding two linear coefficients
together, so we have c′k ≤ ck

2.
• Since δ ≤ ℓ10(msk) and γ ≤ ℓ10(msk), when xm−k is substituted by xm−k−1 + δ − 1

or by γ − 1, the largest constant in the formula should be less than sk10
ℓ10(msk) ≤ msk

2,
so we have s′k ≤ msk

2.
• From Eq. (7), an inequality atomic formula is replaced by 2γ + 2δ + 1 + 3 + 8 + 1 ≤
4ℓ10(msk) + 13 ≤ 5ℓ10(msk) atomic formulas.

When all atomic formulas are divisibility atomic formulas of the form d|t or d ∤ t, by
Section 4.3.2, a divisibility atomic formula d|t with exponential occurrences of xm−k is
replaced by a new formula.

• Coefficients of linear occurrences of variables remain unchanged, and a divisibility atomic
formula produces at most two forms of divisibility atomic formulas d|t′ and ϕ(d)|t′. So we
have c′k ≤ ck.

• In a divisibility atomic formula, any constant in the divident t, say l, can be replaced by
(l mod d). So we have s′k ≤ sk.

• When d is a prime number with d ̸= 2 or 5, we have d = d0 and ϕ(d0) = d−1. In this case,
from Eq. (9), we know that a divisibility atomic formula is replaced by 1+1+2ϕ(d0) = 2d

atomic formulas, so we have e′k ≤ 2skek.

Choose larger upper bounds for c′k, s′k and e′k respectively, then the lemma is proved.
□

When φ′
k is transformed into φk+1 by eliminating linear occurrences of xm,

Oppen’s analysis gives the following lemma:

Lemma 8 ([25, p.35]) When the formula ∃x1 . . .∃xm−k.φ
′
k is transformed into

∃x1 . . .∃xm−k−1.φk+1 by eliminating linear occurrences of xm−k, for 0 ≤ k ≤ m−1, we
have

ck+1 ≤ c′k
4

sk+1 ≤ s′k
4c′k ek+1 ≤ e′k

4
s′k

2c′k .

Combining Lemma 7 and 8, we have, for 0 ≤ k ≤ m− 1,

ck+1 ≤ ck8 sk+1 ≤ (msk
2)4ck

2

ek+1 ≤ (2skek)
4(msk

2)2ck
2

.

Springer Nature 2021 LATEX template

Article Title 23

Therefore, the following bounds are obtained.

Lemma 9 For 0 ≤ k ≤ m− 1,

ck ≤ c0
8k sk ≤ m(4c0)

8k

s0
(8c0)

8k

ek ≤ 24
2k

e0
4km(4c0)

8k

s
(8c0)

8k

0 . (10)

Proof We prove by induction on k:
Basic case. It is easy to verify that Eq. (10) holds when k = 0.
Inductive step. Let us suppose Eq. (10) holds for some k ∈ N, we prove that it still holds

for k + 1.

ck+1 ≤ ck
8 ≤ (c0

8k)8 ≤ c0
8k+1

,

sk+1 ≤ (msk
2)4ck

2

≤ m4ck
2

· sk8ck
2

≤ m4c0
2·8k

(m(4c0)
8k

s0
(8c0)

8k

)8c0
2·8k

≤ m4c0
2·8k+(4c0)

8k ·8c02·8k

s0
(8c0)

8k ·8c02·8k

≤ m((4c0)
8k)8s0

((8c0)
8k)8

= m(4c0)
8k+1

s0
(8c0)

8k+1

,

ek+1 ≤ (2skek)
4(msk

2)2ck
2

≤ 24ek
4m2ck

2

sk
4+4ck

2

≤ 24
(
24

2k

e0
4km(4c0)

8k

s
(8c0)

8k

0

)4

m2(c0
8k)2

(
m(4c0)

8k

s0
(8c0)

8k
)4+4(c0

8k)2

≤ 24
2k+2

e0
4k+1

m((4c0)
8k)8s0

((8c0)
8k)8

= 24
2(k+1)

e0
4k+1

m(4c0)
8k+1

s
(8c0)

8k+1

0 .

□

Recall that n denotes the length of the formula, we make following assumptions:
c0 ≤ n, s0 ≤ n, e0 ≤ n, and m ≤ n. The space required to store the resulting quan-
tifier free formula is bounded by the product of the number of linear orders m!, the
number of atomic formulas em, the maximum number of constants 2m+2 per atom,
the maximum amount of space log sm to store each constant and some constant p,

Springer Nature 2021 LATEX template

24 Article Title

that is,
space =m! · em · (2m+ 2) · log sm · p

=em
O(1)

=(24
2m

e0
4mm(4c0)

8m

s
(8c0)

8m

0)O(1)

=(22
4n

n4
n

n(4n)
8n

(n)(8n)
8n

)O(1)

=((n)(8n)
8n

)O(1)

=2O((8n)8
n
logn)

=22
2O(n log n)

(11)

where O(·) is the “big-O” asymptotic notation, i.e., f(n) = O(g(n)) is defined as
limn→∞

f(n)
g(n) ≤ c for some constant c. Since the upper bound on deterministic time

is dominated by the square of the time required to write out φm [25], the space bound
is also a bound on deterministic time. We summarize our analysis as follows:

Theorem 10 The decision procedure for existential ExpPA, using ExpPA quantifier elimina-
tion procedure Algorithm 1, has a triply exponential upper bound on both deterministic time
and space (3-EXPTIME and 3-EXPSPACE).

Remark 2 (Unary encoding vs. binary encoding) In our definition of ExpPA, linear terms are
expressed using the unary encoding. For instance, 4x are encode by x + x + x + x. In fact,
we can extend ExpPA to admit terms of the form k · x where k is encoded with a binary
representation. If so, we should change the assumption s0 ≤ n to s0 ≤ 2n, one can check that
this will not affect the result in Eq. (11). (Alternatively, one can simulate binary encoding by
introducing additional polynomial many variables [26, p. 3].)

Remark 3 (Tightness) The goal of this section is to show the decision problem for existential
ExpPA has an elementary complexity upper bound. It is noteworthy that our algorithm employs
Cooper’s algorithm as a subprocedure; however, the complexity of Cooper’s algorithm is also
3-EXPTIME [25]. This observation indicates that the bottleneck in efficiency lies in finding
more efficient approaches to handle linear formulas. We conjecture that employing a more
efficient algorithm (or conducting a more fine-grained analysis) for processing linear formulas
could yield tighter complexity results. Moreover, the known complexity lower bound is NP, as
the satisfiability problem for existential PA formulas is NP-complete.

Remark 4 (Alternative quantifiers) Note that our analysis is focused on existential ExpPA for-
mulas and is sufficient for our string constraints solving context. Unfortunately, directly extend-
ing our analysis on general ExpPA formulas with alternating quantifiers, by transforming ∀x.φ
into ¬∃x.¬φ, will not give an elementary upper bound.

Springer Nature 2021 LATEX template

Article Title 25

6 Optimizations
In the last section we showed the complexity of Algorithm 1 over existential ExpPA
formulas to be triply exponential, which is quite expensive and a faithful implemen-
tation would not scale 1. Note that this high complexity holds even for quantifier-free
ExpPA formulas: for a quantifier-free formula φ, we solve its satisfiability problem
by adding the existential quantifiers for all the variables occurring in φ, then elim-
inate the quantifiers one by one, resulting in true or false in the end. The original
formula φ is satisfiable if true is obtained in the end.

In this section, we focus on quantifier-free ExpPA formulas (or existential ExpPA
formulas since they are satisfiability-equivalent), and present various optimizations
of the quantifier elimination procedure for ExpPA, aiming at an efficient implementa-
tion. The focus on quantifier-free ExpPA formulas is motivated by the following two
facts: 1) the flattening of STRparseInt constraints results into such formulas, 2) these
formulas are already challenging for state-of-the-art SMT solvers (with exponential
functions defined as recursive functions).

Let φ be a quantifier-free ExpPA formula in the remainder of this section. More-
over, we assume that φ is normalized since the optimizations presented in the sequel
are for normalized formulas. Furthermore, for technical convenience, we assume that
all the inequality atomic formulas are of the form

∑n
j=1 aj10

xj +
∑n

k=1 bkxk ≤ c,
where c is an integer constant. (Implicitly, we assume that there are no free variables
and all the variables are existentially quantified.)

In the sequel, we will explain two major optimizations in Section 6.1 and
Section 6.2. Additional optimizations are listed in Section 6.3.

6.1 Reducing the number of enumerated variable orders by
over-approximation

Recall that in Point’s procedure for ExpPA, after the normalization, the variable
orders are enumerated and for each order, the exponential and linear occurrences of
variables are eliminated. Since the quantifier elimination is expensive and applied
to each possible order of variables, if we could reduce the candidate variable orders
in the very beginning, it would facilitate considerable speed-up for the decision
procedure.

The main idea is to consider an over-approximation of φ, which is a PA for-
mula φ′, and use φ′ to remove the infeasible candidate variable orders. Note that all
the exponential terms in φ is of the form 10z for some integer variable z. The over-
approximation is based on the observation that 10n ≥ 9n + 1 for every n ∈ N. We
obtain the over approximation φ′ from φ by replacing each exponential term 10z with
a fresh variable z′ and add z′ ≥ 9z + 1 as a conjunct. Then during the enumeration
of the linear orders for the variables x1, . . . ,xn, we can quickly remove those infea-
sible candidates σ such that φ′∧

∧
i∈[n−1] xσ(i) ≤ xσ(i+1) is unsatisfiable. A special

case is that if φ′ itself is unsatisfiable, then we can directly conclude that the origi-
nal formula φ is unsatisfiable. In our implementation, the unsatisfiability is checked

1We did implement Algorithm 1 and discovered that the implementation could only solve formulas of very small size.

Springer Nature 2021 LATEX template

26 Article Title

over R instead of N, since checking the satisfiability of an existential PA formula is
still a NP-complete problem.

6.2 Avoiding the elimination of linear occurrences of variables by
under approximation

The decision procedure of ExpPA in Algorithm 1 requires the elimination of both
exponential and linear occurrences of variables. Considering the fact that PA formu-
las can be solved efficiently by the state-of-the-art solvers, e.g., CVC4 and Z3, one
natural idea is to try to only eliminate the exponential occurrences, but not the linear
occurrences, of variables, and obtain the PA formulas in the end, which can then be
solved by the state-of-the-art solvers.

Recall that Lemma 4 enables us to eliminate the exponential occurrences of xσ(i)

from an atomic formula τ of the form

τ(xσ(i), . . . ,xσ(1))=̂

ai10
xσ(i) +

i−1∑
j=1

aj10
xσ(j) +

i∑
k=1

bkxσ(k) ≤ c.

Actually, Lemma 4 does more in the sense that all occurrences of xσ(i), includ-
ing the linear ones, are eliminated from the atomic formulas resulted from τ , e.g.,
τ [xσ(i−1)+ p/xσ(i)]. Then we can continue eliminating the exponential occurrences
of xσ(i−1) from τ [xσ(i−1)+p/xσ(i)], provided that the coefficient of xσ(i−1) therein
is nonzero. Iterating this process would produce a PA formula eventually.

Nevertheless, the condition of Lemma 4, namely ai ̸= 0, hinders the aforemen-
tioned natural idea. If ai = 0, but bi ̸= 0, then we are unable to utilize Lemma 4
to eliminate the linear occurrences of xσ(i) from τ . In this case, the quantifier elimi-
nation algorithm of PA has to be applied to eliminate xσ(i), so that later on, we can
eliminate the exponential occurrences of xσ(i−1), which requires that xσ(i−1) is the
maximum variable in the left-hand side of the inequality.

To avoid applying the quantifier elimination algorithm of PA, we consider the fol-
lowing under approximation of τ , namely, we additionally assume that xσ(i) ≤ 10u

for some constant bound u ∈ N. When ai = 0, τ can be rewritten as

τ ′(xσ(i), . . . ,xσ(1))=̂

i−1∑
j=1

aj10
xσ(j) +

i−1∑
k=1

bkxσ(k) ≤ c− bixσ(i).

Let us assume ai−1 > 0. Define c1, c2 as follows: If bi > 0, then c1 = c − bi10u
and c2 = c, otherwise, c1 = c and c2 = c − bi10u. It is easy to observe that c1 ≤
c − bixσ(i) ≤ c2. Then we can apply Lemma 4 to the following two inequalities to
eliminate 10xσ(i−1) ,

i−1∑
j=1

aj10
xσ(j) +

i−1∑
k=1

bkxσ(k) ≤ c1 (12)

Springer Nature 2021 LATEX template

Article Title 27

and
i−1∑
j=1

aj10
xσ(j) +

i−1∑
k=1

bkxσ(k) ≤ c2. (13)

Let α1 = ℓ10(c1)−ℓ10(ai−1) and α2 = ℓ10(c2)−ℓ10(ai−1). Then from Lemma 4,
let A=̂1 +

∑i−2
j=1 |aj |, B=̂1 +

∑i−1
j=1 |bj |, δ=̂ℓ10(A) + 2, and γ=̂2ℓ10(B) + 3. For a

given interpretation I such that I |= xσ(i−1) ≥ γ ∧ xσ(i−1) ≥ xσ(i−2) + δ

• if α1 or α2 is undefined, i.e., I |= α1 ≤ 0 ∨ α2 ≤ 0, then I ̸|= τ ′;
• if I |= xσ(i−1) ≥ α2 + 2, then I ̸|= Eq. (13), thus I ̸|= τ ′.
• if I |= xσ(i−1) ≤ α1 − 1, then I |= Eq. (12), thus I |= τ ′.

Therefore, τ ′ and τ are equivalent to

γ−1∨
p=0

(xσ(i−1) = p ∧ τ [p/xσ(i−1)])

∨
δ−1∨
p=0

(
xσ(i−1) = xσ(i−2) + p ∧ τ [xσ(i−2) + p/xσ(i−1)]

)
∨
(
xσ(i−1) ≥ γ ∧ xσ(i−1) ≥ xσ(i−2) + δ ∧ xσ(i−1) ≤ α1(y⃗)− 1

)
∨

α2+1∨
p=α1

(
xσ(i−1) ≥ γ ∧ xσ(i−1) ≥ xσ(i−2) + δ
∧xσ(i−1) = p ∧ τ [α(y⃗) + p/xσ(i−1)]

)
(14)

where all exponential occurrences of xσ(i−1) are eliminated. Note that in the last line
of Eq. (14), xσ(i−1) is enumerated from α1 to α2 + 1, while in Eq. (7) only two
term α(y⃗) and α(y⃗) + 1 are enumerated for xσ(i).

Similarly, we can eliminate the exponential occurrences of xσ(i−2) from for-
mula τ ′[xσ(i−2) + p/xσ(i−1)] as well as τ ′[p/xσ(i−1)], and so on. Eventually, we
obtain a PA formula.

6.3 Additional optimization techniques
Eliminating exponential occurrences in atomic formulas simultaneously
Although Lemma 4 is stated for a single atomic formula, the elimination of the
exponential occurrences of the same variable in different atomic formulas can
actually be conducted simultaneously. That is, let ατ

1 , α
τ
2 , γ

τ , δτ be the constants
as stated in the aforementioned under-approximation of an inequality τ , define
αmin
1 , αmax

2 , Bmax, δmax as the minimum of ατ
1 , the maximum of ατ

2 , the maximum
of Bτ , and the maximum of δτ respectively with τ ranging over the inequalities
of φ. Then we can use the same constants αmin

1 , αmax
2 , Bmax, δmax for different

inequalities when eliminating the exponential occurrences of the same variable.

Springer Nature 2021 LATEX template

28 Article Title

Avoiding the formula-size blow-up by depth-first search
The PA formula resulting from the elimination of exponential occurrences is essen-
tially a disjunction of large number of disjuncts of small size. If we store this large
formula naively, then its size quickly blows up and exhausts the memory. Alterna-
tively, we choose to do a depth-first search (DFS) and consider the disjuncts, which
are of small sizes, one by one, and solve the satisfiability problem for these dis-
juncts. When a satisfiable disjunct is found, then the search terminates and “SAT” is
reported.

Preprocessing with small upper bound
We believe that if a quantifier-free ExpPA formula is satisfiable, then more likely it
may be satisfied with an assignment in which all variables are uniformly bounded.
Consequently, as a preprocessing step, we put a small upper bound, e.g. the biggest
constant occurring in the formula, on the values of variables, and perform a depth-
first search, so that a model can be quickly found if there is any. If this preprocessing
is unsuccessful, then we continue the search with the greater upper bound 10u for
some proper predefined u ∈ N.

7 Implementation and experiments

7.1 Implementation
We implement the decision procedure in Wolfram Mathematica, called EXP-solver,
which is able to solve the satisfiability of ExpPA formulas.

EXP-solver takes a quantifier-free ExpPA formula as input. Moreover, it allows
specifying a upper bound 10u to uniformly bound the values of variables: given a
upper bound 10u, the problem is to decide whether there is an assignment in which
all variable values are bounded by 10u satisfying the given formula. Outputs of EXP-
solver are either “SAT”, “UNSAT”, “B-UNSAT”, or “TIMEOUT”, standing for the
given formula satisfiable, unsatisfiable, unsatisfiable up to 10u, or timeout if the
solver does not terminate within the time limit. If the output is “SAT”, then a model
(namely, an assignment) is returned.

7.2 Benchmarks
To evaluate the performance of EXP-solver, we design two benchmark suites,
ARITHMETIC and STRINGHASH2.

The ARITHMETIC benchmark suite
This suite comprises three groups of randomly generated ExpPA formulas. Each
group is characterized by four parameters (EV , LV , EI , LI), where EV,LV rep-
resent the number of variables with exponential occurrences and with only linear
occurrences respectively, andEI,LI represent the number of inequalities with expo-
nential terms and with only linear terms respectively. We consider three parameter

2The benchmarks are available at https://github.com/EcstasyH/EXP-solver

Springer Nature 2021 LATEX template

Article Title 29

classes, (2, 3, 3, 4), (3, 4, 4, 5), and (4, 5, 5, 6). Each group of the benchmark suite
consists of 200 randomly generated problem instances. The coefficients of expo-
nential terms are randomly selected from the interval [−102, 102] and the other
coefficients/constants are randomly selected from [−105, 105]. The two intervals are
chosen with the intention that the coefficients of exponential terms are smaller so that
they do not always dominate the left-hand side of the inequalities. Moreover, aim-
ing at a better coverage of the syntactical ingredients of ExpPA, we randomly choose
some problem instances and replace the ≤ symbol of their first inequalities by =.
The constant upper bound for the values of variables is set to be 1020, as the largest
64-bit integer is less than 1020. We also create an SMTLib2 file for each problem
instance, to facilitate the comparison with the state-of-the-art of SMT solvers CVC4
and Z3. Because neither CVC4 nor Z3 supports the exponential functions directly, in
the SMTLib2 files, we encode 10x as a recursive function f(x) defined by: f(0) = 1
and f(n+ 1) = 10 · f(n).

The STRINGHASH benchmark suite
This suite comprises two groups of string constraints generated from the string hash
functions hash : Σ∗

num → Z encoded by parseInt. Specifically, the hash function is
defined as

hash(x) = (parseInt(x) mod m) mod m′,

where m,m′ ∈ N are user-defined. The string constraints in the STRINGHASH
benchmark suite are of the form

x ∈ A ∧ (parseInt(x) mod m) mod m′ = 0 ∧ len(x) < 100,

where A is an FA, m is a randomly chosen prime number in the interval [102, 105]
and m′ is a number less than m (not necessarily prime). Intuitively, we try to find a
string x following pattern A with hash value 0 and length less than 100.

We restrict x in one group conforming some flat patterns (the flat group),
while for the other, we allow more general patterns (the non-flat group). The flat
group comprises 300 problem instances, where the flat languages are of the form
12345w+

1 w
+
2 , 12345w+

1 w
+
2 6789, or w+

1 w
+
2 6789, with w1, w2 ∈ Σ+

num. The non-
flat group comprises 300 problem instances, where the non-flat languages are of the
form 12345Σ∗

num, 12345Σ∗
num6789, or Σ∗

num6789. The constraints can be thought of
as 12345 and 6789 are the text to be protected, and w+

1 w
+
2 or Σ∗

num is the pattern for
some nonce string.

We generate the SMTLib2 files for these string constraints, as inputs to the string
constraint solvers. On the other hand, for EXP-solver, we do the following:

• For flat instances, we generate ExpPA formulas corresponding to the string
constraints, as inputs to EXP-solver.

• For non-flat instances, we use flat languages a∗(b1 . . . bk) to under-approximate
Σ∗

num, where a, b1, . . . , bk ∈ Σnum. We iterate the following procedure until a
model is found or timeout: Initially, set k = 1 and iterate by assigning 0, . . . , 9 to
a. For each assignment, we encode the resulting string constraint into an ExpPA

Springer Nature 2021 LATEX template

30 Article Title

formula with only one exponential variable. If the resulting ExpPA formula is
unsatisfiable, then we increase k by 1 and repeat this process.

We would like to remark that the flattening strategy for non-flat regular constraints
here is a strict generalization of that in [17]: Patterns of the form 0∗(b1...bk) were
considered therein and PA formulas are sufficient to encode such patterns. On the
other hand, we consider patterns of the form e.g. (a)∗(b1 . . . bk) (where a ∈ Σnum

can be nonzero), which requires ExpPA formulas to encode in general.

7.3 Experiments
We compare EXP-solver with the state-of-the-art SMT solvers on the generated
benchmarks. Specifically,

• for the ARITHMETIC benchmark suite, we compare EXP-solver against Z3
(version 4.8.10), CVC4 (version 1.8), and CVC5 (version 1.0.1)3,

• for the STRINGHASH benchmark suite, we compare EXP-solver against Z3,
CVC4, CVC5, and Trau4.

All the experiments are run on a lap-top with the Intel i5 1.4GHz CPU and 8GB
memory. We set the time limit as 60 seconds per problem instance.

The experiment results are summarized in Table 1. For Z3 and CVC4, “Fail”
means timeout or unknown; for Trau, “Fail” means timeout, unknown or wrong
answers 5; for EXP-solver, “Fail” only means timeout.

For the ARITHMETIC benchmark suite, EXP-solver solves around 20%-60%
more instances than Z3, and 30%-100% more instances than CVC4. Moreover, the
gap becomes bigger as the the sizes of the formulas increase, which demonstrates that
EXP-solver is more efficient in solving formulas of greater sizes. The average time of
EXP-solver is comparable with Z3 and CVC4. EXP-solver reports “B-UNSAT” for
47 instances of the (2, 3, 3, 4)-group, while it does not report “B-UNSAT” (except
one) for the other two groups. If more time is allowed, EXP-solver is able to report
“B-UNSAT” for the “TIMEOUT” instances.

For the STRINGHASH benchmark suite, in overall, EXP-solver solves signif-
icantly more instances, especially those satisfiable instances, than Z3, CVC4, and
Trau. For instance, for flat regular constraints, EXP-solver solves almost all 300
problem instances, except 3 of them6, while Z3, CVC4, Trau solve only 34, 89, 187
instances respectively. Trau gets wrong answers for some problem instances, e.g. it
reports “UNSAT” for some satisfiable instances. From the results, we can see that
EXP-solver achieves a good tradeoff between precision and efficiency, although it is
slower than the other solvers.

3We omit CVC5 results in the following because they are similar to CVC4 results. One can find more details through
the link we have given above.

4https://github.com/guluchen/z3/tree/new trau
5In satisfiable instances, the assignments given by the tools can be verified using large number calculations (supported

by Wolfram Mathematica). We found that, due to some unknown reasons, Trau may return wrong answers in the stringhash
benchmark suite.

6These three instances can actually be solved in 70 seconds.

https://github.com/guluchen/z3/tree/new_trau

Springer Nature 2021 LATEX template

Article Title 31

Table 1 Experimental Results, left: results for both experiments, right: more detailded results of
STRINGHASH benchmark suite. O: Output, S:SAT, U: UNSAT, B: Bounded UNSAT, F: Fail, #:
number of problems, T : average time in seconds, TO: timeout (60s), “-”: unsupported or meaningless.

Group O
Z3 CVC4 Trau EXP-solver

T # T # T # T

(2,3,3,4)

S 56 0.4 42 2.3 - - 64 0.4

U 69 0.1 72 0.1 - - 89 0.1

B - - - - - - 47 9.5

F 75 TO 86 TO - - 0 TO

(3,4,4,5)

S 33 1.4 25 2.9 - - 52 3.3

U 59 0.1 60 0.1 - - 88 0.1

B - - - - - - 1 54.0

F 108 TO 115 TO - - 59 TO

(4,5,5,6)

S 35 1.8 19 6.6 - - 47 22.4

U 36 0.3 39 0.4 - - 72 0.1

B - - - - - - 0 -

F 129 TO 142 TO - - 81 TO

Flat
S 34 19.0 88 12.7 5 0.1 115 12.3

U 0 - 1 4.0 182 2.5 182 47.7

F 266 TO 211 TO 113 TO 3 TO

Non-flat
S 210 7.8 144 4.9 55 5.9 300 16.7

U 0 - 0 - 0 - 0 -

F 90 TO 156 TO 245 TO 0 TO

Group O
Z3 CVC4 Trau EXP-solver

T # T # T # T

12345(w1)
+(w2)

+

S 5 14.0 29 8.5 3 0.1 37 9.9

U 0 - 0 - 60 1.3 60 47.2

F 95 TO 71 TO 37 TO 3 TO

12345(w1)
+

(w2)
+6789

S 11 13.0 29 12.0 0 - 37 10.6

U 0 - 0 - 63 1.2 63 50.0

F 89 TO 71 TO 37 TO 0 TO

(w1)
+(w2)

+6789

S 18 24.0 30 9.3 2 0.1 41 16.1

U 0 - 1 4.0 59 2.5 59 45.8

F 82 TO 69 TO 39 TO 0 TO

12345Σ∗
num

S 82 8.7 100 2.2 28 5.9 100 18.5

U 0 - 0 - 0 - 0 -

F 18 TO 0 TO 72 TO 0 TO

12345Σ∗
num6789

S 60 9.3 17 7.8 3 0.3 100 16.0

U 0 - 0 - 0 - 0 -

F 40 TO 83 TO 97 TO 0 TO

Σ∗
num6789

S 68 5.5 27 13.0 24 9.0 100 15.7

U 0 - 0 - 0 - 0 -

F 32 TO 73 TO 76 TO 0 TO

8 Conclusion
In this paper, we proposed a complete flattening approach for string constraints
with string-integer conversion and flat regular constraints, based on a new quantifier
elimination procedure for ExpPA, i.e., the extension of Presburger arithmetic with
exponential functions. The new procedure is improved from the original quantifier
elimination procedure by Cherlin and Point in 1986. We also analyze its com-
plexity and for the first time show a 3-EXPTIME complexity upper bound for the
decision problem of existential ExpPA formulas. Moreover, we proposed various
optimizations and achieved the first prototypical implementation. We also did exten-
sive experiments to evaluate the performance of the implementation. The experiment
results show the efficacy of our implementation, compared with the state-of-the-art
solvers.

References
[1] Makanin, G.S.: The problem of solvability of equations in a free semigroup.

Matematicheskii Sbornik 145(2), 147–236 (1977)

Springer Nature 2021 LATEX template

32 Article Title

[2] Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
In: 40th Annual Symposium on Foundations of Computer Science, FOCS’99,
pp. 495–500. IEEE Computer Society, Washington, DC (1999). https://doi.org/
10.1109/SFFCS.1999.814622

[3] Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King,
T., Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification - 23rd
International Conference, CAV’11. Lecture Notes in Computer Science, vol.
6806, pp. 171–177. Springer, Berlin, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

[4] Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Tools and
Algorithms for the Construction and Analysis of Systems, 14th Interna-
tional Conference, TACAS’08. Lecture Notes in Computer Science, vol. 4963,
pp. 337–340. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78800-3 24

[5] Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web
application analysis. In: Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE’13, pp. 114–124. ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2491411.2491456

[6] Trinh, M., Chu, D., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Ahn, G., Yung, M., Li, N. (eds.) Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1232–1243. ACM, New York, NY, US (2014). https://doi.org/10.
1145/2660267.2660372

[7] Abdulla, P.A., Atig, M.F., Chen, Y., Holı́k, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: An SMT solver for string constraints. In: Computer Aided Verifi-
cation - 27th International Conference, CAV’15. Lecture Notes in Computer
Science, vol. 9206, pp. 462–469. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21690-4 29

[8] Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about
string constraints with the replaceall function. Proceedings of the ACM on
Programming Languages 2(POPL), 3–1329 (2018) https://doi.org/10.1145/
3158091

[9] Holı́k, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints
with concatenation and transducers solved efficiently. Proceedings of the ACM
on Programming Languages 2(POPL), 4–1432 (2018) https://doi.org/10.1145/
3158092

[10] Aydin, A., Eiers, W., Bang, L., Brennan, T., Gavrilov, M., Bultan, T., Yu,

https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2491411.2491456
https://doi.org/10.1145/2660267.2660372
https://doi.org/10.1145/2660267.2660372
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3158092
https://doi.org/10.1145/3158092

Springer Nature 2021 LATEX template

Article Title 33

F.: Parameterized model counting for string and numeric constraints. In: Pro-
ceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE’18, pp. 400–410. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3236024.3236064

[11] Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis
tool for PHP. In: Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS’10. Lecture Notes in Com-
puter Science, vol. 6015, pp. 154–157. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12002-2 13

[12] Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holı́k, L., Rezine, A., Rümmer,
P.: Trau: SMT solver for string constraints. In: Bjørner, N.S., Gurfinkel, A.
(eds.) Formal Methods in Computer Aided Design, FMCAD’18, pp. 1–5. IEEE,
Washington, DC (2018). https://doi.org/10.23919/FMCAD.2018.8602997

[13] Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of
word equations: Decidable and undecidable theories. In: Reachability Prob-
lems - 12th International Conference, RP’18. Lecture Notes in Computer
Science, vol. 11123, pp. 15–29. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00250-3 2

[14] ECMAScript, E., Association, E.C.M., et al.: ECMAScript language specifica-
tion (2019). https://www.ecma-international.org/ecma-262/

[15] Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.:
HAMPI: A solver for word equations over strings, regular expressions,
and context-free grammars. ACM Transactions on Software Engineering
and Methodology, 21(4), 25–12528 (2012) https://doi.org/10.1145/2377656.
2377662

[16] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A sym-
bolic execution framework for javascript. In: 31st IEEE Symposium on Security
and Privacy, S&P’10, pp. 513–528. IEEE Computer Society, Washington, DC
(2010). https://doi.org/10.1109/SP.2010.38

[17] Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Dolby, J., Janku, P., Lin, H.,
Holı́k, L., Wu, W.: Efficient handling of string-number conversion. In: Proceed-
ings of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI’20, pp. 943–957. ACM, New
York, NY, US (2020). https://doi.org/10.1145/3385412.3386034

[18] Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holı́k, L., Rezine, A., Rümmer,
P.: Flatten and conquer: a framework for efficient analysis of string constraints.
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI’17, pp. 602–617. ACM, New York,

https://doi.org/10.1145/3236024.3236064
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-030-00250-3_2
https://www.ecma-international.org/ecma-262/
https://doi.org/10.1145/2377656.2377662
https://doi.org/10.1145/2377656.2377662
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1145/3385412.3386034

Springer Nature 2021 LATEX template

34 Article Title

NY, US (2017). https://doi.org/10.1145/3062341.3062384

[19] Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Hardware and Software: Verification and Testing - 9th Inter-
national Haifa Verification Conference, HVC’13. Lecture Notes in Computer
Science, vol. 8244, pp. 15–31. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03077-7 2

[20] Semënov, A.L.: Logical theories of one-place functions on the set of natural
numbers. Mathematics of the USSR-Izvestiya 22(3), 587–618 (1984) https://
doi.org/10.1070/IM1984v022n03ABEH001456

[21] Cherlin, G., Point, F.: On extensions of presburger arithmetic. In: Proceedings of
the Fourth Easter Conference on Model Theory, Gross Koris, pp. 17–34 (1986).
https://webusers.imj-prg.fr/%7efrancoise.point/papiers/cherlin point86.pdf

[22] Point, F.: On the expansion (N, +, 2x) of Presburger arithmetic. (2007).
Unpublished. https://webusers.imj-prg.fr/%7francoise.point/papiers/Pres.pdf

[23] Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine
intelligence 7, 91–100 (1972)

[24] Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers (6. Ed.).
Clarendon Press, Oxford (2008)

[25] Oppen, D.C.: Elementary bounds for presburger arithmetic. In: Proceedings of
the 5th Annual ACM Symposium on Theory of Computing, STOC’73, pp. 34–
37. ACM, New York, NY, US (1973). https://doi.org/10.1145/800125.804033

[26] Haase, C.: Subclasses of presburger arithmetic and the weak EXP hierarchy. In:
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 -
18, 2014, pp. 47–14710. ACM, New York, NY, US (2014). https://doi.org/10.
1145/2603088.2603092

https://doi.org/10.1145/3062341.3062384
https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1070/IM1984v022n03ABEH001456
https://doi.org/10.1070/IM1984v022n03ABEH001456
https://webusers.imj-prg.fr/%7efrancoise.point/papiers/cherlin_point86.pdf
https://webusers.imj-prg.fr/%7francoise.point/papiers/Pres.pdf
https://doi.org/10.1145/800125.804033
https://doi.org/10.1145/2603088.2603092
https://doi.org/10.1145/2603088.2603092

	Introduction
	Preliminaries
	Integers, strings, and languages
	Presburger Arithmetic
	Finite state automata
	Flat languages and parametric flat languages

	Flattening string constraints with parseInt
	String constraints with string-integer conversion (STRparseInt)
	Presburger Arithmetic with exponential functions (ExpPA)
	Flattening STRparseInt into ExpPA

	Quantifier elimination procedure for ExpPA
	Normalization
	Enumerating all variable orders
	Elimination of exponential occurrences of variables
	Inequality atomic formulas
	Divisibility atomic formulas

	Comparison with Cherlin and Point's procedure

	Complexity analysis
	Normalization
	Enumeration of linear orders (the outer for-loop in Algorithm 1)
	Elimination of quantified variables (the inner for-loop in Algorithm 1)

	Optimizations
	Reducing the number of enumerated variable orders by over-approximation
	Avoiding the elimination of linear occurrences of variables by under approximation
	Additional optimization techniques
	Eliminating exponential occurrences in atomic formulas simultaneously
	Avoiding the formula-size blow-up by depth-first search
	Preprocessing with small upper bound

	Implementation and experiments
	Implementation
	Benchmarks
	The ARITHMETIC benchmark suite
	The STRINGHASH benchmark suite

	Experiments

	Conclusion

