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Abstract. Identification of dynamical and hybrid systems using trajectory data is an important way to
construct models for complex systems where derivation from first principles is too difficult. In this paper,
we study the identification problem for switched dynamical systems with polynomial ODEs. This is a d-
ifficult problem as it combines estimating coefficients for nonlinear dynamics and determining boundaries
between modes. We propose two different algorithms for this problem, depending on whether to perform
prior segmentation of trajectories. For methods with prior segmentation, we present a heuristic segmentation
algorithm and a way to classify the modes using clustering. For methods without prior segmentation, we
extend identification techniques for piecewise affine models to our problem. To estimate derivatives along
the given trajectories, we use Linear Multistep Methods. Finally, we propose a way to evaluate an identified
model by computing a relative difference between the predicted and actual derivatives. Based on this eval-
uation method, we perform experiments on five switched dynamical systems with different parameters, for
a total of twenty cases. We also compare with three baseline methods: clustering with DBSCAN, standard
optimization methods in SciPy and identification of ARX models in Matlab, as well as with state-of-the-
art identification method for piecewise affine models. The experiments show that our two methods perform
better across a wide range of situations.

Keywords: System identification; Black-box inference; Grey-box inference; Switched dynamical systems;
Linear multistep methods

1. Introduction

Recent decades witnessed a huge investment in Cyber-Physical Systems (CPS) which have become ubiquitous
in our daily life, for example in autonomous vehicles, drones, industrial robots, etc. Along with this increasing
adoption comes greater concern for the safety of such systems. Formal design and analysis of embedded
control software rely on mathematical models. Thus, constructing formal models for dynamical and hybrid
systems is an important yet challenging research problem in computer science and control theory. For many
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(a) The Isolette system

ċ = −0.026 · (c− q)

q̇ = 1

ċ = −0.026 · (c− q)

q̇ = −1

c ≥ 98.5

c < 98.5

(b) The corresponding SNDS modelled as a hybrid
automaton
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(c) A simulated trajectory

Fig. 1. Part (a) shows a real-life Isolette system. Part (b) shows an automaton description of the SNDS. Part
(c) shows a simulated trajectory of the system, where q is shown as a blue line and c is shown as a red line.

real-life complex systems, determining a model by derivation from first principles is very difficult. It is
common in CPS applications to use many different kinds of sensors and monitors to gather data from systems.
There are a lot of work in the machine learning community focusing on inferring features from time-series
data. However, many of these methods suffer from a lack of interpretability. In particular, models from deep
neural networks are well-known to be difficult to interpret. An alternative way is system identification [Lju15,
Lju99] or model learning [Vaa17], i.e. learning a formal model from observable behaviours of the system
regarded as a black-box or a grey-box. In black-box learning, the learner has no knowledge about the
system. There are two basic types of black-box learning: active learning and passive learning. In the active
learning setting, the learner can run the system and gather observable data, but not look inside the system.
This is distinguished from passive learning, which involves generating a model from a given data set. For
grey-box learning, the learner has some knowledge about the system. For example, we often have systems
where we know its signal data matches a combination of basic patterns such as lines, polynomial curves,
exponential curves, and sinusoids. However, we do not know how the basic patterns connect to each other
and what are the values of parameters in the patterns. Then grey-box learning tries to infer such unknown
information from system data. One goal of system identification and model learning is similar to that of
machine learning: inferring information from data. However, a major difference is that system identification
usually leads to an interpretable formal model.

In this paper, we focus on identifying Switched Nonlinear Dynamical Systems (SNDS) from given tra-
jectories. A switched nonlinear dynamical system consists of a finite number of modes, with continuous
behaviour of each mode described by an ordinary differential equation (ODE) with polynomial derivatives.
The modes form a partition of the state space of the system, and are separated by predicates described
by polynomial inequalities. Hence, a trajectory of an SNDS consists of a sequence of segments, where the
behavior in each segment is given by the ODE of a mode.

As an example, consider the Isolette system1 shown in Fig. 1. The Isolette system is used to maintain
the temperature of the Isolette box, a physical environment, within a desired range that is beneficial to
the infant. The continuous evolution of temperature c depends on the current status of the actuator. If the
heater is on, the temperature will increase, otherwise it will decrease. Thus there exist two modes and the
condition for switching between two modes depends on the current temperature in the box. The equation

1 Copyright belongs to Dräger Ltd. https://www.draeger.com/en_uk/Products/isolette-8000-plus.
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describing the above system is given by:

ċ = −0.026 · (c− q) ,

q̇ =

{
−1 if c ≥ 98.5
1 if c < 98.5

where c is the temperature of the Isolette box, and q is the temperature of the heater. Here, the boundary
separating the two modes is specified by the inequality c ≥ 98.5, and both modes are described by ODEs
where the derivative is a linear function of c and q.

There are many other real-life systems that can be viewed as switched dynamical systems. For exam-
ple, electrocardiogram records of electrical signals in a person’s heart, as analyzed in [GAG+00, NQF+19,
BDG+20], and robot motion patterns in [MKY11, BDG+20].

In general, the problem of inferring a switched nonlinear dynamical system is to determine, from a given
set of trajectories, the coefficients of the ODE describing each mode of the system, as well as the inequalities
separating the modes.

In this paper, we propose two different methods for solving this problem. We begin by describing some
common ingredients. First, we use Linear Multistep Method (LMM) [BG08] to estimate the derivative at each
point of a discrete trajectory. Next, we optionally employ a segmentation algorithm to divide the trajectory
into segments that are likely to lie in a single mode. Under the assumption that each segment lies in a single
mode, with behavior described by an ODE with polynomial derivatives of a fixed degree, we estimate the
coefficients of the polynomial using linear regression. This will also be an ingredient in our method for dealing
with trajectories containing multiple modes. Once all points in the trajectories are classified into different
modes, we use support vector machine (SVM) with polynomial kernels to determine the boundary between
modes, under the assumption that the boundary can be described by polynomial inequalities.

Our first method, named InferByMerge, begins by segmenting the trajectory, then using linear regres-
sion to find the coefficients of the ODE for each segment, and finally using a clustering technique where the
basic idea is to combine two segments whenever the linear fit is still good for the merged data. A pruning
method is used to reduce search space. For the second method InferByPWA, we do not perform prior seg-
mentation, but extend identification methods for piecewise affine models to estimate coefficients and classify
modes at the same time.

Both methods are implemented, and extensive experiments are performed to determine and compare
their performance. We first describe a metric for evaluating an inferred model in comparison to the original
model, based on comparing the actual and predicted derivatives along trajectories of the system. We then
design five switched dynamical systems, and consider different choices of parameters, and evaluate the two
methods on a total of twenty cases. The results show that both methods perform well across a wide range of
situations. We also compare our methods with the original identification methods [AS14] for piecewise affine
models. It demonstrates that by considering nonlinearity with polynomial equations directly, our method
gives a significant improvement over learning of purely piecewise linear models.

In summary, our contributions in this paper are as follows.

• A heuristic method to segment trajectories of a switched nonlinear dynamical system, so that each
segment is likely to lie in a single mode.

• A model inference procedure based on segmenting the trajectories followed by a special clustering method
with a pruning search.

• A model inference procedure by extending identification methods for piecewise affine models.

• A method for evaluating an inferred model of a switched nonlinear dynamical system in comparison to
the original model.

Related work Learning models of a system from observable data has a long history. In 1956, Moore showed
some Gedanken experiments on sequential machines and defined automaton learning [Vaa17] as black-box
model inference of systems [Moo58]. In her seminal work [Ang87], Angluin presented an online, active and
exact learning framework named L∗ which is a query-answering process between a learner and a teacher
with two kinds of queries: membership query and equivalence query. After that, there are many works on
improving the L∗ framework, including applications to learning different formal models such as Mealy ma-
chines [SG09], nondeterministic finite automata [BHKL09], Büchi automata [FCC+08, LCZL17], symbolic
automata [MM14, DD17], Markov decision processes [TAB+19], and timed automata [ACZ+20, AWZ+ss].
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For passive learning from a given sample set, RPNI [OG92] is a popular method and there are some work-
s [VdWW11, VdWW12] on inferring timed automata following this method. In control theory, the problem
was initially studied as system identification [Lju15]. The research on identification of linear dynamical sys-
tems started in the late 1950s, and a series of books established the field [Eyk74, Lju99]. There exist a lot of
work focusing on discrete-time switched systems and piecewise affine models [FMLM03, GPV12, BGPV05,
HV05]. In [BGPV05], Bemporad et al. aimed to fit the data to a piecewise affine autoregressive exogenous
(ARX) model with error at most ε, while using as few submodels as possible. Ferrari-Trecate et al. gave a
clustering algorithm (based on K-means over the estimated coefficients of the modes) to identify piecewise
affine systems [FMLM03]. In [AS14], Alur et al. proposed a precise identification method for piecewise affine
models from input-output data, which outperformed the method in [FMLM03]. One of our methods can be
thought of as an extension of this work to nonlinear systems. Another way to perform clustering over estimat-
ed coefficients of the modes is a split-and-merge method with validation by the silhouette index [BIB11]. For
identification of a nonlinear ODE from trajectories, in [KD19], Keller et al. used Linear Multistep Method
to estimate the derivative at each data point. In [BPK16], Brunton et al. showed sparse regression methods
can be used to estimate the coefficients of a nonlinear ODE.

ARX model and its variants are often used in data-driven system identification. In [LB08], Lauer et al.
considered both switched and piecewise ARX models and their nonlinear versions. They applied a combi-
nation of linear programming and support vector regression to compute both the discrete state and the
submodels in a single step. In the succeeding work [LBV10], they extended their methods to nonparametric
identification using the kernel method in support vector machines. In [POTN03], RBF-ARX model based on
Gaussian radial basis function networks and ARX structure is built to characterize the system. In [XPTP20],
deep belief networks (DBN) based SD-ARX model is used for nonlinear system modeling. Since the imple-
mentations of the methods in [POTN03, XPTP20] are unavailable for us, we conducted experiments using
inference methods of ARX models provided in Matlab. The results show that ARX models do not perform
well on the trajectories generated from SNDS in our case studies.

As a popular kind of models of hybrid systems, Hybrid Automata [Hen96] have powerful expressiveness.
Designing such models is a time-intensive process and inferring a hybrid automaton from data is thus
an interesting problem [PJFV07, LBG18, NSV+12]. In [MRBF15], Medhat et al. described an abstract
framework, based on heuristics, to learn linear hybrid automata from input/output traces. They followed
Angluin’s framework to learn a finite automaton as discrete structure of the hybrid automaton and then
extracted linear ODEs from data. Recently, Henzinger et al. presented a membership-based identification
method [SHSZ19] for a kind of linear hybrid automata where the differential equations are in a special
constant form. Our model can be viewed as a special kind of hybrid automata in which each mode contains
a polynomial ODE, and the transitions have polynomial inequalities as guards, and no variable resets and
assignments. Hence, the models described in this paper are more expressive than the models in [AS14,
SHSZ19]. Our experiments also show that our methods performs better than the method in [AS14].

Dividing a trajectory into segments likely to lie in one mode is one of the main challenges, where the
correctness of the results strongly affect the quality of the inferred models. For piecewise affine systems,
Borges et al. proposed a switch detection method based on the detection of rank variations for projected
subspaces that are computed from successive batches of data [BVVB05]. For ARX models, Ohlsson et al
proposed a method based on optimization, using a sum-of-norms regularization to control the number of
changepoints in the result [OLB10]. Ozay proposed a polynomial time segmentation algorithm based on
dynamic programming [Oza16]. There are also several existing algorithms [AL89] for this problem that are
accurate for specific types of signals. The basic idea is to guess every point as a changepoint in turn, then
design a value function to decide which points are the best changepoints. In general, a correct segmentation
method may be impossible since two trajectories generated from two modes can connect with each other
smoothly. Compared with existing methods, our heuristic segmentation method is faster and scales better
in our case studies.

Organization of the paper Section 2 introduces the concept of Switched Nonlinear Dynamical Systems
that we consider in this paper. Section 3 shows how to use Linear Multistep Methods to estimate derivatives
along a trajectory. In Section 4, we present the heuristic segmentation method and the inference methods.
We describe experiments comparing the methods in Section 5. Finally, Section 6 concludes this paper.
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2. Switched Nonlinear Dynamical Systems

Let R be the set of real numbers and N be the set of natural numbers. Let x = (x1, x2, . . . , xn) represent a
point in Rn. In this paper, the position of a switched nonlinear dynamical system lies in Rn. Here, we give
the definition of Switched Nonlinear Dynamical Systems (SNDS) we consider in this paper.

Definition 1 (Switched Nonlinear Dynamical System). An SNDS has a finite number of modes. In
its different N modes, position evolves according to the following differential equation

ẋ(t) =



f1(x(t)) if G1(x) ≥ 0

f2(x(t)) else if G2(x) ≥ 0

...

fN−1(x(t)) else if GN−1(x) ≥ 0

fN (x(t)) otherwise

,

where ∀i ∈ {1, 2, · · · , N−1}. Gi(x) ≥ 0 is a polynomial inequality, and each mode function f ∈ {f1, f2, · · · , fN}
is in the form

f(x) =



∑
d1,d2,··· ,dn

a
(d1,d2,··· ,dn)
1 xd1

1 x
d2
2 · · ·xdn

n∑
d1,d2,··· ,dna

(d1,d2,··· ,dn)
2 xd1

1 x
d2
2 · · ·xdn

n

...∑
d1,d2,··· ,dn

a(d1,d2,··· ,dn)
n xd1

1 x
d2
2 · · ·xdn

n



T

. (1)

where a
(d1,d2,··· ,dn)
j ∈ R for each 1 ≤ j ≤ n and d1, d2, · · · , dn ∈ N. Usually we will impose a constraint on

the maximum order d of the polynomials, e.g. d1 + d2 + · · ·+ dn ≤ d.

The definition thus means that the regions for the modes of a SNDS form a partition of Rn and the
boundary between regions are assumed to be described by polynomial inequalities.

For example, the Isolette system given in the introduction is an SNDS in R2 with two modes, with ODEs
described by polynomials of degree one, and boundary described by a polynomial inequality of degree one.
The Lorenz attractor [Lor63] is a dynamical system, and can be thought of as an SNDS in R3 with one
mode, and with ODE described by polynomials of degree two. As one of the test cases, we will consider a
variant of the Lorenz attractor with the same dimension and polynomial degree, but with two modes (see
Section 5.2).

A continuous trajectory of an SNDS in Rn is a continuous function x : [0, T ] → Rn, where there exist
times 0 = T0 < T1 < · · · < Tn = T such that on each interval (Ti, Ti+1) for 0 ≤ i < n, the path x(t) for
t ∈ (Ti, Ti+1) lies entirely in mode Gk for some k ≤ N , and satisfies the corresponding ODE ẋ(t) = fk(x(t)).
In reality, we can only collect data at discrete time points. Hence, we define a (discrete) trajectory of an
SNDS to be the values of a continuous trajectory at a finite set of time points 0 ≤ t0 < · · · < tm ≤ T . For
simplicity, we will focus on the case where the sample points are taken periodically, i.e. ti = i · tstep , where
tstep is a fixed timestep size, i.e., the period. Note that it is by no means guaranteed that we will obtain
samples at the switching times Ti. Indeed we do not have explicit information about the switching times in
the continuous or discrete trajectory. The inference problem for SNDS can now be described as follows.

Problem: Given a set of discrete trajectories of an SNDS in Rn, with known upper bounds on degrees of
polynomial describing the ODEs and the boundary, estimate the coefficients of the ODE in each mode as
well as of the polynomial inequalities separating the modes.

In applications, we would like the inferred model to be useful not only along the known trajectories, but
also along other potential trajectories of the system. Therefore, in evaluating an inferred model, we focus on
its predictive power along both known trajectories and other potential trajectories. This will be evident in
the experiments in Section 5.
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3. Linear Multistep Methods

For all our methods, the first step is to estimate the derivative at each point of a discrete trajectory. For
this, we apply Linear Multistep Methods (LMMs). In this section, we briefly review the original motivation
of these methods and show how they are applied to our problem.

Linear multistep methods are originally designed for solving ordinary differential equations numerically,
i.e. solving the initial value problems given the dynamics:

ẋ(t) = f(x(t)), a ≤ t ≤ b, x(t0) = x0 (2)

An M -step multistep method uses states at the previous M time steps to approximate the next state.
Here M is called the step number of the method. The common form is

M∑
m=0

αmx(tn−m) ≈ h
M∑

m=0

βmf(x(tn−m)). (3)

Here the coefficients αm and βm are chosen depending on the different choice of LMM, with α0 6= 0, and h
is the step size. This expresses an equality between a linear combination of x(tn−M ), . . . ,x(tn) and a linear
combination of f(x(tn−M )), . . . , f(x(tn)). If β0 = 0 this gives an equation where x(tn) appears only once,
and hence can be solved immediately, corresponding to the explicit form of LMM. If β0 6= 0, then x(tn)
occurs multiple times, corresponding to the implicit form of LMM. In this case x(tn) can be solved by an
iterative approach.

The truncation error of LMM is defined as:

Tn =

M∑
m=0

αmx(tn−m)− h
M∑

m=0

βmf(x(tn−m)) (4)

Assume x and f are smooth functions, after performing Taylor expansion at x(tn), we have

Tn =

∞∑
m=0

Cmh
m∇m

x x(tn) (5)

where

C0 =

M∑
m=1

αm, (6)

Cm = (−1)m

[
1

m!

M∑
k=0

kmαk +
1

(m− 1)!

M∑
k=0

km−1βk

]
(7)

Hence, if the coefficients αm and βm are chosen so that Cm = 0 for all m ≤ p, then

Tn = Cp+1h
p+1∇p+1

x x(tn) +O(hp+2) (8)

and we say the linear multistep method has error of order p.
In this paper, our goal is a bit different: we know all positions x(ti) but not the ODE, and hence need

to estimate the derivatives ẋ(ti) = f(x(ti)), then use them to estimate the coefficients in f . First, we state
the problem more precisely.

Problem: Given a discrete trajectory (as defined in Section 2) as a list of pairs (ti,xi), taken from a
continuous trajectory obeying a single ODE ẋ = f(x). Assume the time points are taken periodically, i.e.,
ti = i · tstep , where tstep is the period. Estimate the derivative ẋ(ti) = f(xi) at every point from the pairs
(ti,xi).

For this problem, we use a specific form of LMM called the Backwards Differentiation Formula (BDF).
The corresponding coefficients αm and βm for BDF can be obtained as follows. First, obtain the Lagrange
interpolating polynomial of the points x(tn−M ), . . . ,x(tn), this polynomial gives an approximation to the
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continuous solution x(t):

x(t) ≈
M∑

m=0

x(tn−m)
∏
i 6=m

t− tn−m
tn−i − tn−m

(9)

Then, take the derivative of both sides of Equation (9) with respect to t, we get:

f(x(tn)) ≈
M∑

m=0

x(tn−m) · d
dt

∏
i 6=m

t− tn−m
tn−i − tn−m

∣∣∣∣
tn

(10)

The right side is a linear combination of x(tn−M ), . . . ,x(tn) with constant coefficients. Choose M = 5, we
get:

f(x(tn)) ≈ 1

h

(137

60
x(tn)− 300

60
x(tn−1) +

300

60
x(tn−2)− 200

60
x(tn−3) +

75

60
x(tn−4)− 12

60
x(tn−5)

)
Define f̄(x(tn)) to be the right side of this equation. We will use this as the estimated derivative in our
paper.

The above method works under the assumption that the trajectory obeys a single ODE with smooth
derivatives. In our case, the trajectory data may cross multiple modes. If there is a mode change between
the points x(tn−5) to x(tn), then the estimate using BDF will not be accurate. Hence, as an alternative and
for comparison in the algorithm, we will also use a forward version of BDF, computing the estimates using
the points x(tn) to x(tn+5). The formula is:

f(x(tn)) ≈ 1

h

(
− 137

60
x(tn) +

300

60
x(tn+1)− 300

60
x(tn+2) +

200

60
x(tn+3)− 75

60
x(tn+4) +

12

60
x(tn+5)

)
then we have C0 = C1 · · · = C5 = 0 and C6 = − 1

6
Later in the algorithms, we will use LMMb to denote the backward BDF, and LMMf to denote the

forward version.

4. Inferring SNDS from Trajectories

In this section, we describe the two proposed algorithms in detail. The algorithms involve many existing
ideas in system identification, including the use of linear regression to infer coefficients, segmentation, clus-
tering, and identification techniques for piecewise affine models. However, we also introduce new methods,
in particular for the segmentation and clustering steps.

4.1. Inferring ODE for a single mode

We first describe the technique for estimating the coefficients of the ODE, based on a (discrete) trajectory
which is assumed to lie in one mode. We assume the derivatives in the ODE are polynomials of order at
most d.

First, we define a function Φ from Rn to R(n+d
d ), mapping each point x = (x1, . . . , xn) to a vector whose

coordinates are values of all monomials in xi of order at most d, arranged in a pre-defined order.
With the function Φ, the equation ẋ(t) = f(x(t)) can be rewritten as:

ẋi(t) = Φ(x(t)) · Fi (11)

where xi(t) is the ith component of x(t), and each Fi for 1 ≤ i ≤ n is a vector consisting of the coefficients
of f in the ODE. The overall coefficient matrix F has Fi as columns. In our case, we know the values of
Φ(x(t)) and estimates of ẋi(t) from the LMM, and wish to estimate the coefficients Fi.

We will make the simplifying approximation that the error introduced by LMM is randomly and inde-
pendently distributed around 0. Under this approximation, and given enough sample points x(t) and ẋi(t),
the coefficients in Fi can be estimated by linear regression. In [KD19], it is proved that as the timestep size
approaches zero, the error introduced by BDF converges to zero for every choice of step number M . Hence,
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we expect that the estimate of coefficients given by linear regression becomes better as the timestep size
decreases. The method of inferring the coefficients of a nonlinear ODE using regression is studied in depth
in [BPK16].

More precisely, the algorithm for linear regression is as follows. Given sample points x(t1), . . . ,x(tm)
along a trajectory y and estimated derivatives f̄(x(t1)), . . . , f̄(x(tm)), let Ay = [· · · ,Φ(x(tj))

T , · · · ]T be
the matrix whose rows are the vectors Φ(x(tj)), and By = [· · · , f̄(x(tj))

T , · · · ]T be the matrix whose rows
are the estimates f̄(x(tj)) obtained using BDF. Then, the linear regression problem is to find matrix F
giving the best approximation to the equation A · F = B. The solution using Moore-Penrose pseudoinverse
[Pen55] is F = (ATA)−1ATB. We call this procedure LinearRegression(A,B). And we record Ay · F =

[· · · , f̃(x(tj))
T , · · · ]T . We assume that on this closed trajectory |∇6

xx(tj)| has a upper bound of D, then we
have

|f(x(tj))− f̄(x(tj))| ≤
∣∣∣∣16h5 ·D

∣∣∣∣+O(h6) (12)

Along a trajectory, the sum of squared error between f(x) and f̄(x) is:∑
x(tj)∈y

|f(x(tj))− f̄(x(tj))|2 ≤
T

h
·
(

1

36
h10 · |D|2 +O(h11)

)
=

T

36
h9 · |D|2 +O(h10) (13)

Since the true values f(x) of the derivative lie on a plane, there exists a linear fit with sum of squared error
bounded above. Since linear regression minimizes the sum of squared error, the result of linear regression
should also have error bounded above. This gives the sum of squared error between f̃(x) and f̄(x) as follows:

∑
x(tj)∈y

|f̃(x(tj))− f̄(x(tj))|2 ≤
T

36
h9 · |D|2 +O(h10) (14)

and the overall sum of squared error between estimate from linear regression and true derivative is:∑
x(tj)∈y

|f̃(x(tj))− f(x(tj))|2 ≤
T

18
h9 · |D|2 +O(h10) (15)

Hence, we obtain a bound on the sum of squared error between the original derivatives and the derivatives
we estimate.

Next, we consider how to estimate the upper bound D of |∇6
xx(tj)| in terms of an estimate of the

maximum coefficient in the SNDS. Let Amax be the maximum of coefficients a
(d1,d2,··· ,dn)
j in Equation (1),

and Xmax be a bound on |xi| along the trajectory. For simplicity of calculation, we assume Xmax ≥ 1. This
can be ensured by scaling the coordinates if necessary. Let d and n be the degree and dimension of the SNDS
as before. Note that while Xmax can be computed from the provided trajectory, Amax can only be estimated
from a priori knowledge about the system.

Let Dk be a bound on |∇k
x(x(tj))|, then we have the recurrence relation:

Dk ≤ Amax ·
(
d

n

)
· (d ·Xd−1

max ·Dk−1) + · · · (16)

The leading term corresponds to the terms of f(x) with degree d, and the remaining terms correspond to
terms in f(x) with degree less than d. The base value is D0 ≤ Xmax. Solving the recurrence relation, we get
the estimate

Dk ≤ Ak
max ·

(
d

n

)k

· dk ·Xk(d−1)+1
max + · · · (17)

In particular, suppose we scale the coordinates so that Xmax ≈ 1, then the bound on D is in the order
of (Amax ·

(
d
n

)
· d)6. This bound is a conservative one: if only few of the

(
d
n

)
terms of degree d in f(x) are

nonzero, Dn would be much less than this estimate.
In addition to giving an idea about the error in the estimated derivative, this bound on D also provides

guidance on setting the parameter δ on the allowable absolute error in the following methods (if one is able
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Algorithm 1: Segmenting

// Heuristic segmentation procedure

Input: a single trajectory y = (x(t1), . . . ,x(tn)), and relative error tolerance ε.
Output: a list of trajectory segments.

1 CP ← ∅;
2 foreach x(ti) ∈ y do
3 if i < M or i > n−M then
4 continue;

5 b1 ← LMMb(x(ti−M ), . . . ,x(ti));
6 b2 ← LMMf (x(ti), . . . ,x(ti+M ));
7 if d(b1, b2) > ε then
8 add ti to CP ;

9 segs ← consecutive intervals of y\CP ;
10 return segs;

to obtain an estimate on the size of coefficients of the SNDS). In particular, we conclude that in the noise-free
case, LMM is expected to provide good estimates of the derivative if h ·Amax � 1.

4.2. Segmenting the trajectory

The above method works under the assumption that the given trajectory lies in a single mode of the SNDS.
However, we do not have explicit information about where the mode changes in the trajectory. The first
method that we propose begins by segmenting the given trajectory. Unlike most of the existing methods, it
has linear complexity in the length of the given trajectory, and hence is applicable to large data sets.

Our method is based on the intuitive idea of detecting sudden changes in the derivative along a trajectory.
First, we define a way to measure the relative difference between two vectors, that will be used throughout
the paper.

Definition 2 (Relative difference). Given two vectors v and w, their relative difference is defined as:

d(v,w) =
‖v −w‖
‖v‖+ ‖w‖

(18)

where ‖v‖ is the norm of v.

This measure has the advantage that it is rotationally invariant, and does not change on the simultaneous
scaling of the input vectors.

Let M be the step number of BDF as mentioned in Section 3. For each point on the trajectory, except
the M − 1 points at the beginning and at the end, we estimate the derivative twice: the one using the M
preceding points and the other using the M subsequent points. Denote the two estimated derivatives by b1
and b2, respectively. If a point is within M steps of a change point, then the computation of at least one of
b1 and b2 will involve points in a different mode. This means b1 and b2 are likely to have a bigger relative
difference between them compared to at other points. Hence, we compute the relative difference between
b1 and b2 using Equation (18), and consider the point as near a boundary if the difference is larger than
some threshold ε (for our experiments, we set ε to 0.01). This naturally divides the trajectory into disjoint
segments, formed by those points where the computed b1 and b2 are close enough with the threshold ε. Note
that a boundary usually contains several points in a row. A larger threshold ε may miss some changepoints
and a smaller threshold may cause redundant changepoints. Thus different classes of systems may require
different choices of the threshold, and we may need to tune it to adapt to the specific case at hand. The full
procedure is given in Algorithm 1.
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Algorithm 2: InferByMerge

// InferByMerge: Clustering by merging

Input: collection of sets of points S = {S1, . . . , Sk}, δ is the absolute error tolerance for each point,
nmode is the number of modes.

Output: list of classes and coefficient matrices.
1 Pruned ← ∅;
2 errormax = (|S1|+ |S2|+ · · ·+ |Sk|) · δ; // The maximal sum of square error tolerated in every cluster.

3 foreach Si = {xi1, . . . ,xim}, Sj = {xj1, . . . ,xjn} with 1 ≤ i < j ≤ k do

4 A←
[
Φ(xi1)T , . . . ,Φ(xim)T ,Φ(xj1)T , . . . ,Φ(xjn)T

]T
;

5 B ←
[
f̄(xi1)T , . . . , f̄(xim)T , f̄(xj1)T , . . . , f̄(xjn)T

]T
;

6 F ← LinearRegression(A,B);
7 errorsos ← ‖A · F −B‖2Frob ; // ‖ · ‖Frob: the Frobenius Norm of matrix.

8 if errorsos > errormax then
9 Pruned ← Pruned ∪ {Si ∪ Sj};

10 Sset← PruningSearch(S, nmode,Pruned , errormax);
11 foreach S ∈ Sset do
12 errorS ← 0;
13 foreach Sj = {xj1, . . . ,xjn} ∈ S do

14 Aj ←
[
Φ(xj1)T , . . . ,Φ(xjn)T

]T
;

15 Bj ←
[
f̄(xj1)T , . . . , f̄(xjn)T

]T
;

16 Fj ← LinearRegression(Aj , Bj);
17 errorS ← errorS + ‖A · F −B‖2Frob ;

18 choose S = {S1, · · · ,Snmode} ∈ Sset with least errorS ;
19 return {S1, · · · ,Snmode}, {F1, · · · , Fnmode};

4.3. Clustering by merging

After segmenting the trajectory, we can assume that each segment lies in one mode, so we can estimate
the coefficients in that mode using linear regression as in Section 4.1. The next problem is to determine
which segments lie in the same mode. This can be considered as a clustering problem. One possible approach
is to use one of the existing clustering algorithms such as DBSCAN and k-means, where each segment is
represented by the vector consisting of the estimated coefficients. For example, k-means is used in [BDG+20]
as the clustering method on the coefficients of the learned basic shape patterns. Their experimental results
show that the basic clustering method does not always perform well but they do not analyze the reasons.

In our work, we observed that a significant weakness of traditional clustering methods is that ODEs with
very different coefficients may describe similar behavior within a localized region. Hence, linear regression
based on points within a small region (such as within a segment of the trajectory) may yield very different
coefficients, even if they actually lie in the same mode. The difference between coefficients of segments in
the same mode may therefore be bigger than the difference between coefficients in different modes, and may
lead traditional clustering methods to produce incorrect clusters. Hence, directly clustering the vectors of
coefficients is not suitable. In our experimental results, we also show that DBSCAN performs poorly in some
situations. In the following, we propose a different clustering method that is better suited for our problem.

We now describe a clustering method where segments are merged if their combined data fits well in a
single linear regression of Φ and f̄ (rather than if they have similar coefficients). The basic idea is to find a
way to cluster all segments into N modes such that the total sum of squared error of all linear regressions
are minimized. A naive search over all combinations of clusters will yield an exponential number of cases. In
order to reduce the number of cases and accelerate the approach, we propose a pruning method during the
search process. The full method named InferByMerge is given in Algorithm 2 and the pruning method is
presented in Algorithm 3.

We consider each segment as a set of points (to make it also useful for the method InferByPWA in Sec-
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Algorithm 3: PruningSearch

// The pruning search approach used in InferByMerge.

Input: collection of sets of points S = {S1, . . . , Sk}, Pruned is the set to be pruned, nmode is the
number of cluster to classify, errormax is the maximal sum of square error tolerated in every
cluster.

Output: list of classes
1 if |S| = nmode then
2 return S ;

3 if nmode = 1 then
4 if ∃pr ∈ Pruned. pr ⊆

⋃
Si∈S Si then

5 return ∅;
6 assume

⋃
Si∈S Si = {x1, . . . ,xn};

7 A←
[
Φ(x1)T , . . . ,Φ(xn)T

]T
;

8 B ←
[
f̄(x1)T , . . . , f̄(xn)T

]T
;

9 F ← LinearRegression(A,B);
10 error⋃

Si∈S Si
← ‖A · F −B‖2Frob;

11 if error⋃
Si∈S Si

≤ errormax then

12 return {{
⋃

Si∈S Si}};

13 Sset← ∅ ;
14 foreach S ∈ PruningSearch({S1, · · · , Sk−1},Pr , nmode, errormax) do
15 foreach Sj ∈ S do
16 S ′ ← S;
17 assume Sj ∪ Sk = {x1, . . . ,xn};
18 A←

[
Φ(x1)T , . . . ,Φ(xn)T

]T
;

19 B ←
[
f̄(x1)T , . . . , f̄(xn)T

]T
;

20 F ← LinearRegression(A,B);
21 errorSj∪Sk

← ‖A · F −B‖2Frob;
22 if ∀pr ∈ Pruned. pr * Sj ∪ Sk and errorSj∪Sk

≤ errormax then
23 Sset← Sset ∪ {(S ′ \ Sj) ∪ {Sj ∪ Sk}} ;

24 foreach S ∈ PruningSearch({S1, · · · , Sk−1},Pruned , nmode− 1, errormax) do
25 Sset← Sset ∪ {S ∪ {Sk}};
26 return Sset;

tion 4.4). Hence, the input to the algorithm is a collection S of sets of points. First, we consider all pairs of sets
in the collection. For each pair of sets Si = {xi1, . . . ,xim} and Sj = {xj1, . . . ,xjm}, we perform linear regres-

sion using their combined data. Precisely, form matrix A =
[
Φ(xi1)T , . . . ,Φ(xim)T ,Φ(xj1)T , . . . ,Φ(xjn)T

]T
containing the values of monomials of position, and B =

[
f̄(xi1)T , . . . , f̄(xim)T , f̄(xj1)T , . . . , f̄(xjn)T

]T
containing the estimated derivatives. Then linear regression is performed to find a new matrix of coefficients
F , and compute the sum of squared error errorsos between the predicted values A ·F and original values B.
If errorsos is greater than errormax = (|S1|+ |S2|+ · · ·+ |Sk|) · δ which is the maximal sum of squared error
tolerated in every cluster, we can conclude that the two segments should not occur in the same cluster. Here
δ represents the absolute error tolerance for each point (i.e., Mean Squared Error tolerance).

Next, we enumerate the clustering combinations that remain after the above pruning, by calling the
procedure PruningSearch on line 10, to be described later. After PruningSearch, we obtain a set of clustering
combinations Sset. For each combination S, we compute the total sum of squared error errorS over all linear
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regressions. Finally, the algorithm returns the combination with the least errorS and the corresponding
coefficient matrices.

Now we describe the detail of PruningSearch. The main idea is to enumerate all combinations, avoiding
each pair in the set of pruned pairs Pruned , and also pruning the search when a cluster has error above
errormax. The algorithm proceeds by iteratively adding each of the k segments in one of the nmode classes.
If there is only one mode remaining, then the remaining segments must form a class. Otherwise, suppose the
previous k− 1 segments has been classified into nmode models, we can add the k’th segment into each class,
or make the k’th segment form a new class. In the former case, we check that by extending a class with the
k’th segment, we do not encounter any pruned pairs, nor do the sum of squared error exceed errormax. If
that is the case, this branch of the search is pruned.

Theorem 1. If there exists a clustering combination such that the total sum of squared error is bounded
by errormax, then the clustering combination returned by Algorithm 2 is the one with the smallest total
sum of squared error.

Proof. From the setting of errormax, if any partial cluster has total sum of squared error greater than
errormax, then any cluster combination containing it must also have total sum of squared error greater than
errormax. By assumption, this cannot be a combination with least total sum of squared error, and hence
can be safely pruned from the search.

Corollary 1.1. If the trajectory has been correctly segmented then for all points in the input of Algorithm 2,
the sum of squared error between the original and predict derivatives is bounded as follows:∑

x(tj)∈
⋃

Si∈S Si

|f̃(x(tj))− f(x(tj))|2 ≤
1

18
h9 · (

nmode∑
l=1

Tl · |Dl|2) +O(h10) (19)

where Tl represents the time stayed in mode l and Dl represents the maximum of |∇6
xx(t)| with t ∈ Tl.

Proof. Follows from Theorem 1 and Equation (15).

The previous two algorithms depend on the performance of the segmentation process. If some change-
points escape detection, the subsequent clustering or merging algorithm will not produce good results. Hence,
we next describe a method that does not rely on a prior segmentation.

4.4. Extending identification of piecewise affine models

After projecting the positions from Rn to R(n+d
d ) using the mapping Φ, the relationship between position and

derivative in each mode can be described by an affine function (see Equation (11)). Hence, the overall relation
between position and derivative in all modes can be described by a piecewise affine function. This means we
can apply any technique for identification of piecewise affine models to our problem. More specifically, we
will apply a variant of the technique described in [AS14]. This gives a method for identification of SNDSs
without prior segmentation, instead classifying the points and estimating the coefficients at the same time.

In [AS14], an absolute error tolerance for each point needs to be given before the identification process,
but there is no description on how to determine such an error tolerance. Hence, we first modify the original
algorithm to use a relative error tolerance. The second modification is that we extend a point to a small
piece along the given trajectory (in other words, along time), while the original method extends a point to
nearby points according to their positions. The benefit is that the points in a small continuous time interval
have a bigger chance to be in the same mode than the points nearby. Third, the points on the boundary
between modes are likely to have poorly estimated derivatives. If these points are taken into account, they
may have a large effect on the resulting model. Hence, we selectively discard the points that do not fit well,
and consider them only afterwards. Finally, we use Algorithm 2 to reduce the number of classes and simplify
the resulting model. Details of our variant of the procedure we call InferByPWA is shown in Algorithm 4,
and explained below.

Let S be the union of points in the trajectories of Y . We maintain a collection SL containing the currently
found classes of points.

We begin by choosing a point y from S. First, we attempt to extend y into a sequence seq . Starting
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Algorithm 4: InferByPWA

// InferByPWA: Extension of identification of piecewise affine models

Input: the set of trajectories Y , ε is the error tolerance, k is the number of classes.
Output: list of classes and coefficient matrices.

1 SL ← ∅;
2 Drop ← ∅;
3 S ← set of points in Y ;
4 while

⋃
Yi∈YL

Yi 6= S do
5 choose a point y ∈ S\

⋃
Yi∈YL

Yi;
6 Yy ← trajectory containing y;
7 seq ← Extending(Yy, y, ε);
8 if |seq | < M then
9 add y to Drop;

10 continue;

11 L← seq ;
12 while > do
13 F ← LinearRegression(AL, BL);
14 L′ ← ∅;
15 for ỹ ∈ Y \

⋃
Yi∈YL

Yi do
16 if d(Φ(ỹ) · F, f̄(ỹ)) < ε then
17 add ỹ to L′;

18 if |L| < |L′| then
19 L← L′;

20 else
21 break;

22 add L to SL;

23 {S1, · · · , Sk}, {F1, · · · , Fk} ← InferByMerge(SL, ε, k) ; // Algorithm 2 to reduce number of classes.

24 return {S1, · · · , Sk}, {F1, · · · , Fk};

from the sequence only containing y, we try to extend it to the left and to the right, along the trajectory
containing y. This is described separately as procedure Extending (Algorithm 5). First, we try to extend the
sequence to the left, at each step recompute the linear regression using points of the new sequence and test
whether the error is within tolerance ε. Extension stops when the error grows larger than ε, or the length
reaches a given limit lim. Next, the sequence is extended to the right in the same way. If at the end of the
extension process, the number of points in the sequence is less than the step number M , we put the point y
into a separate set and restart since this indicates that the point is likely to be near a switch between modes.

Next, we attempt to extend the sequence seq into a larger set by alternatingly search for unclassified
points that lie close to the linear regression F over Φ(x) and f̄(x), and recomputing the linear regression
using the extended set of points, until the size of the set can no longer be enlarged. Finally, we add the
extended set of points into SL, and begin the next iteration as long as there exist uncovered points.

After all points have been handled, we obtain a collection of classes SL. This collection of classes may
still break a mode into several classes. Hence, we again perform the Algorithm 2 to reduce the number of
classes and simplify the resulting model.

4.5. Boundary determination using SVM

After preliminarily classifying the points on the trajectory into different classes, and estimating the coef-
ficients of ODEs for each class, we determine the boundary between classes using SVM with polynomial
kernel functions. This assumes that the boundaries are given by polynomial inequalities of known maximum
degree.
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Algorithm 5: Extending

// Extending a segment

Input: a trajectory y = (x(t1), . . . ,x(tn)), point x(ti) with 1 ≤ i ≤ n, error tolerance ε, and
maximum number of iterations lim.

Output: a segment containing x(ti)
1 l← i, h← i;
2 while h− l < lim do
3 F ← LinearRegression(A[l−1:h], B[l−1:h]);
4 if ∀r. d(A[l−1:h][r] · F,B[l−1:h][r]) < ε then
5 l← l − 1;

6 else
7 break;

8 while h− l < lim do
9 F ← LinearRegression(A[l:h+1], B[l:h+1]);

10 if ∀r. d(A[l:h+1][r] · F,B[l:h+1][r]) < ε then
11 h← h+ 1;

12 else
13 break;

14 return (x(tl), . . . ,x(th));

Note that during the classification reported in the above sections, we dropped some points which are likely
to be near the change points. There is a great possibility that these points are significant support vectors
as they lie near the boundary between two modes. Hence, we would prefer to find out which modes these
points belong to. We again compute the approximate derivatives using BDF in both forward and backward
directions (using LMMf and LMMb), then test if either estimated derivative lies close to one of the modes
according to its estimated coefficients.

Applying SVM with more than two classes is a well-studied problem, and we choose the following known
approach: first learn the boundary between one class and the other classes, obtaining the first region G1,
and then among the remaining classes, select one again learning the next region GC

1 ∩ G2, repeating this
process until all classes are separated. We refer to [BGPV05] for more discussion of the approaches. The
main difference is that we use SVM with polynomial kernel function. From Theorem 1, we have the following
corollary.

Corollary 1.2. In InferByMerge, the result of Equation (19) continues to hold after the SVM step, if
the labelled points from different modes are classified by SVM with 100 percent accuracy.

4.6. Complexity of the methods

Most parts of our methods have polynomial complexity in terms of the number of input points n. In particular,
segmentation has complexity O(n). Each iteration of InferByMerge has polynomial complexity in n,
as linear regression takes polynomial time (it is reduced to computing matrix multiplication and inverse).
However, the whole merging process potentially needs to search over all subsets of classes, which is exponential
in the number of classes after segmentation. In order to accelerate the search process, we use a pruning
method, which is effective in most of the practical situations. InferByPWA calls Algorithm 2 when reducing
the number of modes, while other parts, e.g. linear regression and the extending process, all have polynomial
complexity in the number of input points. In Section 5, we will see that both methods can handle inputs of
up to thousands of points within a reasonable time.
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5. Experiments

In this section, we describe five SNDS models and the evaluation of the above proposed methods on them.
We designed our own examples since we are currently not aware of any standard benchmarks consisting of
switched nonlinear dynamical systems.

Before reporting the results of the experiments, we describe the evaluation method which we apply
to measure the “closeness” between the inferred system and the original system. We compute the actual
and predicted derivative along multiple trajectories, including both the input trajectory and additional
trajectories from other initial points. The relative difference between actual and predicted derivatives are
computed according to Equation (18). Then the results are averaged yielding an overall score davg between
0 and 1, where 0 and 1 represent perfect and worst predictions respectively.

Now we introduce the arrangement of our experiments. We first present our five examples, distinguished
by their dimension, degree of the polynomials in the ODE and the boundary, and the number of modes,
intended to cover the different aspects of the problem. We utilized our two methods to infer models of the
examples based on a group of fixed parameters, i.e., timestep size tstep , number of initial points Ninit , and
the simulation time length I.

Then, for evaluating robustness, we modify the parameters for each example and compare the performance
of different methods on the variants. The intuition is that fewer initial points are intended to be more difficult,
as it means less data provided to the algorithm. Likewise, a larger time step is intended to be more difficult,
as it means both less data and the derivative estimates from LMM are likely to be less accurate. The absolute
error tolerance δ is a tunable parameter in the method InferByMerge.

We also compared our methods with the baseline clustering method DBSCAN, identification of ARX
models using the system identification toolbox in Matlab, and standard optimization functions in SciPy, as
well as with state-of-the-art method in [AS14] for piecewise affine models. Some of the results are shown
below.

We implemented2 both proposed methods using Python 3.7 with libraries SciPy, scikit-learn and LIB-
SVM. All of the evaluations have been carried out on an 1.8GHz Intel Core-i7 8550U processor with 8GB
RAM running 64-bit Windows.

Each concrete case of experiments is run as follows:

1. Training data generation: For each initial point, solve the ODE numerically. Here we use SciPy’s solve ivp
function. In particular, we use the event mechanism of the function to allow simulation of a switched
system. This yields a number of discrete trajectories given by lists of time-position pairs.

2. Inferring SNDS: Feed the data to each of the three algorithms described in Section 4, and obtain the
inferred SNDS.

3. Evaluation: Compare the inferred SNDS with the real SNDS by evaluating the predicted derivative along
each of the original trajectories. Then compare the predicted and actual derivative using Equation (18),
and average the obtained measure along the trajectories. This gives us a single number between 0 and 1
that indicates the quality of the inferred model. Also, for each of the additional points, use the original
model to find trajectories starting at those points, and compute the measure also along these trajectories.
This tests whether the inferred model also provides good predictions along other possible trajectories of
the system.

In the following, all figures are rounded to 5 digits after the decimal point.

5.1. The Isolette example

This example shows the case in Fig. 1. It can be represented as an SNDS as follows.

If x1 ≤ a3 then{
ẋ1 = a1 · (x1 − x2)

ẋ2 = 1

else{
ẋ1 = a2 · (x1 − x2)

ẋ2 = −1

2 The implementation is available at https://github.com/Leslieaj/InferDynamic.

https://github.com/Leslieaj/InferDynamic
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The system given in Section 1 corresponds to a3 = 98.5 and a1 = a2 = −0.026. We choose two initial
points Ninit = {(99.5, 80), (97.5, 100)}, the timestep size tstep = 0.1, the simulation time length I = 50, the
error tolerance ε = 0.01, and apply InferByPWA (Algorithm 4).

The original coefficient matrices thus are as follows.

F1 =

[−0.026 0
0.026 0

0 1

]
, F2 =

[−0.026 0
0.026 0

0 −1

]
The inferred coefficient matrices are

F̄1 =

−2.60000× 10−2 −8.00269× 10−14

2.60000× 10−2 −2.49814× 10−14

−3.54935× 10−13 1.00000

 , F̄2 =

−2.60006× 10−2 −4.15116× 10−5

2.60007× 10−2 5.45885× 10−6

4.86236× 10−5 −9.96412× 10−1


The boundary is

x1 − 0.00034x2 − 98.46672 = 0.

The average relative distance davg = 6.55855 × 10−6. Here, we also present the simulation of original and
inferred models on the given initial points in Fig. 2.

95 96 97 98 99 100 101
x1

80

85

90

95

100

105

110

115

x2

Original
Inferred

Fig. 2: The simulation result for the Isolette example.
The trajectory of the inferred model closely follows
that of the original model, showing that our method
performs well on this example.
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Fig. 3: The simulation result for switched Lorenz
attractor. The divergence of blue and red lines are
expected as the system is chaotic, but it can be seen
that the red lines lie on roughly the same attractor
as the blue lines.

5.2. A switched version of Lorenz attractor

The second case is a switched version of Lorenz attractor which has three dimensions, with ODE given by
polynomials of degree two, and two modes. It represents a case where the system is chaotic. The corresponding
SNDS is as follows.

If x1 + x2 ≥ 0 then
ẋ1 = σ1(x2 − x1)

ẋ2 = x1(ρ1 − x3)− x2
ẋ3 = x1x2 − β1x3

else
ẋ1 = σ2(x2 − x1)

ẋ2 = x1(ρ2 − x3)− x2
ẋ3 = x1x2 − β2x3

One standard choice of coefficients is σ1 = 10, β1 = 8/3, ρ1 = 28, σ2 = 28, β2 = 4, ρ2 = 46.92. We choose
two initial points Ninit = {(5, 5, 5), (2, 2, 2)}, timestep size tstep = 0.004, simulation time length I = 5,
absolute error tolerance δ = 0.2, and apply InferByMerge (Algorithm 2).
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Since the number of coefficients are too large (3×
(
3+2
2

)
= 30), we omit the four coefficient matrices and

only report the average relative distance davg = 8.86362× 10−5. The boundary is

x1 + 0.98804x2 + 0.00086x3 − 0.01007 = 0

and the simulation result for this case is shown in Fig. 3.
In this case, there are 2502 points in total, with 1761 points belonging to the first mode and the rest

belonging to the second one. With respect to Equation (19), D1 = 0.30153× 1021, D2 = 0.33927× 1024, and
the sum of squared error is 0.34628, it is easy to calculate that

0.34628 <
1

18
× 0.0049 × (1761× 0.004×D1 + 741× 0.004×D2) = 14.67599

corresponding to the result of Equation (19).

5.3. An example with degree three

In this example, back in two dimensions, the ODE is given by polynomials of degree three, and the boundary
separating the two modes has degree two. The SDNS is given as follows.

If x2 ≥ dx21, then{
ẋ1 = a1x

2
1 + b1x

3
2

ẋ2 = c1x1

else{
ẋ1 = a2x

2
1 + b2x

3
2

ẋ2 = c2x1

One standard choice of coefficients is a1 = 0.1, a2 = 0.04, a3 = −0.9, b1 = −0.1, b2 = 0.06, b3 = −0.7 and
d = −0.2. The settings of parameters and experimental results are given in Table 1.

5.4. An example with four dimensions

This example tests the performance of the algorithm over larger dimensions. The SNDS has dimension four,
degree two and two modes as follows.

If x3 ≥ 0 then
ẋ1 = −sx2
ẋ2 = x1 − r1
ẋ3 = x4

ẋ4 = −p(x3 + r2)2

else
ẋ1 = −sx2
ẋ2 = x1 − r1
ẋ3 = x4

ẋ4 = −p(x1 − x3)2

One choice of coefficients is s = 1, r1 = 5, r2 = 5 and p = 0.1. We also wrapped settings and results in
Table 1.

5.5. An example with more than two modes

The last example tests the case with more than two modes. This example is in three dimensions, with ODE
given by polynomials of degree two, and three modes.

If −x2 ≥ 0 then{
ẋ1 = c1
ẋ2 = c2x1

else if −x1 ≥ 0 then{
ẋ1 = a1x

2
1 + a2x2

ẋ2 = a3x1 + a4

else{
ẋ1 = b1
ẋ2 = b2x1 + b3

One choice of coefficients is a1 = 0.5, a2 = 0.5, a3 = −9, a4 = 3, b1 = 5, b2 = −0.1, b3 = −10, c1 =
−7, c2 = −1. Given three initial points Ninit = {(−1, 1), (1, 4), (2,−3)}, timestep size tstep = 0.01, simulation
time length I = 5, error tolerance ε = 0.01, and applying InferByPWA, the average relative distance is
davg = 3.71359× 10−5. The simulation result for this case is shown in Fig. 4. The inferred boundaries are

0.00457x1 + x2 − 0.02923 = 0 and x1 + 0.00346x2 − 0.03707 = 0.
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Fig. 4. The simulation result for Example 5.5.

Table 1. Experimental results on variants.

VID EID |Ninit | tstep I δ
InferByMerge InferByPWA DBSCAN Mosaic

d1
avg t1infer d2

avg t2infer dD
avg tDinfer dA

avg tAinfer NA

1 A 2 0.100 50 0.010 0.00047 0.6 0.00047 0.4 0.00096 0.2 0.08582 9.4 11
2 A 3 0.100 50 0.010 0.00001 1.5 0.00001 0.8 0.00080 0.3 0.07176 8.8 15
3 A 2 0.200 50 0.010 0.00001 0.3 0.00096 0.3 0.00100 0.1 0.14168 4.1 12
4 A 3 0.200 50 0.010 0.00001 0.7 0.00002 0.4 0.00001 0.2 0.11809 5.4 13
5 B 2 0.010 5 0.200 0.00139 1.4 0.00147 1.0 0.13315 2.6 0.14948 295.9 207
6 B 1 0.002 15 0.200 0.00005 12.8 0.00005 4.8 0.00005 1.8 0.09949 1717.8 740
7 B 2 0.002 10 0.400 0.00010 25.0 0.00006 6.2 0.00010 2.2 0.03255 2757.1 1112
8 B 5 0.004 5 0.400 0.00006 17.9 0.00011 3.5 0.00005 1.3 0.07927 478.1 320
9 C 5 0.010 10 0.001 0.00017 24.4 0.00008 2.6 0.00047 1.2 0.04365 46.8 60

10 C 3 0.010 10 0.001 0.00129 4.3 0.00119 1.6 0.00129 0.6 0.22206 18.2 31
11 C 3 0.050 10 0.010 0.00036 4.1 0.00149 0.5 0.00036 0.2 0.19723 15.3 31
12 C 2 0.010 15 0.010 0.00444 6.4 0.00537 1.6 0.00442 0.5 0.29037 16.6 17
13 D 4 0.010 5 0.010 0.00020 3.7 0.00055 1.8 0.00016 0.5 0.03707 21.9 40
14 D 2 0.010 5 0.010 0.00150 1.0 0.00025 1.1 0.00150 0.3 0.33632 5.7 14
15 D 4 0.002 5 0.010 0.00031 19.6 0.00031 7.6 0.00031 2.4 0.09396 37.5 35
16 D 3 0.010 10 0.005 0.00111 5.6 0.00098 3.9 0.00096 0.7 0.01599 51.7 59
17 E 3 0.010 5 0.010 0.00033 2.9 0.00033 6.5 0.27233 0.4 0.04612 54.7 58
18 E 2 0.010 10 0.010 0.00020 5.1 0.00060 8.0 0.32967 0.7 0.08562 70.5 72
19 E 5 0.020 5 0.010 0.00097 4.3 0.00095 3.5 0.00101 0.8 0.04348 79.5 79
20 E 5 0.010 5 0.010 0.00090 9.8 0.00089 10.9 0.00089 2.1 0.01340 92.4 79

VID: the variant ID.
EID: the example ID indicates which example the variant belongs to.
|Ninit |: the number of initial points (two additional points are used for testing in each case).
tstep : time step size.
I: interval of simulation.
δ: the absolute error tolerance for each point (only in InferByMerge).

d1
avg , d2

avg , dD
avg , dA

avg : average relative distances using InferByMerge, InferByPWA,the DBSCAN clustering method and
Mosaic [AS14], respectively.

t1infer , t2infer , tDinfer , tAinfer : wall-clock inference time in seconds using InferByMerge, InferByPWA, the DBSCAN clustering

method, and Mosaic, respectively.

NA: the number of learned piecewise linear modes in Mosaic

5.6. Comparison and Discussion

In order to evaluate the robustness and compare the performance of the methods, we modify the parameters,
i.e, initial points Ninit, timestep size tstep, and the simulation time length I for the five examples and
form a collection of variants. For all variants, the relative error tolerance ε = 0.01 and the choices of
the absolute error tolerance δ used in InferByMerge have also been given. The new SNDS models and
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the results of the experiments are shown in Table 1. In this table, d1
avg , d2

avg , dD
avg , and dA

avg represent the
average relative distances using InferByMerge (Algorithm 2), InferByPWA (Algorithm 4), the DBSCAN
clustering method, and Mosaic [AS14], respectively. t1infer , t2infer , tDinfer , and tAinfer represent the wall-clock
inference time in seconds using InferByMerge, InferByPWA, the DBSCAN clustering method, and
Mosaic, respectively. From the table, it can be seen that DBSCAN performs well on some cases, but is
not sufficiently robust, for example performing poorly on the cases with three modes and two of the cases
for the Lorenz attractor. This is to be expected from the discussion of its weaknesses at the end of Section
4.2. InferByMerge and InferByPWA are robust across all of our cases, and each performs better on a
different set of cases. InferByPWA extends identification methods of piecewise affine models, and uses the
idea of merging modes in InferByMerge at the end, hence it performs well on almost all of the cases. In
experiment A, the dynamics of both modes are linear and we can see that even if the sampling stepsize is
large, the model learned is close to the original. While in the other experiments, we need a smaller stepsize to
get a more accurate approximation of derivatives. After checking the relative differences between derivatives
at different points, it can be seen that most of the differences are due to those near the switch points.

Below, we compare with three other representative methods. Both Mosaic and standard optimization
methods only deal with the problem of fitting the relationship between positions and derivatives, so we
perform the LMM stage first and then apply these two methods.

5.6.1. Comparison with Mosaic

First, we compare with the tool Mosaic from the paper [AS14]. Our InferByPWA is a modification from
the method reported in that paper. However, only learning of piecewise linear models are considered there,
and nonlinear models are approximated by a large number of piecewise linear modes. The results from
Mosaic are given in Table 1. Here column dA

avg is the average relative error, tAinfer is time spent in each case,

and NA is the number of (piecewise linear) modes. It can be seen that across all cases, the relative error is
much larger than that obtained using our InferByMerge and InferByPWA, the running time is longer,
and the number of modes (an indicator of the complexity of the model) is larger. This demonstrates that
by considering nonlinearity with polynomial equations directly, our method gives a significant improvement
over learning of purely piecewise linear models.

5.6.2. Comparison with ARX models

For comparison with inference methods of ARX models, we performed experiments using the System Iden-
tification Toolbox in Matlab. We applied Matlab’s arx and nlarx functions (for linear and nonlinear ARX
models) and chose different parameters to find a (linear or nonlinear) ARX model fitting the trajectories.
The results show a big difference between the predicted and the original trajectories. Also, the predicted
trajectories are no longer continuous and difficult to interpret.

For example, the result of inferring linear ARX models on the Isolette example is shown in Fig. 5. In this
figure, part (a) shows the given trajectories. In part (b), it is superimposed with the predicted trajectory
from the inferred linear ARX model. As can be seen, the predicted trajectory follows the given trajectory
initially, but diverges around the first mode switch. This indicates that ARX models as provided in Matlab
are unable to handle mode switches. The result of using the nonlinear ARX model is even worse, hence we
omit it here.

The reason may be that the multiple modes in SNDS are difficult to explain using a single ARX model.
This shows the necessity of using segmentation and clustering (as in this work) to learn an interpretable
system.

5.6.3. Comparison with standard optimization methods

The problem in this paper (after the LMM stage) can be stated as an optimization problem, minimizing the
sum (or average) of the relative difference between predicted derivative and the derivative computed by the
LMM method. The objective function is as follows.∑

x(tj)∈
⋃

Si∈S Si

min
0≤m≤N

d(Φ(x(tj)) · [Fm
1 , · · · , Fm

i , · · · , Fm
n ], f̄(x(tj))) (20)
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(a) The trajectories provided to ARX model method
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(b) The predicted trajectory by using the inferred ARX model

Fig. 5. Experimental results on the Isolette example using ARX models.

Table 2. Experimental results using standard optimization method “Nelder-Mead” in SciPy.

VID
#1 #2 #3 #4 #5

dO
avg tOinfer dO

avg tOinfer dO
avg tOinfer dO

avg tOinfer dO
avg tOinfer

1 0.59704 98.5 0.46404 285.4 0.42152 110.2 0.42111 245.8 0.45285 112.6
2 0.55577 138.4 0.42927 435.5 0.45377 210.0 0.38807 525.4 0.55437 130.0
3 0.41466 67.8 0.45715 56.2 0.57919 52.9 0.43419 78.8 0.57795 54.8
4 0.56721 82.9 0.58181 100.1 0.56825 118.6 0.47693 82.7 0.44028 72.0

5-10 TO TO TO TO TO
11 TO 0.74582 981.6 0.71463 961.8 TO 0.45468 991.9

12-20 TO TO TO TO TO

#1 - #5: Indexes represent 5 trials from different initial points respectively.
TO: Timeout (> 20 mins).

where S is the set of trajectories, d is the relative difference defined in Section 4, N is the number of modes,
Fm
i represents the coefficients of the i-th component of the polynomial specifying the dynamics in mode m,

and f̄(x(tj)) is our estimate of the derivative at point x(tj) according to the trajectories. The independent
variables of this objective function is all of the coefficients Fm

i .
We applied standard optimization methods in scipy.optimize. However, since the objective function

is not convex, and moreover not differentiable everywhere, the methods do not perform well in our case
studies. Here we report the results using method “Nelder-Mead” and randomly choosing 5 initial points for
the optimization. The experimental results on the same 20 examples are shown in Table 2. In this table, #1
- #5 represent 5 trials from different random initial points. We also set 1200 seconds as the timeout. tOinfer
and dO

avg represent the running time and the average relative difference in the derivative, respectively. The
experimental results indicate that the optimization method easily falls into a local minimum and does not
performs well in all our examples.

6. Conclusion

In this paper, we presented two methods for the identification of switched nonlinear dynamical systems from
trajectory data, and proposed a way to evaluate an inferred model by comparison to the original model. Using
this evaluation, we tested the two methods for robustness and compared them on five classes of examples.
The experimental results show that these two methods are robust across a wide range of situations, and each
performs better on different cases.

The techniques introduced in this paper can form a basis on which to extend to identification of more
general classes of systems, including nonlinear hybrid systems with internal state and non-determinstic be-
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havior, systems switching modes depending on time and systems with higher-order ODEs. Another direction
is to extend the method to handle perturbations in the input data, for example coming from noise in the
measurement process. Finally, as the stability and convergence of Linear Multistep Methods for single ODEs
are analyzed in [KD19], we would like to analyze stability and convergence properties for our methods in
the switched case.
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a tutorial. European journal of control, 13(2-3):242–260, 2007.

[POTN03] Hui Peng, Tohru Ozaki, Yukihiro Toyoda, and Kazushi Nakano. Nonlinear system modelling using the rbf neural
network-based regressive model. IFAC Proceedings Volumes, 36(16):333 – 338, 2003. Proceedings of the 13th IFAC
Symposium on System Identification.

[SG09] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Proceedings of the 16th International Sympo-
sium on Formal Methods, pages 207–222. Springer, 2009.
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