
A Unified Framework for Quantitative Analysis
of Probabilistic Programs

Shenghua Feng1∗ , Tengshun Yang2∗ , Mingshuai Chen3(B) , and
Naijun Zhan4,2(B)

1 Zhongguancun Laboratory, Beijing, China
2 Institute of Software, CAS, University of Chinese Academy of Sciences, China

3 Zhejiang University, Hangzhou, China
4 School of Computer Science, Peking University, China

Abstract. Verifying probabilistic programs requires reasoning about
various probabilistic behaviors, e.g., random sampling, nondeterminism,
and conditioning, against multiple quantitative properties, e.g., assertion-
violation probabilities, moments, and expected running times. It is desir-
able and theoretically significant to have a unified framework which can
deal with quantitative analysis of programs with different probabilistic
behaviors and properties. In this paper, we present a unified framework
for the quantitative analysis of probabilistic programs, which incorpo-
rates and extends existing results on the analysis of termination, tem-
poral properties, and expected cost. We show that these quantitative
properties of a general probabilistic program can be characterized as
solutions to equation systems of the corresponding Markov chain coun-
terpart with a possibly uncountable state space. Based on such charac-
terization, we propose sufficient conditions to establish upper and lower
bounds on these quantitative properties. Moreover, we demonstrate how
our approach can be adapted to address inference problems in Bayesian
programming.

Keywords: Probabilistic programs · Quantitative analysis · Markov chains ·
Equation systems

1 Introduction

Probabilistic programming [39,29,55] is a novel programming paradigm that
extends classical programming languages with statements such as probabilis-
tic branching and sampling. Probabilistic programs provide a powerful model
for randomized algorithms [9], artificial intelligence [13,52], reliability engineer-
ing [15], network protocols [27,41], etc. These applications involve safety-critical
domains such as autonomous vehicles and spacecraft. Thus, formal analysis of
these probabilistic (control) programs has become increasingly significant – as is
mandatory per many standards – and has undergone a recent surge of interest.

* Both authors contributed equally to this work.

http://orcid.org/0000-0002-5352-4954
http://orcid.org/0000-0002-2072-0836
http://orcid.org/0000-0001-9663-7441
http://orcid.org/0000-0003-3298-3817


2 S. Feng et al.

Compared to the formal analysis of classical programs that mostly focuses
on qualitative properties – which are represented as the intersection of safety
and liveness [4] – the analysis of probabilistic programs concerns quantitative
properties in many situations. Prominent problems of quantitative analysis of
probabilistic programs include (1) expected running time analysis [34,35,28,1,30],
for reasoning about the expected termination time; (2) temporal property anal-
ysis [57,22,54], for, e.g., estimating the probability that an assertion eventually
happens (♢ operator) or the probability that one assertion always holds until
another assertion holds (U operator); (3) cost analysis [58,56,48], for analyzing
the expected accumulated resource consumption incurred by program transi-
tions and termination;5 and (4) expectation analysis [32,30,11], for deriving the
bounds for weakest pre-expectation.

In the literature, there are various approaches proposed to attack the afore-
mentioned properties for programs with different probabilistic behaviors. Among
these approaches, there are two lines of work leveraging martingale-based rea-
soning and weakest pre-expectation (wp) reasoning, respectively:

– Martingale-based reasoning. For expected running time analysis, [16] em-
ploys martingales to find upper bounds of expected running time for pro-
grams without nondeterminism. [20] further extends the martingale-based
technique to handle programs with nondeterminism, and obtains sound con-
ditions for finding upper bounds of expected running time. [30] proposes
conditions to verify lower bounds on expected running time for programs
without nondeterminism. For temporal property analysis, [57] focuses on
finding upper and lower bounds of assertion violations for programs without
nondeterminism. For cost analysis, [48] considers the transition cost to be
non-negative and bounded. [58] further considers general transition costs for
programs with at most one type of nondeterminism and provides sufficient
conditions for finding upper and lower bounds. Recently, [56] presents con-
ditions to derive upper and lower bounds on higher moments of expected
accumulated cost.

– Weakest pre-expectation reasoning. Weakest pre-expectation reasoning [44]
is a reasoning technique for probabilistic programs, which extends the clas-
sical weakest precondition calculus for classical imperative programs. [35]
presents a wp-style calculus for obtaining bounds on expected running time.
In [33], a weakest pre-expectation style calculus is proposed for reasoning
about expected values of mixed-sign random variables after termination6

for programs without nondeterminism. Recently, [26] introduces a guard-
strengthening rule to infer lower bounds of wp for possibly diverging proba-
bilistic programs.

To summarize, extensive research has been conducted on analyzing proba-
bilistic programs, targeting diverse objectives such as termination, expected run-
ning time, temporal properties, and expected cost. Common to many of these

5 Expected running time analysis can be seen as an instance of expected cost.
6 This can be interpreted as termination cost in cost analysis.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 3

methods is a typical procedure: They reduce the verification process (specifically,
the determination of upper and lower bounds on desired quantities) to synthe-
sizing functions that meet specific conditions. However, the methodologies for
expressing different types of analyses can vary significantly. Additionally, each
analytical approach imposes different side conditions on the probabilistic pro-
grams under examination. These include constraints on the non-negativity of
expectation functions [44], boundedness of transition cost functions [48], and
limitations on the boundedness of variable updates [58], to name just a few. It
is both desirable and of theoretical importance to develop a unified framework
capable of addressing all aforementioned issues in a consistent manner, thereby
allowing for the seamless integration of various analytical results.

Synopsis of Our Approach and Contributions.We propose a unified frame-
work that facilitates reasoning about various quantitative properties of proba-
bilistic programs. This approach enables the integration and extension of existing
analyses of probabilistic programs, including, but not limited to, expected run-
ning time, cost, and temporal property analyses. We demonstrate that these
quantitative properties of a general probabilistic program can be represented as
solutions to equation systems associated with its Markov chain counterpart with
a possibly uncountable state space. Based on this characterization, we propose
sufficient conditions for establishing upper and lower bounds on these quantita-
tive properties and discuss how our approach can be extended to Markov deci-
sion processes. Furthermore, we illustrate how our framework can be adapted to
tackle inference problems in Bayesian programming.

Paper Organization. In Sect. 2, we first introduce basic notations on Markov
chains and probabilistic programs and then formulate the problem of interest.
Sect. 3 outlines sufficient conditions for estimating the quantitative properties
of Markov chains, based on which, Sect. 4 illustrates the method for consistently
encapsulating earlier findings in the quantitative analysis of probabilistic pro-
grams. In Sect. 5, we demonstrate how our approach can be adapted to address
inference problems in Bayesian programming. Sect. 6 concludes the paper.

Related Work. In addition to the above-mentioned techniques using martingale-
and weakest pre-expectation-based reasoning, quantitative analysis of proba-
bilistic programs can also be handled by other methods, e.g., value iteration-
based algorithms for approximating reachability probabilities of Markov sys-
tems [8,31,50], characteristic function-based forward inference techniques [23,37],
distribution approximation (in terms of, e.g., moment series) using density es-
timation in statistics [36,38], coupling-based techniques for differential privacy,
convergence, and program equivalence [2,3], etc. Among them, moment-based
methods exhibit high efficiency and have been used to address, e.g., Bayesian net-
work properties including exact inference [53] and termination analysis [45,46].
Moreover, [47] and [5] enlarge the scope of moments derivation to enable wider
applications of moment-based methods. [40,56] bound higher central moments
for running times and other monotonically increasing quantities.



4 S. Feng et al.

2 Preliminaries

2.1 Probability Theory

Let N, R, R+ be respectively the set of natural, real, and non-negative real
numbers. Let (f)+ and (f)− denote the positive and negative part of f , i.e.
(f)+ = max{f, 0}, (f)− = max{−f, 0}, and thus f = (f)+ − (f)−, a ∧ b denote
the minimum between a and b. For any set A, 1A denotes the indicator function
that maps s to 1 if s ∈ A and 0 otherwise.

A probability space is a triple (Ω,F ,P), where Ω is a sample space, F ⊆ 2Ω is
a σ-algebra on Ω, and P : F → [0, 1] is a probability measure on the measurable
space (Ω,F). For any measurable space (Ω,F), denote the set of probability
measure on Ω by D(Ω). The support of the probability measure P on (Ω,F) is

supp(P) = {A ∈ F | P(A) ̸= 0 },

where H denote the closure of H for any set H. If Ω is a finite set and F = 2Ω ,
then supp(P) is the set of all elements in Ω that have positive probability. A
random variable X defined on the probability space (Ω,F , P ) is a F-measurable
function X : Ω → R∪ {−∞,+∞}; its expectation (w.r.t. P) is denoted by E[X];
For any set A ⊆ Ω, E[X · 1A] is also denoted by E[X;A]. Let F ′ ⊆ F is a sub-
σ-algebra, a conditional expectation of X w.r.t. F ′ is a F ′-measurable random
variable denoted by E[X | F ′], such that E[X · 1A] = E[E[X | F ′] · 1A] for all
A ∈ F ′. A collection {Fn | n ∈ N} of σ-algebras in F is a filtration if Fn ⊆ Fn+k

for n, k ∈ N. A random variable T : Ω → [0,∞] is called a stopping time w.r.t.
some filtration {Fn | n ∈ N0} of F if {T ≤ n} ∈ Fn for all n ∈ N.

A stochastic process {Xn}n∈N adapted to a filtration {Fn | n ∈ N} is called
a supermartingale (resp. submartingale) if E[Xn] < ∞ for any n ∈ N0 and
E[Xm | Fn] ≤ Xn (resp. E[Xm | Fn] ≥ Xn) for all m ≤ n. That is, the
conditional expected value of any future observation, given all past observations,
is no larger (resp. smaller) than the most recent observation. {Xn}n∈N is a
martingale if it is both supermartingale and submartingale. A set of random
variables {Xn}n∈N is uniformly integrable, if

lim
M→∞

sup
n

E[|Xn| · 1|Xn|≥M ] = 0.

A Markov chain (MC) is a tuple M = (S,P), where S is a set of states
endowed with σ−algebra FS , and P : S×FS → [0, 1] is the transition probability
function such that for all state s, P(s, ·) is a probability measure over FS . For s ∈
S, the set of infinite paths of M starting from s is PathsM(s) = {π = s0s1 . . . ∈
Sω | s0 = s }, the set of all infinite paths of M is PathsM = ∪s∈SPaths

M(s).
Following a standard procedure [25], for any initial state s ∈ S, we can construct
a probability measure over the set of infinite paths PathsM, with σ−algebra
generated by all cylinder sets. We denote this probability measure by Ps, where
s is the initial state. Let Xn be the random process that represents the system
state after nth transition, formally,

Xn : Paths
M → S,

s0s1 . . . sn . . . 7→ sn.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 5

1 : while (x ≥ 0){
2 : if (x ≥ 4)

3 : {x = x− 1 [0.4] x = x+ 1 }
4 : else

5 : {x = x− 1 [0.5] x = x+ 1 }
6 : }.
7 :

Fig. 1: A probabilistic program (left) and its CFG (right), where location label
lin = 1 and lend = 7 represent the starting and ending point of the program,
respectively.

The σ−algebra generated by X1, X2, . . . , Xn is denoted by Fn, Es[·] denotes
taking expectation w.r.t. probability measure Ps.

2.2 Probabilistic Programs

In this subsection, we describe the syntax of the probabilistic programs under
investigation:

C ::= skip | x := e | x :≈ µ | C;C | {C} [p] {C} | if (φ) {C} else {C} | while (φ) {C} ,

where x is a program variable taken from a countable set Vars of variables, φ is
a formula over program variables that is a Boolean combination of arithmetic
inequalities, and µ is a predefined probability distribution. The semantics of most
statements, including skip, assignment, sequential composition, conditional, and
the while statement, follow their standard meaning in imperative programs. The
semantics of a statement {C1}[p]{C2} is a probabilistic choice that flips a coin
with bias p ∈ [0, 1] and executes the statement C1 if the coin yields head, and
C2 otherwise. Note that the probabilistic choice statement {C1} [p] {C2} is the
syntactic sugar for x :≈Bernoulli(p); if (x = 0) {C1} else {C2}, where Bernoulli(p)
equals 0 with probability p and equals 1 with 1−p. The semantics of a statement
x :≈µ samples a value according to the predefined distribution µ (including both
discrete and continuous distributions) and assigns the value to the variable x.

Given a probabilistic program C, its semantics can be interpreted as a discrete-
time Markov chain over its underlying control flow graph (e.g. Fig. 1). The state
space is defined as the Cartesian product of the program location (or program
counter) L and the variable valuation Val, where Val represents the set of all
mappings from program variables to their respective values. There are two spe-
cial locations in L: lin represents the starting location of the program, and lend
represents the ending location of the program.

Definition 1 (Operational Semantics of Probabilistic Programs [18,16]).
Given a probabilistic program C, its operational semantics can be characterized



6 S. Feng et al.

by a Markov chain MC = (SC ,PC), where SC ≜ L× Val, PC is the transition
probability over Sc.

Therefore, analyzing a probabilistic program is essentially the same as an-
alyzing its underlying Markov model. In the following, we will investigate the
quantitative properties of the Markov chain and demonstrate its relationship
with the corresponding probabilistic program in Sect. 4.

2.3 Quantitative Analysis of MC

In this subsection, we formalize the notations for quantitative analysis of MC
and formulate the problem investigated in this paper.

LTL-style notations for quantitative properties. Given an MC M = (S,P). For
any A,B ⊆ S, let ♢A denote the set of paths in PathsM that can reach A
eventually, and AUB stand for the set of paths staying in A before visiting B.
Formally, for any π = s0s1 . . . ∈ PathsM,

π |= ♢A iff ∃i ≥ 0, si ∈ A,

π |= AUB iff ∃i ≥ 0, si ∈ B and ∀j < i, sj ∈ A.

The probability for ♢A and AUB to hold in state s is denoted by Ps(s |= ♢A)
and Ps(s |= AUB), i.e.

Ps(s |= ♢A) = Ps({π ∈ PathsM(s) | π |= ♢A}),
Ps(s |= AUB) = Ps({π ∈ PathsM(s) | π |= AUB}).

In addition to temporal operator ♢ and U, we also consider the expected
cumulated cost in MC. Suppose M is also associated with a cost function
cost : S → R. Intuitively, the value cost(s) stands for the cost paid on leav-
ing state s. The accumulated cost for a finite path π̂ = s0s1 . . . sn is defined
by

cost(π̂) = cost(s0) + cost(s1) + . . .+ cost(sn−1).

Based on accumulated cost for finite paths, we now consider the accumulated
cost paid along an infinite path until reaching A, formally, for any π = s0s1 . . . ∈
PathsM, define

cost(π,♢A) =

{
cost(s0 . . . sn) if sn ∈ A, ∀i < n, si ̸∈ A

lim
n→∞

cost(s0 . . . sn) if π ̸|= ♢A

The expected cost until reaching A from initial state s for MC M = (S,P) is
then defined by

ExpCost(s |= ♢A) = Es [cost(π,♢A)] .

Intuitively, ExpCost(s |= ♢A) represents the averaged cost until reaching A over
all infinite paths w.r.t. probability measure Ps.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 7

Problem Formulation. Given a possibly infinite MC M = (S,P), estimate
the following quantitative properties

Ps(s |= ♢A), Ps(s |= AUB), ExpCost(s |= ♢A) , (1)

and relate them to the quantitative analysis of probabilistic programs.

3 Quantitative Analysis of Markov Chains

In this section, we show how to estimate (upper and lower bounds) the quanti-
tative properties in Eq. (1). In order to characterize these properties uniformly,
we first propose a novel value function V (s) which can represent Ps(s |= ♢A),
Ps(s |= A UB), and ExpCost(s |= ♢A) by choosing different parameters, then
show V (x) is a solution to a typical equation system, and finally propose suffi-
cient conditions to find upper and lower bounds on V (x).

The key ingredient of V (x) is a properly defined stopping time. For any set
of states H ⊆ S, let TH be the random variable that represents the transition
time of an infinite path before reaching H, formally,

TH : PathsM → N,

s0s1s2 . . . 7→

{
inf{n ∈ N | sn ∈ H } if exists k, sk ∈ H;

∞ if forall n, sn ̸∈ H.

Recall that Xi represents the system state after ith transition; the random vari-
able representing the system state upon reaching H is defined by XTH

, formally,

XTH
: PathsM → S,

s0s1s2 . . . 7→ sk if inf{n ∈ N | sn ∈ H } = k.

We now present the definition of value function V (s):

Definition 2. Given Markov chain M = (S,P) and H ⊆ S, for any function
f : S → R, g : S → R, value function V (s) is defined as follows7,

V (s) = Es

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
. (2)

Intuitively, if f(s) and g(s) represent the cost on state s, then V (s) is the
expected cost upon reaching H over all infinite paths w.r.t. transition cost f
and termination cost g. By choosing different function f , g, and set H, value
function V (s) can represent Ps(s |= ♢A), Ps(s |= AUB), and ExpCost(s |= ♢A)
uniformly. In detail, for any set A,B ⊆ S,

7 Here we implicitly assume summation
∑TH−1

i=0
f(Xi) converges (including converg-

ing to infinity) almost surely. If this is not the case, we may view V (s) as an interval
function. The convergence issue is similar to the well-definedness of the Lebesgue
integral. See Appx. A for details.



8 S. Feng et al.

1. let H = A, and

f = 0, g(s) =

{
1 if s ∈ A

0 if s ∈ S\A
,

then

V (s) = Ps(s |= ♢A).

2. let H = (S\A) ∪B, and

f = 0, g(s) =

{
1 if s ∈ B

0 otherwise
,

then

V (s) = Ps(s |= AUB).

Proof. By Def. 2, we have

V (s) = Es [1TH<∞ · g(XTH
)]

= Ps

(
{π ∈ PathsM(s) | TH(π) < ∞ , g(XTH

)(π) = 1}
)
.

For any infinite path π ∈ PathsM(s), TH(π) < ∞ and g(XTH
)(π) = 1 if

and only if for the first time π hits H = (S\A)∪B, it hits B, which implies
π |= AUB. Thus we have V (s) = Ps(s |= AUB).

3. let H = A, and

f(s) = cost(s), g(s) = 0,

then

V (s) = ExpCost(s |= ♢A).

Note that the proofs for 1 and 3 are straightforward and are therefore omitted
for brevity.

Therefore, to estimate quantitative properties in Eq. (1), it suffices to esti-
mate value function V (s). We first show that V (s) serves as the solution to a
related equation system by leveraging the Markov property.

Theorem 1. Given a Markov chain M = (S,P), value function V (s) satisfies
the following equation system:∫

S

V (t)P(s,dt) + f(s) = V (s), if s ∈ S\H,

V (s) = g(s), if s ∈ H.

(3)

Proof. For any s ∈ H, V (s) = g(s) trivially holds. For any s ∈ X\H, as {Xi}i∈N
is a Markov process, by Markov property and properties of conditional expecta-



A Unified Framework for Quantitative Analysis of Probabilistic Programs 9

tion, we have

Es

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)
∣∣X1

]

= f(s) + Es

[
TH−1∑
i=1

f(Xi) + 1TH<∞ · g(XTH
)
∣∣X1

]

= f(s) + EX1

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
= f(s) + V (X1).

Taking expectation w.r.t. probability Ps on both sides, we have

Es

[
Es

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)
∣∣X1

]]
= f(s) + Es [V (X1)] ,

where the left-hand side equals V (s) by properties of conditional expectation,
and the right-hand side is equivalent to taking expectation w.r.t. probability
measure P(s, ·) by the construction of Ps, thus we have

V (s) =

∫
S

V (t)P(s,dt) + f(s).

This completes the proof. ⊓⊔

Remark 1 (Connections to Probabilistic Model Checking). When Markov chain
M = (S,P) is finite, Eq. (3) reduces to a linear system due to the finiteness of
the state space. This system corresponds exactly to the set of equations used
to characterize the temporal properties of Markov chains in probabilistic model
checking [7]. ⊓⊔

Although Thm. 1 establishes that V (s) is a solution to Eq. (3), computing
V (s) explicitly is infeasible (for infinite Markov chain), as Eq. (3) may have
multiple solutions. Even when Eq. (3) has a unique solution, solving it remains
challenging. Therefore, a more practical approach involves approximating V (s)
by determining its upper and lower bounds.

The classical Fatou’s Lemma, as presented in [25], validates the interchange
of integration and limits. In this work, we extend Fatou’s Lemma to suit our
specific requirements.

Lemma 1 (Generalized Fatou’s lemma). Let {Xn}n∈N be a sequence of
random variables,

– If {(Xn)
−}n∈N is uniformly integrable, then

E[lim inf
n

Xn] ≤ lim inf
n

E[Xn].



10 S. Feng et al.

– If {(Xn)
+}n∈N is uniformly integrable, then

lim sup
n

E[Xn] ≤ E[lim sup
n

Xn].

Proof. For the first part, let X = lim infn Xn. Due to the uniform integrability
of {(Xn)

−}n∈N, for any ϵ > 0, there exists c such that E[X−
n ; (Xn)

− > c] ≤ ϵ for
any n ∈ N (recalling E[X;A] denotes E[X ·1A]). SinceX+c ≤ lim infn(Xn+c)+,
we have

E[X] + c ≤ E[lim inf
n

(Xn + c)+] ≤ lim inf
n

E[(Xn + c)+].

Moreover, we have that

(Xn + c)+ = Xn + c+ (Xn + c)− ≤ Xn + c+ 1Xn<−c · (Xn)
−

holds, which implies

E[X] + c ≤ lim inf
n

E[(Xn + c)+]

≤ lim inf
n

(E[Xn] + c+ E[(Xn)
−; (Xn)

− > c])

≤ lim inf
n

(E[Xn] + c+ ϵ).

Since ϵ is an arbitrary positive number, the result follows. For the second part,
substituting {Xn}n∈N with {−Xn}n∈N, the result follows similarly. ⊓⊔

Given a Markov chain M = (S,P), random variable uYn is defined by

uYn ≜ u(Xn) +

n−1∑
i=0

f(Xi) (4)

for any function u : S → R, where Xi represents system state after ith transition.
We may omit prescript u in uYn when it is clear from the context. The following
theorem indicates how to find upper bounds on value function V (x).

Theorem 2. Given a Markov chain M = (S,P), suppose there exists a function
u : S → R such that the process

{(uYn∧TH
)−}n∈N

is uniformly integrable, then u(s) ≥ V (s) for s ∈ S if one of the following
conditions holds:

– Ps(TH < ∞) = 1 for any s ∈ S, and∫
S

u(t)P(s,dt) + f(s) ≤ u(s), if s ∈ S\H,

u(s) ≥ g(s), if s ∈ H.

(5)



A Unified Framework for Quantitative Analysis of Probabilistic Programs 11

– the following equation holds∫
S

u(t)P(s,dt) + f(s) ≤ u(s), if s ∈ S\H,

u(s) ≥ 0, if s ∈ S\H,

u(s) ≥ g(s), if s ∈ H.

(6)

Proof. For any s ∈ H, Eq. (5) and Eq. (6) imply u(s) ≥ g(s) = V (s). For any
s ∈ S\H, Eq. (5) and Eq. (6) imply∫

S

u(t)P(s,dt) + f(s) ≤ u(s), if s ∈ S\H.

Thus for any π ∈ PathsM, if TH(π) > n+ 1, then

Es[Y(n+1)∧TH
| Fn](π) = Es

[
u(Xn+1) +

n+1∑
i=0

f(Xi) | Fn

]
(π)

=Es [u(Xn+1) | Fn] (π) +

n∑
i=0

f(Xi)(π)

=

∫
S

u(t)P(Xn,dt)(π) + f(Xn)(π) +

n−1∑
i=0

f(Xi)(π)

≤u(Xn)(π) +

n−1∑
i=0

f(Xi)(π) = Yn(π) = Yn∧TH
(π),

and if TH(π) ≤ n, then

Y(n+1)∧TH
(π) = Yn∧TH

(π).

In this case, we still have

Es[Y(n+1)∧TH
(π) | Fn] ≤ Yn∧TH

(π)

Then it follows that {Yn∧TH
}n∈N is a supermartingale. By properties of super-

martingale, we have
Es[Yn∧TH

] ≤ Es[Y0] = u(s).

holds for any n ∈ N. Moreover, since {(Yn∧TH
)−}n∈N is uniformly integrable,

properties of supermartingale [25] imply limn Yn∧TH
) converges almost surely,

thus Lem. 1 further implies

Es[ lim
n→∞

Yn∧TH
] ≤ lim

n→∞
Es[Yn∧TH

] ≤ u(s)

If Ps(TH < ∞) = 1 for any s ∈ S and Eq. (5) holds, then u(s) ≥ g(s) for s ∈ H,
thus

lim
n→∞

Yn∧TH
= lim

n→∞

(
u(Xn∧TH

) +

n∧TH−1∑
i=0

f(Xi)

)

= u(XTH
) +

TH−1∑
i=0

f(Xi) ≥ g(XTH
) +

TH−1∑
i=0

f(Xi)



12 S. Feng et al.

By taking expectation on both sides, we have

V (s) ≤ Es[ lim
n→∞

Yn∧TH
] ≤ u(s)

If Eq. (6) holds, then u(s) ≥ g(s) for s ∈ H, and u(s) ≥ 0 for s ∈ S\H, thus

lim
n→∞

Yn∧TH
= lim

n→∞

(
u(Xn∧TH

) +

n∧TH−1∑
i=0

f(Xi)

)

≥ 1TH<∞ · u(XTH
) +

TH−1∑
i=0

f(Xi)

≥ 1TH<∞ · g(XTH
) +

TH−1∑
i=0

f(Xi).

Thus, we still have V (s) ≤ Es[ lim
n→∞

Yn∧TH
] ≤ u(s), This completes the proof. ⊓⊔

Sufficient conditions for finding lower bounds on value function V (s) can be
dually formulated as follows.

Theorem 3. Given a Markov chain M = (S,P), suppose there exists a function
u : S → R such that the process

{(uYn∧TH
)+}n∈N

is uniformly integrable, then u(s) ≤ V (s) for s ∈ S if one of the following
conditions holds:

– Ps(TH < ∞) = 1 for any s ∈ S, and∫
S

u(t)P(s,dt) + f(s) ≥ u(s), if s ∈ S\H

u(s) ≤ g(s), if s ∈ H

(7)

– the following equation holds∫
S

u(t)P(s,dt) + f(s) ≥ u(s), if s ∈ S\H

u(s) ≤ 0, if s ∈ S\H
u(s) ≤ g(s), if s ∈ H

(8)

Proof. The result follows from Thm. 2 if we replace f , g with −f , −g, then
finding lower bounds on the original V (s) is equivalent to finding upper bounds
on the new V (s). ⊓⊔

As demonstrated in Thm. 2 and Thm. 3, determining upper and lower
bounds necessitates verifying the uniform integrability of {(uYn∧TH

)−}n∈N and
{(uYn∧TH

)+}n∈N, respectively. This verification is challenging by definition. How-
ever, the classical Optional Stopping Theorem offers sufficient conditions to con-
firm uniform integrability, simplifying the process.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 13

Theorem 4 (Optional Stopping Theorem [25,60]). Let T be a stopping
time w.r.t. Fn, and {Xn}n∈N is a stochastic process adapted to Fn, such that
E[Xn] < ∞ for all n ∈ N, Process {Xn∧T }n∈N is uniformly integrable if one of
the following conditions holds:

– T is bounded almost surely, i.e. there exists N ∈ N such that P(T ≤ N) = 1;
– Xn∧T is bounded, i.e. there exists constant C ∈ R+ such that |Xn∧T | ≤ C

almost surely;
– E[T ] < ∞ and Xn∧T is conditional difference bounded, i.e. there exists M >

0, such that for any n ∈ N,

E[|X(n+1)∧T −Xn∧T | | Fn] ≤ M.

then {Xn∧T }n∈N is uniformly integrable.

Based on optional stopping theorem, the following results ensure the uniform
integrability of {(uYn∧TH

)−}n∈N and {(uYn∧TH
)+}n∈N.

Lemma 2. The stochastic process {(uYn∧TH
)−}n∈N (resp. {(uYn∧TH

)+}n∈N) is
uniformly integrable if one of the following conditions hold.

– TH is bounded almost surely, i.e. there exists N ∈ N such that Ps(TH ≤
N) = 1 for any s ∈ S;

– u− (resp. u+) is bounded and f− = 0 (resp. f+ = 0);
– Es[TH ] < ∞ for any s ∈ S, f− (resp. f+) is bounded, and there exists

C ∈ R+, such that ∫
S

∣∣u−(t)− u−(s)
∣∣ P(s,dt) ≤ C

(resp.

∫
S

∣∣u+(t)− u+(s)
∣∣ P(s,dt) ≤ C)

(9)

for any s ∈ S\H.

Proof. We give a proof for {(uYn∧TH
)−}n∈N, the proof for {(uYn∧TH

)+}n∈N is
similar. By Eq. (4), we have

0 ≤ (uYn)
− ≤ u−(Xn) +

n−1∑
i=0

f−(Xi)

It suffices to prove the uniform integrability of Zn∧TH
, where Zn is defined by

Zn ≜ u−(Xn) +

n−1∑
i=0

f−(Xi)

The above three sufficient conditions directly correspond to three sufficient con-
ditions formulated in Thm. 4. ⊓⊔
Remark 2. Eq. (9) can be relaxed to∫

S

|u(t)− u(s)| P(s,dt) ≤ C

since |u−(t)− u−(s)| ≤ |u(t)− u(s)| and |u+(t)− u+(s)| ≤ |u(t)− u(s)| for any
t, s ∈ S. ⊓⊔



14 S. Feng et al.

3.1 Extension to MDP

Our approach can be readily adapted to the quantitative analysis of Markov
Decision Processes (MDPs). An MDP represents a demonic nondeterministic
extension of a Markov Chain and reduces to a Markov Chain when a scheduler
resolves the nondeterminism.

Considering demonic nondeterminism, the value function is generalized to

V (s) = sup
σ

Es

[
TH−1∑
i=0

f(Xσ
i ) + 1TH<∞ · g(Xσ

TH
)

]
, (10)

where σ represents a scheduler that resolves nondeterminism. Also, the equa-
tional characterization for determining upper and lower bounds of V must ac-
count for the calculation of suprema across the action set. For instance, Eq. (5),
which characterizes the upper bound for a Markov Chain, extends to

sup
a∈Act(s)

∫
S

u(t)P(s, a,dt) + f(s) ≤ u(s), if s ∈ S\H,

u(s) ≥ g(s), if s ∈ H

(11)

for the MDP scenario, where Act(s) represents the action set at state s. Solving
Eq. (11) establishes an upper bound on the value function V . Similarly, Eq. (7)
for the lower bound extends to

sup
a∈Act(s)

∫
S

u(t)P(s, a,dt) + f(s) ≥ u(s), if s ∈ S\H,

u(s) ≤ g(s), if s ∈ H

(12)

in the MDP context. It is important to note that while the computational com-
plexity of solving Eq. (11) (i.e., finding the upper bound) remains consistent
with the Markov Chain case, finding solutions for Eq. (12) (i.e., determining
the lower bound) is considerably more challenging, as it involves computing the
suprema over all possible actions.

4 Quantitative Analysis of Probabilistic Programs

In this section, we establish a link between the quantitative analysis of the
Markov chain in Sect. 3 and the quantitative analysis of probabilistic programs.
We will demonstrate how varying the parameters in V (x) can represent different
quantitative properties of a probabilistic program within the program’s semantic
Markov chain.

Recall that for any program C, there exists a corresponding Markov chain
MC = (SC ,PC), with SC is defined as L×Val, representing the product of pro-
gram counters and variable valuations. Within L, there are two notable counters:
the starting counter lin and the ending counter lend.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 15

4.1 Assertion Violation

Assertion violation analysis constitutes a fundamental problem in the quanti-
tative assessment of probabilistic programs. This analysis aims to estimate the
probability that a given assertion will be violated before the program terminates.
Assertion violation was first considered in [17], and further investigated in [21,22]
via concentration inequality. In [57], the authors demonstrate that the probabil-
ity of an assertion violation represents the least solution to a specific equation.
They also propose sufficient conditions for establishing upper and lower bounds
on this probability. In this subsection, we will re-establish the results in [57]
within our own framework.

Suppose the assertion we aim to avoid is B ⊆ L × Val, and let lend denote
the ending location, then Ps

(
s |=

(
(L \ lend)× Val

)
UB

)
is exactly the assertion

violation probability with undesirable set B. According to Sect. 3,

V (s) = Ps

(
s |=

(
(L \ lend)× Val

)
UB

)
= Assertion violation probability

with

H = (lend × Val) ∪B, f = 0, g(s) =

{
1 if s ∈ B

0 otherwise.

Thus Thm. 2 and Thm. 3 provide sufficient conditions for obtaining upper and
lower bounds on assertion violation probability.

4.2 Expected Running time

Expected running time is one of the most important properties of probabilistic
programs. There are various works considering to calculate the bounds for the
expected running time, e.g., [16,20] employs martingale techniques to find upper
bound of expected running time for programs, [34,35] present a wp-style calculus
for obtaining bounds on expected running time, [30] proposes conditions to verify
lower bound on expected running time for programs without nondeterminism. In
this subsection, we show how our approach entails the proof rules for establishing
upper and lower bounds on expected running time proposed in [30].

Since lend is the ending location, we have

V (s) = E[TH ] = Expected running time of C

with

H = (lend × Val), f = 1, g(s) = 0.

Thus Thm. 2 and Thm. 3 are exactly the same8 canonical proof rules for upper
and lower bound proposed in [16,30].

8 Note in this case, side conditions (i.e. uniformly integrability) in Thm. 2 trivially
holds, thus Thm. 2 is essentially the Park’s induction rule.



16 S. Feng et al.

4.3 Expected Accumulated Cost

Expected running time analysis can be naturally generalized9 to cost analysis,
i.e., calculating the expected resource consumption of the programs. In [48], the
authors first consider the expected cost with bounded non-negative transition
cost, [58] further considers mixed-sign transition costs (i.e. both positive and
negative cost) for probabilistic programs with nondeterminism and derives up-
per and lower bounds for the expected cost, [56] presents conditions to derive
bounds on higher moments of expected accumulated cost, and so forth. Again,
we demonstrate how our methods establish the results in [58].

Suppose one-step transition cost is denoted by cost : L × Val → R, then
ExpCost(s |= ♢(lend × Val) represents the expected cost of program C. Thus

V (s) = ExpCost(s |= ♢(lend × Val)) = Expected Cost of C

with
H = (lend × Val), f = cost, g(s) = 0.

Therefore, Thm. 2 and Thm. 3 provide sufficient conditions for obtaining
upper and lower bounds on expected cost, which are the same as [58].

4.4 Expectation Analysis

The weakest-precondition calculus [24] offers a logical framework for formally
reasoning about classical programs. Its probabilistic counterpart, the weakest
pre-expectation calculus [44], extends this framework to accommodate proba-
bilistic programs. This extension provides a robust deductive verification frame-
work for analyzing probabilistic behaviors. Intuitively, the weakest pre-expectation
transformer wp JCK (g) represents the expected value of g after program C ter-
minates. Within our framework, we have

V (s) = wp JCK (g) (s) = E[g(XTH
) · 1TH<∞],

with
H = (lend × Val), f = 0, g = g.

Thus Thm. 2 and Thm. 3 also incorporate results about upper and lower bound-
ing wp JCK (g) proposed in [30].

Example 1. Consider the following 1-D biased random walk,

C1dbrw : while (n > 0 ) {n := n− 1 [2/3] n := n+ 1 } .

We are interested in bounding the expected running time of C1dbrw. According
to Sect. 4.2, it suffices to solve Eq. (5) with f = 1, g = 0:

2

3
u(x− 1) +

1

3
u(x+ 1) + 1 ≤ u(x), if x > 0,

u(x) ≥ 0 , if x ≤ 0;
(13)

9 The expected running time analysis is a special case of cost analysis, where the
transition cost can be taken as a constant (e.g., 1).



A Unified Framework for Quantitative Analysis of Probabilistic Programs 17

to find upper bounds on expected running time and solve Eq. (7) with f = 1,
g = 0:

2

3
u(x− 1) +

1

3
u(x+ 1) + 1 ≥ u(x), if x > 0,

u(x) ≤ 0 , if x ≤ 0;
(14)

to find lower bounds. Eqs. (13) and (14) can be encoded as semidefinite program-
ming problems [19], and further solved by an off-the-shelf solver like Mosek [6].

⊓⊔

5 Extension to Bayesian Programming

In this section, we demonstrate how our approach can be adapted to address
inference problems in Bayesian programming.

Bayesian programming [55,51] is a specific programming paradigm that mod-
els Bayesian models as probabilistic programs. In a nutshell, compared with
(standard) probabilistic programs, Bayesian programming languages have one
specific construct: score (a.k.a. observe) [14,10], which is used to record the
likelihood of observed data in the form of “score(weight)”. The syntax of our
Bayesian probabilistic programming language is

C ::= skip | x := e | x :≈ µ | C;C | {C} [p] {C} |
if (φ) {C} else {C} | while (φ) {C} | score(weight)

where parameter weight can be a number w ∈ R or a probability density func-
tion. The semantics of score can be interpreted as weighting the current execu-
tion with the parameter weight10.

Example 2 (Pedestrian [42,43,13,59]). A pedestrian has got lost on the way
home and only knows that she is a uniform random distance between 0 and 3
km from her house. She repeatedly walks a uniform random distance of at most
1 km in either direction, until she arrives at her house. Upon her arrival, an
odometer tells her that she has walked 1.1 km in total. However, this odometer
was once broken and the measured distance is normally distributed around the
true distance with a standard deviation of 0.1 km. The movement can be modeled
by the probabilistic program in Fig. 2, together with its underlying CFG.

In Bayesian programming, one central problem is to infer the normalized pos-
terior distribution of Bayesian programming. We show that our unified frame-
work can be extended to infer the normalized posterior distribution for Bayesian
programming by a direct adaption of value function V (s).

10 score is more expressive and general than observe. Actually, the relation of the key-
word observe and score is score(f(D)) = observeD from p, where p is a predefined
probabilistic distribution, f is the corresponding probability density function, and
D is a measurable set. See more details in [10]. When using observe to filter the ad-
missible executions with a Boolean condition D (usually called hard conditioning),
we also can express it with if (D) {score(1)} else {score(0)}.



18 S. Feng et al.

start :≈ uniform(0, 3)

p := start; d := 0;

lin : while(p ≥ 0){
r :≈ uniform(0, 1);

{p := p− r [0.5] p := p+ r}
d := d+ r;

}
score(pdf(normal(d, 0.1), 1.1));

lend : return start

Fig. 2: Pedestrian random walk (left) and its simplified CFG (right), where lo-
cation label lin and lend represent the starting and ending point of the program,
respectively.

Given a measurable set U , the normalized posterior distribution of Bayesian
program P w.r.t. set U is defined by:

posterior(U) =
ZU

ZP
,

where ZU is the expected accumulated weights that terminal states lie in lend×U ,
and ZP is the normalising constant11. Thus, the key challenge in bounding the
normalized posterior distribution lies in finding upper and lower bounds on the
expected accumulated weights ZU and ZP .

Problem Formulation. Given a probabilistic program P and a measurable
set U , we aim to estimate the expected accumulated weights ZP and ZU

after the termination of program P .

To address this problem, we refine the value function V (s) by incorporat-
ing a weight factor and eliminating the transition cost, yielding the following
formulation:

V (s) = Es

[
TH−1∏
i=0

weight(Xi) · 1TH<∞ · g(XTH
)

]
,

where weight(Xi) represents
12 the weight factor at state Xi.

11 We assume ZP < ∞.
12 If the program location associated with Xi contains no score statement, the weight

factor defaults to 1, i.e. weight(Xi) = 1.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 19

Based on the adapted value function, if H and g are further defined by

H = (lend × Val), g(s) =

{
1 if s ∈ U

0 otherwise.

then V (s) = ZU . Similarly, V (s) = ZP if H = (lend × Val) and g(s) = 1. Thus,
it suffices to find upper and lower bounds on value V (s). Let

uYn ≜ u(Xn) ·
n−1∏
i=0

weight(Xi), (15)

for any u : S → R, the following results, analogous to Thm. 2, present sufficient
conditions to obtain upper bounds on V (s).

Theorem 5. Given a Bayesian Program P and its underlying Markov chain
M = (S,P), suppose there exists a function u : S → R such that the process

{(uYn∧TH
)−}n∈N

is uniformly integrable, then u(s) ≥ V (s) for s ∈ S if one of the following
conditions holds:

– Ps(TH < ∞) = 1 for any s ∈ S, and∫
S

u(dt)P(s,dt) · weight(s) ≤ u(s), if s ∈ S\H

u(s) ≥ g(s), if s ∈ H

(16)

– the following equation holds∫
S

u(dt)P(s,dt) · weight(s) ≤ u(s), if s ∈ S\H

u(s) ≥ 0, if s ∈ S\H
u(s) ≥ g(s), if s ∈ H

(17)

Remark 3. A similar result can be obtained for deriving lower bounds on V (s).
⊓⊔

Proof. The proof closely resembles the proof of Thm. 2. Since Eq. (16) holds,
one can directly verify {Yn∧TH

}n∈N is a supermartingale. Thus, by properties of
supermartingale, we have

Es[Yn∧TH
] ≤ Es[Y0] = u(s).

holds for any n ∈ N. by taking limit on both sides and following a similar
argument in Thm. 2, we obtain u(s) ≥ V (s). ⊓⊔



20 S. Feng et al.

Example 3. We simply illustrate how our extended framework is applied to ad-
dress the Bayesian inference through Exmp. 2. Without loss of generality, we
take the calculation of the upper bound and lower bound for ZP as an example.
According to Thm. 5, we have the following characterization for the upper bound
of ZP :

0.5Er[u1(p− r, d+ r)] + 0.5Er[u1(p+ r, d+ r)] ≤ u1(p, d), if p ≥ 0 ∧ s ∈ lin,

pdf(normal(d, 0.1), 1.1) · u2(p, d) ≤ u1(p, d), if p < 0 ∧ s ∈ lin,

u2(p, d) ≥ 1 , if s ∈ lend,
(18)

where u1 is the value function on location lin and u2 is the value function on
location lend. Eq. (18) can be encoded into semidefinite programming problems
using Putinar’s Positivstellensatz [49], and further solved by a off-the-shelf solver,
e.g. Mosek [6]. ⊓⊔

Remark 4. The sufficient conditions for deriving upper and lower bounds on
V (x) (or expected accumulated weights) constitute the central finding in [59].
In this paper, we re-establish these results within our unified framework. ⊓⊔

6 Conclusion

We have introduced a unified framework for the quantitative analysis of prob-
abilistic programs, which encompasses termination analysis, temporal property
analysis, cost analysis, and expectation analysis. We illustrate how our approach
can be adapted to tackle inference problems in Bayesian programming. In the
future, we aim to expand our framework to encompass a broader spectrum of
probabilistic models, such as weighted programs discussed in [12], and to explore
efficient computational algorithms for determining upper and lower bounds.

Acknowledgments. We dedicate this article to our dear colleague Joost-Pieter
Katoen on the occasion of his 60th birthday, who has been tirelessly pushing the
limits of, amongst others, (automated) quantitative analysis of probabilistic pro-
grams. This work has been funded by the National Key R&D Program of China
under grant No. 2022YFA1005101, by the NSFC under grant No. 62192732, by
the ZJNSF Major Program under grant No. LD24F020013, by the Fundamental
Research Funds for the Central Universities of China under grant No. 226-2024-
00140, and by the ZJU Education Foundation’s Qizhen Talent program.

References

1. A. Abate, M. Giacobbe, and D. Roy. Learning probabilistic termination proofs.
In A. Silva and K. R. M. Leino, editors, Computer Aided Verification - 33rd In-
ternational Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part II, volume 12760 of Lecture Notes in Computer Science, pages 3–26. Springer,
2021.



A Unified Framework for Quantitative Analysis of Probabilistic Programs 21

2. A. Albarghouthi and J. Hsu. Constraint-based synthesis of coupling proofs. In
H. Chockler and G. Weissenbacher, editors, Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Confer-
ence, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981
of Lecture Notes in Computer Science, pages 327–346. Springer, 2018.

3. A. Albarghouthi and J. Hsu. Synthesizing coupling proofs of differential privacy.
Proc. ACM Program. Lang., 2(POPL):58:1–58:30, 2018.

4. B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985.

5. D. Amrollahi, E. Bartocci, G. Kenison, L. Kovács, M. Moosbrugger, and
M. Stankovic. Solving invariant generation for unsolvable loops. In G. Singh
and C. Urban, editors, Static Analysis - 29th International Symposium, SAS 2022,
Auckland, New Zealand, December 5-7, 2022, Proceedings, volume 13790 of Lecture
Notes in Computer Science, pages 19–43. Springer, 2022.

6. E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-
point method for conic quadratic optimization. Math. Program., 95(2):249–277,
2003.

7. C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.
8. C. Baier, J. Klein, L. Leuschner, D. Parker, and S. Wunderlich. Ensuring the reli-

ability of your model checker: Interval iteration for markov decision processes. In
R. Majumdar and V. Kuncak, editors, Computer Aided Verification - 29th Inter-
national Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceed-
ings, Part I, volume 10426 of Lecture Notes in Computer Science, pages 160–180.
Springer, 2017.

9. G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub. Proving differential
privacy via probabilistic couplings. In M. Grohe, E. Koskinen, and N. Shankar,
editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 749–758.
ACM, 2016.

10. G. Barthe, J.-P. Katoen, and E. A. Silva. Foundations of Probabilistic Program-
ming. Cambridge University Press, 2020.

11. K. Batz, M. Chen, S. Junges, B. L. Kaminski, J. Katoen, and C. Matheja. Prob-
abilistic program verification via inductive synthesis of inductive invariants. In
S. Sankaranarayanan and N. Sharygina, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part II, volume
13994 of Lecture Notes in Computer Science, pages 410–429. Springer, 2023.

12. K. Batz, A. Gallus, B. L. Kaminski, J. Katoen, and T. Winkler. Weighted pro-
gramming: a programming paradigm for specifying mathematical models. Proc.
ACM Program. Lang., 6(OOPSLA1):1–30, 2022.

13. R. Beutner, C. L. Ong, and F. Zaiser. Guaranteed bounds for posterior inference in
universal probabilistic programming. In R. Jhala and I. Dillig, editors, PLDI ’22:
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, pages 536–551.
ACM, 2022.

14. J. Borgström, U. D. Lago, A. D. Gordon, and M. Szymczak. A lambda-calculus
foundation for universal probabilistic programming. In J. Garrigue, G. Keller, and
E. Sumii, editors, Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,
pages 33–46. ACM, 2016.



22 S. Feng et al.

15. M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quantitative reliability for
programs that execute on unreliable hardware. In A. L. Hosking, P. T. Eugster,
and C. V. Lopes, editors, Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pages 33–52. ACM, 2013.

16. A. Chakarov and S. Sankaranarayanan. Probabilistic program analysis with mar-
tingales. In N. Sharygina and H. Veith, editors, Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 511–526.
Springer, 2013.

17. A. Chakarov, Y. Voronin, and S. Sankaranarayanan. Deductive proofs of almost
sure persistence and recurrence properties. In M. Chechik and J. Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 22nd Interna-
tional Conference, TACAS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in Computer Science,
pages 260–279. Springer, 2016.

18. K. Chatterjee, H. Fu, and A. K. Goharshady. Termination analysis of probabilistic
programs through positivstellensatz’s. In S. Chaudhuri and A. Farzan, editors,
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes
in Computer Science, pages 3–22. Springer, 2016.

19. K. Chatterjee, H. Fu, and A. K. Goharshady. Termination analysis of probabilistic
programs through positivstellensatz’s. CoRR, abs/1604.07169, 2016.

20. K. Chatterjee, H. Fu, P. Novotný, and R. Hasheminezhad. Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
In R. Bod́ık and R. Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 327–342. ACM, 2016.

21. K. Chatterjee, H. Fu, P. Novotný, and R. Hasheminezhad. Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst., 40(2):7:1–7:45, 2018.

22. K. Chatterjee, P. Novotný, and D. Zikelic. Stochastic invariants for probabilis-
tic termination. In G. Castagna and A. D. Gordon, editors, Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 145–160. ACM, 2017.

23. M. Chen, J. Katoen, L. Klinkenberg, and T. Winkler. Does a program yield the
right distribution? - verifying probabilistic programs via generating functions. In
S. Shoham and Y. Vizel, editors, Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I, vol-
ume 13371 of Lecture Notes in Computer Science, pages 79–101. Springer, 2022.

24. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
25. R. Durrett. Probability: theory and examples, volume 49. Cambridge University

Press, 2019.
26. S. Feng, M. Chen, H. Su, B. L. Kaminski, J. Katoen, and N. Zhan. Lower

bounds for possibly divergent probabilistic programs. Proc. ACM Program. Lang.,
7(OOPSLA1):696–726, 2023.

27. N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva. Probabilistic
netkat. In P. Thiemann, editor, Programming Languages and Systems - 25th Eu-
ropean Symposium on Programming, ESOP 2016, Held as Part of the European



A Unified Framework for Quantitative Analysis of Probabilistic Programs 23

Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in
Computer Science, pages 282–309. Springer, 2016.

28. H. Fu and K. Chatterjee. Termination of nondeterministic probabilistic programs.
In C. Enea and R. Piskac, editors, Verification, Model Checking, and Abstract
Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal,
January 13-15, 2019, Proceedings, volume 11388 of Lecture Notes in Computer
Science, pages 468–490. Springer, 2019.

29. A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic
programming. In J. D. Herbsleb and M. B. Dwyer, editors, Proceedings of the on
Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7,
2014, pages 167–181. ACM, 2014.

30. M. Hark, B. L. Kaminski, J. Giesl, and J. Katoen. Aiming low is harder: induction
for lower bounds in probabilistic program verification. Proc. ACM Program. Lang.,
4(POPL):37:1–37:28, 2020.

31. A. Hartmanns and B. L. Kaminski. Optimistic value iteration. In S. K. Lahiri and
C. Wang, editors, Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume
12225 of Lecture Notes in Computer Science, pages 488–511. Springer, 2020.

32. B. L. Kaminski. Advanced weakest precondition calculi for probabilistic programs.
PhD thesis, RWTH Aachen University, Germany, 2019.

33. B. L. Kaminski and J. Katoen. A weakest pre-expectation semantics for mixed-
sign expectations. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Com-
puter Society, 2017.

34. B. L. Kaminski, J. Katoen, C. Matheja, and F. Olmedo. Weakest precondition rea-
soning for expected run-times of probabilistic programs. In P. Thiemann, editor,
Programming Languages and Systems - 25th European Symposium on Program-
ming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 364–389.
Springer, 2016.

35. B. L. Kaminski, J. Katoen, C. Matheja, and F. Olmedo. Weakest precondition
reasoning for expected runtimes of randomized algorithms. J. ACM, 65(5):30:1–
30:68, 2018.

36. A. Karimi, M. Moosbrugger, M. Stankovic, L. Kovács, E. Bartocci, and E. Bura.
Distribution estimation for probabilistic loops. In E. Ábrahám and M. Paolieri, ed-
itors, Quantitative Evaluation of Systems - 19th International Conference, QEST
2022, Warsaw, Poland, September 12-16, 2022, Proceedings, volume 13479 of Lec-
ture Notes in Computer Science, pages 26–42. Springer, 2022.

37. L. Klinkenberg, K. Batz, B. L. Kaminski, J. Katoen, J. Moerman, and T. Winkler.
Generating functions for probabilistic programs. In M. Fernández, editor, Logic-
Based Program Synthesis and Transformation - 30th International Symposium,
LOPSTR 2020, Bologna, Italy, September 7-9, 2020, Proceedings, volume 12561 of
Lecture Notes in Computer Science, pages 231–248. Springer, 2020.

38. A. Kofnov, M. Moosbrugger, M. Stankovic, E. Bartocci, and E. Bura. Moment-
based invariants for probabilistic loops with non-polynomial assignments. In
E. Ábrahám and M. Paolieri, editors, Quantitative Evaluation of Systems - 19th
International Conference, QEST 2022, Warsaw, Poland, September 12-16, 2022,
Proceedings, volume 13479 of Lecture Notes in Computer Science, pages 3–25.
Springer, 2022.



24 S. Feng et al.

39. D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–
350, 1981.

40. S. Kura, N. Urabe, and I. Hasuo. Tail probabilities for randomized program run-
times via martingales for higher moments. In T. Vojnar and L. Zhang, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 25th Interna-
tional Conference, TACAS 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer Sci-
ence, pages 135–153. Springer, 2019.

41. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Com-
puter Science, pages 585–591. Springer, 2011.

42. C. Mak, C. L. Ong, H. Paquet, and D. Wagner. Densities of almost surely termi-
nating probabilistic programs are differentiable almost everywhere. In N. Yoshida,
editor, Programming Languages and Systems - 30th European Symposium on Pro-
gramming, ESOP 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, volume 12648 of Lecture Notes in Computer Science,
pages 432–461. Springer, 2021.

43. C. Mak, F. Zaiser, and L. Ong. Nonparametric hamiltonian monte carlo. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 7336–7347. PMLR, 18–24 Jul 2021.

44. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer, 2005.

45. M. Moosbrugger, E. Bartocci, J. Katoen, and L. Kovács. Automated termination
analysis of polynomial probabilistic programs. In N. Yoshida, editor, Programming
Languages and Systems - 30th European Symposium on Programming, ESOP 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12648 of Lecture Notes in Computer Science, pages 491–518.
Springer, 2021.

46. M. Moosbrugger, E. Bartocci, J. Katoen, and L. Kovács. The probabilistic termi-
nation tool amber. In M. Huisman, C. S. Pasareanu, and N. Zhan, editors, Formal
Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-
26, 2021, Proceedings, volume 13047 of Lecture Notes in Computer Science, pages
667–675. Springer, 2021.

47. M. Moosbrugger, M. Stankovic, E. Bartocci, and L. Kovács. This is the moment for
probabilistic loops. Proc. ACM Program. Lang., 6(OOPSLA2):1497–1525, 2022.

48. V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. Bounded expectations: resource
analysis for probabilistic programs. In J. S. Foster and D. Grossman, editors, Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages
496–512. ACM, 2018.

49. M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univer-
sity Mathematics Journal, 42(3):969–984, 1993.

50. T. Quatmann and J. Katoen. Sound value iteration. In H. Chockler and G. Weis-
senbacher, editors, Computer Aided Verification - 30th International Conference,



A Unified Framework for Quantitative Analysis of Probabilistic Programs 25

CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in Com-
puter Science, pages 643–661. Springer, 2018.

51. T. Rainforth. Automating inference, learning, and design using probabilistic pro-
gramming. PhD thesis, University of Oxford, 2017.

52. A. Ścibior, Z. Ghahramani, and A. D. Gordon. Practical probabilistic programming
with monads. In B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4,
2015, pages 165–176. ACM, 2015.

53. M. Stankovic, E. Bartocci, and L. Kovács. Moment-based analysis of bayesian
network properties. Theor. Comput. Sci., 903:113–133, 2022.

54. T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. Ranking and repulsing super-
martingales for reachability in randomized programs. ACM Trans. Program. Lang.
Syst., 43(2):5:1–5:46, 2021.

55. J. van de Meent, B. Paige, H. Yang, and F. Wood. An introduction to probabilistic
programming. CoRR, abs/1809.10756, 2018.

56. D. Wang, J. Hoffmann, and T. W. Reps. Central moment analysis for cost accumu-
lators in probabilistic programs. In S. N. Freund and E. Yahav, editors, PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 20211, pages 559–573.
ACM, 2021.

57. J. Wang, Y. Sun, H. Fu, K. Chatterjee, and A. K. Goharshady. Quantitative
analysis of assertion violations in probabilistic programs. In S. N. Freund and
E. Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 20211, pages 1171–1186. ACM, 2021.

58. P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi. Cost anal-
ysis of nondeterministic probabilistic programs. In K. S. McKinley and K. Fisher,
editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, pages 204–220. ACM, 2019.

59. P. Wang, H. Fu, T. Yang, G. Li, and L. Ong. Template-based static posterior
inference for bayesian probabilistic programming. CoRR, abs/2307.13160, 2023.

60. D. Williams. Probability with martingales. Cambridge University Press, 1991.

A Additional remarks on value function

In Def. 2, the value function V (s) for Markov chains is defined by

V (s) = Es

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
(19)

which implicitly assume that
∑TH−1

i=0 f(Xi) converges 13 (including converging
to infinity) almost surely. If it is not the case, we may define V (s) as an interval,

13 Note
∑TH−1

i=0 f(Xi) is an infinite sum iff TH = ∞, thus if TH < ∞ almost surely,∑TH−1
i=0 f(Xi) also converges almost surely.



26 S. Feng et al.

which contains all possible expected cost during the execution of the system.
Formally, let

L(s) = Es

[
lim inf
n→∞

n∧TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
(20)

U(s) = Es

[
lim sup
n→∞

n∧TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
(21)

we then define V (s) = [L,U ]. If V (s) is an interval, the equation system in
Thm. 1 is not applicable, but the sufficient conditions for finding upper and
lower bounds proposed in Thm. 2 and Thm. 3 are still valid in the sense that
u(s) ≥ V (s) = [L(s), U(s)] means u(s) ≥ U(s), and u(s) ≤ V (s) = [L(s), U(s)]
means u(s) ≤ L(s).

For Markov chain, the value function V (s) in Def. 2 is defined by

V (s) = Es

[
TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]
(22)

which also implicitly assume
∑TH−1

i=0 f(Xi) converges almost surely. If it is not
the case, we may define V (s) as an interval, formally, let

L(s) = Es

[
lim inf
n→∞

n∧TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

U(s) = Es

[
lim sup
n→∞

n∧TH−1∑
i=0

f(Xi) + 1TH<∞ · g(XTH
)

]

then V (s) is defined by
V (s) = [L(s), U(s)].

In this case, the equation system for V (s) proposed in Thm. 1 is not applicable,
but the conditions for finding upper and lower bounds proposed in Thm. 2 and
Thm. 3 are still valid in the sense that

u(s) ≥ V (s) = [L(s), U(s)]

means u(s) ≥ U(s), and

u(s) ≤ V (s) = [L(s), U(s)]

means u(s) ≤ L(s).


	A Unified Framework for Quantitative Analysis of Probabilistic Programs

