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Inner-Approximating Reachable Sets for Polynomial
Systems with Time-Varying Uncertainties

Bai Xue1 and Martin Fränzle2 and Naijun Zhan1

Abstract—In this paper we propose a convex programming
based method to address a long-standing problem of inner-
approximating backward reachable sets of state-constrained poly-
nomial systems subject to time-varying uncertainties. The back-
ward reachable set is a set of states, from which all trajectories
starting will surely enter a target region at the end of a given time
horizon without violating a set of state constraints in spite of the
actions of uncertainties. It is equal to the zero sub-level set of the
unique Lipschitz viscosity solution to a Hamilton-Jacobi partial
differential equation (HJE). We show that inner-approximations
of the backward reachable set can be formed by zero sub-level sets
of its viscosity super-solutions. Consequently, we reduce the inner-
approximation problem to a problem of synthesizing polynomial
viscosity super-solutions to this HJE. Such a polynomial solution
in our method is synthesized by solving a single semi-definite
program. We also prove that polynomial solutions to the formu-
lated semi-definite program exist and can produce a convergent
sequence of inner-approximations to the interior of the backward
reachable set in measure under appropriate assumptions. This is
the main contribution of this work. Several illustrative examples
demonstrate the merits of our approach.

Keywords—Reachability Analysis; Uncertainties; Convex Com-
putations

I. INTRODUCTION

Reachability analysis, which derives verdicts about the states
reachable in a dynamical system, has received growing inter-
est in recent years. It has many applications in engineering
problems, especially concerning safety-critical systems includ-
ing aeronautics, automotive, medical devices and industrial
process control [26]. Consequently, attention from scientists
across multiple disciplines has been devoted to the problem of
performing reachability analysis. Performing outer- and inner-
approximate reachability analysis is an enabler for detecting
whether the system of interest will always avoid unsafe
states when started from a specified set of initial states or
whether it satisfies a temporal-logic formula [11], as well
as for computing the set of initial configurations that reach
desired configurations while respecting a set of constraints [2].
The former is generally referred to as the safety verification
problem, which has traditionally attracted more attention. As
a result, significant advances of outer-approximate reachability
analysis techniques for both linear and nonlinear systems have
been reported in the literature based on various representations
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of sets such as intervals [35], zonotopes [1], polyhedra and
support functions for polyhedral sets [10], [15], ellipsoids [22],
level sets [30], Taylor models [6] and semi-algebraic sets [41],
[19]. Computational methods for inner-approximations have
received increasing attention just recently, e.g., [41], [21], [17],
[7], [44]. It nevertheless has a wide range of practical applica-
tions including collision avoidance and surveillance. However,
the development of numerical tools, which tractably inner-
approximate the reachable set for state-constrained systems
with time-varying uncertainties, has been challenging and is
still an open area of research.

Besides, in real physical world physical systems often have
certain level of desired performances. Unfortunately, it is
demanding to model their dynamics exactly due to physical
limitations such as imperfections in sensing equipment and
incomplete information, especially in fluctuating environments.
Consequently, engineering designs based on abstracted mathe-
matical models without taking these uncertainties into account
may lead to incorrect operations of physical systems. Abstract-
ing these uncertainties as time-varying parameters (e.g., [36])
and incorporating them into the model is a popular means to
compensate for the inability to construct exact models.

In this paper we focus our attention on inner-approximating
backward reachable sets for state-constrained polynomial sys-
tems with time-varying uncertainties. The backward reachable
set is the set of states such that trajectories originating from
it surely hit a target region after a specified time duration
without violating a set of state constraints in spite of the
actions of the uncertainties. Such sets are particularly useful to
identify decisions that are “robust” against noise parameters. In
order to compute the backward reachable set, in this paper we
first make use of Kirszbraun’s extension theorem for Lipschitz
maps to characterize the backward reachable set as the zero
sub-level set of the unique Lipschitz viscosity solution to a
HJE. Such HJE could be regarded as a special case of the HJE
in [29] considering competing inputs (uncertainty and control)
and time-invariant state constraints. Since it is nontrivial, even
impossible to find the viscosity solution, we then propose a
novel semi-definite programming based method to compute
its polynomial viscosity super-solutions, whose zero sub-level
sets form inner approximations of the backward reachable
set. An inner-approximation of the backward reachable set in
our method can be obtained by solving a single semi-definite
program consisting of linear matrix inequalities. Compared to
traditionally grid-based numerical methods, the benefits of our
method are overall the convexity of the problem of finding
the backward reachable set. We further prove that polynomial
solutions to the formulated semi-definite program exist and
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can generate a convergent sequence of inner-approximations
to the interior of the backward reachable set in measure
under appropriate assumptions. This is the main contribution
of this work. Finally, several illustrative examples evaluate the
performance and the merits of our approach.

Related Work

As mentioned above, inner-approximate reachability analy-
sis of ordinary differential equations subject to time-varying
uncertainties and state constraints, is still in its infancy and
thus provides an open area of research.

For ordinary differential equations free of time-varying
uncertainties and state constraints, [17], [18] proposed a
method based on modal intervals with affine forms to inner-
approximate reachable sets using intervals. By making use
of the homeomorphism property of the solution mapping, a
boundary based reachability analysis method was proposed to
inner-approximate reachable sets with polytopes in [44], and
it was extended to a class of delay differential equations in
[43]. Since reachable sets of nonlinear systems tend to be non-
convex, the above mentioned methods based on convex set rep-
resentations may result in poor approximations. As accuracy
is also an important factor in performing reachability analysis
(e.g.,[37], [28]), more complex shapes of representations such
as Taylor models and semi-algebraic sets are desirable. [7] pro-
posed a Taylor model backward flowpipe method to compute
inner-approximations. [41] proposed an iterative method, with
each iteration relying on solving semi-definite programming
problems, to compute semi-algebraic inner-approximations for
polynomial systems using the advection map of the given
dynamical system. [45] extended the method in [44] to com-
pute semi-algebraic inner-approximations of reachable sets
for polynomial systems and beyond by solving semi-definite
programming problems. Recently, [42] formulated the problem
of solving HJEs as a semi-definite program to compute inner-
approximations for polynomial systems. For state-constrained
polynomial systems without time-varying uncertainties, [21]
computed inner-approximations of the region of attraction to a
target set by solving semi-definite programs. In contrast to the
aforementioned approaches, our approach in this paper targets
state-constrained systems subject to time-varying uncertainties.

The reachability analysis for state-constrained nonlinear
systems with time-varying uncertainties is more challenging.
An attractive way to address this problem is by formulat-
ing reachable sets as sub-level sets of viscosity solutions
of HJEs, e.g, [30], [5], [29], [2], [14], [46]. The Hamilton-
Jacobi reachability methods are capable of dealing with general
nonlinear systems with state constraints and competing inputs.
However, existing numerical methods for addressing HJEs
generally require gridding the state space and hence their
time and memory complexity grow exponentially with the
state dimension. Our approach in this paper tackles the finite
time horizon reachability problem of state-constrained poly-
nomial systems with time-varying uncertainties. Rather than
solving HJEs directly, our approach reformulates the problem
of solving HJEs as a semi-definite programming problem,
which falls within the convex programming framework and can

be efficiently solved by interior-point methods in polynomial
time. Polynomial solutions to the formulated semi-definite
programs exist and can produce a convergent sequence of
inner-approximations to the interior of the backward reachable
set in measure under appropriate assumptions. Recently, based
on a derived HJE, [46] proposed a semi-definite programming
based method to compute inner-approximations of the maximal
robust invariant set over the infinite time horizon for state-
constrained polynomial systems with time-varying uncertain-
ties. However, the existence of polynomial solutions to the
constructed semi-definite program in [46] is not guaranteed.

Another area that is relevance to the topic of this paper
is the computation of regions of attraction for systems sub-
ject to uncertainties [8], [38], [39], [9]. These methods rely
upon the generation or evaluation of pre-constructed Lyapunov
functions to compute inner-approximations of the region of
attraction over the infinite time horizon. This requires checking
Lyapunov’s criteria for polynomial systems by using sum-of-
squares programming, which results in a bilinear optimization
problem that is usually solved using some form of alteration,
e.g., [39]. These sum-of-squares programming based methods
suffer from the same issue as that in [46]. The existence
of polynomial solutions to the constructed sum-of-squares
programming is not guaranteed.

This paper is structured as follows. The reachability problem
of interest is formally stated in Section II, and then formulated
within the Hamilton-Jacobi reachability framework in Section
III. In Section IV we show that the interior of the backward
reachable set can be approximated from inside in measure by a
sequence of zero sub-level sets of solutions to a semi-definite
program under appropriate assumptions. After demonstrating
our approach on several illustrative examples in Section V, we
conclude our paper in Section VI.

II. PRELIMINARIES

A. System Dynamics
In this section we mainly present an introduction to back-

ward reachable sets. The following notation will be used
throughout this paper: For a set ∆, ∂∆ denotes its boundary.
Rk[·] represents the set of real polynomials of total degree
≤ k in variables given by the argument. The symbol R[·]
denotes the ring of polynomials in variables given by the
argument. N denotes the set of nonnegative integers. The space
of continuously differentiable functions on a set X is denoted
by C∞(X). The difference of two sets of A and B is denoted
by A \ B. µ(A) denotes the Lebesgue measure on A ⊂ Rn.
Vectors are denoted by boldface letters.

In this paper we consider the following system:

ẋ(s) = f(x(s),d(s)), a.e., s ∈ [0, T ], (1)

where for each s ∈ [0, T ], x(s) ∈ Xs and d(s) ∈ D, Xs and
D are respectively compact subsets of Rn and Rm for some
positive integers n and m.

We assume that each entry of the vector field f is polyno-
mial, i.e., fi ∈ R[x,d], i = 1, . . . , n. It is evident that the map
f satisfies the following two properties:

1) f is continuous;
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2) f is locally Lipschitz on x uniformly on d, that is, for
each compact subset X of Rn there is some constant
L such that

‖f(x,d)−f(z,d)‖ ≤ L‖x− z‖,∀x, z ∈ X ,∀d ∈ D,

where ‖ · ‖ denotes the usual Euclidean norm.
For t ∈ [0, T ], the time-varying state and uncertainty

constraint sets Xt and D are basic compact semi-algebraic sets,
i.e.

Xt := {x ∈ Rn | gi(x, t) ≤ 0, i = 1, . . . , nX }

D := {d ∈ Rm | hi(d) ≥ 0, i = 1, . . . , nD}

with gi ∈ R[x, t] and hi ∈ R[d]. Also, ∂Xt = ∪nX
i=1{x ∈ Xt |

gi(x, t) = 0}. The terminal state x(T ) is constrained to lie in
the basic semi-algebraic set TR, where

TR := {x ∈ Rn | li(x) ≤ 0, i = 1, . . . , nTR}

with li ∈ R[x] and ∂TR = ∪nTR

i=1{x ∈ TR | li(x) = 0}.
Let Mt be the set of measurable functions d : [t, T ] 7→ D,

where T > t. We will call functions d ∈ Mt time-varying
uncertainties. For each d ∈ Mt, we denote by yd

x,t(s) the
solution at time s ∈ [t, T ] of (1) starting from the state x at
time t.

The problem we attempt to address is to compute the
backward reachable set R0 such that all trajectories starting
from it at time t = 0 will enter the target region TR after
the time duration of T while staying inside the set Xs for
s ∈ [0, T ], despite the actions of uncertainties.

Definition 1: The backward reachable set R0 of the target
region TR at time t = 0 is presented as follows:

R0 := {x0|∀d ∈M0,y
d
x0,0(0) = x0,y

d
x0,0(T ) ∈ TR,

yd
x0,0(s) ∈ Xs for s ∈ [0, T ]}.

(2)

The backward reachable set in Definition 1 differs from the
constrained controlled region of attraction R′0 in [19], [32].
The constrained controlled region of attraction R′0 is the set
of initial states that can be driven with an admissible control
to a specified target set without leaving the state-constrained
set, i.e.

R′0 = {x0|∃d ∈M0,φ
d
x0,0(0) = x0,φ

d
x0,0(T ) ∈ TR,

φd
x0,0(s) ∈ Xs for s ∈ [0, T ]}.

(3)

Obviously, R0 ⊂ R′0. In [19], [32], an outer approximation
of the set R′0 is computed by solving a single semi-definite
program, which is constructed from occupation measure.

It is in general impossible to obtain the backward reachable
set R0 since an appropriate closed-form solution to (1) may
not be available. We therefore resort to the computation of an
inner approximation of the backward reachable set. We opt for
inner approximations as they preserve the desired property of
the backward reachable set, namely that all possible trajectories
starting from them enter TR after the time duration of T while
not leaving the set Xt for t ∈ [0, T ].

III. HAMILTON-JACOBI TYPE EQUATIONS

In this section we mainly introduce the reformulation of
the backward reachable set R0 as the zero sub-level set of the
viscosity solution to a Hamilton-Jacobi type partial differential
equation. Like in [46], we use Kirszbraun’s extension theorem
to characterize the backward reachable set R0 as the zero sub-
level set of the unique Lipschitz viscosity solution to a HJE.

As f ∈ R[x,d] in system (1), f is locally Lipschitz contin-
uous over the state variable x. Therefore, the global solution
φdx0

(t) over t ∈ [0,∞) to system (1) is not guaranteed to exist
for any initial state x0 ∈ Rn. This hinders the construction
of Hamilton-Jacobi equations. To address this issue, we first
construct an auxiliary vector field F (x,d) : Rn × D 7→ Rn,
which is globally Lipschitz on x ∈ Rn uniformly on d ∈ D,
i.e. there exists a constant LF such that

‖F (x1,d)−F (x2,d)‖ ≤ LF ‖x1−x2‖,∀x1,x2 ∈ Rn,∀d ∈ D,

where ‖ · ‖ denotes the usual Euclidean norm. Moreover, the
trajectories governed by ẋ(s) = F (x(s),d(s)) coincide with
the trajectories generated by ẋ(s) = f(x(s),d(s)) over a local
state space. Thanks to Kirszbraun’s theorem [16], which is
stated in Theorem 1, the existence of such function is ensured.

Theorem 1 (Kirszbraun’s Theorem): Let H1 and H2 be
Hilbert spaces, A ⊂ H1 a set and f ′ : A 7→ H2 a function.
Suppose that γ ≥ 0 is such that ‖f ′(x)−f ′(y)‖ ≤ γ‖x−y‖
for x,y ∈ A. Then there is a function F ′ : H1 7→ H2 such that
F ′(x) = f ′(x) for x ∈ A and ‖F ′(x)−F ′(y)‖ ≤ γ‖x−y‖
for all x,y ∈ H1.

Thus, rather than considering system (1), in this subsection
we take into account an auxiliary system:

ẋ(s) = F (x(s),d(s)), a.e., s ∈ [0, T ], (4)

where for each s ∈ [0, T ], x(s) ∈ Xs and d(s) ∈ D, and
where Xs and D are respectively compact subsets of Rn and
Rm. The map F : Rn × D 7→ Rn is assumed to satisfy the
following three properties:

1) F : Rn ×D 7→ Rn is continuous;
2) F is globally Lipschitz continuous on x ∈ Rn uni-

formly on d ∈ D, that is, there is some constant LF
such that

‖F (x,d)− F (y,d)‖ ≤ LF ‖x− y‖

for all x,y ∈ Rn and all d ∈ D, where ‖ · ‖ denotes
the usual Euclidean norm;

3) F (x,d) = f(x,d) over x ∈ B(0, R) and d ∈ D,
where

B(0, R) = {x ∈ Rn | gR(x) ≥ 0}, (5)

thereof, gR(x) = R −
∑n
i=1 x

2
i and R is a positive

number such that Xt ⊆ B(0, R) for t ∈ [0, T ]
with ∂Xt ∩ ∂B(0, R) = ∅. Note that R exists since
∪t∈[0,T ]Xt is compact due to Lemma 1 in [14].

The set B(0, R) in (5) plays three important roles in our
approach.

1) The condition Xt ⊆ B(0, R) for t ∈ [0, T ] guarantees
that the backward reachable set R0 for system (1) can
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be characterized by trajectories to the auxiliary system
(4), as formulated in Proposition 1.

2) The condition ∂Xt∩∂B(0, R) = ∅ for t ∈ [0, T ] assures
that the zero sub-level set of a polynomial, which is
computed by solving (22) in Subsection IV-A, is an
inner-approximation of the backward reachable set R0,
as stated in Corollary 2 in Subsection IV-A.

3) The condition B(0, R) = {x ∈ Rn | gR(x) ≥ 0}
with gR(x) = R −

∑n
i=1 x

2
i is used to guarantee the

existence of solutions to the semi-definite program (22)
in Subsection IV-A. It is useful in justifying Corollary
3 in Subsection IV-B.

Now we know that for any d ∈ D and any x ∈ Rn, there ex-
ists a unique absolutely continuous trajectory y(s) = φd

x,t(s)
satisfying (4) for almost all s ≥ t and y(t) = x.

Definition 2: For T > t with t ≥ 0, the set of states,
which are visited by trajectories on [t, T ] starting from x, is
denoted as S[t,T ](x) := {y ∈ Rn | y = φd

x,t(s) is absolutely
continuous, satisfies (4) for some d ∈ Mt, y(t) = x and
s ∈ [t, T ]}.

Again under above assumption, for T > 0 and x ∈ Rn,
S[0,T ](x) is a compact set in the Soblov space W 1,1(0, T ) for
the topology of C([0, T ];Rn).

Next, consider the backward reachable set Rt of TR at
time t for system (1), which is the set of states such that
all trajectories starting from it at time t will enter the target
region TR after the time duration of T − t while not leaving
the state constraint set Xs for s ∈ [t, T ], i.e.,

Rt := {x ∈ Rn|∀d ∈Mt,∀s ∈ [t, T ],

yd
x,t(s) ∈ Xs,yd

x,t(T ) ∈ TR},
(6)

where yd
x,t(·) : [t, T ] 7→ Rn is the solution to system (1) with

d ∈Mt for the time interval [t, T ].
Let’s present a value function u(x, t) defined below,

u(x, t) := sup
d∈Mt

max
{

max
i∈{1,...,nTR}

{li(φd
x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
.

(7)

Proposition 1 builds a relationship between the value func-
tion u(x, t) and the backward reachable set Rt.

Proposition 1: Rt = {x ∈ Rn | u(x, t) ≤ 0}.
Proof: Obviously, according to the relationship between

(1) and (4), if the trajectory φd
x,t(s) to system (1) stays in the

set B(0, R) for s ∈ [t, T ], where d ∈Mt, we have φd
x,t(s) =

yd
x,t(s). Also, since Xτ ⊂ B(0, R) for τ ∈ [t, T ] and TR ⊂
B(0, R), we have

{x ∈ Rn | u(x, t) ≤ 0} = {x ∈ Rn | v(x, t) ≤ 0},

where

v(x, t) = sup
d∈Mt

max
{

max
i∈{1,...,nTR}

{li(yd
x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(y
d
x,t(s), s)}

}
.

(8)

Thus, it is enough to prove that Rt = {x | v(x, t) ≤ 0}.

If x ∈ Rt, according to the definition of Rt, i.e. (6), we
can deduce that for all d ∈Mt,

max
{

max
i∈{1,...,nTR}

{li(yd
x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(y
d
x,t(s), s)}

}
≤ 0,

(9)

implying that

sup
d∈Mt

max
{

max
i∈{1,...,nTR}

{li(yd
x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(y
d
x,t(s), s)}

}
≤ 0.

(10)

Consequently, v(x, t) ≤ 0.
On the other hand, if x ∈ {x ∈ Rn|v(x, t) ≤ 0}, according

to (8), then

max
i∈{1,...,nTR}

{li(yd
x,t(T ))} ≤ 0,∀d ∈Mt and

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(y
d
x,t(s), s)} ≤ 0,∀d ∈Mt.

Therefore,

yd
x,t(s) ∈ Xs,∀d ∈Mt,∀s ∈ [t, T ] and

yd
x,t(T ) ∈ TR,∀d ∈Mt.

Thus, x ∈ Rt.
Above all, Rt = {x ∈ Rn | v(x, t) ≤ 0} and thus Rt =

{x ∈ Rn | u(x, t) ≤ 0}. �
According to Proposition 1, the backward reachable set Rt

is equal to the zero sub-level set of the value function u(x, t) in
(7). In the following we show that this value function u(x, t)
is the unique Lipschitz continuous viscosity solution to the
equation:

max
{
∂tu(x, t) +H(x,Oxu),

max
i∈{1,...,nX }

{gi(x, t)} − u(x, t)
}

= 0 (11)

with terminal condition

u(x, T ) = max
{

max
i∈{1,...,nTR}

{li(x)}, max
i∈{1,...,nX }

{gi(x, T )}
}
,

where H(x,p) = maxd∈D p · F (x,d).
(11) could be regarded as a special case of the Hamilton-

Jacobi partial differential equation (4) in [29]. [29] consid-
ered reachability problems with competing inputs and time-
invariant state constraints. In this paper we additionally con-
sider time-varying state constraints. For the sake of clear
presentation, in the following we give a brief introduction of
inferring the HJE (11). The viscosity solution u(x, t) to (11)
is formalized in Definition 3.

Definition 3: [3], [13] A lower semi-continuous function
u(x, t) on Rn× [0, T ] is called to be a viscosity super-solution
of (11), if for any test function ψ ∈ C∞(Rn × [0, T ]) such
that u− ψ attains a local minimum at (y0, t0) ∈ Rn × [0, T ],

max
{
∂tψ(y0, t0) +H(y0,Oxψ),

max
i∈{1,...,nX }

{gi(y0, t0)} − u(y0, t0)
}
≤ 0 (12)
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holds; A upper semi-continuous function u(x, t) on Rn×[0, T ]
is called to be a viscosity sub-solution of (11), if for any test
function ψ ∈ C∞(Rn× [0, T ]) such that u−ψ attains a local
maximum at (y0, t0) ∈ Rn × [0, T ],

max
{
∂tψ(y0, t0) +H(y0,Oxψ),

max
i∈{1,...,nX }

{gi(y0, t0)} − u(y0, t0)
}
≥ 0 (13)

holds. A continuous function u(x, t) on Rn × [0, T ] is called
to be a viscosity solution to (11) if it is both a viscosity super-
and sub-solution to (11).

Firstly, we show that the value function u(x, t) is Lipschitz
continuous, which is formally stated in Lemma 1.

Lemma 1: Let gi, i = 1, . . . , nX , and lj , j = 1, . . . , nTR,
be locally Lipschitz continuous functions respectively. Then
u(x, t) is locally Lipschitz continuous over Rn × [0, T ].

Proof: The proof is given in Appendix. �
Secondly, u(x, t) satisfies the dynamic programming prin-

ciple presented in Lemma 2.
Lemma 2: For (x, t) ∈ Rn × [0, T ] and δ ≥ 0 satisfying

t+ δ ≤ T ,

u(x, t) = sup
d∈M[t,t+δ]

max
{
u(φd

x,t(t+ δ), t+ δ),

max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d
x,t(s), s)}

}
,

(14)

where d ∈M[t,t+δ] is the restriction of d ∈Mt over [t, t+δ].
Proof: The proof is given in Appendix. �

We now show that the value function u(x, t) in (7) is the
unique continuous viscosity solution to (11).

Theorem 2: The value function u(x, t) : Rn × [0, T ] 7→ R
in (7) is the unique Lipschitz continuous viscosity solution to
HJE (11).

Proof: The proof is shown in Appendix. �
We have shown that the value function u(x, t) in (7), whose

zero sub-level set is the backward reachable set Rt at time
t ∈ [0, T ], is the unique Lipschitz continuous viscosity solution
to HJE (11). Nowadays there are many efficient numerical
methods for solving (11) with appropriate number of variables,
e.g., [4], [12]. However, solving (11) generally requires grid-
ding the state space and thus is computationally intensive for
some cases, especially for high-dimensional systems. In the
section what follows, we will approximate this value function
using polynomial viscosity super-solutions to (11) by solving
semi-definite programs. The Lipschitz continuity property of
the viscosity solution to (11) plays an important role in
guaranteeing the existence of solutions to the constructed semi-
definite program.

IV. COMPUTING INNER APPROXIMATIONS

In this section, by resorting to polynomial viscosity super-
solutions to (11) whose zero sub-level sets are inner-
approximations of the backward reachable set R0, we first
formulate the problem of computing inner approximations of
the backward reachable setR0 as a semi-definite programming
problem. We then prove that the interior of the backward
reachable set R0 could be approximated in measure as the
degree of the polynomial viscosity super-solutions tends to
infinity under appropriate assumptions.

A. Semi-definite Programming Implementation

In this subsection we show that the zero sub-level set
of a smooth viscosity super-solution to (11) is an inner-
approximation of the backward reachable set R0. Such a
viscosity super-solution is computed by solving a semi-definite
program, which is constructed from (11).

Firstly, we demonstrate that a smooth viscosity super-
solution ψ(x, t) to (11) over Rn × [0, T ] is a solution to the
following constraint:

max
{
∂tψ(x, t) +H(x,Oxψ),

max
i∈{1,...,nX }

{gi(x, t)} − ψ(x, t)
}
≤ 0. (15)

This conclusion is stated in Lemma 3 formally.
Lemma 3: Assume that ψ ∈ C∞(Rn × [0, T ]). ψ is a

viscosity super-solution of (11) if and only if it satisfies the
constraint (15) over Rn × [0, T ].

Proof: First, we prove that if ψ(x, t) is a viscosity super-
solution of (11), it satisfies (15).

According to the definition of the viscosity super-solution
in Definition 3, i.e. for all test function v ∈ C∞(Rn × [0, T ])
such that ψ − v attains a local minimum at (x0, t0), then

max{∂sv(x0, t0) +H(x0,Oxv),

max
i∈{1,...,nX }

{gi(x0, t0)} − ψ(x0, t0)} ≤ 0. (16)

It is apparent that ψ ∈ C∞(Rn × [0, T ]) satisfies (15) since
ψ − v = ψ − ψ when v = ψ attains local minimum at any
(x0, t0) ∈ Rn × [0, T ].

Next, we prove that if ψ(x, t) satisfies (15), it is a viscosity
super-solution of (11). This claim can be assured by following
the proof of Theorem 2 for the viscosity super-solution part.
Let v ∈ C∞(Rn × [0, T ]) such that ψ − v attains a local
minimum at (x0, t0), where t0 ∈ [0, T ]. Similarly, we assume
that this minimum is 0, i.e. v(x0, t0) = ψ(x0, t0).

If (12) is false, then either

max
i∈{1,...,nX }

{gi(x0, t0)} ≥ v(x0, t0) + ε1 (17)

holds or
∂tv(x0, t0) +H(x0,∇xv) ≥ ε2 (18)

holds for some ε1, ε2 > 0.
If (17) holds, then there is a small enough δ > 0 such that

for (x, t) satisfying t0 ≤ t ≤ t0 + δ and ‖x− x0‖ ≤ δ,

max
i∈{1,...,nX }

{gi(x, t)} ≥ v(x0, t0) +
ε1
2

= ψ(x0, t0) +
ε1
2
.

However, since ψ satisfies (15) over Rn × [0, T ], we
have ψ(x, t) ≥ maxi∈{1,...,nX }{gi(x, t)}, implying that
ψ(x0, t0) ≥ ψ(x0, t0) + ε1

2 , which is a contradiction since
ε1 > 0.

However, if (18) holds, there is a small enough δ > 0 such
that there exists a strategy d1 ∈Mt such that

δ
ε2
2
≤ v(φd1

x0,t0(t0 + δ), t0 + δ)− v(x0, t0). (19)
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Further, due to the fact that

δ
ε2
2
≤ ψ(φd1

x0,t0(t0 + δ), t0 + δ)− ψ(x0, t0), (20)

which contradicts ψ(φd1
x0,t0(t0+δ), t0+δ) ≤ ψ(x0, t0), which

is obtained by the fact that ∂sψ(x0, t0) + H(x0,Oxψ) ≤ 0
and ψ ∈ C∞(Rn× [0, T ]). Therefore, if ψ(x, t) satisfies (15),
it is a viscosity super-solution of (11).

Therefore, the conclusion holds. �
Based on Lemma 3 we will show that an inner-

approximation of the backward reachable set R0 can be
characterized by the zero sub-level set of a smooth viscosity
super-solution to (11).

Theorem 3: If ψ(x, t) ∈ C∞(Rn × [0, T ]) is a viscosity
super-solution of (11) with boundary condition ψ(x, T ) ≥
max

{
maxi∈{1,...,nTR}{li(x)},maxi∈{1,...,nX }{gi(x, T )}

}
over x ∈ Rn, {x ∈ Rn | ψ(x, 0) ≤ 0} is an inner-
approximation of the backward reachable set R0.

Proof: For each d ∈ D and x0 ∈ Rn,

ψ(φd
x0,0(t), t)− ψ(x0, 0) =

∫ t

0

Ldψ(x, s)ds

for t ∈ [0, T ], where Ldψ(x, s) = ∂sψ(x, s)+∇xψ ·F (x,d).
According to Lemma 3, Ldψ(x, s) ≤ 0 for s ∈ [0, t] holds.
Therefore,

ψ(φd
x0,0(t), t) ≤ ψ(x0, 0)

for t ∈ [0, T ]. Obviously, if ψ(x0, 0) ≤ 0, then
ψ(φd

x0,0(T ), T ) ≤ 0 holds. Since ψ(x, T ) ≥
max

{
maxi∈{1,...,nTR}{li(x)},maxi∈{1,...,nX }{gi(x, T )}

}
over x ∈ Rn and {x ∈ Rn |
max

{
maxi∈{1,...,nTR}{li(x)},maxi∈{1,...,nX }{gi(x, T )}

}
≤

0} ⊂ TR,
φd

x0,0(T ) ∈ TR

holds. Also, according to Lemma 3, ψ(x, t) ≥
maxi∈{1,...,nX }{gi(x, t)} over (x, t) ∈ Rn × [0, T ].
Since Xt = {x ∈ Rn | maxi∈{1,...,nX }{gi(x, t)} ≤ 0}
for t ∈ [0, T ], if ψ(x0, 0) ≤ 0, then we have φd

x0,0(t) ∈ Xt
for t ∈ [0, T ]. Therefore, ψ(x0, 0) ≤ 0 implies that all
trajectories starting from x0 will enter the target region
TR = {x ∈ Rn | maxi∈{1,...,nTR}{li(x)} ≤ 0} after the
time duration T while staying inside the constraint set Xt
over t ∈ [0, T ]. Therefore, {x ∈ Rn | ψ(x, 0) ≤ 0} is an
inner-approximation of the backward reachable set R0. �

According to Theorem 3 and Lemma 3, the problem of
computing a smooth viscosity super-solution ψ(x, s), whose
zero sub-level set is an inner-approximation of the backward
reachable set R0, can be reformulated as the following con-
straint over ψ ∈ C∞(Rn × [0, T ]),

∂tψ(x, t) + Oxψ · F (x,d) ≤ 0,∀(t,x,d) ∈ [0, T ]× Rn ×D,
ψ(x, t)− gi(x, t) ≥ 0, ∀(x, s) ∈ Rn × [0, T ],

ψ(x, T )− lj(x) ≥ 0, ∀x ∈ Rn,
i = 1, . . . , nX , j = 1, . . . , nTR.

(21)

Corollary 1: Let ψ(x, t) be a solution to (21). Then {x ∈
Rn | ψ(x, 0) ≤ 0} is an inner-approximation of the backward
reachable set R0.

Proof: The claim in this corollary can be easily assured
by Lemma 3 and Theorem 3. �

The problem of obtaining a solution to (21) is challenging
since a solution ψ(x, t) should satisfy (21) for x ∈ Rn. In
the following we will relax this condition to obtain a function
ψ(x, t) satisfying (21) for x ∈ B(0, R), where B(0, R) is
defined in (5).

Regarding x ∈ B(0, R) and d ∈ D, we have F (x,d) =
f(x,d). When the viscosity super-solution ψ(x, t) to (21) is
constrained to polynomial type in the set B(0, R) × [0, T ],
(21) can be recast as the sum-of-squares program (22), which
is formalized below. The constraints in (22) that polyno-
mials are sum-of-squares can be written explicitly as LMI
constraints, and the objective is linear in the coefficients of
the polynomial ψ(x, t); therefore problem (22) is able to be
formulated as a semi-definite program, which falls within the
convex programming framework and can be solved via interior-
point methods in polynomial time. Note that the objective
of (22) would facilitate the gain of less conservative inner-
approximations of the backward reachable set. The reason is
that if ψ1(x, 0) ≤ ψ2(x, 0) over x ∈ B(0, R), then {x ∈
B(0, R) | ψ2(x, 0) ≤ 0} ⊆ {x ∈ B(0, R) | ψ1(x, 0) ≤ 0}
and

∫
B(0,R)

ψ1(x, 0)dx ≤
∫
B(0,R)

ψ2(x, 0)dx.

d∗k = inf w′ · l
s.t.

− Lψ(x, t) = s0 + s1gR(x) + s2t(T − t) +

nD∑
i=1

s′ihi(d),

ψ(x, t)− gi(x, t) = s3,i + s4,igR(x) + s5,it(T − t),
ψ(x, T )− lj(x) = s6,j + s7,jgR(x),

i = 1, . . . , nX , j = 1, . . . , nTR,
(22)

where w′ · l =
∫
B(0,R)

ψ(x, 0)dx, l is the vector of
the moments of the Lebesgue measure over B(0, R)
indexed in the same basis in which the polynomial
ψ(x, 0) with coefficients w is expressed, and Lψ(x, t) =
∂tψ(x, t) + ∇xψ(x, t) · f(x,d). The minimum is over
polynomial ψ(x, t) ∈ Rk[x, t] and sum-of-squares polyno-
mials s0(x, t,d), s1(x, t,d), s2(x, t,d), s′r(x, t,d), r =
1, . . . , nD, s3,i(x, t), s4,i(x, t), s5,i(x, t), i = 1, . . . , nX
and s6,j(x), s7,j(x), j = 1, . . . , nTR, of appropriate degrees.

Corollary 2: Let ψ(x, t) be a solution to (22), then {x ∈
B(0, R) | ψ(x, 0) ≤ 0} is an inner-approximation of the
backward reachable set R0.

Proof: According to (22), we have the following con-
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straints: for (x, t,d) ∈ B(0, R)× [0, T ]×D,

∂tψ(x, t) + Oxψ · f(x,d) ≤ 0,

ψ(x, t)− gi(x, t) ≥ 0,

ψ(x, T )− lj(x) ≥ 0,

i = 1, . . . , nX , j = 1, . . . , nTR.

(23)

Obviously, {x ∈ B(0, R) | ψ(x, 0) ≤ 0} ⊆ X0. Assume that
there exists a trajectory initialized in x0 ∈ {x ∈ B(0, R) |
ψ(x, 0) ≤ 0} at t = 0 such that it escapes from the set Xτ
at some τ ∈ [0, T ], i.e. φd1

x0,0
(τ) /∈ Xτ for some d1 ∈ D.

Therefore, there exists τ1 ∈ [0, τ ] such that φd1
x0,0

(τ1) /∈ Xτ1
and φd1

x0,0
(τ1) ∈ B(0, R), implying that ψ(φd1

x0,0
(τ1), τ1) > 0.

This contradicts the fact that ψ(x0, 0) ≤ 0 and ∂tψ(x, t) +
Oxψ ·f(x,d) ≤ 0. We conclude that every possible trajectory
originating in {x ∈ B(0, R) | ψ(x, 0) ≤ 0} at t = 0 will stay
inside the set Xt, ∀t ∈ [0, T ]. Also, since ψ(x, T ) − lj(x) ≥
0, j = 1, . . . , nTR, by following the proof of Theorem 3, we
conclude that {x ∈ B(0, R) | ψ(x, 0) ≤ 0} ⊆ R0. �

Corollary 2 implies that an inner-approximation of the
backward reachable setR0 is able to be synthesized by solving
the semi-definite program (22). In the following subsection
we prove the existence of a convergent sequence of inner-
approximations, which are formed by solutions to (22), to the
interior of the backward reachable set R0 in measure under
appropriate assumptions.

B. Convergence Analysis
In this subsection we show that (22) exhibits a convergent

sequence of inner approximations to the interior of the back-
ward reachable set R0 in measure under appropriate assump-
tions. We firstly show that on a given compact set B(0, R)
there is a smooth solution to (23), which can approximate the
viscosity solution u to (11) uniformly. Then we demonstrate
that there exists a sequence of polynomial functions satisfying
(22) and approximating the viscosity solution u uniformly.

Before this, we introduce an auxiliary lemma stating that
over a compact set B(0, R)× [0, T ] there is a smooth function
ψ(x, t) which is an uniform approximation to a given Lip-
schitz function u(x, t) and provides one side approximation
to the Dini−derivative of the form supd∈D Lψ(x, t), where
Lψ(x, t) = ∂tψ +∇xψ · f(x,d).

Lemma 4: [24] Let B(0, R) be a compact subset in Rn and
u(x, t) : B(0, R)×[0, T ] 7→ R be a Lipschitz function. If there
exists a continuous function α : B(0, R) × [0, T ] 7→ R such
that for each d ∈ D,

Lu(x, t) ≤ α(x, t), a.e.(x, t) ∈ B(0, R)× [0, T ],

(recall that ∇xu is defined a.e., since u is locally Lipschitz.)
then for any given ε > 0, there exists some smooth function
ψ(x, t) defined on B(0, R)× [0, T ] such that

sup
(x,t)∈B(0,R)×[0,T ]

|ψ(x, t)− u(x, t)| < ε and

sup
d∈D
Lψ(x, t) ≤ α(x, t) + ε

over (x, t) ∈ B(0, R)× [0, T ].

According to Lemma 4, we have the following theorem stat-
ing that there exists a smooth viscosity super-solution ψ(x, t)
with ψ(x, t) ≥ u(x, t) approximating the viscosity solution
u(x, t) to (11) uniformly on the compact set B(0, R)× [0, T ].

Theorem 4: There exists a smooth function ψ(x, t) satisfy-
ing (23), which approximates the viscosity solution u(x, t) to
(11) uniformly on the compact set B(0, R)× [0, T ].

Proof: From Theorem 2, we have that the value function
u(x, t) is locally Lipschitz continuous. Also, since Lu ≤ 0
for all (x, t,d) ∈ B(0, R) × [0, T ] × D, where Lu(x, t) =
∂tu + ∇xu · f(x,d), according to Lemma 4, there exists a
smooth function ψ : B(0, R)× [0, T ] 7→ R such that

sup
(t,x)∈[0,T ]×B(0,R)

|ψ(x, t)− u(x, t)| < ε and

sup
(x,t,d)∈B(0,R)×[0,T ]×D

Lψ(x, t) ≤ ε.

Let
ψ(x, t) = ψ(x, t)− εt+ (T + 1)ε.

Since
u(x, t)− ε ≤ ψ(x, t) ≤ u(x, t) + ε

for (x, t) ∈ B(0, R)× [0, T ],

u+ ε(T − t) ≤ ψ ≤ u+ (T − t+ 2)ε

holds for (x, t) ∈ B(0, R) × [0, T ]. Thus u ≤ ψ for (x, t) ∈
B(0, R)×[0, T ]. Also, ψ : B(0, R)×[0, T ] 7→ R approximates
u(x, t) uniformly on the compact set B(0, R)× [0, T ].

We also need to prove that ψ(x, t) ≥
maxi∈{1,...,nX }{gi(x, t)} and Lψ ≤ 0 over
(x, t,d) ∈ B(0, R) × [0, T ] × D. The former,
i.e. maxi∈{1,...,nX }{g(x, t)} ≤ ψ(x, t) over
(x, t) ∈ B(0, R) × [0, T ], holds obviously since
maxi∈{1,...,nX }{gi(x, t)} ≤ u. The latter, i.e.

Lψ ≤ 0

also holds since
Lψ ≤ Lψ − ε

for (x, t,d) ∈ B(0, R)× [0, T ]×D.
Thus, the conclusion in Theorem 4 holds. �
In our implementation we restrcit smooth viscosity super-

solutions to polynomial functions and attempt to inner-
approximate the backward reachable set R0 by solving the
semi-definite programming problem (22). In the following
we prove that under Assumption 1 there exists a sequence
of polynomials {ψk+N (x, t)}k∈N, where N is some positive
integer and ψk+N (x, t) ∈ Rk+N [x, t] satisfies (22), such that
limk→+∞ ψk+N (x, t) = u(x, t) uniformly over B(0, R) ×
[0, T ], where u(x, t) is the unique viscosity solution to (11).

Assumption 1: One of the polynomials defining the set D
is equal to RD − ‖d‖2 for some constant RD ≥ 0.

Assumption 1 is without loss of generality because of
compactness of D. Thus RD − ‖d‖2 ≥ 0 can be a redundant
constraint defining D for sufficiently large RD.

The proof also requires Putinar’s Positivstellensatz.
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Theorem 5: [Putinar’s Positivstellensatz [34]] Let K =
{y ∈ Rm|g1(y) ≥ 0, . . . , gl(y) ≥ 0} be a compact set.
Suppose there exists N > 0 such that

N −
m∑
i=1

y2i ∈M(g1, . . . , gl).

If p(y) is positive on K, then p(y) ∈ M(g1, . . . , gl),
where M(g1, . . . , gl) is the quadratic module of polynomials
g1, . . . , gl, i.e.

M(g1, . . . , gl) = {σ0(y) +

l∑
i=1

σi(y)gi(y)| each σi ∈
∑
m

}

with
∑
m being the set of sum of squares (SOS) polynomials

over variables y, i.e.∑
m

:= {p ∈ R[y]|p =

k∑
i=1

q2i , qi ∈ R[y], i = 1, . . . , k}.

Corollary 3: There exists a sequence of polynomials
{ψk+N (x, t)}∞k=1 satisfying (22), where ψk+N (x, t) ∈
Rk+N [x, t] and N is some positive integer, such that
ψk+N (x, t) approximates u(x, t) over the space B(0, R) ×
[0, T ] uniformly as k approaches infinity, where u(x, t) is the
viscosity solution to (11).

Proof: From Theorem 4, for every ε > 0, there exists a
smooth function v(x, t) ∈ C∞(B(0, R)× [0, T ]) such that

v(x, t) ≥ u(x, t),

|v(x, t)− u(x, t)| ≤ ε, and

Lv ≤ 0

for (x, t,d) ∈ B(0, R)× [0, T ]×D. Next, we follow the proof
of Theorem 5 in [19]. Let

ṽ(x, t) = v(x, t)− εt+ (T + 1)ε.

We have Lṽ = Lv − ε ≤ −ε, maxi∈{1,...,nX }{gi(x, t)} −
ṽ(x, t) ≤ −ε and ṽ(x, T ) − maxi∈{1,...,nTR}{li(x)} =
v(x, T ) + ε − maxi∈{1,...,nTR}{li(x)} ≥ ε. Since [0, T ] ×
B(0, R) is compact, there exists a polynomial ψN ∈ RN [x, t]
of a sufficiently high degree N such that

sup
[0,T ]×B(0,R)

|ṽ − ψN | < ε and

sup
[0,T ]×B(0,R)×D

|Lṽ − LψN | < ε.

The polynomial ψN is therefore strictly feasible in (22) (this
follows from the classical Putinar’s Positivstellensatz, as for-
mulated in Theorem 5), and moreover ψN (x, t) ≥ u(x, t) for
(x, t) ∈ B(0, R)× [0, T ]. Also,

sup
[0,T ]×B(0,R)

|ψN − u| < ε(T + 3).

Since ε is arbitrary, we conclude that as the degree k tends
to infinity, ψk+N (x, t) ∈ Rk+N [x, t] converges to u(x, t)
uniformly over B(0, R)× [0, T ]. �

Corollary 3 establishes a uniformly functional convergence
of ψ to u. Let the sequence of polynomials {ψk+N (x, t)}+∞k=0
satisfy Corollary 3, and

X0k = {x ∈ X0 | ψk+N (x, 0) ≤ 0}.
Obviously, the inclusion X0k ⊂ R0 holds for all k ∈
{1, 2, . . .}. Finally, we will show that X0k approximates the
interior of the backward reachable set R0 in measure. Before
this, we first prove the non-fattening property of the zero level
set of u(x, t) evolving over time.

Lemma 5: {x ∈ Rn | u(x, 0) = 0} is the boundary of the
set {x ∈ Rn | u(x, 0) ≤ 0}, where u(x, t) is the viscosity
solution to (11).

Proof: The fact that {x ∈ Rn | u(x, T ) = 0} = ∂{x ∈
Rn | u(x, T ) ≤ 0} is easily assured by the fact that u(x, T ) =
max{maxi∈{1,...,nTR} li(x),maxi∈{1,...,nX } gi(x, T )}, ∂Xt =
∪nX
i=1{x ∈ Xt | gi(x, t) = 0} for t ∈ [0, T ] and ∂TR =
∪nTR

i=1{x ∈ TR | li(x) = 0}.
Suppose that y ∈ {x ∈ Rn | u(x, T ) = 0} and there exists

y0 belonging to the interior of the set {x ∈ Rn | u(x, 0) ≤
0} and d ∈ M0 such that y = φd

y0,0(T ). Thus, there exist
y1 and x1 satisfying y1 /∈ {x ∈ Rn | u(x, T ) ≤ 0} but
y1 ∈ U(y; ε) and x1 ∈ U(y0; ε1) ⊂ {x ∈ Rn | u(x, 0) ≤ 0}
such that y1 = φd

x1,0, where U(·; δ) with δ > 0 denotes the
δ−neighborhood of the argument. Thus this contradicts the
fact that the states xs in {x ∈ Rn | u(x, 0) ≤ 0} will enter
the target set {x ∈ Rn | u(x, T ) ≤ 0} after the time duration
of T for d ∈ M0. Thus, y0 belongs to the boundary of the
set {x ∈ Rn | u(x, 0) ≤ 0}, implying u(y0, 0) = 0.

Since ∂{x ∈ Rn | u(x, 0) ≤ 0} ⊆ {x ∈ Rn | u(x, 0) = 0}
is clear, it is sufficient to prove that {x ∈ Rn | u(x, 0) = 0} ⊆
∂{x ∈ Rn | u(x, 0) ≤ 0}. Let u(x0, 0) = 0. Since pointwise
limits of measurable functions are measurable,M0 is a closed
subset and thus remains compact [40], [33]. Therefore, there
exists dx0 ∈M0 such that

u(x0, 0) = max
{

max
i∈{1,...,nTR}

{li(φ
dx0
x0,0

(T ))},

max
i∈{1,...,nX }

{ max
s∈[0,T ]

gi(φ
dx0
x0,0

(s), s)}
}
.

(24)

We will prove that x0 ∈ ∂{x ∈ Rn | u(x, 0) ≤ 0}.
Assume that x0 belongs to the interior of the set {x ∈ Rn |

u(x, 0) ≤ 0}. Then

max
i∈{1,...,nX }

{gi(φ
dx0
x0,0

(s), s)} < 0.

Moreover, from above discussions, we deduce that

max
{

max
i∈{1,...,nTR}

{li(φ
dx0
x0,0

(T ))},

max
i∈{1,...,nX }

{gi(φ
dx0
x0,0

(T ), T )}
}
< 0.

(25)

Then there exists s ∈ (0, T ) such that

max
i∈{1,...,nX }

{gi(φ
dx0
x0,0

(s), s)} = 0,

implying that

φ
dx0
x0,0

(s) ∈ ∂{x ∈ Rn | gi(x, s) ≤ 0, i = 1, . . . , nX }
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since ∂Xs = ∂{x ∈ Rn | gi(x, s) ≤ 0, i = 1, . . . , nX } =
∪nX
i=1{x ∈ Xs | gi(x, s) = 0}. Therefore, there exist y1

satisfying gj(y1, s) > 0, j ∈ {1, . . . , nX }, and x1 satisfying
u(x1, 0) ≤ 0 such that φdx0

x1,0
(s) = y1, contradicting that

all possible trajectories starting from the set {x ∈ Rn |
u(x, 0) ≤ 0} stay inside the set Xt at t ∈ [0, T ]. Thus,
x0 ∈ ∂{x ∈ Rn | u(x, 0) ≤ 0} and therefore

{x ∈ Rn | u(x, 0) = 0} = ∂{x ∈ Rn | u(x, 0) ≤ 0}.

In conclusion, {x ∈ Rn | u(x, 0) = 0} is the boundary of
R0 = {x ∈ Rn | u(x, 0) ≤ 0}. �

Theorem 6 states that the inner-approximation X0k approx-
imates the interior of the backward reachable set R0 with k
approaching infinity.

Theorem 6: Let the sequence of polynomials
{ψk+N (x, t)}∞k=1 satisfy Corollary 3. Then the set X0k

satisfies that X0k ⊂ R0 and

lim
k→∞

µ(R0 \ X0k) = µ(∂R0),

where ∂R0 = {x ∈ Rn | u(x, 0) = 0}, X0k = {x ∈ X0 |
ψk+N (x, 0) ≤ 0} and u(x, t) is the viscosity solution to (11).

Proof: According to Corollary 3, we have
limk→+∞

∫
B(0,R)

|ψk+N (x, 0) − u(x, 0)|dµ(x) = 0,
implying that for every ε > 0,

lim
k→+∞

µ({x | |ψN+k(x, 0)− u(x, 0)| ≥ ε}) = 0.

Then following the proof of Theorem 3 in [23] and combining
with Lemma 5, we have the conclusion. �

V. EXAMPLES AND DISCUSSIONS

In this section we evaluate our approach on three examples.
All computations were performed on an i7-7500U 2.70GHz
CPU with 32GB RAM running Windows 10. For numerical
implementation, we formulate the sum-of-squares program-
ming problem (22) using the MATLAB package YALMIP [25]
and use Mosek [31]1 as a semi-definite programming solver.
In order to evaluate the performance of our approach, we also
present results for these three examples by dealing with (11)
directly. We employ the ROC-HJ solver [4]2 for solving (11).

A. Examples
In this subsection we test our method on three illustrative

examples. Examples 1 and 2 are employed to illustrate the
performance of our method under different parameter settings.
Example 3 is primarily used to evaluate the scalability of our
method. The parameters that control the performance of our
approach in these three examples are presented in Table I,
which together shows the computation times for these three ex-
amples in solving (11) directly. Note that in solving (11), uni-
form grids of 5002 on the state space [−1.1, 1.1]× [−1.1, 1.1]
are adopted for Examples 1 and 2, and uniform grids of 107 on

1Mosek is free for academic use and can be obtained from
https://www.mosek.com/.

2The ROC-HJ solver can be downloaded from https://uma.ensta-paristech.
fr/soft/ROC-HJ/.

the state space [−0.55, 0.55]7 for Example 3. Due to the curse
of dimensionality suffered by grid-based numerical methods
for solving (11), this coarse grid for Example 3 is adopted.

SDP (22) HJE (11)
Ex. [t0, T ] k ds ds′ Time Time

1 [0,1]

1a 1b

334.20

4 2 2 0.69 0.71
6 4 4 0.73 0.83
8 6 6 0.81 1.32
10 8 8 4.17 4.08
12 10 10 21.09 21.20
14 12 12 89.23 97.43

2 [0,1]

2a 2b

519.30

4 4 4 0.60 0.60
6 6 6 1.07 1.13
8 8 8 3.80 4.24
10 10 10 24.47 25.90
12 12 12 88.54 93.11
14 14 14 423.73 478.47

3 [0,1]
4 4 4 57.45

–5 4 4 72.86
6 6 4 5638.23

TABLE I: Parameters and performance of our implementations
of solving (22) and (11) on the examples presented in this
section. [t0, T ]: reachability time interval; k: degree of the
polynomial ψk in (22); ds: degree of sum-of-squares multipli-
ers in the first constraint in (22); ds′: degree of sum-of-squares
multipliers in the second and third constraints in (22); Time:
computation times in seconds.

Example 1: Consider a two-dimensional system given by

ẋ = −1

2
x− (

1

2
+ d)y +

1

2
,

ẏ = −1

2
y + 1,

where T = 1, TR = {x | x2 + y2 − 0.64 ≤ 0}, D = {d |
0.012 − d2 ≥ 0}, Xt = {x | x2 + y2 − 1 ≤ 0} for t ∈ [0, T ]
and 1a).B(0, R) = {x | 1.21−(x2+y2) ≥ 0}; 1b).B(0, R) =
{x | 2− (x2 + y2) ≥ 0}.

Example 2: Consider a scaled version of the reversed-time
Van der Pol oscillator subject to uncertainties given by

ẋ = −y,
ẏ = 0.4x+ 5(x2 − (d+ 0.2))y,

where T = 1, TR = {x | x2 + y2 − 0.25 ≤ 0}, D = {d |
0.012−d2 ≥ 0}, Xt = {x | x2 +y2−0.64 ≤ 0} for t ∈ [0, T ]
and 2a).B(0, R) = {x | 0.65−(x2+y2) ≥ 0}; 2b).B(0, R) =
{x | 1− (x2 + y2) ≥ 0}.

The computed inner approximations are illustrated in Fig. 1
and 2 for Examples 1 and 2 respectively. Note that the semi-
definite program (22) does not produce an inner approximation
for Example 2 when k = 4 in the case of 2b) and consequently
one cannot find the corresponding presentation in Fig. 2. Ob-
serving the results illustrated in these two figures, we find that
the accuracy of inner approximations to the backward reach-
able set is increasing with degree of the polynomial ψ(x, t).
Also, a relatively-fast convergence of inner-approximations
to the backward reachable set is observed. The convergence

https://uma.ensta-paristech.fr/soft/ROC-HJ/
https://uma.ensta-paristech.fr/soft/ROC-HJ/
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Fig. 1: An illustration of computed backward reachable sets for Example 1 at time t = 0. (Black and white curves denote the
boundaries of inner-approximations in cases of 1a) and (1b), respectively. Gray region denotes the backward reachable set obtained via solving
(11).)

rate is particularly fast when the degree of approximating
polynomials is less than or equal to 10 and 12 for Example
1 and Example 2, respectively. Moreover, the results in Fig. 2
indicate that tighter sets B(0, R) in (5) help to compute tighter
inner approximations, although this indication is not obvious
for Example 1.

Meanwhile, it is observed from Table I that the semi-
definite programming based method (22) with polynomials of
appropriate degree is more efficient in terms of computation
time for Examples 1 and 2, compared with grid-based nu-
merical methods for solving (11). We continue exploring the
performance of the semi-definite programming based method
(22) based on a seven-dimensional system.

Example 3: Consider an example adapted from a seven-
dimensional biological system,

ẋ1 = −0.4x1 + 5x3x4 + d,

ẋ2 = 0.4x1 − x2,

ẋ3 = x2 − 5x3x4,

ẋ4 = 5x5x6 − 5x3x4,

ẋ5 = −5x5x6 + 5x3x4,

ẋ6 = 0.5x7 − 5x5x6,

ẋ7 = −0.5x7 + 5x5x6,

where T = 1, TR = {x | x21 + (x2 + 0.2)2 + x23 + x24 + x25 +

x26 + x27 − 0.25 ≤ 0}, D = {d | 0.12 − d2 ≥ 0}, Xt = {x |∑7
i=1 x

2
i − 0.25 ≤ 0} for t ∈ [0, T ] and B(0, R) = {x |

0.26−
∑7
i=1 x

2
i ≥ 0}.

Unlike Examples 1 and 2, the grid-based numerical method
for solving (11) runs out of memory and thus does not return
an estimation for Example 3. In contrast, the method of solving
(22) is still able to compute inner-approximations, which are
illustrated in Fig. 3. Consequently, compared with grid-based
numerical methods for solving (11), the semi-definite program-
ming based method (22) is capable of dealing with reachability
problems of moderately high-dimensional systems, especially
for cases where inner approximations formed by polynomials
of low degree suffice. Although the size of the semidefinite
program (22) grows extremely fast with the number of state
and uncertainty variables and the degree of polynomials in
(22), the computational efficiency and scalability advantage of
the semi-definite programming based method (22) could be
further enhanced with template polynomials such as diago-
nally dominant sum-of-squares (DSOS) and scaled diagonally
dominant-sum-of-squares (SDSOS) polynomials [27].

Note that in order to shed light on the accuracy of computed
inner approximations for Example 3, we partition state spaces
[−0.5, 0.5]2 × [0, 0]5 and [0, 0]4 × [−0.5, 0.5]2 × [0, 0] and
then employ the first-order Euler method to synthesize coarse
estimations of the backward reachable set on planes x1 − x2
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Fig. 2: An illustration of computed backward reachable sets for Example 1 at time t = 0. (Black and white curves denote the
boundaries of inner-approximations in cases of 2a) and 2b), respectively. Gray region denotes the backward reachable set obtained via solving
(11).)

with x3 = x4 = x5 = x6 = x7 = 0 and x5 − x6
with x1 = x2 = x3 = x4 = x7 = 0 respectively. The
estimations are the regions covered by grey points in Fig. 3.
The results in Fig. 3 further confirm that the accuracy of an
inner approximation returned by solving (22) is increasing with
the degree of approximating polynomials.

In Examples 1 to 3, we employ grid-based numerical
methods for solving (11), e.g., Examples 1 and 2, and simu-
lation based methods, e.g., Example 3, to evaluate the quality
of inner-approximations computed by solving (22). Another
method is to estimate outer approximations of the backward
reachable set R0 and calculate the Hausdorff distance between
the outer approximation and inner approximation: narrower
distance proves higher quality, which is the future work we
are considering.

VI. CONCLUSION

We proposed a convex optimization based method to ad-
dress the problem of computing safe inner approximations
of backward reachable sets for state-constrained polynomial
systems subject to time-varying uncertainties in the setting
of finite time horizons. The backward reachable set was first
formulated as the zero sub-level set of the unique Lipschitz
viscosity solution to a HJE. As opposed to traditionally grid-
based numerical methods for solving the HJE, we proposed

a novel semi-definite program, which was constructed from
the HJE and falls within the convex programming category,
to synthesize inner-approximations of the backward reachable
set. We proved that solutions to the constructed semi-definite
program are guaranteed to exist and can generate a convergent
sequence of inner approximations to the interior of the back-
ward reachable set. Three illustrative examples were employed
to evaluate the performance of our approach.
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APPENDIX

The proof of Lemma 1:
Proof: Let x1,x2 ∈ X , where X is an arbitrary but fixed

compact set in Rn, and d1 ∈Mt such that

u(x1, t) ≤max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d1
x1,t(s), s)}

}
+ ε,

(26)

where ε > 0 is arbitrary but fixed.
Therefore, we infer that

u(x1, t)− u(x2, t)

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d1
x1,t(s), s)}

}
− u(x2, t) + ε

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d1
x1,t(s), s)}

}
−

max
{

max
i∈{1,...,nTR}

{li(φd1
x2,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d1
x2,t(s), s)}

}
+ ε

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x1,t(T ))− li(φd1

x2,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

(gi(φ
d1
x1,t(s), s)− gi(φ

d1
x2,t(s), s))}

}
+ ε

≤ max
{
Ll‖φd1

x1,t(T )− φd1
x2,t(T )‖,

max
s∈[t,T ]

Lg‖φd1
x1,t(s)− φ

d1
x2,t(s)‖

}
+ ε

≤ max{Ll, Lg}eLF T ‖x1 − x2‖+ ε,
(27)

where Ll and Lg are Lipschitz constants 3 such that

|li(x− y)| ≤ Ll‖x− y‖, i = 1, . . . , nTR

|gj(x− y)| ≤ Lg‖x− y‖, j = 1, . . . , nX

over x,y ∈ S[0,T ](X ). S[0,T ](X ) is defined in Definition 2
and is compact. Note that we have used the following simple
inequalities in above deduction:

max{A,B} −max{C,D} ≤ max{A− C,B −D}

max
s
A(s)−max

s
B(s) ≤ max

s
(A(s)−B(s)),

and the Gronwall-Bellman Lemma [20].
Using the similar argument as above with x1 and x2

reversed, we obtain

u(x2, t)− u(x1, t) ≤ max{Ll, Lg}eLFT ‖x1 − x2‖+ ε.

Since ε is arbitrary, we have

|u(x1, t)− u(x2, t)| ≤ max{Ll, Lg}eLFT ‖x1 − x2‖. (28)

3Such constants always exists since li and gj are polynomials.

Next, let t1, t2 ∈ [0, T ], t1 < t2 and x ∈ X , where X is
an arbitrary but fixed compact set in Rn. According to the
definition of u(x, t), i.e. (7), there exists a d1 ∈ Mt for any
ε > 0 such that

u(x, t1) ≤max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))},

max
i∈∈{1,...,nX }

{ max
s∈[t1,T ]

gi(φ
d1
x,t1(s), s)}

}
+ ε.

(29)

Therefore, we have the following deduction:

u(x, t1)− u(x, t2)

≤ max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))},

max
i∈{1,...,nX }

{ max
s∈[t1,T ]

gi(φ
d1
x,t1(s), s)}}−

max{ max
i∈{1,...,nTR}

{li(φd1
x,t2(T ))},

max
i∈{1,...,nX }

{ max
s∈[t2,T ]

gi(φ
d1
x,t2(s), s)}}+ ε

= max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))},

max
i∈{1,...,nX }

{ max
s∈[t1,T ]

gi(φ
d1
x,t1(s), s)}}−

max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T − t2 + t1))},

max
i∈{1,...,nX }

{ max
s∈[t1,T−t2+t1]

gi(φ
d1
x,t1(s), s)}}+ ε,

(30)

where Ll and Lg are Lipschitz constants such that

|li(x)− li(y)| ≤ Ll‖x− y‖, i = 1, . . . , nTR

|gj(x)− gj(y)| ≤ Lg‖x− y‖, j = 1, . . . , nX

over x,y ∈ S[0,T ](X ).
Assume that s0 makes maxi∈{1,...,nX }{gi(φ

d1
x,t1(s0), s0)} =

maxi∈{1,...,nX }{maxs∈[t1,T ] gi(φ
d1
x,t1(s), s)}.

In case that s0 ∈ [t1, T − t2 + t1], we have

u(x, t1)− u(x, t2)

≤ ε+ max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))}, max

i∈{1,...,nX }
{gi(φd1

x,t1(s0), s0)}}

−max{ max
i∈{1,...,nTR}

{li(φd1
x,t1(T − t1 + t2))},

max
i∈{1,...,nX }

{gi(φd1
x,t1(s0), s0)}}

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))− li(φd1

x,t1(T − t2 + t1))}, 0
}

+ ε

≤ max
{
Ll‖φd1

x,t1(T )− φd1
x,t1(T − t2 + t1)‖, 0

}
+ ε

≤ LlbF |T − T + t1 − t2|+ ε

≤ LlbF |t2 − t1|+ ε,
(31)

where bF is an upper bound of ‖F ‖ over S[0,T ](X )×D.
In case that s0 ∈ [T − t2 + t1, T ], we first have

max
i∈{1,...,nX }

{ max
s∈[t1,T−t2+t1]

gi(φ
d1
x,t1(s), s)} ≥

max
i∈{1,...,nX }

{gi(φd1
x,t1(T − t2 + t1), T − t2 + t1)}.

(32)



15

Therefore, we have the following deduction:

u(x, t1)− u(x, t2)

≤ max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T ))},

max
i∈{1,...,nX }

{gi(φd1
x,t1(s0), s0)}

}
−

max
{

max
i∈{1,...,nTR}

{li(φd1
x,t1(T − t1 + t2))},

max
i∈{1,...,nX }

{gi(φd1
x,t1(T − t2 + t1), T − t2 + t1)}

}
+ ε

≤ max
{

max
i∈{1,...,nTR}

{
li(φ

d1
x,t1(T ))− li(φd1

x,t1(T − t2 + t1))
}
,

max
i∈{1,...,nX }

{
gi(φ

d1
x,t1(s0), s0)−

gi(φ
d1
x,t1(T − t2 + t1), T − t2 + t1)

}}
+ ε

≤ max
{
Ll‖φd1

x,t1(T )− φd1
x,t1(T − t2 + t1)‖,

Lg‖φd1
x,t1(s0)− φd1

x,t1(T − t1 + t2)‖
}

+ ε

≤ max{Ll, Lg}bF |T − T + t2 − t1|+ ε

≤ max{Ll, Lg}bF |t2 − t1|+ ε,
(33)

where bF is an upper bound of ‖F ‖ over S[0,T ](X )×D.
Therefore,

u(x, t1)− u(x, t2) ≤ max{Ll, Lg}bF |t2 − t1|+ ε

holds. Using the similar argument, we obtain that

u(x, t1)− u(x, t2) ≥ −max{Ll, Lg}bF |t2 − t1| − ε. (34)

Therefore,

|u(x, t1)− u(x, t2)| ≤ max{Ll, Lg}bF |t2 − t1| (35)

since ε is arbitrary.
Combining inequalities (28) and (35), we get:

|u(x1, t1)− u(x2, t2)| ≤ C(|t1 − t2|+ ‖x1 − x2‖)

for some constant C ≥ 0. Therefore u(x, t) is locally Lipschitz
continuous on Rn × [0, T ].

The proof of Lemma 2:
Proof: Let

w(x, t) := sup
d∈M[t,t+δ]

max
{
u(φd

x,t(t+ δ), t+ δ),

max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d
x,t(s), s)}

}
.

(36)

We will prove that for ∀ε > 0, |w − u| ≤ ε.
According to the definition of u(x, t), i.e. (7), for any ε1,

there exists d ∈Mt such that

u(x, t) ≤ max
{

max
i∈{1,...,nTR}

{li(φd
x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
+ ε1.

(37)

We then separately define d1(s) as the restriction of d(s) ∈
Mt over [t, t+δ] and d2(s) as the restriction of d(s) ∈Mt+δ

over s ∈ [t+ δ, T ], and y = φd1
x,t(t+ δ), we obtain that

w(x, t) ≥max
{
u(y, t+ δ), max

i∈{1,...,nX }
{ max
s∈[t,t+δ]

gi(φ
d1
x,t(s), s)}

}
≥max

{
max

{
max

i∈{1,...,nTR}
{li(φd2

y,t+δ(T ))},

max
i∈{1,...,nX }

{ max
s∈[t+δ,T ]

gi(φ
d2

y,t+δ(s), s)}
}
,

max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d1
x,t(s), s)

}}
≥max

{
max

i∈{1,...,nTR}
{li(φd

x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
≥u(x, t)− ε1.

(38)

Therefore,
u(x, t) ≤ w(x, t) + ε1. (39)

By the definition of w(x, t), i.e. (36), for any ε1 > 0, there
exists d1(·) ∈M[t,t+δ] such that

w(x, t) ≤max
{
u(φd1

x,t(t+ δ), t+ δ),

max
i∈{1,...,nX }

{ max
s∈[t,t+δ]

gi(φ
d1
x,t(s), s)}

}
+ ε1.

(40)

Also, by the definition of u(x, t), i.e. (7), for any ε1, there
exists d2(·) ∈Mt+δ such that

u(y, t+ δ) ≤max
{

max
i∈{1,...,nTR}

{li(φd2

y,t+δ(T ))},

max
i∈{1,...,nX }

{ max
s∈[t+δ,T ]

gi(φ
d2

y,t+δ(s), s)}
}

+ ε1,

(41)

where y = φd1
x,t(t+ δ). We can define

d(s) =

{
d1(s), s ∈ [t, t+ δ)

d2(s), s ∈ [t+ δ, T ]
, (42)

Therefore, we infer that

w(x, t) ≤ max
{

max
i∈{1,...,nTR}

{li(φd
x,t(T ))},

max
i∈{1,...,nX }

{ max
s∈[t,T ]

gi(φ
d
x,t(s), s)}

}
+ 2ε1

≤ u(x, t) + 2ε1.

(43)

Combining (39) and (43) together, we finally have |u−w| ≤
ε = 2ε1, implying that u(x, t) = w(x, t) since ε1 is arbitrary.

The proof of Theorem 2:
Proof: Firstly, applying the definition of u(x, s), i.e.

(7), to the terminal condition when t = T , u(x, T )
satisfies the boundary condition (11), i.e. u(x, T ) =
max

{
maxi∈{1,...,nTR}{li(x)},maxi∈{1,...,nX }{gi(x, T )}

}
.
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The continuity property of the function u(x, t) is assured by
Lemma 1. According to Definition 3, a continuous function is
a viscosity solution if it is both a sub-solution and a super-
solution, we will respectively prove that u is a viscosity sub-
and super-solution to (11).

Firstly we prove that u(x, t) is a sub-solution to (11).
Let ψ ∈ C∞(Rn × [0, T ]) such that u − ψ attains a local
maximum at (x0, t0), where t0 ∈ [0, T ]; without loss of
generality, assume that this maximum is 0, i.e. u(x0, t0) =
ψ(x0, t0). Therefore, there exists a positive value δ such that
u(x, t)− ψ(x, t) ≤ 0 for (x, t) satisfying ‖x− x0‖ ≤ δ and
0 ≤ t − t0 ≤ δ. Suppose (13) in Definition 3 is false. Then
there definitely exists a positive number ε1 such that

max
i∈{1,...,nX }

{gi(x0, t0)} ≤ ψ(x0, t0)− ε1 (44)

holds. Therefore, there exists a sufficiently small δ′ > 0 with
δ′ ≤ δ such that for (x, τ) satisfying ‖x − x0‖ ≤ δ′ and
0 ≤ τ − t0 ≤ δ′, maxi∈{1,...,nX }{gi(x, τ)} ≤ ψ(x0, t0)− ε1

2 .
Also, there exists a positive number ε2 such that

∂tψ(x0, t0) +H(x0,Oxψ) ≤ −ε2 (45)

holds. Since ‖φd
x0,t0(τ) − x0‖ = ‖

∫ τ
t=0

F (x(t),d(t))dt‖ ≤
M(τ−t0) for d ∈Mt0 , where τ ∈ [t0, T ] and M is a positive
number such that M ≥ ‖F (x,d)‖ over S[t0,T ](x0)×D, there
exists small enough δ > 0 with δ ≤ δ′ such that ‖φd

x0,t0(τ)−
x0‖ ≤ δ′ for τ ∈ [0, δ] and d ∈ M[t0,t0+δ]. Integrating (45)
from t0 to t0 + δ, we have

ψ(φd
x0,t0(t0+δ), t0+δ)−ψ(x0, t0) ≤ −ε2

2
δ, ∀d ∈M[t0,t0+δ].

Further, since u−ψ attains a local maximum of 0 at (x0, t0),
we infer that

u(φd
x0,t0(t0 + δ), t0 + δ) ≤ u(x0, t0)− ε2

2
δ

holds. Therefore, according to the dynamic principle (14) in
Lemma 2, we finally have

u(x0, t0) = sup
d∈M[t0,t0+δ]

max{u(φd
x0,t0(t0 + δ), t0 + δ),

max
i∈{1,...,nX }

{ max
s∈[t0,t0+δ]

gi(φ
d
x0,t0(s), s)}}

≤ u(x0, t0)−min{ε1
2
,
ε2
2
δ}

(46)

which is a contradiction, since ε1, ε2 and δ are positive.
Therefore, u is a sub-solution to (11).

Next, we prove that u is a viscosity super-solution to (11) as
well. Let ψ ∈ C∞(Rn× [0, T ]) such that u−ψ attains a local
minimum at (x0, t0), where t0 ∈ [0, T ]. Similarly, we assume
that this minimum is 0, i.e. u(x0, t0) = ψ(x0, t0). Therefore,
there exists a positive value δ such that u(x, t)− ψ(x, t) ≥ 0
for (x, t) satisfying ‖x− x0‖ ≤ δ and 0 ≤ t− t0 ≤ δ.

If (12) is false, then either

max
i∈{1,...,nX }

{gi(x0, t0)} ≥ ψ(x0, t0) + ε1, (47)

holds or
∂tψ(x0, t0) +H(x0,∇xu) ≥ ε2, (48)

holds for some ε1, ε2 > 0.
If (47) holds, then there is a small enough δ′ > 0 with

δ′ ≤ δ such that for (x, t) satisfying t0 ≤ t ≤ t0 + δ′ and
‖x− x0‖ ≤ δ′,

max
i∈{1,...,nX }

{gi(x, t)} ≥ ψ(x0, t0) +
ε1
2

= u(x0, t0) +
ε1
2
.

Moreover, there exists δ > 0 with δ ≤ δ′ such that
‖φd

x0,t0(τ)− x0‖ ≤ δ′ for τ ∈ [0, δ] and d ∈M[t0,t0+δ].
Then the dynamic programming principle (14) in Lemma 2

yields

u(x0, t0) = sup
d∈M[t0,t0+δ]

max{u(φd
x0,t0(t0 + δ), t0 + δ),

max
i∈{1,...,nX }

{ max
s∈[t0,t0+δ]

gi(φ
d
x0,t0(s), s)}}

≥ u(x0, t0) +
ε1
2
,

(49)

which is a contradiction since ε1 > 0.
However, if (48) holds, there is a small enough δ′ > 0

with δ′ ≤ δ such that ∂tψ(x, t) +H(x,∇xu) ≥ ε2
2 for (x, t)

satisfying ‖x − x0‖ ≤ δ′ and 0 ≤ t − t0 ≤ δ′. Moreover,
there exists a postive δ ≤ δ′ such that ‖φd

x0,t0(τ)− x0‖ ≤ δ′
for τ ∈ [0, δ] and d ∈ M[t0,t0+δ]. Therefore, there exists
d1 ∈M[t0,t0+δ] such that

δ
ε2
4
≤ ψ(φd1

x0,t0(t0 + δ), t0 + δ)− ψ(x0, t0). (50)

Note that (50) can be assured by integrating (48) with the fixed
strategy d1 from t0 to t0 + δ since ψ ∈ C∞(Rn × [0, T ]).
Further, due to the fact that u−ψ attains a local minimum at
(x0, t0) and u(x0, t0) = ψ(x0, t0), we have

δ
ε2
4
≤ u(φd1

x0,t0(t0 + δ), t0 + δ)− u(x0, t0). (51)

Therefore, the following contradiction is obtained with the help
of (14):

u(x0, t0) = sup
d∈M[t0,t0+δ]

{max(u(φd
x0,t0(t0 + δ), t0 + δ),

max
i∈{1,...,nX }

{ max
s∈[t0,t0+δ]

gi(φ
d
x0,t0(s), s))}}

≥ u(x0, t0) +
ε2
4
δ,

(52)

Thus, (12) holds and u is a super-solution to (11).
Uniqueness follows from Proposition 2 in [13]: Let v(x, t) :

Rn×[0, T ] 7→ R and u(x, t) : Rn×[0, T ] 7→ R be viscosity so-
lutions with identical boundary condition v(x, T ) = u(x, T ).
According to local comparison principle as illustrated in
Proposition 1 in [13], v ≤ u and u ≤ v, implying that u = v
over Rn × [0, T ].
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